COMPONENT PART NOTICE

THIS PAPER IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT:

TITLF: Transactions of the Army Corference on Applied Mathematics and

Computing (2nd) Held at Washingtor, DC on 22-25 May 1984,

T0 ORDER THE COMPLETE COMPILATION REPORT, USE _ AD-A154 047

THE COMPONENT PART 1S PROVIDED HERE TO ALLOW USERS ACCESS TO INDIVIDUALLY
AUTHORED SECTIONS OF PROCEEDING., ANNALS, SYMPOSIA., ETC. HOWEVER, THE COMPONENT
SHOULD BE CONSIDERED WITHIN THE CONTEXT OF THE OVERALL COMPILATION REPORT AND
NOT AS A STAND-ALONE TECHNICAL REPORT.

THE FOLLOWING COMPONENT PART NUMBERS COMPRISE THE COMPILATION REPORT:

AD#: POO4 902 thru PO04 958 AD#H
AD#: AD#:
AD#: AD#
S
Accession For
NTIS CRAI g |
DTIC TAB
Unanncunced O A e
Justirication._ ‘ “ ) l !C~
_ ) . -
( ELECIER
BY— - ‘ 3
Digtribution/ ] *:ﬁ AUG 1 9 N
Availablility Codog [ X
______ e T . AR melforp b
" 1hia document has been appioved Lot | peetiad A
. for public 1oleaso cu;d sale; 13 ‘ | ‘
. digtribution s uuliuuw«:!:_ e | \l l
- - - s - '
: - ‘ ‘ 1 {
- oty FORM g3 I . ol DTIC-TID




AD-P004 957 jl

- M i, o
. e T TV YT YT Ty TN LTV IR TN, UV U, Lt e e -

- CALCULATION OF LOWER CONFIDENCE BOUNDS
ON SYSTEM RELIABILITY

Joseph V, Michalowicz

/" Harry Diamond Laboratories, USA ERADCOM
/ Adelphi, MD 20783

\

ABSTRACT. A general methndology, based on algorithms developed by the
Ad-Hoc Methodology Working Group on Nuclear Weapons Reliability Assessment, is
described for evaluating 90Z lower confidence bounds on system reliability for
configuratlons of series/parallel circults. General configurations of non-
repeated and repeated components are examined and a method for unpooling data
1s discussed, A technique 18 derived for representing ™m out of n' decision
logic gates, The methodology 1s applied to an example of the type of a
sophisticated weapon fuzing system. Maximum likelihood estimates of relia-
bflity and 90% lower confidence bounds are calculated for the system and

—

critical components are identified. (

1. INTRODUCTION, For critical and expensive weapon systems, such as
nuclear projectiles, highly reliable subsystems are required to produce a high
probability of successful system performance, Not only must the reliability
of these integral subsystems be very high, but, since often relatively few of
such weapon gystems will be used to attack an enemy target, there must also be
a high degree of confidence that such reliability will be achieved. This
report describes a general methodology for calculating maximum-likelihood
estimates of reliability as well as 90-percent lcwer conildence bounds on the
system reliability for pgeneral systems representable as configurations of
series/parallel circuits.

In testing these weapon systems, because of the scarcity and cost of
some of the components, the tester must be quite selective in the number and
type of subsystems to be included in field tests. An important byproduct of
the methodology to be presented is that 1t evinces those components that are
critical, in that they constrain the lower confidence bounds, and those that
are not, Therefore, it would be highly cost-effective to schematize the sys-
tem in the format of this methodology before testing has begun, so that the
test director can effectively allocate his test resources to the critical

components,

The next section discusses the methodology for calculating confidence
bounds con circuit system reliability in a completely general way. It 1s hoped
that this section will serve as a handy reference to the analyst who desires
to make confidence-bound determinations for many types of circult systems,
For example, the methodology should be readily applicable to various kinds of
sensors, radars, and missile guldance systems, In later sections, the method-
ology 1s applied to a system of the type of an actual weapon fuzing syvstem,
Ragsed on simulated test data, 90-percent lower c<sufidence bounds on system
reliability are calculated and critical cowmponents are fidentified.
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\ 2.1 EVALUATION OF CONFIDENCE BOUNDS. By a 90-percent lower confidence hSS
p: bound on system reliability is meant a statistic computed from the test data :{}
with the property that there 1is at least a probability of 0,90 that this ~}:
statistic is lower than the unknown system reliabilicty, Under the assumption PN
that tests on a component are binomial, that 1s, the tests are 1independent §~-
with constant failure probability, the 90-percent lower confidence bound, ﬂ}j
LCBgy, on component reliability 1is computed as follows when the test data RS
indicate N tests with F failures: -}z
/] - )
where p satisfies the binomial relationship .
N e
Ny 1 N-1 b
I (e -p7" " =0.9 s
i=F+] ?.
or, equivalently, i;f
0N
F e
Ny 1 N-1 F
I (Je0=-p7" " =0.10 . .
i=0 NS
b
» .
These formulas assume that N and F are 1integers; 1in calculating fo
P

equivalent compunents later, there will be a need for evaluating 90-percent
lower confidence bounds when N and/or F are not integral, In this case, the
following linear interpolation formula is useful:

o -
v .

