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o ABSTRACT

\AUnsteady flow about the well-rounded nose
of a subsonic airfoil is investiyated from the
viewpoint of leadiny edye separation. For an
airfoil undergoing forced pitching and_heaving
motions in a uniform flow, fluid
accelerations about the leadiny edye can be
enormous J-according to inviscid flow theory,
Such accelerations are limited by viscous flow
and separation realities,

The method of matched asymptotic expansions_'

5 is used to develop a uniformly valid first order

~.._ approximation to the inviscid flow about the )
eSairfoil™s

term relat to the airfoil's transverse
motions.  Applying this flow to the laminar
boundary iayer flow at the airfoil nose produces
possibilities for a laminar boundary layer to
separate, W s 12 -

a The Moore-Rott-Sears (M-R-S) conditions for ..

. unsteady boundary layer separation do not appear

., 1o be useful for this problem. A methodoloyy is

‘Bproposed for predicting leading edye dynamic
stall based upon relating properties of the
envelope of the unsteady part of the boundary
layer speed and shear stress to the steady JDaC)lw=r.

part of the boundary layer flow, The u
development is proposed as a tool \ for
deternining the wuseful limit for

1y the J applyiny
attached inviscid airfoil flow theory. ,V

NOMENCLATURE
a complex amplitude
a acceleration vector
ag(t) suction strenyth
bolt) Fourier velocity coefficient

c constant related to on-set flow
= Re 0, Theodorsen

= Im 0, Theodorsen

f complex velocity potential
Bernoulli constant
displacement function

i unit complex number, space

J unit complex number, time

k(n) steady viscous function

K (jo) wodified Bessel function

p° local pressure

q flow spead

R Reynolds number based on chord
r nose radius of curvature

t time

u,Ug on-set Speed

U tangential speed

(U,v) velocity components

(v ,up) velocity components

(xyy) coordinate pair

(x,Y) coordinate pair

7 = X + {Y, complex position
(3,q) coordinate pair

g2 s 7+ 1cl, conplex flow function
n = \'}R'y. similarity paraneter
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Theodorsen function

= 8 + ia, complex variable
heaving parameter
pitching parameters

fluid density

reduced frequency of the motion
acceleration potential
velocity potential

stream function

kinematic viscosity
circular freyuency
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INTRODUCTION

Based upon the linear aerodynamic theory,
Wul developed hydrodynamic analyses for optimum
pitching-heaving motion of a riyid wing, The

optimum problem was to minimize the time
averayed eneryy loss coefficient Cg under the
constraint that the time averaged thrust
coefficient Cp was fixed, That is, for

=T. >0, hat phasing between the
thchixggheaving motions minimizes the rate at
which enerygy is lost to the flow in the shedding
of kinetic energy at the airfoil's trailing
edye? The time averaged thrust coefficient is
comprised of a mean thrust delivered from the
plate surface and a mean suction due to the
inviscid flow accelerating about the airfoil
leading edge. Wu determined that the ratio of
mean suction thrust coefficient to total thrust
coefficient Ce¢/Cp has a minimun at a reduced
frequency of éhe motion g = a (T. ). Outside
of the reyion of o0 = ¢, the suIt?on force can
become so large that  leadiny edge stall is
inevitable. The present paper advances a
methodology for determining the 1limit on the
attainable Cc for oscillatory motion of a thin
airfoil basea upon the behavior of a laminar
boundary layer near the airfoil's leading edge
staynation point.

Sychev's impressive manuscriptz shows that
under certain restrictions on the acceleration
of the flow, the point of separation is inviscid
in nature, This result contrasts with the
steady separation problem, furthermore, the
unsteady separation point is not situated on the
surface of the body.

The approach taken herein has been to treat
the leadiny edye separation problem in the
context of its relationship to the full flow
about the oscillatiny airfoil, In treating the
problem in this way, attention is given to the
situation that leadiny edye separation appears
to be a local phenomenon in the sense that it
occurs in a reyion where the airfoil has large
curvature, and experiences a stagnation point
flow. Unce dynamic separation has occurred, the
aerodynamic theory used to describe the attached
flow about the airfoil no longer applies.

