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"Previous mathesatiocal investigations ot the origin of turbulenoe have led to the opinion that small
disturbances of a viscous, laminer flov between two wvally are always damped... I2 order to learn how
turdulenoce actually originates, I hed built at Gottingen an open channel...and observed the flcw by the
Ahlbdorn method {aprinkled lycopodiuam powvder)... VWave forms with slowly incressing emplitude were
ocoasionally observed... These wave:' of inoressing amplitude oontradicted the dogma of the stadility of
laminar motion with respeot to small disturdanoces, 8o that at first I tended to delieve that I had nct
seer this infreguent phenomencn ocompletely right.*

*We nov applied ourselves to the theoreticl treatment, snd, to antioipate a little, we found,
coatrary toc the dogms, an instabdbility of the small disturbances.®

Prandtl's arguscont was later refined by Linc (1954,1955), but we shall follow essentially the original
derivation here., An inviscid wave 19 assumed to exist in the boundary layer, and visoosity to sot only in
s narrow region oear the wall. To simplify the amalysis, U(y) %s taken to be serc in this region. With
this asawmption, the 2D ¢‘mensionless, parallel-flov x mcmentum eq.etion simplifies to

. .2
Toe-Folq (5.8)

ty
whers the terms vOU and -2u/ 3% Lave been drepped. Outsids of the wall visoous region, Eq. (5.8) reduces
}\5 .. gg . (5.9)

The disturdance veloocity u consists of two parts: an invisoid part u, that satisfiss Bq. (5.9), snd a
visgousr part that satisfies the difference between Eqa. (5.8) and (5.9). It is the total velooity uew,
¢ u that setisfies the no-slip boundary comdition. lmzno.

e P " (.10)
Ot ox S )
The solution of By, (s5.1n) for « real is
uy(y) o ~u(0) expl=(1=1)(«/2) 2yJaxp(a(rz—~a) , {5.11)
vhers tha bdoundary conditions
w(0) » u (0) « u (0) and uly): v (y) as y » =~ (5.12)

have deed applied.

The additiosal luagitudinal disturdanoce velooity Uy Whisk 18 needed to satisfy the no=slip
ocondition, induoes, through the ocoatimuity equation, u additional normal disturbance velooity

ve(y) = = O(m.,/-r)d: . (5.13)

which ytelds, upon substitution of M. (5.11),
vo(y) » (1-1) w (0)[1/(2.8) V2] (axpl=(1-1) (.02} V)t bamp[1(13-.0)) . (5.18)
Outside of the viscous regiom (y~) v, is independent of y asd », 15 sero. Pros Bg. (5.10),
() & ~(1=0){1ug (0/(2 )V 2 jexpi 1 ax-uai] . (5.18)

The eonsequences of l% (5.15) for the Reynolds stress are as foliews, 72> an iaviaci¢ aeutral
disturdanee, u and v are 90° out of phase [see lqn, (2.50a) and (2.500)) and T 18 urre. Bowever, fer say
other disturdance u and v are ocorrelated, sad there 1s a Beyoolda strese. umu,umeumhofm
vall viagsows layer, it ean esoatrileute mothing te ! there. However, v, Jeraists for some distanse outaide
of the vall layer, and stace 1t 1o ahifted 135® with respeet to u, n will preduse a Reynelds stress.
This Reynolds strese must equal the Reysalds atress set up by the ¢iaturdases inm the vielaity ef the
eritioal layer, and whieh, ia the adessse of viscoaity, would extend te the wall., Ve have alreedy Gerived
s formula for this stress is Section 3.t (Rq. (3.8)).

The formsula for the Reynolds stress at the edge of the vall viseous region can M cerived frea By,
(5.15). We find

' @ =tayvy> o (UD/AB Y 0 (3.16)
If e retio 1 /ev)> 1s forued, ve bave

L P s (V2aAmVE (3.17)

A goneral expressien for ' ie the vall vissous region san be edtained from Ree. (5.11) and (5.18),
ond this expreseiss weuld give the 1ssresse of T frem sers &l the wall to the value givea by By, (5.17) at
the odge of the viseows regisa. Seveier, By. (3.17) estadiishes the esssatial result that ' 15 pestitive,
ond thus viseseity asts as Taylsr thought it weuld, and duilds wp » Beyzclde siress 1o Bateh the faviscid
Reyselda stress, or, 18 Tayler's previss view, peruits the sementus »7 the disturdanee to o atocrded at
the wall, Acosrding to B¢. (S.Ta), with a peajtive strese emergy vi.l be tramsferved frem the messn flev
to the ciaturbanes. Consequeatly, the wall viseous regien, whieh is forned to satisfly the ae-slyp
boundary conditios feor the disturbanse, has the offest of sresting o Beyaelds stress vhieh edte te
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Az ¢ note of ceution, it must de recelled thst the preceding analysis rests on the negleot of U in
the wall visocous region. Therefors, we can expect the results to de valid oaly et high values of R, when
the wall visoous region ia thin comparsd to the boundary-layer thiocknesa, end when the oritical layer is
outside of the wall viacous region.

6.  NUMERICAL NESULTS - 2D BDOUNCARY LAYERS

In this Seotion, we shall present a number of numerical results which have been chosen to illustrete
important espects of the theory, as wcll as to give en idea of Lhe numerical magnitudes of the quantities
we have been discussing in the previous Sections.

6.1 Blasius boundary layer

The Blasius bdoundary layer, bsocause of its simplicity, has recoived the most attention. The unifors
externsl flow veena that not only is the boundery-layer self aimilar, dut thers is only e aingle
parameter, the lleynolda numbder. As there ia no inflection point in the velooity profile, the orly
instadility is viacous fnatedility. Thus we are adle to atudy thia form of inatadility without the
competing influence of any other mechaniss of instability.

The first result of importance 1s the parallel-flow neutral atadility ourve for 2D waves, which i»
shown {n Fig. 6.1 88 three seperate oyrves for: {(a) the dimensionless fraquency F [Eq. (2.60)]; (b) the
dimenaionless wavenusber i besed on L~ (Bq. (2.57)); and (c) the dimensionless phase velocity ¢ based on
U;. BNormel modea for which F,2end ¢ 1ie 0on the curves are nesutral; those for which F,q and o 149 ¢n
the i{nterior of the curvea ere unstedble; everyvhere e¢lse the norsal sodes ere damped. The neutrel-
stability curvea are a convenient meens of ideantifying et each Reynolds nuabder the F,a and o bands for
vhich s wave is unstadle. Figure 6.1a also oontains two additional curves whioh give the frequencies of
the maximua apatial emplification rate and of the saximum asplitude retio lllo. vhere lo is the asplitude
st the lover-branch neutrel point of the frequency in queetion Both saxime are vwith respect to frequency
at constant Reynclds numbder. We have used o in Pig. 6.1a to denote =i, the spatial amplificatios rate in
the streamwise direction, and will oontinue to 6o 80 in the resainder of thia doocusment. The oorresponding
vavenusbders for the additiocnal ourves are given in Fig 6.1b. The ratio of wavelength to boundary-layer
thickness 18 2-/, ¥y:, and y., the y [Bq. (2.59)) for which U » 3,329, ia equal to 6. ). Consequently, the
unstadle vaves at R = 1000 heve wevelengths between 5.555(16.84°) and 10,4 {492 ¢ 1, l’ooruu to Fig.
6.ic, the unatable phase velocitics et this Reynmolds nusber are detween 0.2020; end 0.33501%.

¥e must keep in mind that the nsutral ourves of Fig. 6. bave been calouleted from the quasi-parallel
wesry, which does not distinguish between flow variadles or location in the doundary laysr. All of the
nob-parailel neutral curves calculsted by Gaster (1978) define a slightly grester unstadle zome, with the
grestest differencea coming et the lovest Reynolds number2 es might de expected. The difficulties
involved in making eoccurete sessurements of wave growth ot low Meyoolds aumbers bave 80 far precluded tbe
experimental detersimmtion of what can be regarded az sn unequivocally ®correot® aesutrel-stability ourve
for any flow variadle,

The next quentity to exemine is the dimensionlees spatiel amplificstion rete s dased on L’ mnis
smplification rate 1s shown in Fig 6.2 for 2D waves as a function of the diseasionless fregquesay F st the
tvo Beynolds nusbers R « 600 and 1200, Frow the defimitioa of the aspliificetion rete ia Bg. (2.27), the
fraciienal change {n amplitude over ¢ distanqe equal to one boundary-leyer thickness 18 vy:. Thus the
soet unatedle usve of frequeacy ‘ -.0.33 2 107" at B » 1200 grows by 3,08 over ¢ houadary-layer thickmeas.
The amplification rate S3sed 0a . /U,, } o /R, gives the fraviiossl wave crowih over a uait increseat ia
M. Thus Lhis same vave grovs by ':th over an imcreasat in Be of 10,000,

T™he saziaus aspiification retes and ' __, vhere the maxiss are with respect to frequeacy {(or
vaveaumber) at coapteet Reyaslds nnm. &re mu ta Fig. 6.3 as fuactions of Beysolds nuader, The
asplificetion rete °, which gives the wvave growth per unit of Rersolés seaber, peaks at the low Beyxnldas
susbor of R o 63 T sapiification rete &, whioh 1s proportiocssl to the veve growtd por boundary-layer
inickpass, <eas mot peak vatil B s 2780 [calewleted By Kimmersr (197))]. The disensioasl asplifiocatica
rate 1e preporticasl) te & for o fixed uait Reynolds auaber. Figure .) shovs thst the 3eclise ia the
dinensisaal asplificatioa rate wilh inereeiing s-Reynclds susder 15 alpoet scuaterscted 0y the isoressase ia
the beundary-layer thicknens. Visocouws 1nstadility, A eharastarized by o, persiasts Lo estresely high
Seynolég susbera. Hovever, (I the pessure of visoousd 1nstadbility (s talea 10 De the wave grewth over a
fized x incresent ar expressed dy 5, thea by this oriteriea the maxinus viseous {astadility eocwrs at low
beynslda ouaber,

The logaritha of the smpiitude ratis, Adg, is showa ia Pig $A for 20 vaves as ¢ funotios of B for
a auaber of frequeacies 7. The savelepe eurve, vhich givea the sazinus saplitude ratic possidle ot amy
Beymolés ausbder, 15 alse sbown in the figure aloag with Lhe ecerrespeading fregueancias, IU is this Lype of
dlagres that 1s wsed 1o engissering ctudies of boundary-layer tremsition Vhea lali/Ay), whieh 18 oflea
cslled the 3 faeter, resches scae predeterained value, say aine a8 suggested by Selith and Cuaderens
(1954}, or ter as suggested by Jaffe, Oknaurs and 3aith {1970), Lresaitiea 13 seasidered 1o take plaece, or
at jeast to start,

The distridution of the legariths of tae aaplitude ratte with frequeney §s shous 1a Pig. 6.3 for
ssveral Reysolds auabders., This figure Lllustrates 25a Filteriag setied 37 the Doundary lagor. The
tansous aerreviag of the basdvidth of »=sisble frequensiss and the large imerense i asplitude retie

Degaslidn sunber Lacrensss NeARs Mst aa iritial waifore power apectrun of Lmetadilitly waves teade
& apestrud at high Beymelés swmbere Lhat has & the aest amplifisd fiegueany. The faset
Pig. 6.5 gives the daaduidth, dofined 20 the froguensy reags dver vhieh e saplitude retis i3 wilkie
of the ponk value, 20 & Nunstiva of Neyacliés mmber.