. s A
.. L

[p——
Phalt]

(3

Boo(N,F) = (1 - N))[(1 - Fp)Bo (Np,Fy) + FoBo (N, ,F) + 1]] i

- ’\.-

r-

(2) e

+ Np[(1 - F)B (Np + 1,F;) + F B (N + LE + 1)) o
3 -
3 where bl
A

Ny = [N], the integer part of N, E}i

Np = N = [N], =

F; = [F], the integer part of F, and :b;

h :J:_:‘
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Tables [1] are available from which binomial confidence bounds can be
read for N = 1 to 150, In the calculation of equivalent-system lower
confidence bounds later i{in this paper, we shall frequently encounter very
large values of N together wich very small values of F. To obtain such lower
confidence bounds, the Poisson approximation to the binomial 1s used when N >
150 and F < 10, As long as F 1s an integer, regardless of whether or not N is
an integer, the Polsson estimate is given by

(2F + 2) , (3)

where x2 90(ZF + 2) denotes the 90th percentile of a chi-square distribution
with Zﬁ)# 2 degrees of freedom. Tables of the chi-gquare percentiles can be
found in many statistics textbooks (see {2]). When F 18 not an tinteger,
Pgy(F) may be calculated by linear interpolation:

PgolF) = (1 - FD)PQO(FI) + FDPgo(FI +1) . (4)

In either case, the 90-percent lower confidence bound 1s then estimated from
the formula

Pon(F)
90
= Bgo(N'F) =] - N . (5)

LCB90

Another useful formula for calculating component lower confidence bounds
arises from the observation that, when F = 0 in equation (l), we have

N N
[Bgo(¥,0) ™ = (1 - p)" = 0.10
which leads to the exact solution
. /N
Bgo(N'O) (0.10) . (6)

It should be clear that all the preceding formulas can be readily
extended to the computation of component lower confidence bounds at other than

the 90-percent level.

The next several sections describe techniques for calculating lower con-
fidence bounds for general series and parallel configuraticns of components.
These procedures are taken from those recommended by a special Working Group
chaired by the Army Materiel Systems Analysis Activity (3],

2,2 CALCULAIION OF CUNFIDENCE BOUNDS FOR A SERIES SYSTEM OF
NONREPEATED COMPONENTS. The simplest case 18 a system whose configuration
conuists of a gerles arraugement of independeunt compounents, as exemplified in

figure 1.
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Component Companent { I Component | ' | Component | _
: 1 2 i N
i Test Data: Ny Tasls N2 Tesls N; Tests N Tests
" S+ Successes Sz Successes Sj Successes S 4 Successes
' F1 Failures Fo Failures F, Failures 54, Failures

Figure 1. Series system of nonrepeated components.

l None of the _y components in this serles are repeated; that is, all are
independently functioning compouents which appear only once and have specific
test data in terms of observed successes and fallures, Note that S1 + Fy =
Ny for all values of {.

The lower confidence bound on the reliability of this series 1is obtained
by reducing the combination to an equivalent component. This is done by means
of the Lindstrom-Madden method [4] which calculates the maximum-likelihood
estimate of the system reliability, R , by the formula

.

8)

n
P

N
i=1

z

i

and takes the equivalent number of tests, N, for the system to be

LRI LE S

T 1¢i¢ ¥ (8)

The equivalent number of successes and failures of the system, S and F respec-
tively, are then given by

S =NRg , (9)
F=N1-R)) . ' (10)

Thus the series combination 1s now represented by a single equivalent
component with § successes and F failures out of N tests, The 90-percent

lower confidence bound for the series combination can now be computed by the
methods of section 2.1,

For example, consider the three components in series in figure 2.




Componant 1 Componeant 2 Component 3

Ny = 25 Ny = 50 N3=63

Sy =125 So = 48 S3 = 61 p—

Fy =0 Fg = 2 F3 =0
Figure 2. Example of series system.

The computational procedure gives the following:

step 1. Rsslx—g%xl-o.96
Step 2. N = min(25, 50, 63) = 25
Step 3. S = 0.96(25) = 24

F = 0.04(25) = 1
Step 4. LCBgy = 890(25, 1) = 0.853 (from eq (1) and table lookup)

2.3 CALCULATION OF CONFIDENCE HBUUNDS FOR A PARALLEL SYSTEM OF -j:}‘_j

NONREPEATED COMPONENTS. For a system <counfigured as in figure 3 with A

N independent, nonrepeated components in parallel, an equivalent single . '.:

i component is again derived, The equivalent number of tests, N, is computed e

from the equation lb J‘;

Comp1onem Y -

. Ny. Sq. Fy !:2

I where [

- Component M

:‘ 2 ,« ;_':._1

. t F. RN

o = -1 RN

- ¢ Na.S; Fp e 2= ] N N

I jey 1 S

Component RORN

| ™
g - , M Fy o+ 1 ;
£ | Component | 1= |-

H [

" R

Ne Sqc. F ' 5

Ve St and the maximum 1likelihood estimate of the system

reliebility is then given by: e

N; = Number of Tests e

Si = Number of Successes Rg = 1 -Q . (12) ;?-‘::Z

F; = Number of Failures ok

The equivalent numbers of successes and failures are then _—

Figure 3. Parallel derived: ey

system of nonrepeated N

components. . S = NR; (13) o

F=N . (14 A
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The 90-percent lower confidence bound for the system reliability can now be
computed as that for the equivalent single component with F failures out of N
tests.

