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1. INTRODUCTION

Ruie-based expert systems have moved ,from a research activity in a small number of
academic computer science departments to a growing commercial activity. This transition
clearly indicates that the structure of a complex computer program enforced by a rule-based
system {(namely, the clear separation of the decision-making process. rhe inference engine.

from the data on which the decisions are based. the rule basel is a useful step in the

evolution of programming strategies. At the same time there has been a growing
recognition that in most decision-making situations the data (namely. the rule base and the
initial evidence used to start the decision-making process) are not known with certainty and
consequently the inference procedures wused in traditional rule-based systems are
inappropriate. Over the last decade a number of inference procedures which use various

numerical representations of uncertainty have been developed for use in rule-based systems.

However. for a variety of reasons (including the fact that there is little logical basis for the

representations) none of then has been widely successful.

In this paper we will describq,lthe current state of an ongoing research project which is
attempting to use probability as the mechanism for representing uncertainty in a ruie-based
svstem. _ A previous report was given in Eddy and Pei {1986). We have been constrained
in our development of a probability-based expert system by a number of external

considerations, the most important of which we delineate here.

The single most important constraint is that we are doing our development in the context
of an existing rule-based expert system and as such we are constrained to limit the
modifications we might wish to make to the system. In particular. we wish to limit our
modifications to the inference engine only. This is not an overly serious constraint and it
enforces a certain Jocaliry on the nature of the possible computations. Exactly this locality

of computation will be required if the svstem is ever to be scaled up to a rule-base
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containing thousands or mllions of rules. Barnett (1981) has induced the same kind of
locality of computation in a system very similar to ours but at the cost of assuming
unrealistic independence in ‘arious parts of the rule base: we discuss Barnett's work further

in Section 5.

A second important constraint is that any numerical expressions of uncertainty about data
are themselves quite uncartiin, in practice. and as such we wish to allow for the expression
of uncertainty about the uncertainties. There are a number of possible ways to do this: we
have chosen what appears to us the simpiest way to address this constraint. Precisely. we
are using belief functions (Shafer. 1976} to represent sets of probability distributions. We

discuss some of the details of belief functions in Se:tion 4.

There are at least two parties invoived in the developmen: and use of a rule-based expert
system: the expert, who expresses the rules. and the user, who causes the system to run
by supplying it with some initial external evidence. An early pianned use of the system we
are developing was for game-playing to evaluate possibie strategies. [nitially we feit that it
was important for the two piayers. the expert and the user. to be able to interchange roies
without affecting the resuits. This turns out to be a quite complex constraint: a simplified
version of this constraint requires that the system perfrom properly fi.e.. get the “right”

answer) if the expert and the user are one and the same individual.

The remainder of this paper is organized as foilows. In the next section we give a very
brief introduction to the details of a rule-based expert system. In Section 3 we describe
what, to us, are the most natural methods for incorporating uncertainty into a rule-based
system. In Section 4 we provide a few of the formal details of belief functions and
describe a few of their properties. In Section 5 we discuss various possible approximation

-

techniques which will speed up the computations. In Sections 6 and 7 we provide detaiied
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properties of the approximations we have developed. The essence of the approximations is
to force the belief function to have a simpier form: an extreme form of this simplification
occurs when the belief function represents a unique probability distribution. In Section 8
we briefly describe some of the features of our implementation of this theory in a LISP

computer program.

2. RULE-BASED EXPERT SYSTEMS

A rule-based expert system f(or production system) consists of a collection of production
rules together with a system for linking or “chaining” the rules to simulate a human
expert's reasoning process. A production rule (or. simply. a rulel is a statement of the

form "If A then B.” where A and B are logical propositions.

The mechanism used for chaining rules is generally one of two kinds: either forward
chaining or backward chaining. In the forward chaining scheme the user of the system
supplies some evidence, generally of the form "A is true.,” and the system then uses this
evidence together with the rules to reason towards conclusions or goals. Forward chaining
is generally described as causal or deducrive reasoning. In the backward chaining scheme
the system attempts to satisfy its goals by finding rules which. if true. would imply those
goals. It repeats this process until it is compelled. by the lack of any rules implying its
current goals. to ask the user if a particular one or more of those goals (the antecedents of
certain rules) are true. If the user accedes this is deemed to be evidence that the ruie is
true.  Backward chaining is generally referred to as diagnostic reasoning. One crucial
computational problem in either form of reasoning is how to discover rules with given
antecedents (forward chaining) or with given consequents (backward chaining) in the rule
base. Currently the only general strategy is to search over the entire rule base. Some
savings can be made by “remembering” the results of previous searches so they can be