)
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and, in asoerd viia Lhe 3tondard agtaties, 18 dinsasisns) ¢isplacenset thichness.
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The Squire theorer (Seotion 2.,4,1) has told ua that it ia a 2D wave that firat becomes unatable,
Furthermore, a* any “eynolds number it ia a 2D wave that has the maximus amplification rate and also the
maximum amplitids, retio. Thus the envelope curve of asplitude rstio when all odlique wavea are considered
as well aw 2D waves 18 still as shown in Fig. 6.8 However, for a given frequency the 2D wave is not
necessarily the sost unstable, as is shown in Fig. 6.6. In this figure, the spatial asplification rate 7,
caloulated with | = 0, 1a plotted against the vave angle | for three frequenciea at R = 1200, At this
Reynolds number, the maximue smplification rate occurs for ¥ = 0,33 x 1077, Above this frequency, 2D
vaves are certainly the moat unstedle. However, belowv about F s 0,26 x 10‘. an oblique wave is the moat
unstable, and the wave angle of the maximum zmplification rate inoreases with decreasing frequenocy.

In the calculations for PFig. 6.6, the complex wavenumder was obtained aa a funotion of the apanwiae
vavenumber :  with ¢y » 0 and the frequency real and oanstant. Thua the complex group-velooity *
can be ruddy obdtsined from W ‘' (a -tan ¢}, and the reaults are given ia Fig. 6.7 for 7 x 10" = 0,20
and 0.30. The resl part of ¢ 12 1imited to leas than 10°, and %y oan be eitiur plus or minua. It 1a
svidect that at the maxismum of ¢, where W""r is real, i must be zerc. With the groupe-velooity angle
known, the aoou‘-ney of the aimple relation Kq. (2.35) for aa a funotion of  can be cheoked. We choose
F « 0.20 x 10" and v= 45° 1n order to bave ; real. Table 6.t givea k, ths_wavenumder; ', the

. 3
amplification rate parallel to ;(both of thess are caloulated as an eigenvalue); " (V), the ocomponent of 7 i
in the x direction for the apecified y; and 7 (0), the amplification rate in the x direction fori = 0 aa ¥
caloulated from Bq. (2.81c), the spatial-theory replacecent for the Squire tranaforsation derived fros Ig. 3
(2.35), but with , replaced by 7. In the iatter caloulation we have used 3 = 9.65°%, the value obtained ¥
with = 0, The transformation works very well; the small discrepanciea from the correcty s 0 value are 3
due to ;. being s weak funotion of V iastead of oconstant as assumed in the derivation é
Table 6.1 [Effect of | on ampliffication rate and test of é
trenaformation rule, 7 s 0.20 x 1077, R = 1200, v = AS°, 3
5 K Tm10d e(¥)xt0d  o(o)mr0d

eigenvalue transformeticn 3
0.0 0.1083 3.201 3.201 3.201 S
9.7 0.1083 3,156 3.111 3.201 E

15.0 ¢.1083 3.170 3.062 3.200

30.0 0.1083 3.368 2.916 3.203
85,0 0.1083 3.0713 2.139 3.208 <
€0.0 0.1082 8.95% 2.070 3.207 H
75.0 0.1083 7.601 1.967 3.2)6 k

Ve observe ia Table 6.} that the real Squire transformatiosa, which is the 1 (]) eatry for is i, is in
error by 140§, whereas the oorrect tramsforsatios is inm -rnl- by ouly 0.15. VWhen the sase caloulation is ‘
repested for the other frequency of Pig. 6.7, 7 » 0.30 x 107", for whish ty o «2.48° sty o 45° tnotesd of b
c° aa for the frequency of the Tadle, equally good results are obdtained for (0) frea the Lremaformstioa ;
Bovever, k {3 Po loager coastast, but imoreasea with J; for ;= 75° it 1s 0,08 larger thaa ot{ s 0°, 3
Nayfeh and Pudiye (1979) provide a forsuls for thia changs. b

In Fig. 6.8, 1a(A/Ag) 18 given at several Beynolds nusbars for 7 » 0.20 x 10°% as calculated with the
irrotationslity comdition, Bq. (2.62), applied to the vavesusbder veotor. The abecisss is the initial wave
angle st R s 900. The change i the wave adgle fros & » $00 to 1900 §s 1.7° for the wvave that has as
iajtial vave angle of [T YT figure shows that the greater aaplificetion rats of oblique vaves 1a the
Lostability region mear the lover dresch of the mevtral curve tracslates isto an amplitude retio that is
4reator than the 2D valus, Novever, ia(i/d,) for aa odlique vave is sever sore then 0.35 greater than the

20 valee. Figure 6.0 aloe shows that Just &8 Lhe frequessy danduidth aarrcwa with lnereasing 3, »0 does i
ths dandvidth $a spenvise wavenusber. Although at the lower Beysolds auabders the respoasse extends Lo i
large vave anglea, at R o 1900 the amplitude ratio 48 dowa to 1/e of $te 2D value ot . s 37°, and oa the
envelops curve Lhie aagle will be atill amaller. Por uu.hs the 1/ amplitude for 7 » 0.60 ¥ 107" at
the envelope-curve Reynolda ausber (R s 900) cccurs at, » 29”; for F » 0.30 3 10”7, at , ¢« 26" Gven

B0, It is necessary whes thinking about wave amplitudes ia Lhe boundary layer to keep 1in miss that toth a
froquency Sasd asd spaswise-vavesusber dand guast be coasidered, met just a 2D wave.

3o for ve have only besa conaidering the aigeavaluss and not the sigenfuaetioss. The eigsafumetions
glve Lhe pepaldility of penetrating further {ato the physios of faatadility, and ve shall take thes up
sriefly at tais pojat. Ligenfurotions are readily odtaised with aay of the cwrreat suserical sethods, tut
were 4iffieult te compute vwitlh the 0ld asysptotie theory. The first ajgeafunetions vere obtained by
Jokliahting (193%), and the good agreenwat of the neasurencats of Sohubaver ond Skramstad (1937) with
these ocaleviations vas a Xey lactor 4a ecotablishing the validity of the 1inear stabiliity theory. The
prodies v 18 sofe one of finding & reascnabdic waj to preseat the great sass of susericel dats that can
te osnpuied, and te satrest wefwl fafersatior fres this data. 500¢ progress 4es dees aade ia the latter
directien by Name, Willlase and Passl (1980). Per €¢ifferent saplituéea of 2D waves, these suthors
Mlculsted streanline patieas, codtenrs of constamt total verticity, Meysclds stress aad sll terss of the
lesal apetiil casrgy Malanee,

rigure 4.9 gives the saplitude of the sigealuoetion § of I‘Q streanvise veleeity flwstuation u st R o
800, 1400 and 1600 fer the 2D vavy of froqueaey F » 0.30 x 30", The correspanding phases are gives ia
Fig 6.1C. &a may be seen froe Fig 6.1a, thede Seymsids mumbers are, respoctively, Just Delew the leower
branch of the asutral-stability surve, aser the naximus of J, ulum'w'”omofmuutm
retic. The sigeafusstion sernalisation of Pigs. €.9 and 6.10 16 $(0) o (2°'7%,0). The eligeafunstions
have 0ot besa resarealised teo, Say, & Senetast peak aspliivds 49 1a often done, 18 order to caphssise that
ia the guwasi-peraliel theory the moreclisaties 1s scmpletely arditrary. Mething san Do learusd o8 to the
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effeot of the variabdility of the eigenfunotion with Reynoldas numbder on the weve smplitude within the
fragevork of this theory. Attempta bBave been made to do thia, and plauaible looking results obdtained, dut
this spprosch ia without theorstical justificatioa. It has already been pointed out in Section 2,2 that
the meaningful quantity for the amplitude modulstion is the produot of A(x,) and the eigenfunction, and
this produot, which has a fized value regardless of the norsalization of the eigenfunotion, oan only be
caloulated from the nonparallel theory.

