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1. INTRODUCTION 

Rule-based expert systems have moved from a research activity in a small number of 

academic computer science departments to a growing commercial activity. This transition 

clearly indicates that the structure of a complex computer program enforced by a rule-based 

system (namely, the clear separation of the decision-making process, the inference engine. 

from the data on which the decisions are based, the rule basei is a useful step in the 

evolution of programming strategies At the same time there has been a growing 

recognition that in most decision-making situations the data (namely, the rule base and the 

initial evidence used to start the decision-making process) are not known with certainty and 

consequently the inference procedures used in traditional rule-based systems are 

inappropriate. Over the last decade a number of inference procedures which use various 

numerical representations of uncertainty have been developed for use in rule-based systems. 

However, for a variety of reasons (including the fact that there is little logical basis for the 

representations! none of then   has been widely successful. 

In this paper we will describe, the current state of an ongoing research project which is 

attempting to use probability as the mechanism for representing uncertainty in a rule-based 

system. . A previous report was given in Eddy and Pei (19861. We have been constrained 

in our development of a probability-based expert system by a number of external 

considerations, the most important of which we delineate here. 

The single most important constraint is that we are doing our development in the context 

of an existing rule-based expert system and as such we are constrained to limit the 

modifications we might wish to make to the system. In particular, we wish to limit our 

modifications to the inference engine only. This is not an overly serious constraint and it 

enforces a certain /oca/zfy on the nature of the possible computations. Exactly this locality 

of   computation   will   be   required   if   the   system   is   ever   to   be   scaled   up   to   a   rule-base 



containing thousands or m llions of rules. Barnett 11981) has induced the same kind of 

locality of computation in a system very similar to ours but at the cost of assuming 

unrealistic independence in 'arious parts of the rule base: we discuss Bamett's work further 

in Section 5. 

A second important constraint is that any numerical expressions of uncertainty about data 

are themselves quite uncaruin. in practice, and as such we wish to allow for the expression 

of uncertainty about the uncertainties. There are a number of possible ways to do this: we 

have chosen what appears to us the simplest way to address this constraint. Precisely, we 

are using belief functions (Shafer. 1976) to represent sets of probability distributions. We 

discuss some of the details irf belief functions in Section 4. 

There are at least two patties involved in the development and use of a rule-based expert 

system: the expert, who expresses the rules, and the user, who causes the system to run 

by supplying it with some initial external evidence. An early planned use of the system we 

are developing was for game-playing to evaluate possible strategies. Initially we felt that it 

was important for the two players, the expert and the user, to be able to interchange roles 

without affecting the results. This turns out to be a quite complex constraint: a simplified 

version of this constraint requires that the system perfrom properly (i.e.. get the "right" 

answer) if the expert and the user are one and the same individual 

The remainder of this paper is organixed as follows. In the next section we give a very 

brief introduction to the details of a rule-based expert system. In Section 3 we describe 

what, to us, are the most natural methods for incorporating uncertainty into a rule-based 

system. In Section 4 we provide a few of the formal details of belief functions and 

describe a few of their properties. In Section 5 we discuss various possible approximation 

techniques which will  speed up the computations.     In Sections 6 and 7 we provide detailed 

/■..- v' 
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properties of the approximations we have developed. The essence of the approximations is 

to force the belief function to have a simpler form; an extreme form of this simplification 

occurs when the belief function represents a unique probability distribution. In Section 8 

we briefly describe some of the features of our implementation of this theory in a LISP 

computer program. 

2. RULE-BASED EXPERT SYSTEMS 

A rule-based expert system lor production system I consists of a collection of production 

rules together with a system for linking or "chaining" the rules to simulate a human 

expert's reasoning process. A production rule (or, simply, a rulel is a statement of the 

form  "If A then B,"  where A and B are logical propositions. 