“looked up” in a table.
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3. PROBABILITIES AND RULES
There is currently no generaily accepted method for incorporating uncertainty into a rule-
based expert system. One method which seems appealing at first glance is to treat the
user's probabilities on the evidence as a prior opinion and the expert's probabilities on the
rules as a likelihood and simply use Bayes rule. In this method. we would expect the
expert constructing the system to have joint probability distribution on the assignment of
truth values to the propositions which are consequents of all the rules in the system. This
joint probability distribution would be conditional on the assignment of truth values to those
propositions in the system which are antecedents of some rule and not consequents of any \
rule ithe evidence nodes). Also. we would expect the user of the system to have a joint E
\

probability distribution on the assignment of truth values to these evidence nodes. There

-
v

are a number of obvious difficulties with this scheme:
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1. It is unreasonable to expect anyone to express a joint probability distribution on
the assignment of truth vaiues to a large collection of propositions for two

o % e iy e
. k)

reasons:
5
a. The size of the collection of propositions: ::‘
k
b. The inherent uncertainty in the expressed probability distribution. \
N
2. The amount of calculation required is overwheiming, being exponential in the g
number of propositions in the system. b
3. The symmetry constraint mentioned in the introductory section is obviously not :
satisfied. i
\-‘
There are also a few subtler probiems: K
1. The pooling of expert and user opinion via Bayes rule would appear to be W
inappropriate. More precisely, use of Bayes rule to pool the probability o
distributions of two individuais has no logicai basis uniess one of the individuais 8
declares the probability distribution of the other individual to be his own. g
2. Both the expert and the user can reasonably be expected to have a joint ;::
probability distribution on the assignment of truth vaiues to all the propositions f,'"
in the system. The use of lowerdimensional marginal and conditional probability :
distributions from these two higer-dimensional joint distributions appears to :'.‘-
discard potentiaily useful information. ;
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A second method for incorporating uncertainty into a rule-based expert system pools the
opinions of the expert and the user. We would expect tl.e expert constructing the system
to have a joint probability distribution on the assignment of truth values to all the
§ propositions in the system and we would expect the user to also have such a joint

probability distribution. This second nethod can, by the appropriate choice of a pooling

ol

rule. satisfy the symmetry constraint mentioned above.

LR S

If it is possible to decompose each joint probability distribution so that a piece of the

Fi

decomposition can be attached to a small number of propositions. and if this piece can be

combined with another piece so that the entire joint distribution can be recovered then the

v o
=l

difficulty of assigning a joint probability distribution on the assignment of truth values to a

Lo

large collection of propositions may be overcome. One such decomposition is the conditional
0 one. it would be desireable to have a decomposition that is symmetric so the order of
composition is unimportant. Although Spiegelhalter (1986} has proposed a mechanism for

allowing the conditional decomposition to be symmetric.

A We also allow the expression of uncertainty about probabilities by use of a belief functions
- as a lower bound on the probability. This will allow us to alleviate the first of the three
obvious difficulties mentioned above. It does not seem possible to significantly reduce the
& computational requirements mentioned in the third difficulty: however. in Sections 5. 6. and
> 7 we discuss an approximation which provides some reduction in the computational burden

{see Eddy and Pei. 1986. for an aiternative scheme).

4. BELIEF FUNCTIONS

KL L2LS L

Following Shafer {1976), let © be a set of mutually exclusive and exhaustive propositions.

Let 29 be the set of all subsets of ©: elements of 2© can be interpreted as general

3 EIFX .

propositions in the problem domain. A basic probability assignment is a function »d) from

x
ax"a

2® into [0. 1] which satisfies

oo
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mig' = 0.
and
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S contained in

There is a one-to-one correspondence between this basic probability assignment and the

belief function. Bel{'}. and plausability function. Pli"), given by

BeliS) = Zp concained in § ™)

mS) = I s uI5TIBeim),

T contained in

and

PIS) = 1 - Bel(S).

It is apparent that BellA) < PriA) < PYA) where Pr(A) is the probability of A. When BeliA)
equals Pl(A) for every element in 2®  the values correspond to probabilities. This implies

that the function m takes non-zero values on the singletons only.