An example of a parallel system 18 given in figure 4. The computaticnal
steps proceed as follows:

2 1
Step 1. Q o Xz—o'xiﬁ 0
val o 32
Step 2, Q 1T * 3T * 31 0.000838
'
Step 3. N 1

Step 4, R, =

Step 5. S = 1192.5

1/1192.5 _  goa)

Step 6. LCB,. = B,.(1192.5, 0) = (0,10)
20 %0 (from eq (6))

Component 1

Ny =10
F1=0
Component 2
Ny = 20
Fp =2
Component 3
N3 = 30 Figure 4. Example of parallel system.
F3 =1

2.4 CONSTRUCTION OF AN EQUIVALENT COMPONENT WITH SPECIFIED RELIABILITY

N

AND CONFIDENCE BOUND., In reducing a complex combination of components to an
equivalent single component, a sequence of substitutions may be required. It
may occur, in the techniques to be developed in subsequent sections, that some
reductions will calculate the maximum-likelihood estimate of reliability as
well as the lower confidence bound for 8 subsystem without specifying the
equivalent test data, Therefore, {t will be useful in the sequel to have a
technique for comstructing the equivalent test data for a subsystem when given

only the maximum-likelihood estimate of reliability, R, and the 90-percent
lower dounfidence bound, 590'

The technique for solving for the equiyalent number of tests, N, and

failures, F, given R and Bgg» 18 actually just the solution of the following
two equations in two unknownsa:

R=1-~g~,

Bgo = Bgo(N.F) .
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However, the second of these equations cannot be solved explicitly, so an
fterative approach to sclution is used.

The iteration begins with an initial estimate of N, denoted by N,
calculated from the formula

- ln 0010 (ls)

If the reliability estimate R is equal to l, set N = N, and F = 0, 1If not, an
estinmate of F, denoted by Fl’ is obtained from

Fy= (1 - RNy, (16)

‘ =

and the confidence bound Bgo(Nl,F ) is determined by the techniques in sectlon
2,1. An adjustwent factor given by

1n Bgo (N, Fy)

t o= 17)
1n B90
1s used to obtain the next estimate of N, denoted by Nj:
Ny = tN, . (18)

1f the adjustment factor is near encugh to 1 (i.e., 1t - 11 < 0.01), then use
N = N2 and F = (1 - R)N2 as the equivalent test data., If not, N2 is taken as
the estimate of N and the above process (eq (16) through (18)) 1is repeated
until the adjustment factor converges close enough to 1, resulting in the
equivalent values of N and F, This procedure 1is 1illustrated in the next

section.

2.5 CALCULATION OF CONFIDENCE BOUNDS FOR A SYSTEM CONSISTING OF ONLY A

SINGLE COMPONENT REPEATED IN ANY CONFIGURATION, This section describes the
methodology to be used for calculating confidence bounds for a system or
subsystem which i1s a combination of series and/or parallel circuits composed
solely of repetitions of the same component, More precisely, the components,
although separate physical devices, are the same in the sense that they are of
the same generic type and are described by the same test data,

Suppose the system to be analyzed is & series/parallel configura-
tion consisting of repetitions of a component, C, characterized by test data
indicating F. failures in N, tests. The maximum-likelihood estimate for the

reliability of the component, C, is given by

R =1 - =5 (19)
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Analysis of the system into its series and parallel branches of C components
gives rise to a reliability estimate for the system which is a function of R :

R, = £(R_) . (20)

For example, if the configuration consisted of n components C in serles, f(R
would be R, whereas 1if the configuration were n components C in parallef
(R, would be 1 - (1 = R)™.

)

[od

To calculate coanfidence bounds for the general series/parallet

configuration of C components, the methodology begins by evaluating the 90-
percent lower confidence bound for C:

e, = BQO(NC'FC) .

The 90-percent lower confidence bound for the system, LCB is then calculated
by means of the function in equation (20):

LcB, = £(LCB,) . (21)

Therefore, we have obtained the maximum-likelihood estimate of reliability (eq
(20)) and the 90-percent lower confidence bound (eq (21)) for the system,
Equivalent test data for the system (that is, Ng and Fs) can now be calculated
by the method of section 2.4,

For the special case where the configuration of the system 1is
Just a series arrangement of n repeats of C and where F. is small compared to
N, (that is, F. ¢ NC/IO), two simple but accurate approximations for N_ and F
are available,. Both of these approximations are conservative in that they
tend to underestimate N.:

N

Approximation 1: N, = Eg (22)

Fg = (’ - Rs) s (23)

Fe
Approximation 2: N " v —® (24)
S

Fg = (1 - Rg)Ng = F, (25)

Note that the 8econd approximation cannot be used when = 1 (or,

equivalently, FC = 0), but in this case the first approximation yields exactly
the same values as the general method in section 2.4, since

’ .
[ AU

at
Do

=

v
F3




Na =N, LCBS from equation (15)
= in 0.12
1n LCB
- ln_0.10
n c
iIn 0.10 from equation (6)
- 1

These approximations are often useful in the reduction of a complex system
with series gsubsystems to an equivalent system.