Sk et O b 1l i
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The approach taken connects the linear
airfoil theory and the unsteady oscillating
laminar boundary layer theory. The latter has

been developed, for example, in References {3] -

It is well known that the linear airfoil
theory breaks down at the airfoil leadiny
edge. This deficiency has been eliminated in
this development by asymptotic matchiny with a
local inviscid unsteady solution about an
osculating parabola. Results from matching then
open the way for investiyating the behavior of
the laminar boundary layer in the region of the
airfoil nose. This boundary layer is driven by
the yross oscillatory motion of the airfoil and
by its steady forward speed. The unsteady
driver turns out to be directly related to the
suction strength about the airfoil's leading
edye, (as derived from the inviscid theory).

Flat plate unsteady boundary layer theory
is applicable in this investigation whenever the
boundary layer thickness is small compared with
the radius of curvature of the airfoil's nose.
le tacitly assume this to be the case.

KINEMATICS

We consider the small amplitude heaving
and pitchiny motion of a thin symmetric airfoil
in a steady uniform stream Y. To describe the
kinematics of such motion we introduce a
Cartesian coordinate system (x,y) with the x-
axis aligned with the airfoil's mean chord
line. The direction of the free stream is alony
the positive x-axis. The airfoil's transverse
displacements then occur alony the y-axis and
are prescribed by a function h(x,t) of chordwise
position x and time t, Figure 1 illustrates the
transverse displacement of a typical wing
section with respect to the (x,y) coordinate
system,

The 1inviscid wing boundary condition
requires the normal velocity of the winy
relative to the (x,y) coordinate System be equal
to the normal velocity yen of the fluid adjacent
to the wing, Here n i§ the unit outward normal
vector on the wing and y is the fluid velocity
relative to the 1inertial reference frame
resolved into components (U+u,v) alony the (x,y)
axes,

Neylecting products of small quantities
conparea with those occurriny linearly, the
kinematic boundary condition specifies the v
component of the fluid velocity adjacent to the
wing. Consistent with approximations already
made, this component can be specified alony the
x-axis, yiving

)
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Fig.l= Atrfoll Displacement
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y=
v(x,t) = [%'E" U%; Tn(x,t); { [x] <1

< A O

: >0,
For heaving and pitchiny motion of 3 rigid plqte
at the frequency w, the displacement function
n(x,t) can be expressed as

hix,t) = [5/2 + (& + jg,) Jexp (jut)

where |x| <1and ¢, &, and are real. The
pitching axis is af thL midchérd, x =.0. The
amplitudes of pitching and heaving are
|&+iE | and £ /2, respactively. Pitching leads
thé 1 ﬁeaving motion by a phase anyle
tan " (&,/5)).

A convenient form of expressing v(x,t) .is
by its Fourier cosine series. This series
contains only two two terms for the specified
transverse motion. That is,

vix,t) = bo(t)/Z + bl(t) cos 9 (1)
by(t) = Uf2g+ j(2£1+o.?o)]ej'”t (2)
b (t) = -Uo(z, - jg,)el*t (3)

where x = cos 8, 9 = wt and o0 = w/U is the
reduced frequency of the motion based on the
unit half-chord.

INVISCID DYNAMICS

In an incompressible flow field devoid of
external forces and internal viscosity, the
principle of conservation of mass leads to the
expression Y-y = U, Conservation of rectilinear
momentum leads to the Euler eguation wherein the
pressure gyradient Is balanced by the fluid
acceleration a = -p™*Vp, This equation is valid
in any inertial reference frame. The absolute
acceleration a measures the rate of change of
following a particle, p is the fluid density,
and p is the local instantaneous pressure. If
in addition, the flow field is irrotational
then Yx y* U and a sgalar function ¢ exists
such that y = U+%¢ and VS¢ = 0. Here the flow
field is defined to be the reyion exterior to
the wing and its shed vortex Sheet.

An inteyral of the momentum eyuation can be
obtained by substituting g = U+V¢ into the
acceleration a and neglecting products of small
quantities. The resultiny integral becomes

(G * W)steunt) = s(xuy,t)

where &, the Prandt] acceleration potential,
measures the variation of the pressure from the
static  level, &(x,y,t) = [p_—vg(x.y,t)]/p.
Applying the Laplace opprator to the above
inteyral results 1in =0 as the relevant
field eqguation for the unsteady inviscid
incompressible thin airfoil prodblem.