There exist convex sets of probabilities, expressed only as a set of intervals of probability.
which cannot be represented by belief functions. For example. suppose that the four events

denoted by |1. 2. 3. 4} have the probabilities given by

p, = (1 -2 q2
p, = (1 -2 qN2
Py = q
P, = 4

where q ranges over the values 0 £ q < 1/4. Table 4-1 gives the values of the probability
as a function of q. the belief Bel, the plausability Pl. and the implied basic probability

number m for all the events in the algebra generated by these four events. The important

point to notice is that mi’) is not positive for all events.
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Table 41: Probability Intervals not Representable by a Belief Function

Event Prob() Bell’) P11 mi)
1 (1 -2 qM2 1/4 1/2 1/4
2 (1. Q2 1/4 1/2 14
3 q 0 1/4 0

4 q 0 1/4 0

12 1-24q 1/2 1 0

13 1/2 1/2 1/2 1/4
14 1/2 1/2 1/2 1/4
23 1/2 1/2 1/2 1/4
24 1/2 1/2 1/2 1/4
34 2 q 0 1/2 0

123 1-q 3/4 1 -1/4
124 1-q 3/4 1 -1/4
134 q + 12 1/2 3/4 -1/4
234 q + 12 12 3/4 -1/4
1234 1 1 1 0
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More generally, it can be shown that if a set of probability intervals are given for the
elements of a partition as
0sLspsUsli=l ..n

then for there to exist a corresponding belief function Bell’). it is necessary that both

e S— ,
T T T W W AR WV ————-

n .
zi_,l L+ U - L< L for all j

and

L g g ge =B S 25

n .
Ei_l U, + I.‘j c Uj 2 1. for all j.

This provides a quick and dirty test whether or not an expressed set of probability

intervals are in fact representable by a belief function. Unfortunately. the sufficient

conditions are considerably more complex.

One particularly nice feature of the theory of belief functions is that it distinguiches

[ 20 on i gl Sw o _an oy ol o au w

between indifference and ignorance. Complete ignorance is represented by the wvacuous

belief function that assigns basic probability one to the set © and zero to every subset.
Complete indifference assigns an equal amount to all singleton propositions and zero to
every other subset: this is precisely a uniform probability distribution on the elements of
the partition. Any degree of ignorance can be expressed quite naturally between the two

extremes of complete ignorance and a well-defined probability distribution.

The basic theory of belief functions requires that the frame of discernment be composed
of mutually exclusive propositions. This means that only one proposition at a time can be

true. In an expert system this condition is explicitly not satisfied: consequently. direct
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application of the the theory is impossible. We overcome this problem as follows. Let Q

o

be a set of mutually supporting propositions: that is. suppose that

eSOl
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Q= (P, P, ..PL
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By mutually supporting we mean that any assignment of truth values to the propositions is
possible. Let A be a list of the possible assignments of truth values to the elements of
Q. If we now let 27 be the frame of discernment then it is possible to use the theory of

belief functions.

- As originally proposed this theory used a rule of combination (now wideiy known as
. Dempster's Rule of Combinanon) for two basic probability assignments. m, and m,. of the
form

. m, ® m, (A) = K I m,(S) m,(T) for A = ¢ (4.1)

S intetsect T = A
where the normalization constant K is chosen so the combined basic probabilities add to
o one. We have found this rule to be unsatisfactory and are currently expioring some

alternative possibilities. Consider repeated application of this rule of combination. viz..

m &m,2 . ..8 m,. {4.2)

- n
b What are the possible limits as n increases? It is fairly easy to see that both the uniform
probability distribution and any belief function with a single focal element lincluding the

vacuous belief function) are solutions and there are no others. It is unreasonable to expect

P T e

that any rule of combination. when iterated in this manner. would vield every belief
functions as a possible limit: on the other hand the observed behavior of the combination

. rule give in Equation 4.1 appears too restricted.

Typically. two different belief functions will not be defined over the same frame of
discernment and a combination rule such as Equation 4.1 can not be directly applied. One
frame is compatible with another if it can be obtained from it by splitting some of its
possibilities into finer possibilitie;. The frame of the finer analysis is called a refinement of
the original: the former is called a coarsening of the latter. Before application of a rule of .
combination it may be necessary to refine one or both of the frames in order to obtain a

common frame of discernment.
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5. REDUCING THE COMPUTATIONAL COMPLEXITY

T.ere are considerable computational difficulties in using this theory. An initial
assignment of 2" basic probability assignments must be made. where n represents the
number of propositions in the frame of discernment 8. The required number of evaluations
in using any combination rule increases exponentially as more propcsitions are included. It

seems reesonable that inteiligent exploitation of some structure could result in computational

savings.