As an example, consider the series/parallel configuration in
figure 5, where N, = 15 and F, = 1. Computations proceed as follows:

= 0.93333

1
Step 1. R, =1 - 31s

: step 2. R_ = [V - (1 -Rr.)2)[1 - (v - R )3] = 0.99526 %
. -
: Step 3. LCB, = Bgg(15, 1) = 0.7643 N

NI
e

Step 4, LCB_ = (1 = (1 - LCBc)z][l - (1 - LCBC)3] = 0,93206

Step 5. The iterative method of section 2.4 with R = 0.99526 and
Bgo = 0,93206 then gives the following table, where the

gO(N&’F ] values are obtained by the iaterpolation
fotauld (3).
N — N i
Iteration N, F) Bgo(Ni,F;yi t N, ;}d
::::~:1
i 32.73 0,155 0.9247 1.112 36.42 LG
2 36,42 0.173  0.9314 1.011 36.81 .
3 36.81 0.174 0.9320 0.9997  36.80 o
- —
.} :Si
.._v f'.. S
I-“ r '--
7 o
'. M .. :‘:i
- \'-\
- e
< 911 R

R ERN

'
*u
v
-
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c ) Figure L. Series/parallel config-
- c || uration.

Consequently, the equivalent test data for the system are given
by

Ng = 36.80
Fg = (1 - RN, = 0.174 .

2.6 CALCULATION OF CONFIDENCE BOUNDS FOR GENERAL CONFIGURATIONS--METHOD
FOR UNPOOLING DATA. The techniques discussed so far permit the calculation of
lower confidence bounds on system reliability for series/parallel systems of
independent, nonrepeated components, as well as for systems which contailn
repeated component types, as long as each repeated compdnent appears in only
one subsystem, In order to handle configurations in which repeated components
are distributed throughout several subsystems in combination with other
repeated or nonrepeated components, a method will be described for unpooling
the data for repeated components, This method divides the component test data
into groups correspoading to the various subsystems in which the component
appears, and then treats the component as distinct and independent within each
subsystem. It has been found that such unpooling schemes provide somewhat
conservative lower confidence bounds on reliability,

The basic idea behind the unpooling method is as follows. Sup-
pose C 1is a component, with test data indicating F. failures 1in N, tests,
which occurs in n subsystems, where the subsystems are chosen to each contain
as many appearances of C as possible and still be analyzable by the techniques
of sections 2.2 through 2.5, Thus each subsystem either contalns just one
appearance of C or, if it contains two or more appearances, that portion of
the subsystem can be reduced to a configuration composed of repetitions of a
single equivalent component. The component C will be relabeled as C;, C,,
eeer Co» respectively, for each of the n subsyvstems in which it appears. Tﬁe
test data for C is then allocated over the n subsystems in such a way as to
keep the maximum-likelihood estimate of reliasbility for each Ci' i=1, 2,
eeey N, equal to that for C. That is, the constraints on the unpooling are




There are many ways of unpooling wnich satisfy these coastraints,
The method used here unpools according to the following scheme:

(1) Unpool equally in a series direction,

(2) Then unpool equally in a parallel direction.
(3) Then unpool equally in a series direction,
ete

This sequence I8 best illustrated by an example, as shown in figure 6. In
this system the component C appears 1in four subsystems and has been relabeled
accordingly, The first step of the unpooling would allocate N_ /2 and FC/Z to
Cy and the other NC/Z and F_ /2 to the parallel combination, §ince there are
two branches 1in parallel, t?\e second step of the unpooling would divide 1in
half the equivalent test data for the parallel combination, thus allocating
N./4 and Fc/4 to C, and the other N,/4 and F./4 to the series combination
containing C, and C,. In turn the third step of the unpooling allocates N_ /8
and FC/B to each of C, and C5. In summary, the unpooled test data for each
appearance of C would be as follows.

Test data
Component
N ¥
c, N_/2 Fo/2
c, N_/8 F./8
Cy N_/8 F./8
C, N./4 Fo/4
Total: Nc Fg
i After unpooling, each of the C,”s is treated as a separate, independent compo-

nent and the techniques in sections 2,2 through 2,5 are applied, as appropri-
ate, to each of the subsystems,

..- Subsystem Subsystem
; with C2 with C1
5 Subsystem
1 with Cy

Subsystem Subsystem

with C4 without €
P Figure 6. Example of unpooling schewe
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2.7 REPRESENTATION OF '"TWO OUT OF THREE' DECISION GATE. Synthesis of
the techniques presented so far enables one to calculate lower confidence
bounds on reliability for any series/parallel configuration, However, many of
the sophisticated circuits of today contain other configurations, such as
decision gates, to gain greater reliability and efficiency. A straightforward
procedure will be formulated to handle decision gates by approximate
equivalent combinations of series and parallel circuits,

The methodology will be illustrated for a '"two out of three" decision gate;
the extension to general "k out of m" decision logic gates should be clear,

First, observe that for a series combination of components Cl'
Cry +esy Cg, with component failure probabilities QC s QC » oves QC , the
failure probability of the combination, Q, 1s given by 1 2 K

) )

Qc1 + ch ¥ eee ¢ QC + second and higher order terms .
K

©
"

Missjion reliabiiity equations for modern weapon systems typically neglect the
second and higher order terms and simply add together failure probabilities of
components in series. On the other hand, 1if Ci» Co» ove, Cg were in parallel,
the failure probability for the system would be, simply,

Q= &, vty v

K

For a decision gate configuration which requires success in two
(or more) of the three branches (with each branch consisting of the same

component C) for a YES vote, the probability of failure, Q, of the gate (i.e.,
a NO vote) is given by
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Q = probability that 2 or 3 branches fail S
-
= 30{% + QC3 ' .--_
where Q- 1s the failure probability of the component C, 1In terms of failure 3??
probability, the decision gate 1s, therefore, approximately equivalent to the e
series/parallel combination shown in figure 7, which has a failure probability b
given by £
Q= Qé + Qé + Q% + Q¥ + fourth and higher order terwe ffjg
st
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Since the terms omitted by introducing this approximation are two orders less
than those already typically neglected in the mission reliability equation,
rhis series/parallel combination should afford a sufficlently accurate repre-
sentation of the decision gate,

{_E ¢ ¢ ' Figure 7. Decision gate
approximate equivalent com—
| ¢ = bination.