For the wave of Fig. 6.9, the oritical layer 1a at sbout y » 0.15 and varies only slightly with
Reynolds number. Thus the looation of the smplitude peak, whioh 18 s strong funotion of R, is only
coincidentally at the critical point. As R inor s, the vi layer near* the vall deocomes thinner as
exzpected. The ocharacteristio phase ohange of approximately 130° in the outer part of the boundsry layer
hea nothing to do with the 180° phase ohange at the oritical layer in the invisoid sclution {Bq. (3.99)],
but 1s » kinematfical oonsequernce of s wave with gero amplitude st both the wall and at y +=. At sc@me ¥
greater than the y of maximum amplitude, where visoosity has little influence, the slope of the
atreaslines relative to the phase velocity has a maximsusm. Thus the velosity-atreastube area relation
changea 8ign, and at a)l y > Vg the u fluoctuation from thia effect is opposite in aign to the fluctuation
that arises from the wavy motion in & monotonically innreasing velocity profile. At some y), > LY thease
two effecta can exactly balance for & neutrsl iaviscid wave, and almost balance for mu‘m. viaocous
waves. For the iatter, as ahown in Fig. 6.10, there is a nearly 180° shift 1n the phase of 4. The fact
that the phuse can either advance or retreat in this region was first noted by Hams ot al (1980), and its
aignificance, {f any, is unknown,

It was shown in Section 5.1 that the kinetic energy c’ s 2D imstadility wave {a produced by the ters
:dU/dy, where 1 1ia the Reynolds streaa built up by the sotion of visocoaity. BReynolds ~tress diatridutions
have been given by Jordinson (1970) and Kimaerer (1973), anong others. The energy production ters is
shown in Pig. 6.1 for the frequency and three Reynolds numbers of Pigs. 6.9 sad 6.10. The peak
production doea not ocour at the oritical layer at amy of the three Reynolds mumbders. Ve see that ensrgy
production 1a by no means limited to the region between the wall snd the oritiocal layer, sa might de
expected from the simpie theory of Section 5. At R a 1200, where the amplifioation rate is near ita
ssximum, there is aigaificant enmergy production over about half of the doundary-layer thickness, In these
examples, the Beynclda stress is positive exoept for the slightly dampled wave at R = 800, where there is
a small begative ocontribution over the outer 703 of the boundary layer. The damping at R = 300 is Gue to
viacous disa‘pation, not to s megative production ters. HNex=s et al (1980) give an example at low Reynolds
number whers the production terms 1s negative over the entire boundary layer.

6.2 Falkner-3kan boundary layers

The 1nfluence of pressure gradient on boundary-layer atability oas be atudied ocozveniently by means
of the lalkner-skan family of self-similar boundary layers, wbere the Nartree parsmeter 8, [ig. (2.62))
BOrves a3 & pressure-gradiest parameter. The rangs of 8, is fros -0.19883774 (separation profile) through
0 (Blasius profile) to 1.0 (2D atagnstion-point profile). Exteasive nuseriocal ocaleulstions for Palkner-
Skan profil-s have been cerried out by Waszsan, Okasure and 3sith (1968; see alsc Obremski ot al. (1969)),
and by Kiimmerer (1973), Pigure $.12, taken from Mack {1978), gives tha iafluence of % oa the B-faotor
envelope surve, It 1a clear that a favorable preasure gradieat (a, > 0) atabilizes the doundary layer,
and an adverse pressure gradieat (8, < 0) destabiliszes tt. The stroag imetadility for sdverse pressure
gradients 1a osused by an faflection point 18 the veloeity profile that soves avway fres the wall as?’
becomes more negative. The adverse presaure gredieat Falkner-3kas douadary layers sre particularly
tastructive bdecause Lhey provide ws with exaaples of doundary layers with Doth visccus and iaflectiomal
inetadiliry.

A

T™he asplification rete U 1s unsuitable for astudyiag iaflectiomsl tmstadility, whioch ia basisally am
1oviscid phenomenca, &5 it $s sero at R -~ regardless of whethar the Soundary jayer 13 stable or wastable
in the imwiscid limit, The calvaletions of Kuemerer (1973) imclude both Jand ) and show thet the mazimws
smplificetion rete soves fro3 R o 2780 for the Blasius deundary layer to B~ a0 \ dooreases fres
soro. Whes . 182 8=, whiak oceurs befere 5. resches the separation velue, we Csa say that the
boundary layer “ sominated by iaflestin~zgl ifnstadility, Ia these cases, viceosity asts risarily te demp
out the disturbances just &b savisio.ed By the sarly iavestigsters. Vhea ve take uwp coapressible boundary
layers 18 Part B, we shall escouate’ anolbor exasple whsre the deaminsant inetability ehcoges fres visesws
to iaflestions] a3 a parameter (Lhe resstiress Nask mmbder) varies.

The froquenciea along the ervelepe ourves of Pig. 6.12 1re given 1a Fig. 6.13. Ve say ebserve that
18 boundary layera with faversdle prodavre gradieata, vhere viseous 1a9tability Lo the oaly seuree of
inetability, 1t 18 lov frequency weves which are Lhe meet asplified Oa the cestrary, for boundary lapere
vilh adverse pressure grediects, where iafleetions)] 1mstadbility is demivast, it 1 Righ-frequensy waves
which are the most amplified.

Ia » mtural disturbaseey savireamest, & vide spostrun of eersal nedes 847 de expeeted to exist ia the
boundary layer. It 1a helpful Lo kaow the sharpness of Lhe response 18 eatinsting vhea the diaturdanes
smplitude 59 lorge casugh te (aitiate Lremmition 4 meeswre of this quastity 1o givea ia PFig 613, where
s froqueney basduidth of the 2D waves sleag the eavelepe surve, 0xpressed as s frastie’ of the sent
aeplified frequensy, it sheun fer the Palbasr-Skas fonily. This Ganduidth 15 mot ideatisr. Lo the oae 12
the 1000t of Pig. 4.5, 02 It gives ealy Lhe Frequency reage 1005 1042 the oeat 2aplifl 4 Frequeney for
which the amplitude retie 1» withia 1/ o the pask valua. The Fllleriag setics of the Mswedary lager L9
agsis evidesnt fa the asrreuing of the Danduwidth with inercasing Deynclids suader for a givea dousndary
layer, and ve 0oe that the pere uastable sdverse presaure-grocdiost douadary layers dave the slreagest
filtering setion.

6.3 Nea~sinilar boundery layere
™e sslf-cigiler boundary legore are weful fur iilwmiretiag desie iastability sechanisns, 9t is

prosties doundary lagere sre svd=siniler. 4 ceaputer code Lo perfora stability eald
statlar boundary lagere 1o sere ssdplisated thea for self-cinmilar Sountary loagers, bud

s b
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different profiles. The atability caloulations themaelvea sre the same as in any Reynolds numbder
“ dependent boundary layer. The eigeavalues are calculated as a function of Reynolds number, and thea can
be sudsequently used to calculate K faoctors, or for say other purpose, exaotly as 1f the boundary layer
were self-similar. Suoh ocaloulations have deen done on a routine basia e least as far back as the paper
of Jaffe, Okamura and Saith (1970).

6.4 EBoundary layers with msass transfer

Suotion stabilisea a boundary layer, and blowing destadilizes $t. This result was eatadlished by the
eariy i{nveatigators, and extensive stadility caloulations wvere carried out with the asymptotic theory.
Suction can stadilize s boundary larer with or without an infleotion point, The stadility mechanisa ia
aimilar to the sotion of a presaure gradient. Suotion gives a ®fuller® velooity jrofile, just as does & 3
favorabdle preasure gradient; dlowing gives a velooity profile with an iaflecticn point, just as does an
adverse presaure gradient, CZuction 19 the prisary method prorceed for laamimar flov ocatrol o ajroraft,
where it has been investigated saialy in oonaiotion with thres-dimemsiomal boundary layers, A suasary
scoount of early work on this aubject may de found in the book of Schliohting (1979). Nore receat work ia
primarily associsted with Plfenninger, and a ausmary acoount of the vaat body of vork oa thia audjeet
oarried out by him and hia co-vorkera aay be fouad 12 the Lecture Notea of ar AGARD/VEK] Special "ourae
{Prenntinger (1977)]).

3.23
necessity of calling up s different velooity profile at each Reynolds number, or of interpolating between i
g

6.5 Doundary layers witk heating and cvoling

Neating ac air boundary layer destadiliszes it, and cocling atadiliszes '*. The proper calculatioa of
this effect requirea the ocompresaibie atability theory which is givesn ia Part &k in exnssple for s low-
speed boundary layer ssy be found ias Seotioa 10,3

st

for a water boundary layur, the effect §s the opposite, and heating the vall bas beon extensively
studied as a means of stadilisetioa This mechanisa of stadilisatioa ia scolely through the offest oa the
viscosity, and sap be studied with the incoapressible atability theory provided ealy that the vissosity is
takst to be a funotion of tempersture. The imitial work on Lhis swudjest was by Vassasa, Okaawre and Smith
» (19680).

.

6.6 Ligenvalus spectrus

AN .

An arbitrary disturbance caanet be represented by a single sersal sode, or by 8 asperpoaition ef
soraal Bodes. These 50408 represest oaly a singly seader of an ealire eigeavalue spestirun, and it i3 this
spectrus that la required for an arbitrery disturbense. It sas bo preved thet for & bounded sheer flaw,
such a» plone Polseuille flev, the eigsavalus apeetrud 15 Gloerete and fafimite [Lis (1961)). That is,
for a given vavenusber aid Doysclids aumber, there 15 s iafinite diserete seguense of ssmples frequeasies
vhose eigeafunctions astiafy the boundery esatitions. [Eash eleseat of the sequesses comstitutes & weda.
T'is 10 the nore precise Besaing of the ters mode; vhat we have eslled the msraal sedss all deloag te the
ficet, or least atadle, of these Bore gomersl medes. Te ¢istinguish bdetuwses the twe uweeges of the ters
B0ds, ve shall refer to the €iserels 2equence a5 Lhe viscows sodes. Oaly the firet visesus aode san be
uastatle; all of the others are desvily dasped, whieh §8 the reascs viy they are uaimpertant {a alsest al}
prastical stabdility prodiesa. Caleulatiess of the dlacrete tonpers] oigesvelve speetrua of plane
Poiseuille flov bave beea carried out by Oresch and Salves (1968), Orssag (1971), eag Nesk {1976). i

PR Y G N

It vas loag Melieved that the eigesvalue spootrus of bovadery-layer flows 15 alse diserete. Bawever,
a caloulation by Jordiansea {(1971) fer a ajngle valuwe of a1 snd B wasovered ealy o finite diseretie spestirua
for the DBlasiua deundary layer. These c¢aloulatiens were 13 sefe orrer sugericslly, det s latur
tavestigstica by Nack (1974), wvhieh werbed out the correet Lompors! spostrum, oeafireed the ceatlusien of
Jordinsca, As abown $a Fig. 8.15, at 1 » 0.179, B » 500, the ease eonnidered by Jordinsca, there sre
oaly aeves viseeus sedes. MNede ! 18 amplified; Nedea 2-7 are atreagly dasped. 1ls Fig. 6,15, the
elgeavalaes are shous ia comples ¢ space, rether than - speoe, m-,.-uw-mowu.num
12 this predlea. 4

Although the nuaber of ¢lacrete 20400 10 & funelics of deth vavenuabder and Doyaslds nuader, the
avabder remains fiaite ond cenparetively asell. It ves shews by Rack (1976) oo the dasta of svaerissl
e328pi00 vild flalte-wietd shannele 1a viich the upper bevsdary goeved to y - =, sad with pelyesaial
‘ veleeity profiles of verious orders, that detdh the ssei-iastatte Clow isterval and the coatismity of e
velestly rofile ul the ogge of the bdowadery lager, are respeasidle fer the mea-existoesss of the fafisite
pars of the dinersie apsetrus of Sounded flows. U ¢ flatte diserete aspectrua 10 atill uaalkle te
represest o8 rditrary Al terdasve, vhere ore Lhe alssing cigeavalwee?