INVISCID OUTER PROBLEM

The appropriate airfoil boundary value
problem has been solved 1in termms of the
acceleration potential by wB in an eleyant
treatise on the hydrodynamics of swimning
propulsion, In particular, he has determined
that the pressure difference across the wing,
|x] <1 is
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tp = pr(x,t) - ptix,t) = 200%(x,t) (3)

where &'(x,t) is the acceleranon potential
evaluated along the x-axis, y = 0%,

For time harmonic motion that has persisted

indefinitely, the  acceleration  potential
evaluated on the topside of the wing is

o (x,t) = ;Ua,,(t)ﬁ;—i + 9, (x,t) (5)

where

AE,t
Y (x,t) =— f ‘/1 Z N ) (6)
lE (E-X)

MES) = - (5 +U-5—] fv(x ,t)dx m
-1

=2 5 -
~3(t) = b (E) - ola)[oy(t) + by ()] (8)
In this last expression, 0(o) is the Theodorsen

function, which is expressible in terms of
modified K-type Bessel functions, as

o) = Kl(J'O)/[Ko(J'G) + Kl(.iO)]

(9)
8(a) = F(o) + jG(a)
Substituting Eq. (1) into Eq. (7) yives
. 2
AE,t) co(t) + Ecl(t) + £ cz(t) (10)
where
¢ (t) = = [By - By + U ]2
c,(t) = - [up, + 60/2} (1)

cz(t) s . bI/Z

Here, the dot denotes time differentation,
Substituting Eys. (5), (8), (1U) and (11) into
Ey. (4), yives the pressure jump across the

wing, |x| < 1. That is,
.g.“.: Ua JT‘Ix‘” 2(cy+ xc,) (12)

We notice that this pressure jump expression has
a syuare root sinyularity at the leadiny edye of
the airfoil, The gquantity, however, is
inteyrable over the winy chord and is used quite
effectively to yield quantitative estimates of
ylobal quantities such as sectional 1lift,
moment , thrust, power input necessary to sustain
the motion, energy loss due to vortex sheddiny
at the trailiny edye, etc. However, the result
is useless as a means for providing flow detail
in the vicinity of the leadiny edye., The reason

for this of course 1is clear, In  the
neighborhood of the leadiny edye there occurs a
staynation point, As a consequence, the

perturbation does not remain small compared with
the on-set flow as is required by the linear
theory. The linear theory is therefore not
uniformly valid and breaks down in the reyion
surrounding the airfoil nose, dur  first
objective is to correct this deficiency of the
linear airfoil theory by determininy the
appropriate correction for the construction of a
uniformly valid first order solution to the
inviscid unsteady airfoil prodplen,

oo : PO VPN
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INVISCID INNER PROBLEM

The simplest representation of the inviscid
flow about a well-rounded nose of a thin airfoil
that preserves the essential character of the
problem is the flow about an infinite
parabola. Upon maynifying the detail at the
leading edge what appears is the flow about a
so-called osculatiny parabola., Such a flow is
comprised of an on-set Staynation point flow and
a tangential or parallell flow. Figure 2
illustrates the inviscid flow about a parabolic
cylinder, The geometry is described by a
coordinate system (X,Y) with origin at thz oase
of the parabola and with i being the axic of the
parabola,

If we employ the conformal transformation

7=« - (13)
where

Z= X+ iy (14)

k= 8+ ia (15)

the flow field in the physical Z-plane is
tranformed onto the left half «x-plane, as
presented in Figure 3. That is, the conformal
transformation takes the parabola onto a
straight line, The upper branch of the parabola
yoes to the positive imayinary «-axis. The
lower branch goes to the negative k-axis.

Equation (13) can be used to provide the
inverse transformation yielding « as a function
of Z. By selecting the neyative branch so that

<= {1 -\1-a)2 {18)
then the parabola 8 = U yields o = +4/X = V.

In terms of the complex velocity potential
function f, the stagnation point flow and the
parallel flow can be readily represented in the
x-plane by

£ us<2 - e gy (17
where U and U, are quantitites to be determined
and ¢, w are the velocity potential function and
stream function, respectively,

Substituting Eq. (16) into Ey. (17) yields

fe(ug+ 1up)[\/1-4£ - 1)z + Ut (18)

A 4 T X +iY plone
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From the above expression we can calculate the
nonlinear pressure jump across the nose of the
airfoil, This we do by using the Bernoulli
eyuation for unsteady incompressible flow

p,1,2 3 _

Py + Vi (4°) + 513 g(t)
Across the parabolic airfoil nose the pressure
Jumnp is ap = p"- p'. Therefore,

p/p = - By~ A(qZ/Z)

The local time variation of the potential
function ¢ can be obtained directly from the
real part be Eq. (18). This equation can also
be wused to obtain y since q = |df/dZJ

Conseqogptly, ap across the nose of the parabo
Y = t4/X is

a

8lo = zop\[x'- AU, VW7 (144X) (19)

This expression is the leadiny edge counterpart
to Ey. (12). Notice that it does not break down
at the leading edge.