The mechanism used for chaining rules is generally one of two kinds: either forward 

chaining or backward chaining. In the forward chaining scheme the user of the system 

supplies some evidence, generally of the form "A is true,' and the system then uses this 

evidence together with the rules to reason towards conclusions or goals. Forward chaining 

is generally described as causal or deductive reasoning. In the backward chaining scheme 

the system attempts to satisfy its goals by finding rules which, if true, would imply those 

goals. It repeats this process until it is compelled, by the lack of any rules implying its 

current goals, to ask the user if a particular one or more of those goals (the antecedents of 

certain rules) are true. If the user accedes this is deemed to be evidence that the rule is 

true. Backward chaining is generally referred to as diagnostic reasoning. One crucial 

computational problem in either form of reasoning is how to discover rules with given 

antecedents (forward chaining) or with given consequents (backward chaining) in the rule 

base. Currently the only general strategy is to search over the entire rule base. Some 

savings can be made by "remembering" the results of previous searches so they can be 

"looked up"  in a table. 
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3. PROBABILITIES AND RULES 

There is currently no generally accepted method for incorporating uncertainty into a rule- 

based expert system. One method which seems appealing at first glance is to treat the 

user's probabilities on the evidence as a prior opinion and the expert's probabilities on the 

rules as a likelihood and simply use Bayes rule. In this method, we would expect the 

expert constructing the system to have joint probability distribution on the assignment of 

truth values to the propositions which are consequents of all the rules in the system. This 

joint probability distribution would be conditional on the assignment of truth values to those 

propositions in the system which are antecedents of some rale and not consequents of any 

rule Ithe evidence nodes). Also, we would expect the user of the system to have a joint 

probability distribution on the assignment of truth values to these evidence nodes. There 

are a number of obvious difficulties with this scheme: 

1. It is unreasonable to expect anyone to express a joint probability distribution on 
the assignment of truth values to a large collection of propositions for two 
reasons: 

a. The size of the collection of propositions: 

b. The inherent uncertainty in the expressed probability distribution. 

2. The amount of calculation required is overwhelming, being exponential in the 
number of propositions in the system. 

3. The symmetry constraint mentioned in the introductory section is obviously not 
satisfied. 

There are also a few subtler problems: 

1. The pooling of expert and user opinion via Bayes rale would appear to be 
inappropriate. More precisely, use of Bayes rule to pool the probability 
distributions of two individuals has no logical basis unless one of the individuals 
declares the probability distribution of the other individual to be his own. 

2. Both the expert and the user can reasonably be expected to have a joint 
probability distribution on the assignment of truth values to ail the propositions 
in the system. The use of lower-dimensional marginal and conditional probability 
dLxtributions from these two higer-dimensional joint distributions appears to 
discard potentially useful information. 

ev^j^^jd^A^^AuLü^^ 



K,v'r'rjv<rr',v\Krj',\yi'jr*yr*yr*\-* ^^nr^ WW^^^yv^.V'.F '..^ »wvr'v»wwvrv n vw viri.nn.'^,nTfr- wvirv»V vjWVWTw.r^r rv -v,"»»/»■■ 

A second method for incorporating uncertainty into a rule-based expert system pools the 

opinions of the expert and the user. We would expect the expert constructing the system 

to have a joint probability distribution on the assignment of truth values to all the 

propositions in the system and we would expect the user to also have such a joint 

probability distribution. This second method can. by the appropriate choice of a pooling 

rule, satisfy the symmetry constraint mentioned above. 

If it is possible to decompose each joint probability distribution so that a piece of the 

decomposition can be attached to a small number of propositions, and if this piece can be 

combined with another piece so that the entire joint distribution can be recovered then the 

difficulty of assigning a joint probability distribution on the assignment of truth values to a 

large collection of propositions may be overcome. One such decomposition is the conditional 

one: it would be desireable to have a decomposition that is symmetric so the order of 

composition is unimportant. Although Spiegelhalter (1986) has proposed a mechanism for 

allowing the conditional decomposition to be symmetric. 

We also allow the expression of uncertainty about probabilities by use of a belief functions 

as a lower bound on the probability. This will allow us to alleviate the first of the three 

obvious difficulties mentioned above. It does not seem possible to significantly reduce the 

computational requirements mentioned in the third difficulty, however, in Sections 5. 6, and 

7 we discuss an approximation which provides some reduction in the computational burden 

(see Eddy and Pei.   1986, for an alternative scheme!. 

4, BELIEF FUNCTIONS 

Following Shafer (1976), let 9 be a set of mutually exclusive and exhaustive propositions. 

Let 2 be the set of all subsets of 9; elements of 2 can be interpreted as general 

propositions in the problem domain. A basic probability assignment is a function nti) from 

2^ into JO.   1] which satisfies 

&^:1tt£^ 
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0 i   ffiCI i  1, 

/rt^1 = 0. 

and 

2  S contain««! in 9   'n<S)   :=   1 

There is a one-to-one correspondence between this basic probability assignment and the 

belief function. Bel{), and plausabilily function. Pl( ), given by 

Bel<S»   -   ^T cont^^d in S   ^T)- 

"^   =   ^  T cont«^ in S   HI l^lßeim, 

and 

PKSI =   1 - BeKSI. 