It 15 0 85t WBOCENEE CECUFTERse 1B Sigeavalus Predless Lo have cdiy & Flaile €lacrete speeirve. The
resslning perl of (50 speetrus 15 1004 & continusus 0postirus. As otasple Lo Lhe faviseld stabilily
agwatica, whieh has & GONtiouows SpOtrus asecuiated wilh the alagmlarity ot the eriticsl lagers % wes
alreagy sugpeeted b7 Jerdiases (1971) that e Ciscrete viesows Apostrun 19 Suwpplensntied by & eomimweue
spestrus aleng Lhe o, * ! amis e proef by Lis (1961) et & vicosus ooetimmens Spuetral UBEmel akist
fur o bownded flov Goes ool apPly t2 aa wabounded flow. Maek (1976) supperied Jerdinses’s expestatioes by
eessns of a fou suseriesl caloviaticas of contlinuoud-9pocirua ¢ipeavialuee, 804 alse shouwed thatl the
coMimeus *peetrun 15 alvagye Guaped dosavse of he restristion o, ¢ -/l Imnulmn‘mn L)

§ atedy of 10y coaticuous 2p0eirus was sudocguintly cerried oy Sresed ond Balves (1978), whe are
resssasidls Fr elarifyisg saty espestis of Wis predies. uomwmumtm
sust be sestionsd. Jesults Per Lhe Gloerele spatial spestrun of the Blasise domadery ) ve BO0S

gives %y Cormar, Nousten sad Bese (1976).
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7. RARMOEIC POINT SOURCES OF INSTABILITY WAVES
7.1 Osneral remarks

In the previous Seotions, we have been considering the behavior of the {adividual norsal-sode
solutions of the limsarized, quasi-parallel stability equations. This prim.iry attestios to the mormal
acdes has been the usual vourse in sost theoretical and experimectal work on toundaryelayer stabdility. The
fundamental stability experiments of Schubsuer and Skramstad (1987) in low-apaed flow, and ¢l Kendal
(1967) 1n Righ-speed flov were both designed to produce a particular norsa)l mode. Sven the much used ¢
aethod of trsmsition prediotion 1a dased on the amplitude retic of the soet saplified normal mode. In
sost aetual flow situstions, however, & speotrum of iastability wavea ia presest. If the bousdary layor
were truly parallel, the sost unstable 80de would eveatually be the dominan: one, and all of the other
a0des would de of msgligible tmportance. As boundary layers found 1n practice are aot parallel, the
ohanging Reyzolds suaber means that the 1deatity of the most unstable aode also changes as the wave syatem
R0ves dovnstrean, and 2o single mode caa grov indefimitely. Diaturdar e emergy will always be distributed
over & finite bandwidth, If the modes all come fros s single source, or are othervise phase related, thea
interference effects will cause the evolutioa of the widedand amplitude to further depart froa the
asplitude evolulioca of & aingle norsal mode. This differemcs weas vividly demonstrated 1ia the experiment
of Caster and Orant (1975), where the saplitude at the cemter of a wave packet produoed by a fulsed poisnt
source ohanged little with facreasing distsnoe from the source, even though the amplitude of the most
smpiified norsal mode vas increasing seversl times.

The wave-packet probdlem wss trested first by Criminale and Kovaanay (1962) and by Gaster (1968).
Neither the straight wave fronta of the former, mer the caustio of the latter, were observed
experiseatally, because ia each case spproximetions that were needed to produoce swserieal results turasd
out not to be velid. Later, Gaster (1975) odtaimed results in good agreemest with experiseat by replscing
the method of steepest descent used earlier by direst mumeries! lategratioan. Ne was alse abdle to
domonstrate the validity of the method f stespest descent for & 2D wave packet ia a striotly parsslel
flov by exaet caleulation of the mecessary eigenwalues (Gaster (1981),1982s)). Pimally, he showed how to
extead Lhis method o & growisg boundary layer [Seater (19414,192820)), vhere the mean fiow Gownstrean of
the scuroe ia & fuaetios of Beyaclds nuabder.

In this Section, ve shall ezamime & simpler prodlea than the wave pachket, mamely the staticeary wave
pattere pimduced by » harsocaic point sourcs. This wave sotioa has ihe 3480 Dusder 3f space dimensions as
a 1D wave pecket, Sut {5 really & 2D wave propagatioca predies thst is closely related te Jaster's 2D vave
packets. The propagetion space Bere is 1,3, the pland of the fi0ow, rather tham x,t aF ta the latter
prodlen. The fact that the wave Betica 15 two ¢imesnisia) nabes 1t poasidle to odtatn detailed swmerical
rosuits both by sumerisel istagration ead by Gester’s (1981a,19820) cxtession of the sethod of stespent
descent for a growing bevadary lager (Mack asd Zardall (1983)). Ia the poist-sewres prodlsns, 2o attempt
1a 8ade to f1ad a complets mathesatisul 3oivtivn  lnstead It 15 merely sssumed, felleving Gaster (1978),
that the sowres produoss & costinuens Spuetrus of the loast stab’e aereal nodes. Peor & pulsed 20 (lime)
0ures, the spestrud 1is over frequensy; for a pulaed 30 (paist) & wree, Lhe spostrum 18 over freguenny ead
Spanvise waveaunder; for 2 ML " _«16 POLRL Souree, Lhe apeelrum s over spanvise vavesusher. I3 18
uowally, dut ast alvays, sssuned Lhat the speoirel Geasilies are saifors (“white meine® speetra).

The selutien fer a darsonie poist source 1s odtained dy evaluating the integral for the senmples
saplitude over all pesaible spanvise vaveauabers. The nest stiraightforvard aethed 1o te use direat
aunerieal imtagratiea; a secend methed fa to evaluate Lhe Jategral rayaptetieally By the methed of
steapust desoett aa wad ¢oae fer parsilel flevws 9y Cubocl and Stewartaen {19804,19800), and, in nure
éotail, oy Bayfed {1980a,19800). Jeas suserical Pesul}o For Blastus flov were oited by Codeei and
Stevartoca (19800), Dut vithia the fremewerk of the ¢ aethed of transition predietioan. Only the
cxpessatial tera of the amplitude was ovelusted, and the saddle-peist eaidition was the cae fer parsllel
flow,

Buperiseats oa the Merecaie poist seures RMeve beon carried owt by Gilev, Kachasev aad Keslov (1961),
sod Zy Rock and Rsadsll (193)). 1a thess enperisesis, esteasive bot-w
Fhate wvére 8440 18 the Gouastireas o0d Spaawise direstiess 1a &
(1901), » Pourior amaiysis of the dele Jicléed Lhe oblique sersal 908, DUt B0 A0EPAriscms xith theery
vere Sode. Ome aignificsst resuit was Lhe L3
ohoun 18 Pig. V.. 4L Jeast Lhree ¢intinet regioas san

ovey
at the cadler limn. 4 regien of ¢ ‘eave curvelure gredually estesds sulvard s cassapads Lhe eatirs oulve
portios of Lhe veve pattera, whiiec 'ho dinple spressds, flattess and flanlly disappoars. A1) of theoe
fostures are Guplicaled 1a Lhe vove ' .iiers ealoulateds by aunerical Satagretion

Pigwe 1.) shous thet there 15 & sasious 108li2stich of eosh constast-phese 1180 thet L0 Bush
thes the aanly’4 weve 0agle of wasteble sereel sedes. Thia feeture fullews ¢lreetly fros the sethed
ecomet here e saddio-paimt ssndition 118110 the DepmalGe-aumber Gapendest BARLOUS
10 40%:23% Tais rectrietiog vas 00ted 10 sapudiished caleuiations by Nesk sad by Padhye ané Bayfed
(privede cobnmnieetion), o well an 3y Cobeoet end Bievartees (19000).
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The integral over all spanvise wvavenumbders for u:o.dxnuloul vl%clty fluctuation v, (the sudecript
t dehotes time dependence) from a souroe of frequenoy . loceted at x,,z. 18

ultx®,2",t% . up(-lu.t.)[c.(r‘.)up(i((a.u..l.))dﬂ.. (1.1)

where ;'(:-.) 1a the (complez) amplitude distridution function of dimenaions velocity x length, the

frequency ias resl, .

b
TS IY A PR TL PR PO (1.2)

ia the tise-independent part of lb' phuo: snd the vu.nlbor.oo.vounu -. and .“.. sre compiex., The
eigenfunctions are ignored s0 that u, 18 independant of y , and u, oould equally well be considered as any
other flow variadle. This integral will bDe evaluated below by direst anumeriocal integration, amd by an
sdaptation of Guster’s (1981a,1982b) ssymptotic metbod,

7.2 Buwmerical integration

Yo place the souroce st :: s 0, drop the time faotor, and define Lde dimensiosless variabdblas

e, g% 00},
1. D:t.l,. . te. u;-'/J' . (1.3
us \l'lll. . g ?u.lu' »

1

vhere n' 15 the time-independent part of o:. and .rohrnu veloeity s the fresetress wvelooity ﬂ,’