3. CASE STUDY - APPLICATION OF THE METHODOLOGY. The methodology
described in the previous sections will now be applied to an example based on
the actual fuzing system of a battlefield weapon. The system schematic, shown
in figure 8, 1is at the same level of sophistication as the fuzing system,
However, for purposes of keeping this report unclassified, a few modifications
have been made to the actual schematic and simulated component test data 1s
used. Note the "two out of three" decision gate equivalent in the upper right
hand part of the system schematic in figure 8. The simulated component test
data 1s displayed in table 1. For some of the components only a reliabilicy
value, R, 1s available, presumably based on a large number of tests by the
manufacturer; such components are denoted by an asterisk in figure 8,

The lower-confidence-bound computation for this system will proceed
through two reductions of the system, unpooling into subsystems and calcula-
tion of equivalent components, and then the calculation of the system lower
confidence bound itgelf. In the process, components critical to the confi-
dence-bound assessmeut will be evinced and pertinent observations made,

In the first reduction many of the series combinations which are re-
peated in a particular type of configuration throughout the system schematic
are simplified. The computations are sketched in appendix A, Note that those
components which have reliability estimates only are treated as having essen-
tially an infinite number of trials; thus they do not affect the calculation
of the equivalent component N (number of trials) but only the calculation of
the equivalent component R (reliability), After the first reducticn, the
system schematic takes the form shown in figure 9,

"-\ .’.‘_"_:...l" l“.

s

‘taa 8
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do.
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A $000 Ty
| ] 201 k.
c %= 993 :‘,"\ 3
] L= 990 N
t L. L9997 ok
r 192 0
G 192 0
" 401 '] :
1 R = 9978
J L ~.97
K R 999
L Re= 993
L] Re I -,
] 873 [ ]
[
0 $13 0 .
’ 813 0 -
Q 370 1 . e
. | 3 572 [} IS
i s 250 15 Mo
! 328 1 ‘
v ' 0 g
v 384 0 L
w 183 o - e
x 83 0 .
Y 1Y) 1 -j‘
l 1 2 0
:. a 401 (4]
. ’ 1260 0
K y 1260 0
. ] £1.1 0
. ¢ n2 0
I ¢ 2 3
A n 38t 0
. ¢ '] 0
" ) 199 0
-° ® m 0
- A 318 0
B v R« 992
::‘, v R e 998
;} . R~ 9998
> '3 g~ 9999
~ o 2 - .7993
> ' R~ .9998
! ‘ R - 9982
[ ] r
‘, for s perellal pair of U componente -
. 2
o
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The primary function of the second reduction is to consolidate the long

series of components at the veglinning of the schematic in figure 9, After
these substitutions are made, the reduced schematic assumes the tractable form .ﬁﬂ
. shown 1in figure 10, Details of the reduction procedure are given in appendix .jJ
! B,
The reduced schematic, divided into subsystems as shown in figure 10, N
can now be treated by applying the methodology developed previously to each of L.
) the numbered subsystems and then determining the equivalent N and R for the R
- overall series configuration of subsystems. However, the data aust first be o
3 unpooled for components which appear in more than one subsystem. The compo- ;3
' nents which appear in the reduced schematic, before unpooling, are listed in ii

table 2 along with their ecuivalent test data, The equivalent test data after
unpooling are shown in table 3. Note that those components which appear in .
more than one subsystem have had an extra subscript appended to indicate those
repetitions. (For example, V1 refers to the third distinct appearance of Vl’
in the top branch of subsystem 6,)

Ll e

R IRt Rt

T-..'..- . -
NN
)

B M

The equivalent number of trials, N, and the maximum-likelihood reliabii-
ity estimate, R, are computed, subsystem by subsystem, in appendix C and tabu-
lated in table 4, Since the overall gystem configuration 1is nc’ represented

- as a series combination of these subsystems, the maximum—-likelihood estimate
- of the overall system”s rellability is just the product of the subsystem reli-
9 abilities (R = 0,9824), and the equivalent number of trials is the minimum of
those for the subsystems (N = 165)., This minimum number {(indicated by an