It is apparent that BeilA) i Pr(AI i P!(A) where Pr(AI is the probability of A. When Bel(A) 

equals P1(A) for every element in 2^, the values correspond to probabilities. This implies 

that the function  m takes non-zero values on the singletons only. 

There exist convex sets of probabilities, expressed only as a set of intervals of probability, 

which cannot be represented by belief functions. For example, suppose that the four events 

denoted by {1, 2. 3. 41  have the probabilities given by 

pj  = (1 • 2 q)/2 

p?  =  II  - 2 q)/2 

P4 = q 

where q ranges over the values 0 ^ q ^ 1/4. Table 4-1 gives the values of the probability 

as a function of q, the belief Bel, the plausability PI. and the implied basic probability 

number  m for all  the events in the algebra generated by these four events.    The important 
i 

point to notice is that nt\ is not positive for all events. 
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Table 4-1:      Probability Intervals not Representable by a Belief Function 

Event Probd Belli Pll 1 mi) 

1 (1-2 ql/2 1/4 1/2 1/4 

2 \l ■ 1  q)/2 1/4 1/2 1/4 

3 q 0 1/4 0 

t q 0 1/4 0 

12 1  - 2 q 1/2 1 0 

13 1/2 1/2 1/2 1/4 

14 1/2 1/2 1/2 1/4 

23 1/2 1/2 1/2 1/4 

24 1/2 1/2 1/2 1/4 

34 2 q 0 1/2 0 

123 1   - q 3/4 1 -1/4 

124 1  - q 3/4 1 -1/4 

134 q  +   1/2 1/2 3/4 ■1/4 

234 q   +   1/2 1/2 3/4 -1/4 

1234 1 1 1 0 

v- 

I-' 
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More generally, it can be shown that if a set of probability intervals are pven for the 

elements of a partition as 

0 i L, i p, i Uj S 1. i=l  n 

then for there to exist a corresponding belief function Bell I, it is necessary that both 

X"«!  L, + U, - L, S  1. for all j 

and 

Z"-!  U, +  Lr U. i   1. for all j. 

This   provides   a   quick   and   dirty   test   whether   or   not   an   expressed   set   of   probability 

intervals   are   in   fact   representable   by   a   belief   function.       Unfortunately,   the   sufficient 

conditions are considerably more complex. 

One particularly nice feature of the theory of belief functions is that it distinguishes 

between indifference and ignorance. Complete ignorance is represented by the uacuous 

belief function that assigns basic probability one to the set 9 and zero to every subset. 

Complete indifference assigns an equal amount to all singleton propositions and zero to 

every other subset; this is precisely a uniform probability distribution on the elements of 

the partition. Any degree of ignorance can be expressed quite naturally between the two 

extremes of complete ignorance and a well-defined probability distribution. 

The basic theory of belief functions requires that the frame of discernment be composed 

of mutually exclusive propositions. This means that only one proposition at a time can be 

true. In an expert system this condition is explicitly not satisfied: consequently, direct 

application of the the theory is impossible. We overcome this problem as follows. Let Q 

be a set of mutually supporting propositions: that is. suppose that 

0  =   IP,- P!   P„i- 

^^a&^^A^^^^^^a^^^^^^^^^y^^^ 
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By mutually supporting we mean that any assignment of truth values to the propositions is 

possible. Let r be a list of the possible assignments of truth values to the elements of 

Q.     If we now let T   be the frame of discernment then it is possible to use the theory of 

■wV 
belief functions. ■«.3 

M 
VJ 
vl 

As   originally   proposed   this   theory   used   a   rule   of  combination   (now   widely   known   as 
«,' 

Dempster's Rule of Combtnanon)  for  two  basic  probability  assignments,   rrij   and  m«, of  the l^- 

form 

m, O  m2 (Al  =  K Is Inteisect T , A mjlSl m?|T) for A *  ^ (4.11 

where the normalization constant K is chosen so the combined basic probabilities add to 

one. We have found this rule to be unsatisfactory and are currently exploring some 

alternative possibilities.    Consider repeated application of this rule of combination, viz.. 

m. ® m, O  .  .  . ®  ni. (4.2) 
Lin 

What are the possible limits as n increases?    It is fairly easy to see that both the uniform 

probability  distribution   and   any  belief  function  with  a   single  focal   element   (including  the ; 

vacuous belief function) are solutions and there are no others.    It is unreasonable to expect 

that   any   rule   of   combination,   when   iterated   in   this   manner,   would   yield   every   belief 

functions as a possible limit:  on  the other  hand the observed behavior of  the combination ' 

rule give in Equation 4.1 appears too restricted. 