We Bave chosen th- faverse wkit Reysolds nusber - /U, ss the reference leagth 30 that £, a2 vell as

will sstisfy the irrotationality eendition 1n the siaplest ferm, 8q. (2.35,. #iid thaese chojtes, the
tinensicaless £ ard § are the wsual X and 3 Deynolds nunders. The ressce for the serralisstic eomstast I
2= $u the defizition of g will appesr in Seetion 7.8, Vith the definttions of Rqs. (7.2), 8q. (7.1)

doocnes F

u(f,8;7) o (uz-)f.atg)m(u{a:l.lna.! c (1.4) ;

Vits 80 « 0, the phase 1s .‘. [
(U8 .j:' @ .. (19)

£
Vo take ! to be res] for coavesniesce, which means thet we are goiag 1o sum over spatisl aorsal sodes of
the Lype ve have doen using sll sloag. If we write

rlI"QUIOg.. {T.4e)

,‘ a
x,-f e, -“.[e,a . (1.60)
L]

muummuunnmdum' *

o8 (mf a(3exp(or, donat sl M) (1.7
a
&ad
w(2,8) o (V/5)f gillespl-1ilatni  o0e(it)e} . (1.79)

Ve have tahes sdventages of Lhe sysaetry 3a I of g}), 1 . end ¢, Lo restriet the intervel of iskagreties
te the pesitive 1 azis. Oguatiens (1.7) ere the epdeifie l‘nouuo te be eveluwated Oy swaorissl
tategration It is cenvesient to presesti the nuserical reavite in terss of the peal, or cavolepe,
amplitede

a0 o (2o AHVE t1.50)
aad the leea) phase

“e,0) o welluyre,) . tv.oe)

Both of Lhese quadtitics oon Do Eeaswred euperiseetnlly.

The cunerical 1ategraties of Bya. (1.7) procoeds as Mellovwe! ¥1th Lhe dinsnsienless frequwessy F
ogual te Lhe froquesey of Lhe soures, tHe Phede iategrels 1. and i, of B (7.60) sre ovalsated as
fusetions of § with seastast § for & Dasd of spasise vevessllors rrie 10e oigeavalues i{8;2.0). The
Pourior coeine 18tagrols are evaleatod at csougd § statinns at cash £ Lo reselve the wave patters
25801~ odligque "eves are Gsaped, vwith Lbe Ganpiag rete iseressing vwith lLeeressing obliguitly.
Consoyastly, the integruls of By (V.7) will alvape ocawrge fur £ ) £ IF large conugh valuss of ! are
weed A8 208,10 18 and g(]) Lo Lhe Peurieor contae tresefers of u, (8). Ia partieuler, 2Cgif) s Y,
Weau, 188 & xuulurapu.mmmuu-,,

7.3 Mother of stespost Gsperet
™he aethed of suaerienl iategretion 15 Mreightlferverd, st

cigesvalvee fer good resajutisn of Lhe weve patiera. 4 €ifferest to svalmsie the iatagrel of
By (TA) copuptetionlly 87 the Sethed of stonpest Gnseeat,
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osrtain resulta to be odtained with fower caloulastions, and also has the advantage that the dominant wave
st each £,2 aeems to correapond direotly to what is observed.

Equatfon (7.4}, with g(f) = 1, is written
u(f,t) = 51.: (llzn).{oxp[(l-!.)@(ﬁ)]dﬁ g (7.9)
where C is the contour of steepast descent in t.lfc complex 3 plane, and
(3-2,) ¢ %';u;am . 132, . (7.10)

;]
The 1isit R ‘~1is taken with R/(f-8,) tsld ocnstant. The ocondition for the saddly point £o 18

‘dwﬁ s« 0, (7.11)
which is equivslent to the two real conditions ,
x
j’:‘\,(‘a:'./aa),a a -1 , (7.128)
x
s la/af)gat w0 . (7.120)
L]

These integrals are evaluated with the complex ? held oconstant, so that we are dealing with spatial waves
that astisfy the generalized irrotationality oondition of kinematio wave theory.

The saddle-point conditions of Eq. ‘7.12) are of the same type as introduced by Gaster (1981a,1982d)
for 8 2D wave packet in a growing boundary layer. Usually the saddle-point method i{s applied to prodiems
where the wave-propagation medius (hers the boundary layer) is indapendent of £, but Gaater demonstrated
the correctness of the present procedure when the medium ia a funotion of £. In a striotly parallel flow,
the boundary lsyer mects the more restrioted requirement of £ independence, and the saddle-pnint
conditions sisplify to

(038), = ~2/(2-1,) , (7.13a)
Wy e0., (7.13v)

For a constant-frequency wave,
(3 08) 0 =(n/ 3RV xdoli) 2 «tan o, (7.18)

where : {s the complex angle of the group-velocity vector, and we ses that the parallel-flow saddle-point
condition 1s equivalent to requiring the group-velocity angle to be real. Consequently, the odserved wave
pattern in a parsllel flow conaiats of vaves of constant complex spanwise wasvenumber ge aoving along
group-velocity trsjectories in the real £,f plane. This saddle-goint condition hasa been applied toa
growing boundary layer by Cebeci and Stewartaon (1980a,1380b) and by Neyfeh (1980s,1980d). Thia procedure
can yi. .. satisfactory resulte in s restrioted region of tbe £, plane, dut cannot be valid everywhere as
the correct asysptotic representation of Bq. (7.9) is in terms of Eq. (7.12) saddle points rather than £g.
(7.18) saddle pointa. The "rays® defined by Bq. (7.12) sre not physical raya ia the uaus) sense, Foras
cosplex [, that satisfies Eq. (7.12), R 1a complex at all !)l exoept at the final, or observation, point,
The tujootory that is traced out ia the £,8 plane by uu.rnu Bq. (7.12) at succesaive £32 for the
same (? ),. has a different (Pq) at each point. In a parallel flow, a single normal mode defines as
entire rny. here & airgle norsa. :o‘o defines only a single poinmt,

Vith ¢ expanded in s pover series in “Bo' and with only the first nonsero ters retained {(assusing
it Sa the second derivative), 3. (7.9) becomes

u s (1/727)expl (-2 M},)]fuvtuz(o’v a;’).,(l-l Wito)?ley; . (1.15)
Ve write -
C20r53), o bexpling) (1.168)
©
e ® Slulp(lﬂ.) . (7.160)

where 8 is the path leagth msasured fros the saddle point, and ug 18 its fnclination With the contour C
seleoted to pass through Eo from left to right st the ocoastant anlo g ® =ia/2, the final result i»

u(g,8) o [(1/27)(2-2,)D1" 2exp((8-2,) (], ) Joxp(1(n/0erg/2)] . (.41
leplacing 5. £, Sand 2oy D, B, 5 snd B, vhere the reference length ja L% or 2q. (2.57), we obtagsa
u(R,®) o (2/90) Y 2aap(arg o 1) (1.18)

wirere 2
D ze‘[ﬂozws')a 15 (1.19)
e® 2o, REJeRe B ) WA ex/N 82, {7.20e)

L
xy v 2f dimis e o ()0 (7.200)
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and "'d is the argument of the cosplex integral in Bq. (7.19). We continus to use £ for thas s-Reynolds
number,

3 ﬁ"F%

In these varisbles the saddle-point oconditions are

2f Gare) nen s -t (1.218)

®

R
f (3a/3R) RdR w O (7.21d)
R

With the parsllel-flov saddle-poin conditions of Eqs. (7.13), Bq. (7.18) 1a st11l velid, but D and 8,
have different meanings. With <5/38° constant,

D= (R2-R) (022 (1.22)

i

it v

and “, 18 the argument of -2‘?/'.*;!2 rather than of its integral,

For a given R snd £, a doubls iterstion prooedure 1s needad to find the plax go that setiasfine
Bq. (7.12). As each f{teration involves the recaloulation of siganvalues snd 3°4/3 _52 from l. to R, the
computational requirements srs large. If only R s given, then an itsrstion of al for a ssquance of ﬁ,.
will produce the wave pattern st that R with such less computation, but the speoific £ at whioch the
amplitude and phase are calculsted will not be kmown in advance, Or, both ﬁ, and g‘ can be specified, and
R advanced unti]l ths integrsl in Eq. (7.120) changes sign. This will not always happen, but when it does,
a ssddle point and ita locition in the R,& plane are obtairned without iterstion

e

Because of the itsration requirement, the ssddle~point method 1s lesss suitad then numariocsl
integration to the dotailad calculstion of the antire wave pattarn, dut it can sors readily produocs
results st just a few locations. Its grsatest sdventage, howsvar, is that along ths csnteriine (3 s 0)
the amplituds and phase can be obtained st a apecified R without iterstion, and s singls integration pase A
from R, to R produces resuits at all intersediate R st which eigenvalues are calculated. This is poasidle k
because the saddle point is st ! = O all slong ths centsrline, and only Bq. (7.19) has to be used, and not
£q9s. (7.12), Vs can alec note that there 1a no rasal saving by uaing the spproxisate Rq. (7.22) in plsce
b of 2q. (7.19), because “,7:1° has to be calcoulated in any cass, and only the nuaericsl integration of

this derivative {a sliminated.

7.4 Superposition of point sources

¥s can 19sgine sources of inatability waves to ocour not just #s sizgle point sources, bdut s
sultiple point aources snd as distriduted sources, For ssvarsl discrete sources, the formulss of the
preceding Secticn apply, and we just have to add the contridutions from the various sources. We ocan use
this same approach for distribuced souroes: The distriduted source ia represented by discrete, olosely
spaced, infinitesimal point souroces. In this Seotion, we apply this idea to line sources.

Ve replace the funotion ;'(:.) in Eq. (7.1) with a more genersl funotion

s, @ 8 & e, @ o0 9 "

g ax8) -amn_(-,.:,m.u-.) ' (7.23)
where u:, the source strength, has the sass dimensions as u:. and : {8 ths arc length slong the aouroce.
We sudstitute Eq. (7.23) into Bq. (7.1) without the tims factor, use ths definitions of Rq. (7.3}, end
arrive ot

Lu(R,8) o (1/2-)u.f.f.,ru-?)u;u-)as (7.2%)

o "7, ane .