MATCHING

To obtain a uniformly valid first order
approximation to the pressure jump across the
wing, Eys. (12) and (19) should be matched in
some overlappiny region where both are presumed
valia, In Eq. (12), if we make the substitution
£=1+x and take the limit as £ tends to
zero, then

/o ~\[27E Va, + 2l(c;~c,) - Uao/4]\/2€ (20)

In Eq. (1Y), set X = £ and let £ tend to
infinity. This limitiny process results in

0> ~ = VU SN+ 2DV (21)

Comparing coefficients of the £ /2 tom gives

Ug = U (22)
ue) = - V2 ay(t) . } —-—

where UP(t) * ﬁu(“iu)ewt
A= 562 + ZFc1 - Gcz
b -0k ¢ ZGcl + F<:2 (24)
o El - 052/2
o, = oEl + 2:‘.2 + ok,

Consequently, to leading order, the

maynitude of the stagnation point flow is equal
to the uniform on-set flow U. This we expected
on the basis of the steady flow analoy to this
problem,  See Van Dyke's bookY, §4.y. An
interesting result is that the parallel flow
about the airfoil leading edye is directly
related to the strength of the leading edye
suction ay(t). This temn is the only quantity
that contains the history of the motion. Such
motion history is due to vortex snedding at the
airfoil's trailing edye. Thus to leadiny order,
the flow about the leadiny edye is driven by the
dynamics and kinematics of vortex shedding at
the trailiny edye,
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Tr construct a uniformly valid first
approximation for the pressure jump across the
airfoil surface we add the inner solution (1Y)
to the outer solution (12) and subtract the

common part, The result is .

LIS —_—M] + T s(x,t) (25)
1
where *x

. 4ya
S(x,t) = 2(c +xc 1-x - {2 |a .- 2 ]
(rat) = 2leprecy)§ ”—[° oot
Notice that there is no singularity in the above
expression in the range |x| <1 where ap is
evaluated,

LAMINAR BOUNDARY LAYER PROBLEM

As a result of the asymptotic matching
technique employed for this protlem, we have
determined that the flow about the airfoil's
leading edge oscillates in direct proportion to
the strenygth of the leading edye suction, The
actual flow at the edye of the boundary layer
about the airfoil nose can be estimated from Ey.
(17) by taking the derivative df/d« = u, - iu,.
Here u) and up are the velocity componeAts algng
the {B,a) axes of «., lle obtain, for 8 = 0, the
local flow alony the parabolic surface, That
is,

u ® 0
u, * Up + Zc:Us (26)

Therefore, as one moves alony the parabola
(either positively or negatively away from a
equal zero) the mean speed increases in
maygnitude,

When the on-set stream does not oscillate
but the surface oscillates, the situation
differs from the oscillating dividing streamline
case only by the supcrposition of a uniform,
though non-constant transverse velocity which
has no effect on the relative motion (cf. Ref,
6), Taking advantaye of these facts, the
relevant boundary layer problem to consider is
that of a two-dimensional flow aygainst an
infinite flat plate normal to the free stream
where the plate makes transverse oscillations in
its own plane, This ig a classical prodlem in
boundary layer theory® whose exact solution
depends on a set of ordinary differential
equations containinyg the reduced frequency ¢ as
a parameter, To conform with standard notation
for this problem, we reuse some notation already
used for another purpose, In as much as the
principal results of the analyses thus far are
embodied in Eys. (22) - (24) which are
independent of coordinate system -- no confusion
will arise,

Me now introduce a Cartesian coordinate
system (x,y) with the x-axis along a flat plate
and the y-axis normal to it so that x = 0 is the
dividing streanline in the steady flow outside
the boundary layer on the plate, Let (u,v) be
the corresponding velocity components. Jutside
the boundary layer suppose
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u®Ccx as y+ro (27)

Let the plate oscillate alony the x-axis so that

u=ad st y=0 (28)
where ¢ and w are real constants, The
amplitude of the plate's speed 'a' is here a
complex constant. It is understood that the
real part 1is to be taken for all physical
guantities.