Typically,   two   different   belief   functions   will   not   be   defined   over   the   same   frame   of , 

discernment and a combination rule such as Equation 4.1  can not be directly applied.    One ': 

frame is compatible with another if it can be obtained from it by splitting some of its 

possibilities into finer possibilitiej.    The frame of the finer analysis is called a  refinement of ( 

the original: the former is called a coarsening of the latter. Before application of a rule of 

combination it may be necessary to refine one or both of the frames  in order to obtain  a ,> 

common frame of discernment. 
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5. REDUCING THE COMPUTATIONAL COMPLEXITY 

Taere are considerable computational difficulties in using this theory. An initial 

assignment of 2" basic probability assignments must be made, where n represents the 

number of propositions in the frame of discernment 9 The required number of evaluations 

in using any combination rule increases exponentially as more propositions are included. It 

seems reesonable that intelligent exploitation of some structure could result in computational 

savings 

One way to reduce computational complexity is to assume that each piece of evidence 

either confirms or denies a single proposition rather than a disjunction. This is the 

approach that Bamett takes in his work (Bamett, 19811. While this will reduce the number 

Ot calculations from exponential M linear, it also means that the frame must be broken into 

independent partitions. This is a very strong assumption and not likely to be satisfied in 

practice. Here, we are interested in retaining the more natural possibility of dependence 

among the propositions in the system. 

Another possible approach would discount, at an early stage of the calculations, set«- with 

zero, or very small, basic probability assignments. Yet another approach is to ignore those 

sets with a cardinality higher than a predetermined threshold. This is the approach we 

take here. It is possible to reduce the computational problem from one of exponential time 

to one of polynomial time, and the degree of the polynomial can be set in advance by 

suitable choice of the threshold. 

A belief function provides both a lower bound and an upper bound for the probability. 

The narrower the range of this interval the more definite the knowledge about the 

probability It eieems reasonable to require that any approximation to an /»hfunction should 

preserve the properties of an ni-function. This produces one of the following three 

possibilities: 
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1. a less definite assignment of uncertainty la wider intervall; 

2. a more definite assignment of uncertainty la narrower interval). 

3. no change. 

Suppose the cardinality of 9 is n (that is © contains n propositions!. The approximations 

to be used involve neglecting ^i-function values attached to elements of 2 with cardinality 

greater than a threshold value k. To restore the approximation to an ^»-function requires 

some form of renormalization. To produce the first case (abovel it is proposed that the 

^(-function is restored by moving all the ignored basic probability mass to the element 9 

To produce the second effect the excess basic probability mass should be added to the 

elements of 2^ with cardinality less than lor equal to) the threshold value k in proportion 

to their original values. 

6. AN OUTER APPROXIMATION 

Denoting the approximations by  ml),  Bel I ) and  PI ( ) and dealing with  the  conservative 

approach first, the desired results are as follows: 

Bel'(A) ^  Bell A) . A contained in 9 

Pl'lA) 2 PKA) . A contained  in 9. 16.II 

The remaining requirement is that the function m (•) does not violate the rules for an 

m-function, no matter what the value of k. The three requirements that a function must 

satisfy to be an m-function are simply 

nAf)  = 0 

0 £   mlAI ^   1 

and 

SA contained  in 9"'<AI   =    1 



We define  m*  to be an  order k outer approximanon to  m as  follows. 

m'ifl  » 0 

m'lA) ■   mlA) if  IAI i  k and A contain«! in 9 

™*(AI »0 if  IA|   >  k and A « 9 

"^   =   i   •  ZA conuuned in 9   m'[M 

16.2) 

*"A contained in 9.   Al   >  k 

where  k  is the  threshold cardinality and   II  represents the the number of elements  in  the 

set.      The   first   requirement   for   n'\)   to   be   an   rn-function   is   trivially satisfied,   and   the 

second isquirement is clearly satisfied for all the above parts (the latter simply bec-.use the 

sum   must  be  less  than  or  equal   to  the   sum  of  ail   the  mtAI,   which is   one).     All   that 

remains is to verify the third condition for an m-hmction. 