(:8,8) -fm . UBY,) . (1.28)
x

{ finite-langth source which extends froa si ol (2,.8,), to 82 » (2,,8,), vill produce ot 2,0 the valocity

tor tge gontribution to u st 2,8 of sn infiniLsaisal line souroe at !‘,I,. In 3q. (7.23%), u = U:IU:. L e
u
I

[l

[P -
g u(,tj (u.'Z“J U.Q,‘.[((,S)up(h)d_ﬂ » (7.2%)
sl
whare the ' integretion proceeds along the line souroce.

As ths staplest possidle example, ve spply Ba,. (7.25) to a 2D inafinite-longth line source, 1.0, a
source ubloh extends from f-< to «= at a coastant R, VWith g(%) s 1, so that all oblique norsal modes
Bave the sase fnitial amplitude and phase, we obtain

wt) » 072 fu,, f emtscar (1.26)

The integral over 1, must ccaverge because the [ integral is just the poimt-source sol tiom Bq. (7.3). &
physical iaterpretstion of Bq. (7.26) 1s that 84. (7.3) can be regarded as either the distridution of u
with respest to L ot the olservetioa station £ €ue to o single source at £.,0, or 3 the variatiz. of u st
the sisgle odservation poiat £,0 as the poiat sowree st §, soves from §,-~to § <+, Comsequently, if
the point-source solutisn 15 weighted by u, sad integreted vith reepect to £, the resultant asplitude and
phase st 4o that produeed by az infiaite-length spaswise liae seures.

At G, the phase fumction 1 resuces to 1(B-1,) sat By. (1.26) beccmes

3
o o#
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", nn-{..clJ cos(“(8-8,)]6} . (1.21m)
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We recognize the ? integral as the Dirac S-function:
cos[f(8-2,))df = 27 £(2-8,) , (7.28)

Therefore, u(f_,f) = u_ as {t should, snd we see the reason for the factor 2r in the definition of the
function g in Eys. (7.’) snd (7.23). Thus when applied to an infinite-length line scource of constant
asplitude A, and of constant phaae, Bq. (7.25) must yield the amplitude ratio Ay of a 2D norsal aode,
Thia proporty pf the point-sourae molution ot{o{. & oconvenient check on numeriocal reaults. Furthermors,
1f ug = Agsin(f 9.) (standing wave) or A _exp(ii s,) (trayelling wave), Kq. (7.25) will give the amplitude
rstio of an oblfqua normal mode of spanwise wavenumber ﬁ,. Applications of Eq. (7.25) to finite-length 2D
snd oblique line sources have been given by Mack (1984a).

7.5 MNumerical and experimental results

The wave pattern behind a harmonic point source of frequenoy ¥ = 0.50 x 10" located at 1_ = A85 has
been worked out in detail by Mack and Kendall (1983). Ve shall quote a few resulta here, $I;urc T.2
gives the centerline amplitude distridution downstream of the source aa caloulated by numerioal
integration from Bq. (7.7) with Q(R) =z 1. The asplitude distribution of the 2D normal mode 1a shown for
comparison, where A, has been chosen Lo equal the amplitude at R = 630. The initial steep drop in the
amplitude is rever near the lower branch of the 2D neutral-stability curve, bdut this first ainimua is
folloved by a broad second sinimum before the suatajned amplitude grcvth ge'.s urder vay, The peak
asplitude ocoura at the upper-dranch location of R = 1050. However, the magnitude of the peak amplitude
is less than half of the normal-mode amplitude. The reduction in amplitude is due to the sidevays
spreading of the wave energy in the point-source probles.

The wave energy also spreads {n the y direction decause of the growth of the boundary layer. This
effect 1s not inoluded in the caloulation because of the use of parallel-flow eigenvalues, even though the
correct Reynolds-number dependent eigenvalue have been used. In the point-source vave-packet prodles,
Gaster (1975) fcund that the boundary-layer growth oould not be ignored, and he introduced a correotion
based on a simple crm argument, With the aasumption that the wave energy is proportional to the square
of the amplitude, A° would be oonstant in the absence of damping or upuﬂof} on or sideways spreading.
This a gument asuggests that the amplitude fros Eq. (7.7) de multiplied by I~ to correct for boundary-
layer growth, and the result is shown in PFig. 7.2. This correction i1s aizeable, and if correot cannot be
neglected.

A characteristic foature of experimental phase measuresenta on the ocenterliine is that if the phase is
extrapolated backvarda to zero the appsrent location of the source is downstream of the actual souroce
location. Pigure 7.3 demonstrates why this is so, The phase initially risea at a slower rate, and it is
osly after an adjustment in the region vhere amplification atarts that the phase then increases at the
faster rate of the measurssents,

The centerline amplitude distridution has also been calculated from Eq. (7.18) of the zxtended
saddle-point method. Starting st about R = 650, the saddle-point results are virtually identiocal with
those obtained froe numerical integration in bdboth smplitude and phase. Kven the parallel-‘low saddle-
point method giviv a good result to about the region of maximum amplitude, after vhich there is a slight
departure. Conseguently, Rq. (7.18) gives us & way to obtain the centerline amplitude acourately
everywhere excep. quite close to the source with only a little msore caloulation than is needed to obdtain
the norsal-sode lIAo.

The important question uwov 18 whether or not the asplitude distridution of Fig. 7.2 hes anything to
do with an experimentally determined amplitude. The answer is given in FPig. 7.4 (Maock and Kendall
(1983)). Por the same conditions as the caloulations, a bot-wire anemcometer was moved downstreas in a
Blasius boundary layer. At esch Reynolds number station, the maxisum fluctuation sampislude in the
boundary layer was detersined by a vertical traverse of the hot wire. The sourcé strength vas well within
the renge for which the response at the hot wire Caried linearly with the source asplitude. The amplitude
ia rig. 7.8 13 the actusl measured asplitude expreased ss a fraotion of the freestrean velocity., The
level of the calculated amplitude has been sdjusted acoordingly. The oaloulated amplitude increases sore
rapidly than ia the experiment, but the Gaster correcticn for boundary-layer growth makes the two
amplitude distridutions identiocal up to about N s 890, whers the measureaments depart sHruptly fros the
theory. This disagreement was traced to a favoradle pressure gradient oa the flat plate that started
precissly at the point of departure. The good agreement in this one exasple of the caloulation with the
GCaster growth correotion and the Jeasurement ip the tero preseure~gradient region, while hardly
conolusive, does suggest that when desling with wave motion over sany vavelengths, the growth at the
boundary layer osnmot be meglected.

The off-centerline wave pettern is of oconsiderabdle ocomplenity, a8 shown by Gilev et al (1981). The
peak amplitude ooccurs jaitially off oenterline, and it is ocaly vell dovastream of the souroce that it is
found on the ocenterlims, 4 typioal ocaloulated spenviss amplitude and phase distri: . fcu is showa in IMg
7.5. The ocomplex svolution of the phase that appears in Pig. 7.1 is reproduced quite olosely by Bg.
(7.7), but the cslcuiated off-centeriine ampiitudc iz less exact. Indoed, the naddle-poinmt method, evenr
18 1te sxtended form, falls to give off=centeriine saplitude peaks of sufficient magaitude, and only
sgrees wall with the suserical-istegration results after these peaks have disappearcd. The parallel-flow
saddle-point nethod fails badly in caloulatiag the off-conteriine wave pattera. The difficulty of
correstly computing the amplitude with tha presest methods 1s prodadly related to the complicated mature
of the eigeafuactions, whioh in much of the wave patters bear little resesblance to coaveaiiocsal asorsal-
scde eigeafunctions, Iz order for ampiitude saloulations te agree as wall with experimest as do the phase
caleulatisns, it will be neosssary %0 imelvde the aigenfusetions im the saleulatioms. However, svea vwith
thia iimitativa, the mumerical-integretioa sethed ¢oes remarisdly well im reprodusing the nesssured wave
pattern, and provides saother oxample of the wiility of limesar atability theory im dealing with poimte
souroe prollens.
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§ PART B. COMPRESSIBLE STABILITY THEORY

8. FPORNULATION OF COMPRESSIBLE STABILITY THEORY

8.1 Introduotory remarxs

The theory of the stability of a ocompressidle lamivar boundary layer differs sufficiently froa the
inooapresaible theory to warrsnt being treatad as a zeparate subject. The basio approach and many of the
1desa 2re the same, and for this reason the inaompressidle theory can be regarded as an indispenssble
prelude to the study of the compressible theory. For example, all of the material ia Sections 2.2, 2.3
and 2.6 spplies also to the compreasidle theory. The motivation for the study of the atability of
compressible boundars layers is the probles of tranaition to turbdulence, Jjust a&s it ila for the

L inocapressidle heory. Hovever, the relation of stadility to transition is even more of an open question
than at low speeds. EKxperiments have been performed that firmly establish the existence of {natadility
waves {0 supersonio and hyperscnic boundary layera [Laufer and Yrebalovioh (1960), Kendall (1967,1975)],
but there are none that really desonstrste when, and under vhich oiroumstances, transition is &-tually
caused by linear instability, A series of stability experimenta with “nmaturally® ocourring trensition in
wind tunnela has been oarried out dy Demetriades (197T) and Stetson et &l. (1983,198)), but many of their :
observations have yet to be reoconc‘led with theory. Mention must alzd be made of the remarkadle flight
experiment Uy Dougherty and Pisher (1980) that is probadly the beat evidence to date that transition in a
low-disturdsnce eanvironment st supersonic speeds is cauaed by laminar instabdility. FPor further

information on the intricscies of transition ct supersonio and hypersonioc snheeds, we reocoamend a study of
the report by Morkovin (1969).