One way to reduce computational complexity is to assume that each piece of evidence
either confirms or denies a single proposition rather than a disjunction. This is the
approach that Barnett takes in his work (Barnett, 1981). While this will reduce the number
o. calculations from exponentia! .0 linear. it also means that the frame must be broken into
independent partitions. This is a very strong assumption and not likely to be satisfied in
practice. Here. we are interested in retaining the more natural possibility of dependence

among the propositions in the system.

Another possible approach would discount. at an early stage of the calculations. setc with
zero. or very small, basic probability assignments. Yet another approach is to ignore those
sets with a cardinality higher than a predetermined threshold. This is the approach we
take here. It is possible to reduce the computational problem from one of exponential time
to one of polynomial time. and the degree of the polynomial can be set in advance by

suitable choice of the threshoid.

A belief function provides both a lower bound and an upper bound for the probability.
The narrower the range of this interval the more definite the knowiedge about the
probability. It seems reasonable to require that any approximation to an m-function should

preserve the properties of an nrfunction.  This produces one of the following three
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1. a less definite assignment of uncertainty (a wider intervalk:

2. a more definite assignment of uncertainty (a narrower intervall.

3. no change.

Suppose the cardinality of ® is n (that is © contains n propositions). The approximations
to be used involve neglecting m-function values attached to elements of 28 with cardinality
greater than a threshold vaiue k. To restore the approximation to an nrfunction requires
some form of renormalization. To produce the first case (above) it is proposed that the
m-function is restored by moving all the ignored basic probability mass to the element 6
To produce the cciond effect the excess basic probability mass should be added to the

elements of 29 with cardinality less than (or equal tol the threshold value k in proportion

to their original values.

6. AN OUTER APPROXIMATION

Denoting the approximations by m (), Bel ()} and PI°() and dealing with the conservative

approach first. the desired results are as follows:

Bei'(A) < BellA) . A contained in ©

PI(A) 2 PlA) . A contained in ©. 16.1)

The remaining requirement is that the function m'(‘} does not violate the rules for an

m-funct:on, no matter what the value of k. The three requirements that a function must

satisfv to be an m-function are simply

mig) = 0

0 < mA) g5 1
and

ZA contained in 9"1‘:‘\) =

a
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We define m’ to be an order k outer approximanon to m as follows:

m'ip) = 0
miA) = miAl if |JAl £ k and A contained in ©
miAl = 0 if /Al > k and A = ©

MmO = 1 - L, iedin @ M IA
16.2)

miA)

= Y
“A contamned in 9. Al > k

where k is the threshold .cardinah'ty and || represents the the number of elements in the

set. The first requirement for m () to be an m-function is trivially satisfied. and the

second rsquirement is clearly satisfied for all the above parts (the latter simply bec.use the

sum must be less than or equal to the sum of all the miA), which is onei.  All that

remains is to verify the third condition for an m-function.

Z, contained in® MIA) = mip) + T, osined in O, Al g k MA

+2Aconmn.din9.|Ai>kA,, mAl + in8)

=0 T I, wontained in ©. |Al g k THA

+ 0 + 2, ontaned in . Al > k A

™ ZA contained in O miA)

= 1. 6.3

The range of possible values for k is given by

05 k < n-l.
Tne value k=0 aiways yields tho vacuous probability assignment and the vaiue k=n-l
always yields the original probability assignment. It is clear that the smaller the value of
k the more information is being neglected and the approximation becomes more vague (the

interval widens). The higher the vaiue of k the less information is being neglected so the

approximaticn should be closer tov the original specification. Clearly there is also a

possibility that the new m’-function will not be different than the original »rfunction. This
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cen happen when for a specific value of k. all the elements of 20 with greater cardinality
have nrfunction values of zero.

It's now necessary to prove the assertions made in Equation 6.1. First consider the

belief Bel'(). It's easier to carry out the proof in four parts corresponding to the Equation
6.2.  Clearly Bel'(pl = 0. hence the first part is satisfied. =~ The second part is satisfied as
Bel"{A) = BellA} if the cardinality of A is less than or equal to k. The third part follows
from
Bel (A) = B contained n A (B)

= ZB contained in A. Bl < k niB)

s z:B contained in A miB)

= BellA). 6.4}
Recall Beli®) = 1 is one of the requirements of an Bell} function. For the final part of

the proof it is required to show that Bel*® = 1 (This actually follows automatically since

m' ) satisfies the conditions of an m-function.).