ZA coouiMd in 9 '^*,A,  "   rn*^1  +  IA comrod in 9. |A| i k  ^ 

+   ^A cont^Md in e.  IAI   > k. A *  f   ""•A»   +   ", ^ 

^A contained in 9.  IA| ^ k nAM 

+   0   +   ZA conuuMd in 8. |A|   >  k   ^ 

=   ZA contuMd in 9  ^ 

=   1. (6.31 

The range of possible values for k is given by 

Oiks n-1. 

Tne value k=0 always yields tho vacuous probability assignment and the value k=n-l 

always yields the original probability assignment. It is clear that the smaller the value of 

k the more information is being neglected and the approximation becomes more vague (the 

interval widensl. The higher the value of k the less information is being neglected so the 

approximation should be closer to the original specification. Clearly there is also a 

possibility that the new  m -function will  not be different than the original   /Jj-function.     This 

LV V V W'.-■■-v ■■"■'■■•••■"-•"-.% .'-,^ ,"> ."■  '■ "■ % ,■ "■  •-" ~- ■,•.'•■■■•■   ■     . 
■-. 
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can  happen  when  for a  specific  value of  k,  all  the  elements  of 2     with  greater cardinality 

have  m-function values of zero. 

It's now necessary to prove the assertions made in Equation 6.1. First consider the 

belief Bel (I. It's easier to carry out the proof in four parts corresponding to the Equation 

6.2. Clearly Bel'lfl = 0. hence the first part is satisfied. The second part is satisfied as 

Bel (A) = BeKAl if the cardinality of A is less than or equal to k. The third part follows 

from 

Bel'lAI   -  IR „„„,.:„^  „ .   'n'lBl B containeo in A 

^•B contained in A.  IBI ^  k   '>riBl 

5   ^-B contained in A   m<B) 

=  Bel(A). (6.41 

Recall BellSl = 1 is one of the requirements of an Bell) function. For the final part of 

the proof it is required to show that Bel'lö) = 1 iThis actually follows automatically since 

m (•) satisfies the conditions of an m-function.I. 

Bel',e'   =   2B conta.ned in 9   ™™ 

=   IB contawed in 9.  IBI £  k   m,B)   +   rn'iei 

'   ^-B contained in 9,  IBI £ k   f"(BI   +   ^B contained in 9,  IBI   >  k   "üQ) 

~  ^B contained in 9   ■7,(BI 

=  Bel(9l. (6.51 

Hence the condition on the Bel 'I has been satisfied. The condition on the PI (I now 

follows immediately. 

Pl'lAI  =   1 - Bel'lAI 2.   1-  Bel(A)  =   PHAI. (6.6) 

It   has   now   been   shown   that   this   form   of   approximation   gives   the   desired   effect   of 
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widening the interval between the belief and the plausability The computational saving; is 

made because of all the icros used to replace the original assessments for sets with 

cardinality greater than k. Clearly these sets can now be ignored when performing a 

combination. Tius form of approximation could prove very useful in large systems: however, 

there is « danger that the approximation may not be very guod. The best results will 

undoubtedly come when small basic probability numbers are assigned to sets with high 

cardinality. It may prove to be a worthwhile exercise to increment the value of k on 

successive iterations until two successive iterations yield close results. This sort of 

numerical exercise is a task for the future. 

7. AN INNER APPROXIMATION 

In a similar manner to Section 6 the opposite effect of narrowing the interval between 

the belief and the plausability can be achieved. Denoting these approximations by nur I. 

Bel.(-) and Pl.ll, the desired results are now as follows: 

Bel, (A) i  Bell A) . A contained in 9 

PI.IA) ^  PKA) , A contained in 9. (7.11 

Again the function m,(l must not violate the rules for an rw-function. It is convenient to 

set up an intermediary function for ease of presentation: 

^A>   =   ^B contmn«! m A. |B| <;  k   ^B>- (7-2' 

We define  rri,  to be an  order k inner approximation to m as follows: 

m,{f)  =   0 

mjA)  =  0 if  |A|  >  k, A contained in 9 

=   ^A) + IA eontaintd ■„ a |D| , k m(AI X   ^D) / Mk(D),    otherwise. 17.3) 

Once again the first requirement of an nhfunction is trivially satisfied. As all the 

component parts of Equation 7.3 are non-negative it is sufficient to verify the third clause 

of an m-function.    That is, we must verify that the component parts of m»h sum to one. 

