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LEADING EDGE SEPARATION CRITERION FOR AN OSCILLATING AIRFOIL 
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\ ABSTRACT 

-Unsteady flow about the well-rounded nose 
of a subsonic airfoil Is Investiyated from the 
viewpoint of leadiny edye separation. For an 
airfoil undergoing forced pitching and heaving 
motions In a uniform flow, Hh^ fluid 
accelerations about the leading edge can be 
enormous -'-'"iccording to inviscid flow theory. 
Such accelerations are limited by viscous flow 
and separation realities. 

The method of matched asymptotic expansions 
is used to develop a uniformly valid first order 

,   approximation   to   the   inviscid   flow   about   the — 
"-a.te*M+-.-- -T^e- inviscid—How aiw«;--ttie^airföTI"rT"' 

-/"leading   edgeiis  driven  by  a  history-dependent 
terra     related    to    the    airfoil's     transverse 
motions.      Applying   this   flow   to   the   laminar 
boundary layer flow at the airfoil  nose produces 
possibilities   for   a   laminar   boundary   layer   to 
separate.   j\ nuT ,./-,-; ü 

The Mbore-Kott-Sears (H-K-S) conditions for . 
unsteady boundary layer separation do not appear 
to be useful for this problem. A methodology is 

proposed for predicting leading edge dynamic 
stall based upon relating properties of the 
envelope of the unsteady part of the boundary 
layer speed and shear stress to the steady 4J1»C^: 
part of the boundary layer flow. <y- The 
development is proposed as a tool \ for 
determining the useful limit for applying 
attached inviscid airfoil  flow theory. 
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complex amplitude 
acceleration vector 
suction strength 
Fourier velocity coefficient 
constant related to on-set flow 
• Re 0, Theodorsen 
» Im 0, Theodorsen 
complex velocity potential 
Bernoulli constant 
displacement function 
unit complex number, space 
unit complex number, time 
steady viscous function 
modifit'ci Bessel  function 
local pressure 
flow spe'sd 
Reynolds number based on chord 
nose radius of curvature 
time 
on-set speed 
tangential speed 
velocity components 
velocity components 
coordinate pair 
coordinate pair 
■ X + lY, complex position 
coordinate pair 
• CB

+ ic,, coaplex flow function 
» vR" y, similarity parameter 

G 

0(a) 
ut 

Theodorsen function 
= B + la, complex variable 
heaving parameter 
pitching parameters 
fluid density 
reduced frequency of the motion 
acceleration potential 
velocity potential 
stream function 
kinematic viscosity 
circular frequency 

INTRODUCTION 

Based upon the linear aerodynamic theory, 
Uu1 developed hydrodynamic analyses for optimum 
pitching-heaving motion of a rigid wing. The 
optimum problem was to minimize the time 
averaged energy loss coefficient Or under the 
constraint that the time averaged thrust 
coefficient was That is, for fixed. 
CT » T- > 0, ' what phasing between the 
puchingSheaving motions minimizes the rate at 
which energy is lost to the flow in the shedding 
of kinetic energy at the airfoil's trailing 
edge? The time averaged thrust coefficient is 
comprised of a mean thrust delivered from the 
plate surface and a mean suction due to the 
inviscid flow accelerating about the airfoil 
leading edge. Uu determined that the ratio of 
mean suction thrust coefficient to total thrust 
coefficient Z$/Cj ^s a minimum at a reduced 
frequency of the motion o • " {V- ). Outside 
of the region of o • o , the suction force can 
become so large that leading edge stall is 
inevitable. The present paper advances a 
methodology for determining the limit on the 
attainable Cc for oscillatory motion of a thin 
airfoil based upon the behavior of a laminar 
boundary layer near the airfoil's leading edge 
stagnation point. 

Sychev's impressive manuscript2 shows that 
under certain restrictions on the acceleration 
of the flow, the point of separation is inviscid 
in nature. This result contrasts with the 
steady separation problem. Furthermore, the 
unsteady separation point is not situated on the 
surface of the body. 