Comparing Eqs. (22), (23), (26)-(28) we
have

c=2U
(29)
a=aR+iaI-fZ-U(>.+ iu)
The boundary tayer equations are
Up +ouu + vuy = czx + vuyy
Uy * vy ® 0
where v is the kinematic viscosity. These
equations are to be solved with
u=aeJm,v-0; y=0
us® Cx ; yre

A similarity solution is known to satisfy
the problem, The solution form is

u e 20k’ (n) + aed“te(n) (30)
v e (200 2k(n)
g(n) = cR(n) + “I(“)

n=fR-y

R = 2U/v; Reynolds number based on
chord lenyth

where k(n), z,(n), cl(n) satisfy ordinary
differential equ&ions. That is,

K'''+ kk' ¢ k'K +1 =0 ‘ (3‘)

k(0) ¢ k'(0) = 0, k'(w) =1

Gy kegp - K'gp ¢ "CI/Z =

(N} ] + . -

B'e ke -k g oCR/Z 0 (32)

G0 = 1, £ (0) = go(w) = g (=) =0

The nonlinear k-problem is the classical
Hiemenz staynation point flow, Note that the
Virear ¢-problem depends on the kesolution and
on the reduced frequency o as a parsmeter, The
t-solution 1is valid for all values of o and
‘amplitude’ , a. Another feature worth notiny is
that the unsteady part of the solution is
independent of position x. Consequently, the
unsteady part of the solution can be effectively
decoupled from the steady solution,

To solve the boundary value problems {31)
and (32) the differential eyuations were written

as a system of first order differential
eyuations An approximate solution to the none
linear keproblem was obtained by ' Newton's

18!
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method. Both differential equations weie
approximated by the Centered-Euler method. The
solutions obtained are second order accurate.
Figure (4) presents k, k' and k'' as a function
of n, Figures (5) - (8) present the real and
imaginary points of ¢ and g' as a function of

n for select values of reduced freguency, o.

3

°
Ay
3
Aln)
3
#°ty)

8
%0 o.00 1.6 2.40 :-ao?

Fig.4-Steady Flow Fuactions

e ()

de20

e

9 nl
'y RS .80 7.0 T.08

Flg. S-Variation of Re(f) with 7

B

3
L
e ~
a

- o=/

»

T e

N =10
2

f:20
]
Woa D) ey ) FEE) T8
Fig. b Variation of () with 7
* )

L

-

.

&
3

LY S = -
+» L U] L] e 10

Fig. -Varlation of Rel3) with ¥

PUR RS

St AT AT 4

Y

ok O 3

-




] 7

'2.00 0 60 V.20 V.80 2.40 3.00

.
F.g. 8- Variation of tm{'$) with 7

LEADING EDGE SEPARATION

According to Moore-Rott-SearsiUsll tne
point of separation of a boundary layer adjacent
to a moving surface occurs when the velocity and
the shear stress simultaneously vanish. That
is, when u = u, = 0. When the M-R-S conditions
are applied toyEq. (30) at the airfoil nose, x =
0 and the time dependence is eliminated from the
resulting expressions, we obtain

Q(n;0) = CRCR- Chtl LR (33)

Here, Q 1is a function of n that depends
parametrically on the reduced freguencCy, o,

for any specifiea wvalue of reduced
frequency, if an n-root can be found to the
eyuation Q(n;o) = U, then dyramic separation at
the airfoil nose, x = U, is believed to occur,
Equation (33) has been plotted for a range of o.
The indication is that dynamic stall does not
occur at the airfoil nose for any value of o
according :9 this criterion, See Figure (9).
This is not surprising since the x = ) case is
strictly a shear wave and symmetry rules out
both u and u, simultaneously vanishing except at
the edye of the boundary layer, n + =,

Applyiny the M-R-S conditions when x # O
gives

2Uxf 't = o f'a.co5 wt + f'R,Sin Wi

2UxfF £ = o f B‘lcos wt ¢ f B'zs'in wt

where
B R&% -3 G
B e %
Bl s dﬂlldn. 82
Eliminating x from Eqs. (34) yives

s dﬂzldn

(aRa1¢ ‘1“2)°°5 wt = (alnl- aRaz)sin wt (3%)
where
o =g f - gt
RCUREL

This equation implies that for x = U and for
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any values of g and n, a time t can be found
such that the M-R-S conditions are met for the
specified harmonic motion., The implication is
that the M-R-S conditions do not provide a
useful separation criterion for this problem,

_We propose the followinrg methodology for
predicting separation for this problem:

(i) sSet the steady part of u equal to the
amplitude of the unsteady part. That
is,

2Uxk' (n) = |a||e} (36)

(ii) Set the steady part of the shear stress
(which is proportional to u,) equal to
the amplitude of the unste%y part of
uy. That is,

2uxk' ' (n) = |a]|c"| (37

Eliminating x from Eys. (36), (37)
gives the leadiny edge dynamic stall
condition, That is,

(¥ + (2|12
kll/kl a l (38)

I

The right hand side of Eq. (38) depends
parametrically on the reducad
frequency, o. For any specified value
of o an n-value can be found satisfying
this equation., Figure (10) presents a
graph of the n-root of Ey. (338) as a
function of .