-'.'■. •*. L> >" •.   .. 
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Im.lA)   -  I1A| ^ k   lm<A)  ^  I1D|  > k  A ^„„^ ,n D  ^.A) X   niD) I  Af.lDl 

« Z)A| ^ k m«A) + I1D1 > k  ^Dl X   Mk(Dl / Afk(Dll 

I|A| i   k   "iA>   +   I!D|   >   k   ^D» 

2 A contmin«! in 9   'rtA) 

41 

The conditions for an  m-function are thus satisfied.    The range of possible values for  k is 

1 i  k i  n-1. 

The value k=l  corresponds to approximating the belief function by a probability distribution 

and the value k = n-l yields the original probability assignment. 

It is now necessary to prove the assertions made in Equation 7.1. The proof for the 

PI, (I function part will follow in a similar fashion to that for the Pi'l I function above. But 

it is necessary to prove the belief part first. Clearly Bel.lfl =■ 0. and Bel.i9l » I las 

m,( I satisfies the conditions for an «»-function.). Now it is necessary to prove the assertion 

in the cases where for any subset A of 9. 1A1 is either greater than k or less than or 

equal to k.   In the latter case the following relationships hold: 

B^'A'  =  ZE contra in A  ^lE' 

=   ^E ctmtain«! in A. IEI ^  k   'n<E) 

+   ZE contUMd In A. IE! i k ZIOl   >  k.  E contuiMd In D  "*& X   nUD)  I   M^D)) 

=   ^E conuunl in A. 1E| <; k   ^^   +   C     ^y'' ,7 5I 

But   since   the   cardinality   of   A   is   assumed   to   be   less   than   or   equal   to   k.   then   the 

cardinality of E is already determined, such that 

ZE contain«! in A. |E| S k   "^   ~      E contain«! in A   '"<E) 

=  Bell Al. 17.61 

Hence  Bel.lAI ^   BeKAl for the case where  |A| i  k.    Now a proof for the other  case I|AI 

>  kl is needed.    Equation 7.5 still holds and serves as the starting point here. 

>>;.''0>:.>.A- . • . •y. ■ ■ -V ■ , •, - ^ -.■.■.•, • <^. • - ■ .« , " • ' •.' V ■ "TO Of " \. > 's«.- . ■'. - . ■,--•.-.".'.••■.■■ ■.'■'---'- ^V •-.■•.■■     • 
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B.1.IA)  - IE ^^^ ,n ^ |E1 s „  niZ)  + c (7.7) 

-   B«I,A'   ■  ^E conc-n^i U, A.  IEI   >  k   'rtEl   +   C- 

If  th«  t«rms   in   the  constant c  are expanded  and  collectad   in   a  suitably  different  way   it 

becomes apparent that c contains the summation over IEI   >  k.    That is 

c   =   ^E coiu«in«d in A. IEI  > k  +   cl     lsayl- 

Hence the conditions are satisfied as now it is clear that 

17.8) 

BelJA) =■  BeKAl  + c, 17.9) 

The conditions on  the plausability [jnction now  follow immediately 

PI.IA)  =»   1  -  BelJA) i   1  ■ BellA)  ■   P!(A). 17.10) 

It has now been shown that this form of approximation gives the desired effect of 

narrowing the interval between the belief and the plausability. A slightly better 

computational saving is achieved with this inner approximation than with the outer 

approximation because one additional value of m is known to be zero. The effects of the 

approximations are summarized in Table 7-1. 

The terms increased' and decreased' in Table 7-1 should not be interpreted strictly: that 

is. they include the possibility of no change. 

Both of these approximations set basically the same elements to zero, for a given value 

of k. to achieve a computational saving Ithe one exception is 9.) It may be possible to 

combine the two approaches. As one approximation achieves a wider interval and the other 

achieves the opposite effect it should be possible to find some optimal combination of the 

two approximations. There are obviously many possible measures to optimize. A 

particularly simple one is to choose the proportionality constant ß to minimize 

-^-A * 9  /ol/JBeljA) ■  Bei(AI|. 