The first stteapt to develop a compreasible stadility theory was made by Kuohemann (1938).
Viscoaity, the mean temperature gradient &nd the ourvaiurs of the velooity profile were all neglected. 3
The latter tvo sasaumptions later proved to have been too reatrioctive, The most important theoretiosl
investigation to date of the atability of the compreasidle boundary layer was oarried out by Lees and Lin
L (15%6). They developed an asyaptotic theory in close analogy to the incompresaidle asymptotic theory of

APy

Lin (1988), snd, in addition, gsve detalled conalderstion to s pureiy invisoid theory. The Rayleigh
theoreas vere sxtended to compressidle flow, and the eoergy sethod vas used as the basia for a disousaion
of wavea moving supersonically with respeot to the freeatrsas. The quaatity D(.DU), where D = d/dy. was
found to play tbe same role in the inviacid compressible theory as does DU in the incospressible theory.
As & consequence, the flst-plate oompressidle boundary layer ia unstabie to purely inoviaoid waves, gquite
unlike the incompressible Blasfuc doundary layer vhere the instabilicy 1s viscous in origin

The cloae sdherence of Lees snd Lin to the insomspressidle thecry, and the inadequacy of the
ssyaptotic theory except at very lov Maoh numbdera, meant that some major differencea between the
incompressible and compressible theoriea were not uncovered until extensive caloulations had been carried
out on the dasis of s direot sumerical solution of the differential equations., In the incompreasidle
theory, it is possible to make substantial progress by ignoring three-dimensicaal wavea, because a 2D vave
vill alvays have the largest smplitude ratio at sny Reyoolds nusber. This is po longer true above sbout a
Maoch number of 1.0, A second notsble difference is that in the incompressible theory there ia s unique E.
relstion betveen the vsvenumbder and phaae velooity, vhereaa in the compresaidle theory thero ia an y
infinite sequence of vavenuabera for each phaae velocity vhenever the mean flov relative to the phaae &
velooity ia supcrsonic [Maok (1963,1964,1965,1969), Gill (1965)]). These sdditional solutions are oalled 1
the bigher modes. They are of practiocal faportance for bouudary layers because {t {a the first of the
additional solutions, the second mode, that ia the sual unstable sccording to the iavisoid theory. Adove
about My = 3, 1t is also the most unstadle at almost all finite Reynolds numbers.

Subsequent to the work of Less and Lin, s report of Lees (1947} presented neutral-stability ourves
for jnsulated-wall flst plate boundaury layers up to M, = 1.3, and for ocooled~vall boundary layers at N, s
0.7. This report also inoluded the fasous prediction t cooling the wvall aota to stabilise 'he boundery
1syer. However, this precdiction must be conaidersbly modified because of t25 existence of the higher

A R

e
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nodes. These B0des require for their sxistence oaly a region of supersonis relstive flov, and thus cannot i
_ be elimirated by ccoling the vall. Indeed, they are adtually deslabiiisad by cooliog (Meck (1965,1969)). %
8.2 Linearised parallel-flow stadility equatioms %
¢ ? A ocomprebensive acooust of the coapresaidle ziability theory must start with the derivation of the %
5 goveraing equations from the Ravier-3tokes squations for & visoous, heat coaduoling, perfect gas, wvhick in ™
E dimensional fora are - - e z
p: "W [1%] 0y =
i -8 1 1 s
LR R R (8.1a) 3
b] § =
BT LN -0 3
AR ) C (8.15)
. -8 -
I TERY cOFm 0 o0 O 20 oC
V'.ag. + u} " ‘l.( J";} . U.U . (8.10)
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Again asterisks denote dimensionel quentities, overbsrs time-dependent quantities, and the summation
conventjon hee been adopted se in Section 2. Tre equations are, respsctively, of mosentus, oontqwny.
energy snd l}‘t.. The quantities whioh did not appear a.n the 1noonpruublo.oquuou are T, the
temperature; * , the coefficient of thermal oonduonvﬁn R, the gas oonstant; q,, the specific heat et
constant volume, whioh will be assumed constent; and . , the cosfficient of second visoosity (s 1.5 x bulk
visoosity coefficient).

The stsbility equations ars obtained from the Navier-Stokes equations by the same prooedure that was
used for fnoompressidble flow fn Seotion 2.1. First, ell quantities ere divided into mesn flow eand
fluotuation terms. With primes used to denote fluctuations of the transport coefficient,

u. - u. o u. . ,. . ’. o ,I .

.. . *etert, (8.3)
-® [ ] e -® [ ] " s ] [ ] e

w 8. ¢, s v B ’ A B ®, .

vhers the firet varisble on eech RHS is » steady mesn-flowv quantity, and the second ie sn unstesdy
fluctuation.

Next, the equetione sre lineariszed, the meen-flow terms ere sudtrected out, end, finally, the
parsiiel-flow assuaption is I'd.. The resulting equations are then made dimensionless with respect to the
local freestress velooity 0;, e reference length L, snd the rnut:ou.uluu ‘r all state Vlril‘l‘l
({ncluding the pressure)., DBoth viscosity coefficients ere referre. toi;, snd » ie referred to o i),
whei‘e o, ia the specifioc hest at constant preeeure. The trensport coefficients ere funotions only of
t.lml?\ll‘., 80 that their fluctuations oan de written

-t s (du/dT)", v a (4s/61)9, M e (8W/4T)0 . (8.4)

Therefore, ., snd . in the following equetione, along with ., are meen-flow quentities, not
fluotuations. The dimensionless, linearized x-mcmentum equation is

N, dv u L)
' (1‘_!- * b‘:; * de M “Z!z) - Kz Ax
™
2 2 " 2 .2
1,, ¢ 4 y ) f
&kﬁ‘.. -:‘;0,(-~~"2-'4--‘;v+—-v—¢‘¥)
' X ¥ ax u‘l“y i3 G} 4
:2\: .vzv :Zv d;. dT J
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3¢ )("2 ¢ wmay ' e * 4T dy ('dy * ):)
4 &t du &
e 4. G, ddldy, (8.50)
4T dy‘ dy 1y de dy dy
The y-sonentus egustion is
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T™he contisuity equation 1s
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Jr v dv | dw dp i ar (8.5¢)
at x tas ity g ti gty = 0.
The energy eguation is
(e dr o du v av
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_drz(dy) ]+ 1y lRludy(ny i
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gy Yty tar Ydy a7 ‘dy : oel
The equation of stats is
peEr/. & 8T, (8.51)

Previously undefined gquantitiss whioh appear in these equations arp ‘l ..tba local Naoh number at ths edgs
of the boundary laysr; 1, the ratio of specifio hsats; and e o i )( ¢ ths Prandtl nusber, which i{s s
function of tempersturs. BSquations (8.5) are the oonpuuibl’l oounterparts of ths incomprsssidle
stadbility equations (2.5), and are valid for a 3D disturbanoe in & 3D meen flow. It should dbe noted that
unliks most compressibls stability analyses, Kq. (8.5¢), the snsrgy equation, is valid for a variable
Prandt]l number. Ths constest Prandt]l number form is recovered by replacing * with L in the three terms
in which 1t oocurs.

Ths doundary conditions at y = 0 are
u(0) = 0, v(0) = 0, w(0) « 0, #(L; » 0, (8.6s)
The boundary conditions on *hs vslooity fluctustions are the usual no-slip oonditions, and the bdoundary
condition on ths tespsrature fluctuation {s suitabls for s gas flowing over & 30lid wall. Por almost «ny
frequency, it is not possible for the wall to do other than to remain st its mean tssperature. The only

exception 1s for a stationary, or nsar stationary, crossflow disturbance, when 9(0) = 0 1s replacsd dy
DH0) = 0. The boundary conditions at y * - are

u{y), v(y), wly), p(y), “(y) are dounded as y - - . (8.60)

This boundary oondition {3 less restrictive that requiring ail disturbanoces to be sero at i{nfinity, dut in

supersctic flow waves may propagats to ({nfinity and we wish tc {nolude those that do 80 with constant
aaplitude.

8.3 Normal-mode equations
Ve Dow specialize the disturdances %o normal modes as ia Seotion 2.3:
fu,vonepor, 017 o 1803),93),00y),8(3) ,M7) . 8(x) 1Tonpls fudse s~ £)] ,  (8.7)
vhere we bave adopted the Quasi-parallel form of the ocomplsr phase function, Ths norsal modes may grow

sither temporally or spatially or botk, depending on whether . or k, or both, are coaplex. The
discussion {n Section 2.3 applies to the coapreasidls theory juat as well as to the {nccapressidle thuory.

When £qs. (8.7) are substituted tnto 2qs. (8.%), and the sams licear combinations of the x and 3
sopentum equatioas forwed as in Seotion (2.3) for the veria’lss

e e B,

:; . j' - ;*ﬂ N (.'.)

ve obtain & systam of equations whioh are the cosprensibly counterparts of qs. (2.36). The momeatus
equation ia the direction parallel to the wavesumber veotor Kk 18
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The momentum equation in the direotion norsal to k 10

v (401 VetMa ) T o ( IDM=FDU)P] = ; (iR - (12412)7]

1 dy R . . . 2 .
o R Ldr 07 D9 o F (0BesD?0R o (G5 08 o Uk DT ) (iD6D0)] (8.90)
oy
The continuity equation ies
1 (1DecWa )P +p(D¥e13G) ¢ Dp ¢ 0 0 . (8.94)

The ensrgy equation s

L1 (\DekMen) o DT 0] & = (y = 1) (D¥+Lid)
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o 3 [(D0exDW) iDa + (DM-rDO) Du)) (8.9¢)
The oquuolaﬁ;f state 1s

Bat/ o T . (8.91)

To reiterate, in these equations the eigenfunctions of the fluctuations are funotions only of y and are
denoted by a oaret or a tilde; the mean-flov velocities U and ¥ are also functions of y, as are the other
sean-flov quantities: density, (s« 1/T), tesperature T, viscoeity coefficients .. and’ , thermal
oconduotivity oocefficient - , and Prandtl nusber. The specifio heats are constant. The reference velocity
for U and ¥ {a the same 88 for R and M, and the refersnce length for y is the same &8 in R

8.« First-order equations
8.1 Righth-order systes

Equations (8.9) are the basic equations of the compreseible stadility theory, but are not yet ina
fors suitable for numerical coaputation, For this purpose ve need a systes of first-order equatioas as in
Section 2.5.2 . Vith the dependent variablee defined by

Z‘llﬂor', z.‘,-u,. 131',
3o 8, e 0, A (8.10)

L’ln.-:‘ﬁ. 1‘1011,
Equations 2. 9) car be written as eight first-crder differential equatioms
By (y) = 'U") (0, (11,8, £0.11)
-1

and the faot that this reduction is possible provee that Eqe. (8.9) constitute ab eighth-order systen.
The lengthy equatiocns for the matriz elemente are 1listed {n Appemdix 1,

The bouadary conditioas are

,(0) » 0, x,(o) « 0, 24(0) » 0, L0 e 2, A
(8.12)
Ly I4(y) L(n ., 2,(y) bounded as y - .