M ™M M ™M

Bel'®©) g MBI

B contained in

B contained in @, Bl < k MBI + m €

B contained n ©. Bl < k ™B) * Z§ oncained in ©. B > k "B

B contained in miB)

= Bel®). {6.51

Hence the condition on the Bel'i't has been satisfied. The condition on the PI1%() now

follows immediately.

PI"(A) = 1 - Bel"iA) > 1- BellA] = PlA). 6.6}

It has now been shown that this form of approximation gives the desired effect of
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widening the interval between the belief and the plausability. The computational saving is
made because cf all the zeros used to replace the original assessments for sets with
cardinality greater than k. Clearly these sets can now be ignored when performing a
! combination. Tius form of approximation could prove very useful in large systems: however.
there is a danger that the approximation may not be very guod. The best resuits will
undoubtedly come when small basic probability numbers are assigned to sets with high
cardinality. It may prove to be a worthwhile exercise to increment the value of k on
successive iterations until two successive iterations yield close results. This sort of

numerical exercise is a task for the future.

7. AN INNER APPROXIMATION

In a similar manner to Section 6 the opposite effect of narrowing the interval between
the belief and the plausability can be achieved. Denoting these approximations by ny{).
Bel.(’) and Pl,(), the desired results are now as tollows:

Bel.(A) 2 BellA) . A contained in ©

Pl.lIA) £ PHA} . A contained in O. 7.1

Again the function m,('} must not violate the rules for an m-function. It is convenient to
set up an intermediary function for ease of presentation:

M (A} = 2 x miB). {7.2)

B contained in A, |B|

We define m, to be an order k inner approximation to m as follows:

mu{g) = 0

nu(A) 0 if /Al > k. A contained in 8

= mAl + ZA contained in D. |D| > k miA} X miD} / M, (D), otherwise. {7.3)

Once again the first requirement of an m-function is trivially satisfiled.  As all the
component parts of Equation 7.3 are non-negative it is sufficient to verify the third clause

of an m-function. That is, we must verify that the component parts of n,(!) sum to one.
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= b3 !
ImlA) = 2, o {MAL + Lin L A contaned n D ™A} X miD) 1 M, (DN
= L gk MA T I, mD) X MDY/ M, (D)
= Ia gk ™A+ I, mD)
= zA contained 1n O b

17.4)
The conditions for an mfunction are thus satisfied. The range of possible values for k is

1 £ k< n-l.
The value k=1 corresponds to approximating the belief function by a probability distribution

and the value k=n-1 vields the original probability assignment.

It is now necessary to prove the assertions made in Equation 7.1. The proo{ for the
Pl,(") function part will follow in a similar fashion to that for the P!°() function above. But
it is necessary to prove the belief part first. Clearly Bel,(p) = 0, and Bel.l® = 1 las
m.(") satisfies the conditions for an mrfunction.). Now it is necessary to provs the assertion
in the cases where for any subset A of @, |A| is either greater than k or less than or

equal to k. In the latter case the following reiationships hold:

BelA) = Zp 0 iin a MlEl

25 > k E contamned in p ™E) X mD) / M, (D))

p2

ZE contained in A El g k M™E)
ZE contained in A [El < k

z

E contained in A. [El g k TE} * C (sayh (7.5)

But since the cardinality of A is assumed to be less than or equal to k. then the
cardinality of E is already determined. such that
ZE contained in A. El s k ™E! = ZE oncained in 4 ™E

Bel(A). {7 Bl

Hence Bel,(A) > BeilA) for the case where |A| < k. Now a proof for the other case (A

> k} is needed. Equation 7.5 still holds and serves as the starting point here.
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Bel,(A) = Zg contaned in A, |El § Kk

= BellAl - L5 iiuned in A E| » k MEI * C

If the terms in the constant c are expanded and collected in a suitably different way it

becomes apparent that c contains the summation over [E| > k. That is

Sl (3

c=zEconnmodm.l\.‘EI>k 1

Hence the conditions are satisfied as now it is ciear that

Bel,iA) = BellA) + c,.
The conditions on the plausability {unction now follow immediately.
PlJAl = 1 - BelA) < 1 - BellA) = PlA). (7.10)

[t has now been shown that this form of approximation gives the desired effect of
narrowing the interval between the belisf and the plausablity. A glightly better
computational saving is achieved with this inner approximation than with the outer

approximation because one additionali value of m is known to be zero. The effects of the

approximations are summarized in Table 7-1.