asterisk in table 4) corresponds to the critical subsystem--that which

delimits the equivalent number of trials. Note how only a few subsystems, and

thus only a few components, may determine the calculation of the confidence

bound, Examination of the critical subsystem 8 identifies the critical

component of the overall system (i.e,, that component for which additional

test data could increase the equivalent number of trials for the overall

system and hence improve the resulting lower confidence bound ), to be the 2

component,

)
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TABLE 2. BQUIVALENT TEST DATA — BEFORE UNPOOLING A
h. ".-“
Component Kumber of Trials Number of Failutes E:“‘
A 192 3.130 Y
N 573 0 fj--
7 AR
Q 570 1 oY
572 0 N
] 250 15 -
328 1 e
o
v 383 0.997 -
2 92 0 :"-'._
o, 401 0.401 L
] 384 0 t.:jj.
€ 10,961 0.680 e
o, mn 3.313
»
V.-
Tl
TABLE 3. EQUIVALENT TEST DATA — AFTER UNPOOLING
Y
Component Number of Trials Number of Pailures '\'
e
Ay 192 1130 e
° L
b My 143,28 0 ‘(u-f
- § N2 143,25 o Lo
- Ryy 183,25 0 o
LI 143,25 0 r~
. Q 190 0.3333 =3
. o
) Q 190 0.3333 o
Q 190 0.3333 v
L)
R 572 [} IR
$) 83.3) 5 N
S, 83.2) ) C
8, 83.33 s o
1, 109.33 0.3333 .,
T, 109.33 0.333) L
1, 109.33 0.333) g
[
Vi 95.75 0.24925 r
. vy, 95.75 0.24925 0
:: Vi3 47.875 0.124625 !f_-‘:
. Via 47.875 0.124625
Vis 95.75 0.24925
zl 18.4 B
Zy 18,4 ) -
2y 18,4 o 7
Z, 18,4 0 A
z 18.4 0 -
5 7
3 ~
. N
. 921 -~
. -

[
e
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TABLE 3. GBGUIVALENT TEST DATA — AFTER UNPOOLING (CONT”D)

. TEEEB T2 & a4,

Component Nuaber of Triale Number of Failures

' ay 80.2 0.0802
: ays 80.2 0.0802

ayy 80.2 0.0802

. 80.2 0.0802

ays 80.2 0.0802

4 192 0

6, 192 ’ 0

€ 10,961 . 0.680

¢ 185.5 1.6565

0, 185.3 1.6565

TABLE 4, SUMMARY OF SUBSYSTEM DATA

Subsystea R !qui;llcnt
A, 0.98370 192
[ 2 0.999938 10,961
1 0.999991 2,158
2 0,9998891 1,166
K 0.9999884 2,040
4 : 1 13,919
b 1 15,989
6 0.99289715 478
? 0.9999323 272
8 1 165 ®
9 1 13
10 0.999999 2,586
Syatem ¢.9824 165

R = Maximua-likelihood estrimate of reliability

N =~ Number of trisle

-
&

.,!
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The data are now in place to calculate the 90-percent lower confidence
bound on the reliability of this example system, We have:

R = 0,9824

N = 165 | .

B .
LY A RS

F = (1-R)N = 2,904

; The interpolation formula (2) and the Poisson estimate (3) give the 90-percent N
. lower confidence bound: :{'.:»
‘ e
LCB = 0.096 390(165, 2) + 0.904 890(165, 3) -
1.2 12 s
7 X0.90¢6) 7 X0,90¢® b
) = 0.096 \\ - g5/ * 0.904 \1 - — e :-.
! = 0.096(0.96788) + 0.904(0,95939) e
:: = 009602 '.—-
i Note that R is a point estimate of the reliability of the system, whereas the ::'_ﬁj'
. lower confidence bound {s a bound on the unknown actual system reifability, =
~ not on the point estimate. RS
’\ In summary, the general methodology described in this report has been f:i:'.:".
- utilized to estimate the system reliability of a practical weapon system R
. design, to obtain a 90-percent lower coafidence bound on the system relia- S
bility, and to determine those system components which are prime candidates M
for further design tests.
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APPENDIX A

FIRST REDUCTION

In each replacement of a subsystem, shown in figure 8 in thie body of the
report, by an equivalent component, both the original subsystem and the new
equivalent component will be depicted, The methodology used for the reduction
will be referred to by the appropriate section in the body of the report. The
symbols N, F, R, and Q will be.used throughout to denote number of tests,
number of failures, waximum 1likelihood reliability estimate, and failure
probability, respectively.

Original subsystem Equivalent component
H H - —] H, —
N, = 401 (method of NH = 200.5
Fy = 0 gsect. 2.5, FH‘ =0
Ry = 1 ~q (22)) !

Qg = 0.03 Q, = (0.03)2 = 0.0009

’
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Original subsystem Equivalent component

- . = 0.001001
Ry, = (0-999799) (0.999) R,

o = 0.001

Q = 0.00%

— N 0 P L - N, b—o
Ny = 573 Ny = 573 Np = 573 (method of NN1 = 573
Fy = (0] Fo =0 FP = 0 sect. 2.2) E‘N1 =0
y Ry = Ry = 1 Rp = 1 Ry, =
‘ U

:. Ny = 384 N, = 384 N, =383 Ny = 183 Ny = 384 (method of “v‘ - 383
sect. 2.2)

Fy2=0 Py =0 Fy = © Py = 0 Py = 1 Y,
-
Rv, = 387

= 0.997

I3
O
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[
" Original subsystem Equivalent component
;t . .
. N
; (method of - v
Nu = 401 Ry = 0.999 NB = 1260 “Y - 1260 . 2.2) N 401 :_:_._
- 868CT. . - . 1 \-‘.v:
Fov O . ¥g=0 Fy=0 F 0. 40 RN
R, = 0.999 R
|
Ne = 382 N = 382 N, =381 (method of 1y o 34
1
e =0 FC = 3 Fp = 0 sect. 2.2) Fo = 2.992
R = 312
€y 382
. = - method
Ng = 381 N =399 N =371 Ny =375 of Ng, = 371
_ sect. 2.
Fg = 0 , =0 Fo =0 Fy = 0 €t 2.2) g, =0