The approach taken herein has been to treat 
the leading edge separation problem in the 
context of its relationship to the full flow 
about the oscillating airfoil. In treating the 
problem in this way, attention Is given to the 
situation that leading edge separation appears 
to be a local phenomenon in the sense that it 
occurs in a region where the airfoil has large 
curvature, and experiences a stagnation point 
flow. Once dynamic separation has occurred, the 
aerodynamic theory used to describe the attached 
flow about the airfoil no longer applies. 
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I 
The approach taken connects the linear 

airfoil theory and the unsteady oscillatiny 
laminar boundary layer theory. The latter Iv.s 

been developed, for example, in References [3] - 
[7]. 

It is well known that the linear airfoil 
theory breaks down at the airfoil leadiny 
edge. This deficiency has been eliminated in 
this development by asymptotic matchiny with a 
local inviscid unsteady solution about an 
osculating parabola. Results from matching then 
open the way for investigating the behavior of 
the laminar boundary layer in the region of the 
airfoil nose. This boundary layer is driven by 
the gross oscillatory motion of the airfoil and 
by its steady forward speed. The unsteady 
driver turns out to be directly related to the 
suction strength about the airfoil's leading 
edge, (as derived from the inviscid theory). 

Flat plate unsteady boundary layer theory 
is applicable In this investigation whenever the 
boundary layer thickness Is small compared with 
the radius of curvature of the airfoil's nose. 
Ue tacitly assume this to be the case. 

KINEMATICS 

tte consider the small amplitude heaving 
and pitching motion of a thin symmetric airfoil 
In a steady uniform stream Jh To describe the 
kinematics of such motion we introduce a 
Cartesian coordinate system (x,y) with the x- 
axls aligned with the airfoil's mean chord 
line. The direction of the free stream is along 
the positive x-axis. The airfoil's transverse 
displacements then occur along the y-axis and 
are prescribed by a function h(x,t) of chordwise 
position x and time t. Figure 1 illustrates the 
transverse displacement of a typical wing 
section with respect to the (x,y) coordinate 
system. 

The inviscid wing boundary condition 
revjuires the normal velocity of the wing 
relative to the (x,y) coordinate system be egual 
to the normal velocity ^«n of the fluid adjacent 
to the wing. Here _n Is the unit outward normal 
vector on the w1ng"änd ^ is the fluid velocity 
relative to the inertial reference frame 
resolved into components (U+u,v) along the (x,y) 
axes. 

Neglecting products of small quantities 
compared with those occurring linearly, the 
kine-satic boundary condition specifies the v- 
coraponent of the fluid velocity adjacent to the 
wing. Consistent with approximations already 
made, this component can be specified along the 
x-axis, giving 

, y » a* 

v(x,t) = [-^ ulj- Ih(x.t); ] |x| < 1 

^ t > ü 
For heaving and pitching motion of a rigid plate 
at the frequency a,       the displacement function 
h(x,t)  can be expressed as 

h(x.t) = [yz + (^ + J52)]exp (jut) 

where |x| < 1 and 5 , C,. and ?„ are real 
pitching axis is at the midchoM, 

of  pitching  and 
x = Ü. 
heaving 

The 
The 
are 

eads 
e 

pitcrnng 
amplitudes 
l^+j^-l and £ /Z. respectively. Pitching lead 
the . heaving  motion  by  a  phase  angl 
tan'VCg/lj). 

A convenient form of expressing v(x,t) is 
by its Fourier cosine series. This series 
contains only two two terms for the specified 
transverse motion. That is. 

v{x,t) « t)o(t)/Z + b (t) cos 9 

bo{t) H ulZif j(2e1+a50)] 

bjU) = .UoU2 - jC^eJ"* 

Jut 

(1) 

(2) 

(3) 

where x = cos 9, 9 = «t and o = u/U Is the 
reduced frequency of the motion based on the 
unit half-chord. 

INVISCID  DYNAMICS 

In an Incompressible flow field devoid of 
external forces and internal viscosity, the 
principle of conservation of mass leads to the 
expression 7.^ • o. Conservation of rectilinear 
momentum leads to the Euler equation wherein the 
pressure gradient is balanced by the fluid 
acceleration a • -p"lvp. This equation is valid 
in any inertfal reference frame. The absolute 
acceleration a_ measures the rate of change of ^ 
following a particle, P is the fluid density, 
and p is the local instantaneous pressure. If 
in addition, the flow field is irrotational 
then v x ^ • u and a scalar function $ exists 
such "that ^» u+7* and 7Z(> • o. Here the flow 
field is def1ned""to be the region exterior to 
the wing and Its shed vortex sheet. 