(i1i7) The x-location of the separation point
is obtained from the expression

X s |a“c(nrt)‘/20k'(nrt) (39)

Notice that the amplitude |a] of the
unsteady motion comes into the «x-
Yocatic of the separation fiow.

(iv) Separation occurs for the motion when
the value of x obtained from Ey, (39)
is less than or eyual to r, where r is
the radius of curvature of the
airfoil's leading edge, That is, when
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This last part of the procedure has been
included since the local boundary layer flow is
not a valid representation of the flow adjacent
to the entire airfoil but only in a reyion of
the order of the radius of curvature of the
airfoil nose,

CONCLUDING REMARKS

A methodoloyy has been proposed for
predicting leadiny edge separation due to the
acceleratiny flow about the well-rounded nose of
an airfoil, The fluid accelerations are caused
oy the curvature of the leadiny edye geometry
ang the forced transverse oscillations of the
airfoil. The analyses leading to an unsteady
separation criterion couples the gross features
of the airfoil's transverse motions with the
details surrounding a laminar boundary layer in
the vicinity of its diviging streamline,

The separation criterion has not been
validated by comparison with any experimental
data, This clearly remains before the procedure
can be seriously advanced as a useful tool for
predicting leading edge dynamic stall.

ACKNOULEOGENRENT

This work has been sponsored by the U.S.
Air Force Uffice of Scientific Research under
contract F49620-82-C-0038, The author thanks
Capt. #ichael S, Francis, Pn.D. for support and
encourayement of this work. Thanks are also due
gf. Rogue Szeto and Mr. Kuny Yuan for their
numerical support. | am appreciative of Mrs.
Alrae Tinyley for typing the report,

183

9‘

10.

11,

REFERENCES

Wu, T. Y,, Hydromechanics of Swimming
Propulsion, Part 2, Journal of Fluid
Mech,, Vol. 46, part 3, April 1971,

Sychev, V. V,, Asymptotic Theory of
Nonstationary Separation, Izvestiya
Academii Nauk SSSR, Mekhanika Zhidkosti i
Gasa, No, 6, pp. 21-32 (Nov.-Dec., 1979).

Lighthill, M, J., The Response of Laminar
Skin Friction and Heat Transfer to
Fluctuations 1in the Stream Velocity,
Proc. Roy. Soc., A, Vol. 224, 1954,

Wuest, ., Grenzchichten an Zylindrischen

Korpern mit Nichtstationarer Querbe-
weygnuny, ZAMP, Vol. 32, 1952.
Watson, J., The Two-dimensional Laminar

Flow Near the Stagnation Point of a
Cylinder which has an  Arbitrary
Transverse Motion, Quart. Journ. Mech and
Appl. Math., Vol. 12, part 2, 1959.

Glavert, M, B., The Laminar Boundary Layer
on Uscillating Plates and Cylinders,
Journal Fluid Mez“swnics, Vol. 1, 1955.

Rott, N., Unsteady Viscous Flow in the
Vicinity of a Stagnation Point, Quart.
Appl, Math,, vol, 13, 1956,

Wu, Y. T., Hydromechanics of Swimning
Propulsion, Part 1, Journal Fluid
Mechanics, Vol. 46, part 2, March 1971,

VanDyke, M., Perturbation Methods in Fluid
Mechanics, published 1964 by Academic
Press.

Ruban, A, I,, Asymptotic Theory of Flow
Near the Trailing Edye of a Slender
Profile, Uch. Zap. TsAGI, Vol. 8, 1477.

Stewartson, K., Multistructured 8soundary
Layers on Flat Plates and Related Bodies,
Advances in Appl. Mechanics, Vvol, 14,

cademic Press, 1974,

TR v R e e, Sl b S AL L AL AW 2 hn e

e

. e e —

e o bbbl