R = 1
61

."'I'his warhead component 1s repeated in other subsystems but, since it is
being treated as having essentialy an infipite number of trials, it cannot
affect calculation of the equivalent N and so it can be treated as independ-
ent, affecting only the calculation of R.
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N
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Original subsystem

Equivalent component

S
‘e Xavar

e

)
e 1 e

QV. Q' - Q’- Qa- QY- Q’ﬂ Ru‘ -
0,002 €. 0002 0.0001 0.0005 0,0005 0.C018 (1 -~ 0.008)2
x 0.9962 x 0.999810

x 0.9999 x 0.9995
x 0,9995 x 0.9982
- 0.99107
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AFPENDIX B

SECOdD REDUCTION

In each replacement of a subsystem, shown in figure 9 in the body of the
report, by an equivalent component, both the original subsystem and the new
equivalent component will be depicted. The methodology used for the reduction

: will be referred to by the appropriate section in the body of the report. The
3 symbols N, P, R, and LCB will be used throughout to denote number of tests,
8. number of failures, maximum likelihood reliability estimate, and 90-percent
’ lower confidence bound, respectively,

Y. Original subsystem : Equivalent component
— A 8 r I ¢ Hyt— cpP— 0
'A' -B- l' - -O. "H" lc- I.D- l'-
$000 200 192 192 200.5 0.995  0.994  0.9997

r, =0 Py e 0 ’P'.D PGUO r, =0

L
.:.
- L \:
L
1 M x L, — A, x’
Rpa Ry e Rge Ry e 0.998999 (method of Ny, = 192 L
0.9978 0,999 0,999 sect. 2.2) Ra, = 0.98370 ;;-::::‘
Ta, = 3130 ;i‘:fj:'_
e
R
bes
= N
.' C' :.:‘:-
[
P- ..l
N —— - — e, — £
K (B
- €y {method of L
sect. 2.5) b
e
[
- NC = 381 N = '0, 961 .--:.{
AN 1 Cz L%
- P€1 a 2.992 FC = 0.680 :f.\:
.. SN < 2 oy
- R = 0,99215 hY
3. € Y
h)
- 1
oy
s
I




LCBt‘ = 0.98244 by the Poisson estimate (eq (5))

-1 -1 - 2.
R, =1 (1 ne’> 0.999938

ICB, = 1 - ( - 1cB, )2 = 0.999692
2 1

. The jterative method of section 2.4 is used to find N and F , producing the
results in the following table. 2 2

Iteration N1 F1 890(N| ' F‘) t Nz
1 7,475 0.4635 0.999593 1.32 9,878
N 2 9,878 0.6124 0.999668 1.078 10,648
'.: 3 10,648 0.6602 0.999685 1,023 10,890
4 10,890 0.6752 0,999690 1.006 10,96}
. From these results,
. N = 10, 961
.: 62 [ ’
-
. F, = (1 - R, )N = 0.680 .
:: 52 C2 Cz
: Original subsystem Equivalent component P:t ::
; N R
: ® by . % o
: ks
.9 RN
" = == = .'“.(:.
® . NG‘ n th 0.99107 Nez EYA ;.:.:\.
. Fq = 0 R = 0.,99107 Fy = 3.313 P
3 0, 6, 92 P
K" ’.:.’,\'
o PR
‘O -'J':

N
A

T

A" e
»

." -‘.'4‘ .:.-'.'.' i’
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APPENDIX C

ANALYS1S OF SUBSYSTEMS

The equivalent number of trials and the maximum-likelihood reliability
estimate will be calculated for each of the 10 subsystems in the reduced
schematic 1in figure 10 in the body of the report. The methodology used for
each subsystem will be referred to by the appropriate section in the body of
the report. The symbols N, F, R, end LCB will be used throughout to denote
number of tests, number of failures, maximum 1likelihood reliability estimate,
and 90-percent lower confidence bound, respectively,

SUBSYSTEM 1

This subsystem is a series/parallel configucation consisting of repeti-

tions of a single series combination: ."{
AR
v
RS
—1 Y & R — ’\
Ny , = 143.25 No, = 190 Ng = 572
FN‘1 =0 FQ1 = 0.3333 Fp =0

For this series,

R = 0,99825
ICB = 0.98107 (by interpolation formula (2) in the body of the
report
For subsystem 1 (using the method of sect. 2,5), we obtain
; Ry = [1 - (0 =rRIZ2J3 1 - (0 - r)3] = 0.999991
By = [ - (1 = wB)?)3(1 - (v - 1cB)3) - 0.998918

which leads to the results in the following table:

) Iteration N, F, Bgo(Nl'F1)- t N,

1 2127 0.0191 0. 998905 1.010 2158

This gives the final data for subsystem 1:

Ry = 0.999991 .
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SUBSYSTEM 2

For the upper series:

N

12 13

N - 143,25 N = 190
7]

=0 FQZ = 0.3333

Ny2

F
Ny2

Equivalent N = 143,25
R = 0.99825

For the lower series:

1 Vi Z, II %y

= 83.33 N, = 95.75 N, = 18.4 N = 80.2
Y11 2, a

s, =5 Fv“ u 0.24925 Fz1 = 0 Py = 0.0802

(1]

N
F

Equivalent N = 18.4
R = 0,93662

For subsystem 2 (using the method of sect. 2.3), we obtain

0.,00175 x 0.06338 = 0.0001109 ,

Lo}
]

0.000968 ,
1 - Qf

M1 "5 g
0.9998891.