An Integral of the momentum equation can be 
obtained by substituting ^ - IH-7» into the 
acceleration a and neglecting products of small 
quantities. The resulting Integral becomes 

(■Sf * 4r,*(x>y't) ' ♦(x^t) 

where ♦, the Prandtl acceleration potential, 
measures the variation of the pressure from the 
static level, 4(x.y,t) • [p.- u(x,y,t)l/p. 
Applying the Laplace ou^rator 7* to the above 
integral results in 7^» • o as the relevant 
field equation for the unsteady inviscid 
incompressible thin airfoil  problem. 

INVISCID  OUTER  PROBLEM 

The 
problem 

appropriate airfoil 
has been solved in 

.a 

rig.l- Alrioll Otiptutmaat 

boundary value 
terms of the 

acceleration potential by Uua in an elegant 
treatise on the hydrodynamics of swimming 
propulsion. In particular, he has determined 
that the pressure difference across the wing, 
|x| < 1 is 

I 
I 
I 

I 
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ap p-(x,t) - p+(x.t) = 2p»+(x,t) (4) 

I. 

1. 

i; 

[ 
[ 
i 
i 

where    *+(x,t) is    the    acceleration    potential 
evaluated along the x-axis, y » 0+. 

For time harmonic motion that has persisted 
indefinitely, the acceleration potential 
evaluated on the topside of the wing is 

t+(x.t) . lua0(t)JU + ^(x.t) 

where 

^(x.t) =i       J^j d5 

AU.t)  » -  (-5 

a0{t) = b^t) - o(0)[bo(t) + bjUr 

(5) 

(6) 

(7) 

(8) 

In this last expression, 0(0) is the Theodorsen 
function, which is expressible in terms of 
modified K-type Bessel  functions, as 

0(o) = KjUol/Dyjo) + KjUo)] 

e{o) = F(o) + jG(o) 

Substituting Eq. (1)  into Eq. (7) yives 

M5,t) » co(t) + ec^t) + ?2c2(t) 

where 

c0{t) = ■iK- 61 + ub ,1/2 

c^t) . ■ [öb1 
+ K'^ 

c2(t) = • • V2 

(9) 

(lU) 

(11) 

Here, the dot denotes time differentation. 
Substituting Eqs. (5), (6), (1U) and (11) into 
Eq. (4), gives the pressure jump across the 
wing,  jxj < 1.   That is, 

^"UaoVTi"+2(cl+xc2)V^r (12) 

We notice that this pressure jump expression has 
a st^uare root singularity at the leading edge of 
the airfoil. The quantity, however, is 
integrable over the wing chord and is used quite 
effectively to yield quantitative estimates of 
global quantities such as sectional lift, 
moment, thrust, power input necessary to sustain 
the motion, energy loss due to vortex shedding 
at the trailing edge, etc. However, the result 
is useless as a means for providing flow detail 
In the vicinity of the leading edge. The reason 
for    this    of    course    Is    dear. In    the 
neighborhood of the leading edge there occurs a 
stagnation point. As a consequence, the 
perturbation does not remain small compared with 
the on-set flow as is required by the linear 
theory. The linear theory is therefore not 
uniformly valid and breaks down in the region 
surrounding the airfoil nose. Our first 
objective Is to correct this deficiency of the 
linear airfoil theory by determining the 
appropriate correction for the construction of a 
uniformly valid first order solution to the 
invlscid unsteady airfoil  problem. 

INVISCID   INNER  PROBLEM 

The simplest representation of the invlscid 
flow about a well-rounded nose of a thin airfoil 
that preserves the essential character of the 
problem is the flow about an infinite 
parabola. Upon magnifying the detail at the 
leading edge what appears is the flow about a 
so-called osculating parabola. Sucn a flow is 
comprised of an on-set stagnation point flow and 
a tangential or parallell flow. Figure 2 
illustrates the inviscid flow about a parabolic 
cylinder. The geometry is described by a 
coordinate system (X,Y) with origin at the oase 
of the parabola and with ). being the axH of the 
parabola. 