If pix)  =  x2 the solution is 

"V-.-" '-.-"-.' vv-"'-v-v-v  ' "<■■ 
V    *".   ^    ■•ta    -y    »     •%,   -     '     "      •      • 
. J-- .-- .-_ . . .^V.. .r- .-, j.V.. ■-, --. 

N -'• »'-^ «> «■> .v -""•"^^ .^ .'> i."V A ."- .*> jtV 
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Table M:     Summary of the Approximations 

Cardinality 

>  k 

Approximation 

BerC) B«1*C) 

fixed      increased 

decreased    increased 

PIC) 

-.-Z 

Cardinality 

> k 

s k 

Approximation 

PIC) P1*C) 

increased    decreased 

fixed      decreased 

ZA /S.  = Z-A ^ e BeUIAI Bel(A) / Z-A ^ 9 Bel.lA» BelJAl. 

We   do   not   yet   have   any   numerical   experience   with   this   approximation   and   we   are 

examining other measures of distance. 

We note that one of the primary motivations for the use of belief functions is the 

uncertainty attached to the probability assessments of the expert and the user An order 1 

inner approximation to a belief function is a probability distribution. An interesting 

question occurs. Is there any sense in which the order 1 inner approximation is an optimal 

approximation lestimate?) of the uncertain probability distribution which is represented )y 

the belief function? 

.-.-• v yvvivv ' ^ 
--&*&&^^ 
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8. COMPUTER IMPLEMENTATION 

W« have developed a number of computer programs to use belief functions with rule-based 

systems. The following material discusses 'he algorithm to be followed when using forward 

chaining. The steps for backward chaining are similar. 

The basic mechanism for propogating beliefs through the system are extension of the 

belief function to a refined frame and combination with another belief function. The user of 

the system is asked to provide evidence in the form of a belief function. If there is a 

match of the precondition«, then a rule will tire (become instantiated). Note that all of the 

preconditions for a rule must be matched before a rule will actually fire. Therefore, a user 

may be asked to input a number of beliefs before a rule does fire. 

When a rule fires the current frame is refined and the current belief is extended to the 

rest of the elements. The extension of the current belief is combined with the extension of 

the expert-supplied belief attached to the rule. This process is then be repeated until a 

desired goal is reached. 

An expert will have previously supplied his beliefs concerning each of these rules and 

these beliefs will be attached to the rules. Rules may have a number of precondition clauses 

but must only have one resultant clause. If a possible rule has a disjunctive precondition 

the rule is split into two or more rules with single (or possibly conjunctive) preconditions 

and the same resultant clause. If a possible rule has a conjunctive resultant clause the rule 

is split into two or more rules w th a single (or possible disjunctive) result and the same 

preconditions. Note that this structure implies that the underlying graph is a Chow tree 

(Chow and Liu, 1968). A Chow tree is a directed (and connected) graph with the property 

that there are no cycles in the corresponding undirected graph. 

Each rule base requires that an expert supply belief functions for each of the rules. These 

^^ 
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expert-supplied beliefs attached to the rules, in most cases,  will not change from one use of 

the system to the next. 

The system allows both forward and backward chaining In a typical chaining program 

without belief functions, when a user supplies the factlsl for a rule, the rule will fire and a 

conclusion will be reached with certainty In this system, the user supplies evidence in the 

form of a belief function. The expert-supplied belief function for that rule is retrieved. All of 

the precondition clauses of the rule must be checked because they. too. may have attached 

belief functions. This is because previous rule instantiations may have created a belief 

function for these if clauses. Also, an if clause may have a belief function attached to it 

from a previous use as an evidence node. 

From a computer programming standpoint this means that many belief functions must be 

created and stored and additional checking must be performed to determine if these belief 

functions are to be used with the current rule. This is mainly determined by looking at the 

active-set for each belief function. The active-set is a list of the propositions that a belief 

function pertains to. When compared, rules may have some of the same members of the 

active-set list, but no •"•«'o rules shoald have exactly the same members. The procedure 

that takes two belief functions and defines them on a compatible frame of discernment is 

called refinement. 

After all of the belief functions associated with a mle firing have been combined into one 

overall belief function, control is returned to the chaining program. The resulting belief 

function is stored for further use and is output to the user along with the conclusion 

(result of the instantiated rulel. The user can then begin this process again by introducing 

more new evidence. 
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