The terms 'increased’ and 'decreased’ in Table 7-1 should not be interpreted strictly: that

is. they include the possibility of no change.

Both of these approximations set basically the same elements tu zero. for a given value
of k. to achieve a computational saving {the one exception is 8. It may be possibie to

combine the two approaches. As one approximation achieves a wider interval and the other

two approximations. There are obviously many possible measures to optimize.

particularly simple one is to choose the proportionality constant 4 to minimize

ZA 2 @ PlABel A} - BellAll.

If pix) = x? the solution is

Aol tah Sal fah Ask An R ok Ack Ll EoR Aol R el

mE) + ¢ 77

(sayl. (7.8

(7.9}

. achieves the opposite effect it should be possible to find some optimal combination of the
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Table ?-1: Summary of the Approximations

Bel(*)
——— Cardinality Approximaticen
Bel™ (") Bel, (")
> k fixed increased
s k decreased increased
P1(")
—_— Cardinality Approximation
PL*(") BICd)
> k increased decreased
< k fixed decreased

B = ZA % 0 Bel,(A) BellA) / ZA 2 O Bel.(A) Bel,(A).

We do not yet have any numerical experience with this approximation and we are

examining other measures of distance.

We note that one of the primary motivations for the use of belief functions is the
uncertainty attached to the probability assessments of the expert and the user. An order 1
inner approximation to a belief function is a probability distribution. An interesting
question occurs: ls there any sense in which the order 1 inner approximation is an optimal

approximation {estimate?) of the uncertain probability distribution which is represented "y

the belief function?
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8. COMPUTER IMPLEMENTATION
We have developed a number of computer programs to use belief functions with rule-based
systems. The following material discusses the algorithm to be followed when using forward

chaining. The steps for backward chaining are similar.

The basic mechanism for propogating beliefs through the system are extension of the
belief function to a refined frame and combination with another belief function. The user of
the system is asked to provide evidence in the form of a belief function. If there is a
match of the preconditions, then a rule will fire (become instantiated). Note that all of the
preconditions for a rule must be matched before a rule will actually fire. Therefore. a user

may be asked to input a number of beliefs before a rule does fire.

When a rule fires the current frame is refined and the current belief is extended to the
rest of the elements. The extension of the current belief is combined with the extension of
the expert-supplied belief attached to the rule. This process is then be repeated until a

desired goal is reached.

An expert will have previousiy supplied his beliefs concerning each of these rules and
these beliefs will be attached to the rules. Rules may have a number of precondition clauses
but must only have one resultant clause. If a possible rule has a disjunctive precondition
the rule is split into two or more rules with single for possibly conjunctive} preconditions
and the same resuitant clause. If a possible rule has a conjunctive resultant clause the rule
is split into two or more rules w'th a single (or possible disjunctivel resuit and the same
preconditions. Note that this structure implies that the underlying graph is a Chow tree
{Chow and Liu., 1968). A Chow tree is a directed (and connected) graph with the property

that there are no cycles in the corresponding undirected graph.

Each rule base requires that an expert supply belief functions for each of the rules. These
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expert-supplied beliefs attached to the rules. in most cases. will not change from one use of

the system to the next.

The system allows both forward and backward chaining In a typical chaining program
without belief functions, when a user supplies the fact(s) for a rule. the rule will fire and a
conclusion will be reached with certainty. In this system, the user supplies evidence in the
form of a belief function. The expert-suppiied belief function for that rule is retrieved. All of
the precondition clauses of the rule must be checked because they. too. may have attached
belief functions. This is because previous rule instantiations may have created a belief

function for these if clauses. Also. an if clause may have a belief function attached to it

‘ from a previous use as an evidence node.

From a computer programming standpoint this means that many belief functions must be
created and stored and additional checking must be performed to determine if these belief

functions are to be used with the current rule. This is mainly determined by looking at the

active-set for each belief function. The active-set is a list of the propositions that a belief

function pertains to. When compared. rules may have some of the same members of the

v e ® & a -

active-set list. but no twvo rules should have exactly the same members. The procedure

that takes two belief functions and defines them on a compatible frame of discernment is

called refinement.

After all of the belief functions associated with a rule firing have been combined intv one
overall belief function. control is returned to the chaining program. The resulting belief

function is stored for further use and is output to the user along with the conclusion

D TETETe TS TR LTI S AV 1

{result of the instantiated rule). The user can then begin this process again by introducing

more new evidence.
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