If we employ the conformal  transformation 

Z = K -K2 (13) 

where 
Z = X + iY 

6 + la 

(14) 

(15) 

the flow field in the physical Z-plane is 
tranformed onto the left half «-plane, as 
presented in Figure 3. That is, the conformal 
transformation takes the parabola onto a 
straight line. The upper branch of the parabola 
goes to the positive imaginary <-axis. The 
lower branch goes to the negative K-axis. 

Equation (13) can be used to provide the 
inverse transformation yielding < as a function 
of Z. By selecting the negative branch so that 

uo; < • [1 - >/l - 4Z ]/2 

then the parabola ß « ü yields a » t^T'  Y. 

In terms of the complex velocity potential 
function f, the stagnation point flow and the 
parallel flow can be readily represented in the 
K-plane by 

v iiy - ♦ + 1* (17) 

where Us and Up are quantitites to be determined 
and ♦,!)) are tne velocity potential function and 
stream function, respectively. 

Substituting Eq. (16) into Eq. (17) yields 

(IB) 

Fig Z-Alrfoll LE Flow     Flg.3-M»ppe<i LE Flow 
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From the above expression we can calculate the 
nonlinear pressure jump across the nose of the 
airfoil. This we do by using the Bernoulli 
equation for unsteady incompressible flow 

H q2)+|*=g(t) 

Across   the   parabolic   airfoil   nose  the  pressure 
jump is Ap = p"- p .     Therefore, 

4p/p = - A* A[42/2) 

The local time variation of the potential 
function $ can be obtained directly from the 
real part of Eq. (18). This equation can also 
be used to obtain q since q = Idf/dZj. 
Consequently, Ap across the nose of the parabola 
Y = +VX    is 

ip/p = 2fl V*"- 4USU Vx/(1+4X) (19) 

This expression is the leading edge counterpart 
to Eq. (12). Notice that it does not break down 
at the leading edge. 

MATCHING 

To obtain a uniformly valid first order 
approximation to the pressure jump across the 
wing, Eqs. (12) and (19) should be matched in 
some overlapping region where both are presumed 
valid. In Eq. (12), if we make the substitution 
C - 1 + x and take the limit as £ tends to 
zero, then 

Ap/o ~y}m Uao + ZUCj-Cg) - Uao/4]V2?    (2U) 

In Eq. (19), set X « C and let 5 tend to 
infinity.    This limiting process results in 

Ap/o ~- USU /yJT* 20 V? (21) 

Comparing coefficients of the C '    term gives 

U. • U (22) 

where 
U (t) • yJTU{X*i\i)e' 

Up(t) 
11 ( (23) 

(24) 

X » 352 + 2FOJ - Go2 

p « -oSj  «■ aGOj + Fo2 

01' s ■ °h/z 

a2 ' °h + HZ + 35o 
Consequently, to leading order, the 

magnitude of the stagnation poin^ flow is equal 
to the uniform on-set flow U. This we expected 
on the basis of the steady flow analog to this 
problem. See Van Dyke's book5*, §4.9. An 
interesting result is that the parallel flow 
about the airfoil leading edge is directly 
related to the strength of the leading edge 
suction a0(t). This ten« is the only quantity 
that contains the histry of the motion. Such 
motion history is due to vortex shedding at the 
airfoil's trailing edge. Thus to leading order, 
the flow about the leading edge Is driven by tne 
dynamics and kinematics of vortex shedding at 
the trailing edge. 

T^ construct a uniformly valid first 
approximation for the pressure jump across the 
airfoil surface we add the inner solution (19) 
to   the   outer   solution   (12)   and   subtract   the 

common part.   The result is 

*£.* Uan 
P o 
where 

(25) 

4Ua 
S(x,t) = 2(c1+xc2)/FT -   /F 

Notice that there is no singularity in the Irtsove 
expression in the range |x| < 1 where Ap is 
evaluated. 