©
'

SUBSYSTEX )

Subsystem 3 is the same as subsystem 2 except that S is replaced by T.
A similar computation yields

N o 2040 )

11X

Rypp = 0.9999884 .
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SUBSYSTEM 4

For the parallel pair:

6

N, = 192 - 143,25
) ™4

P = 0 F, = Q
14 8, Ny

By the method of section 2.3, we obtain

Equivalent N = 27838

14

R= 1 .

.

Subsystem 4 is just this parallel pair repeated twice in geries.

By the
approximation in equation (22), we have

27,8138
N = 2

xv = 13'9‘9 ’

Rygy= v o

SUBSYSTEM 5

Subsystem 5 is just a single component repeated in parallel:

[
L Ng, = 192

By the method of se~t'0o- 2.5 in the special case vhere R = 1, wu have
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0.98799

&
o
O
N
n

Ry =1 .
1 - (0.01201)2 = 0.999856 ,

In 0.10
N.,, = ———" =
vV 1nICB, 15,989

b
<U

Rv =1 .
SUBSYSTEM €
For the upper series:
S» Vi3 621
N = 83.33 N = 47.875 N = 185.5
S, Vi3 84
F a5 F = 0.124625 F = 1.6565
S, Vi3 921
Equivalent N = 47.875
R = 0.92918
For the lower series:
NT2 e 109,33 Nv14 = 47.875 Nez = 185.5
FT = 0.3333 Fy = 0.124625 Fy = 1,6565
2 14 22
Equivalent N = 47.875
R = 0.98548

For subsystem 6 (using the method of sect. 2.3), we obtain
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0
L}

0.0010285 ,

Q
"

0.0031159 ,

1 - Q'
NVI = —_——= 478 .

Q' -9

T
e
l. l‘, l’ LN

~
7/

0.9989715 .

—y
A
o

J

hd

b
<
-

L}

g,

I”“'?

SUBSYSTEM 7

w
‘. “s
‘s

DR
v
('
"/

*
L

e
ey
4

First the series repetition of V, is reduced:

oo
e
TR

—1 V1s Vis o

v, = 95.75
15

Fy. = 0.24925
15

Ry _ = 0,997397
15

By the approximation in equation (24) in the body of the report, we have

F
ME e
Equivalent N = -_— " 47.9 , e
1 -R s
Vis A
O
Fs O, 24925 . 7
£
NN
For the upper series: N
bl
'--.-1‘?‘
) Rk
83 T3 Vis Yis B
NS = 83,33 NT = 109.33 N = 47,9
3 3
F s 5 F = 0.,3333 F = 0,24925
S3 T3

Equivalent N = 47.9
kK = 0.93226
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For the lower geries:

2:3 (113
N = 18‘4 N = 80-2
23 N3
F, =0 . F, = 0,0802
23 %3
Equivalent N = 18.4 i
R = 0,999 N
I;'.-;‘Z
=

For subsystem 7 (using the method of sect. 2.3), we obtain

. ﬂ:]:i - 3

Q = 0.00006774
Q' = 0.0045571 ,

l Nyip = 222 ,
Ryrr * 0.9999323 .

R ot .
P r' BN

SUBSYSTEM 8

z F, =0
4 Z4

By the method of section 2.5 with R = 1, we have

LCBZ4 = 0.88230 by interpolation,

PN U L L S PR .

Ryprx =V Ll
> e
.v - - 2 e
- LBy g = ) (1 ncaz4) = 0.98615, I
= i
- Nygrr = 165 S
':—' = - :"
- Ryirz e
I o
2 o~

T

f i
A S T T

A o4
.
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SUBSYSTEM 9

For the upper series:

N4 %14

/7
P

o~
.
Al oL

N = 80,2
M4 0 ;802
r - -

G4

R = 0.999
%4

/

e

PR |
A f
Al

)

Semn N "1"

Rt -

S e . PR
Gt A DN
et et ot R .

RO S S

By the pproximation in equation (24) in the body of the report, we have

Fn
14

Equivalent N =

= 40,1 ’
1 - Ru
14

P = 0,0802 .

For subsystem 9 (using the method of sect. 2.3), we combine the upper series
in parallel with Zg, which has st = 18.4 and Fzs = 0, and obtain

Q=0 ,
0.0013548 ,
le a 737 ,

2
]
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SUBSYSTEM 10

%5
N = 80-2
%y
a F = 0,0802
| 15 g

By the method of section 2.5 we have

l R = 0,999
%
“ LCBcl = 0.97011 by interpolation
15 e
i Py =1 - (1 - Ry Y2 =0.99999 , o
- . 15
i ’ N
ICB, = 1 - f1 - 1IC8B = 0,999107 .

! k(1 ) L
- The method of section 2.4 is then used to get equivalent test data, as :f.-'._::
.- follows. '..: _.::
. }t;.
N -
. e
RY Iteration N, Fy BQO(N1 'Fy ) t N, RS

’ .
o 1 2577 0.002577 0.999104 1.003 2586 ~
2 - e
X e,

These results lead to the following data for subsystem 10:

B
’.

NN
e
N, = 2586 t‘:f
(RS
Ry = 0.999999 . ?