LAMINAR  BOUNDARY  LAYER  PROBLEM 

As a result of the asymptotic matching 
technique employed for this problem, we have 
determined that the flow about the airfoil's 
leading edge oscillates in direct proportion to 
the strength of the leading edge suction. The 
actual flow at the edge of the boundary layer 
about the airfoil nose can be estimated from Eq. 
(17) by taking the derivative df/d«: » u. - iu2. 
Here ui and up are the velocity components along 
the (ß,ci) axes of <. We obtain, for 6 • 0, the 
local flow along the parabolic surface. That 
is. 

Jl 
Up + 2dJs (26) 

Therefore,    as   one   moves    along    the   parabola 
(either positively or negatively away from a 
equal     zero)     the    mean    speed     increases    in 
magnitude. 

When the on-set stream does not oscillate 
but the surface oscillates, the situation 
differs from the oscillating dividing streamline 
case only by the su^eroosition of a uniform, 
though non-constant tr?nsverse velocity which 
has no effect on the relative motion (cf. Ref. 
6). Taking advantage of these facts, the 
relevant boundary layer problem to consider Is 
that of a two-dimensional flow against an 
infinite flat plate normal to the free strew 
where the plate makes transverse oscillations In 
its own plane. This Is a classical problem in 
boundary layer theory6 whose exact solution 
depends on a set of ordinary differential 
equations containing the reduced frequency o as 
a parameter. To conform with standard notation 
for this problem, we reuse some notation already 
used for another purpose. In as much as the 
principal results of the analyses thus far are 
embodied in Eqs. (22) - (24) which are 
Independent of coordinate system — no confusion 
will  arise. 

Ue now Introduce a Cartesian coordinate 
system (x,y) with the x-axis along a flat plate 
and the y-axis normal to It so that x ■ 0 Is the 
dividing streamline in the steady flow outside 
the boundary layer on the plate. Let (u,v) be 
the corresponding velocity components. Outside 
the boundary layer suppose 
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u • ex       as       y + » (27) 

Let the plate oscillate along the x-axis so that 

ae- jut at 0 (28) 

where   c    and   » are   real    constants.       The 
amplitude  of  the plate's   speed   'a'   is   here  a 
complex  constant. It   is   understood  that  the 
real    part    is   to be   taken   for   all    physical 
quantities. 

have 
Comparing   Eqs.   (22),   (23),   (26)-(28)   we 

c = 2U 

a = aB + ia. » /f U(x + in) "R 

(29) 

The boundary layer equations are 

ut + uux + vuy • c x + vuyy 

u, + vu * 0 

where v is the kinematic viscosity, 
equations are to be solved with 

These 

jut 
aea , v 

ex 

ü; 

A similarity solution is known to satisfy 
the problem. The solution form is 

u - 2Uxk'(n) + aejutc{n) (30) 

(2Uv)l/2k(n) 

i:R(n) + Ujh) C(n) • 

n ■ /Fy 

R '  2U/u; Reynolds number based on 
chord lenyth 

where   k(n), cJn), c^n) satisfy 
differential equations. That is, 

k'"* kk" ♦ k'k' + 1 ■ 0 

MO) ♦ k'(ü) * u. *'(-) ■ 1 

^ kci, - k' «R + cCj/2 • ' Ü 

c-w kc'j - k CI- oCR/2 • ■ 0 

ordinary 

(31) 

(32) 

^(0) " 1, ^(U) « cR(-) • Cj(-) • Ü 

The nonlinear k-problwi is the classical 
Hiemenz stagnation point flow. Note that the 
lirear (-problem depends on the k-solution and 
on the reduced frequency o as a parameter. The 
(•solution is valid for all values of a and 
'amplitude', a. Another feature worth noting Is 
that the unsteady part of the solution Is 
Independent of position x. Consequently, the 
unsteady part of the solution can be effectively 
decoupled fron the steady solution. 

To solve the boundary value problems (31) 
and (32) the differential equations Mere written 
as a system of first order differential 
equations An approximate solution to the non- 
linear    k-problem    was    obtained    by ' Newton's 

method. Both differential equations weie 
approximated by the Centered-Euler method. The 
solutions obtained are second order accurate. 
Figure (4) presents k, k" and k" as a function 
of n. Figures (5) - (8) present the real and 
imaginary points of c and ?' as a function of 
n for select values of reduced frequency, a. 
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LEADING  EDGE   SEPARATION 

Accordiny to Moore-Rott-Sears10»11 the 
point of separation of a boundary layer adjacent 
to a moviny surface occurs when the velocity and 
the shear stress simultaneously vanish. That 
is, when u * uy • 0. When the M-R-S conditions 
are applied to Eq. (30) at the airfoil nose, x • 
U and the time dependence Is eliminated from the 
resultiny expressions, we obtain 

Q(n;o) = CgC'j- Vl ü (33) 

Here,   Q   is   a   function   of   n     that   depends 
parametrlcally on the reduced frequency, a. 

For any specified value of reduced 
frequency, if an n-root can be found to the 
equation g(n;a) » 0, then dynamic separation at 
the airfoil nose, x • U, Is believed to occur. 
Equation (33) has been plotted for a ranye of o. 
The indication is that dynamic stall does not 
occur at the airfoil nose for any value of o 
accordiny a this criterion. See Flyure (9). 
This Is not surprising since the x • ü case Is 
strictly a shear wave and symmetry rules out 
both u and u simultaneously vanishing except at 
the edye of the boundary layer, n ♦ ■>. 

Applying  the  M-R-S  conditions  when  x * 0 
gives 

ZUxf f" • - f'BjCOS ut ♦ f'BjSin 

2Uxf'f"  ■ - f'S'cos ut   + f B'sln tut 
(34) 

where 

8.. h ' Vi * V« 
8^ • dBj/dn.    B^ • <JB2/dn 

Ellmlnatlny x from Eqs. (34) gives 

(a„a.+ a.a2)cos ut ■ («iaim «(<'»2'sin ^       ^^ 

wtiere 

'1 ^f' 

This equation implies that for x » ü and for 

any values of o and n, a time t can be found 
such that the M-R-S conditions are met for the 
specified harmonic motion. The implication is 
that the M-R-S conditions do not provide a 
useful separation criterion for this problem. 

Ue propose the following methodol 
predictiny separation for this problem: 

ogy for 

18,; 

(i)  Set the steady part of u equal to the 
amplitude of the unsteady part.  That 
Is, 

2Uxk'(n) IM (36) 

(11) Set the steady part of the shear stress 
(which is proportional to uv) equal to 
the amplitude of the unsteady part of 

That is. V 
2Uxk MM (37) 

Eliminating x from Eqs. (36), (37) 
gives the leading edge dynamic stall 
condition. That is. 

l("A' 
(^)2+ (C'j)2 

L   5R ̂ f J 

1/2 
(38) 

The right hand side of Eq. (3U) depends 
parametrlcally on the reduced 
frequency, a. For any specified value 
of a an n-value can be found satisfying 
this equation. Figure (10) presents a 
graph of the n-root of Eq. (30) as a 
function of o. 

(ill) The x-locatlon of the separation point 
Is obtained from the expression 

x -  |a||c(nrt)|/2Uk,(nrt) (39) 

Notice that the amplitude ja| of the 
unsteady motion comes Into the x- 
locatlr . of the separation flow. 

(1v) Separation occurs for the motion when 
the value of x obtained from Eq. (39) 
is less than or equal to r, where r Is 
the radius of curvature of the 
airfoil's leading edge.   That Is, when 

|x|< r -» SEPARATE ON 



I 
0.2 

0 z 4 6 8 10 
Fl|,10-S«p>ritlan^ Vtriului with f 

This last part of the procedure has been 
included since the local boundary layer flow is 
not a valid representation of the flow adjacent 
to the entire airfoil out only in a reyion of 
the order of the radius of curvature of the 
airfoil  nose. 

CONCLUDING REMARKS 

A methodoloyy has been proposed for 
predictiny leadiny edye separation due to the 
acceleratimj flow about the well-rounded nose of 
an airfoil. The fluid accelerations are caused 
oy the curvature of the leadiny edye yeometry 
and the forced transverse oscillations of the 
airfoil. The analyses leadiny to an unsteady 
separation criterion couples the yross features 
of the airfoil's transverse motions with the 
details surroundiny a laminar Boundary layer in 
the vicinity of its dividiny streamline. 

The separation criterion has not been 
validated by comparison with any experimental 
data. This clearly remains before the procedure 
can be seriously advanced as a useful tool for 
predictiny leadiny edye dynamic stall. 
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