8.4.2 3tixth-order syetea

Quations (8.11) ean Do selved by the ssne mumerical techaiquss as used for the fourth-order systea
of Lthe {ncoupreesidle theory. However, the faet that there are 16 real equations and four fadepeadent
solutiocns means that the computer Lime reguired te saloulate aa cigeavalwe e iroressed by several tises.
It 1o therefors 1aportaat Lo kaew 47 L 12 poaaible Lo Bake use of o systenm of lesser order, as ia the
1206apressidle theory whare the Jriginal sisth-order syotes could do redioed to fourth order for the
¢otoraimtiion of eigoavalves. Ue note that for a 2D wave 1a a 2D deusdery layer, the zystee already is of
oaly sizth erder, 85 there caa b 0o Welolity ceapossat, cither meas or fluctuating, 1a the 2 ¢irectioa
1s there an azaet reduation aveiisble frem oighth to aisth srder? The answar, uafertumately, as seatiocned
oy Duan and Lia (1939) and explicitly demenstrated by Reshotke (1962), is mo.

The theery of Duas and Lia (1993) achieved the redustion Lo aikth order by am oréder of sagaitude
srguaent valid fer lorge Reynsids sumbders. The setivatioa wes to put the equations 12 a fera where aa
tuproved 2D asyupietis theory eould o applied Ko oblique waves ia a 20 boundary layer. Nowever, asither
this thesry, aor ¢irest smderieal ssluticas of the Dwae-Lin sisth-erder aysten of eguatiocss,
give adoquate suserioal results adove & ilovw supereeaie Nash suabder.

i
:

Yo say cdeerve frea the cosffistoat satrix of By. (B.11) 1isted 1a Appondiz t that the ealy ters that
esuples the Firet aix eguations to the last twe is This eeofficicat e0ges frea the last ters of the
energy squation (8.9e), 18 one of four diosipation torns. IL 18 Lhe product of Lhe gradient of th
sean veloeity soraal Lo k and the gradieat of the Flustuation velesily in the same direetion, It wad
progossd by Nask (1969) o eimply set this tere equal 1o sere, 088 wie the resultast sizth-erder systen
for the calenlation of sigeavelues. The sunerical ovidenss, ot ¢iscwannd further ia Sestisa 104, 1s that
onoept ssar the oritiss)] Reymslds susber this apprenination gives applifisatien retes vwithis a fou peresat




5 of those obtained from the full eighth-order system, and is most eccurete et higher Mach numbers.
i3
% 8.6 Uniform mean flow

£

In the freestresmn U = U,, WaWy, Tal,unl,rs 1/04, 011 y derivetives of mean-flow quentities
are xero, and Eqs. (8.11) reduce to o system of equetions with constant coefficients. In spite of the
grester complexity of these equations compered to those for incompresaidble flow, ve are still eble to
arrive st analytical solutions. The lengthy derivation is given in Appendix 2 [Maock (1965e)). The exect
freestream solutions are the ones to use to caloulste the initial values for & numerical integretion of
Eqs. (8.11), but they do not lend themeelves to a reedy physiocel interpretetion. For this purpose, we
examine the 1imit of large Reynolds number. The characteristic values simplify to

4,2 = 3 Li2eZad(wgeni -2, (8.130) ;
‘3,0 0 [ARCgeng - V2, (8.13b) i
‘56" 3 (4010 eoMy =0 11/2 (8.130) %
'7,8° ‘34 (8.130) ;

We csn now identify our solutions es, in order, the invisoid solution, the first viscous velocity
solution, s viscous tempereture solution, which i{s new end does not appesr in the inoompressidle theory, ]
and the second viscous velocity solution, We shall only use the upper signs in wvhet follows, as these are i
the solutions wrich enter the eigenvalue prodles. :

The components of the chareoteristic veotor of the invisoid solution are
“(1) T ‘2.1.2)112 .

(8.14a)

I N T TR UV RO, (8.14D)

R T I R VR A (8.1%0)

| T R} R M L R (8.124)

The oormalization has been changed to ooriespond to the incompressidle solutions of E3. (2.50). It can be
ooted that these expressions are oorrect wvhen wve set H, = 0.

The components of the c(harsoteristic vector oorrcsponding to the first visoous velooity solution are

4,3 ., (8.158) :
MO PRV RS UL (8.15b) :
Vo, 430, (8.150)
| | This solution is identiocal to the ‘3 inoompressible solution only {a the limit of large Reynolda oumbers.
The ocomponents of the charaoteristioc veotor oorresponding to the viscous temperaturs solution are ‘
: 1,9 0, (8.16a)
: 4,9 o 0 ggeny- V2 mV2 (3.16b)
W9 w0, 3, (8.160) ;
The componants of the chareocteristic vector corrvsponding to the seocond visoous velooity solution are z
Mo, Mo, 4Mao, &Mso, (8.110) i
LT e, (8.170) %
T O L T R N L (8,170)

This solution 1s exact and is the same spezwise viaoous weve sclution as in {noompressidle flow.

¥e may odbserve that the visocus veloeitly scluticas heve oaly fluoctuations of veleooity, not of
pressure or tempereture. The velocity fluctwatioms ia the 3,8 plane are in the direction of K for the
firet solutioa, and are sorsal te k for the second solution which 18 pericdie caly ia tiee. The visoous
teaperature solution has ne velooity fluctuatiens in the _l,l.'lllt‘ or pressure fluctuations. VYe say
regard these Solutions es the responses to sources of w, v and v, sad to saphasize thia faet the
respective sclutions have deen normalined Lo make these quantities uajty, The second viscous veloeity
solutioa still has the iat.rpretation of a sorsal vortioity wave, as {a inecspreaaidble flow, but this uave

canpot eXist a5 » pure m0de 1a Lhe boundary layer (Squire mode) besause of the agy disaipstion term that
oouples the latter two of Bqe. {4.11) to the first sixz equaticaa.

9., COMPRRASINE INVINCID THEORY

9.1 Isviseid squations

1a ccapresaidle flow, oves flat-plate boundary layers have iaviscid iastability, and this ifmstability
1screases with {noreasing Nash sumbder. Therefore, the imviseid theory 13 sueh sore useful ia arriviag at
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an understanding of tiis inatadility of cospressible boundary layers than it is st low speeds, Indeed the
initial detailed numerioal working out of the viscous theory [Mack (1969)] was greatly facilitated by the
inaight offered by the inviscid theory. In the 1imit of infinite Reynolds number, Egs. (8.9) reduce to

ple(ubet¥eulat o (1DUeEDN)]  w - tlaer @ (BAM2) . (9.1a)
1XaGeB-u)® = ~DB/YIE (9.1v)

1(ats BM=wiw + (aDM-3DU)® » O , {9.10)

$OH0e M=) o (DOei) ¢ D ¢ 20, (9.14)
Fl1(100 M=) & DT 0] = =(r=1)(DPedi) (9.10)
pabooe T (9.10)

We noto that the v momentusm equation, Eq. (9.1c), and the energy equation, Eq. (9.1e), are decoupled froam
the other equations. Therefore we can eliminate iu and P from the latter to arrive at the following two
first-order equations for ¢ and §:

{30+~ )DY s (aDUesDM)¥ o 161 2682)(T - Hf(uﬂodu-w)/(uzoﬁz)}(ﬁlvlf) (9.2a)
DIB/TMYZ) o =1, (uDetW=u)? . (9.2v)

These equations are the 3D compresaible ocounterparts of Eqa. (3.12). The boundary conditions are
%0) a0 , $(y) is bounded as y * =, (9.3)
The inviscid equations can be written in a simplified form if we introduce the Mach number

Moo (10schel)ly /(12021 /20172 (9.4)
For a temporal neutral yave, M 1s real and is the local Mach mumber of the mean flow in the direotion of
the wavenumber veotor ¥ relative to the phase velooity - /k. 1In all other cases, M is complex, but even
30 we shall refer to it am the relative Mach numsber. In terms of M, Eqs. (9.2) simplify to

D(#/(: Verk=c) ] » 11-H0) (B/THE) (9.58)

DB o -1 2( )8/ (e W) (9.50)
We observe that theae equations are identioal to two-dimenajonal equations (2s 0) when written in the
tilde variables of Eq. (2.317). Therefore, invisoid instadility is governed by the mean flov 1in the
direotion of k, just as for incompressible flowv. Rither Eqs. (9.5) or (9.2) can be uaed for aumerical

integration, but the latter have the advantage that ¢ 1s & botter dehaved funotion near the critical point
than 18 /( Usr¥=l),

fquation (9.5a) is the familiar linearized pressure-area relation of one-dimenaional Zlov. The
quantity #/(:Uer ¥We.} 15 the amplitude fubction of ths atreamtube srea ohange. The other flow varisdles
can be written i{n a similar manrer as

we (oo ¥ (nuu 3 opf v )) (9.6a)
IL—4 1 Y ' \aU-
. 1fo7 E"— - (=1t -—\p( = 31 , (9.60)
-
v
Pl 7 - %—-cm g (9.60;
S
weiw Stoo, (9. 60

where ve have used the tilde veriadlen for ajsplicity, UWhen the second terss of these sQuations are
written with § in place of #/(iB-.), they can be readily reeoguized 3s the linesarised momsat'm equetioca,
the 1seatropic teapereture-pressure relatica, and the fsentropio deusity-pressure relstion, reapsotively.
The first tersa are ia the nature of scurce tarsa, 8ad arise fros the combdimation of & vertical
fluctuation valoeitly and o nead shear. DBecauses Bq. (9.64) 10 s equation for the vertisal vortisity
compoaest 1w, oaly the source ters is presest.

A saaipulation of Bys. (9.1) lesds to & eingle seccad-order squation for §;
DU (30= ) 00~1509)/ (1)) = (220, I)(30-0)0 0 O , (9.7)

™his squatioa, whieh in 20 fors wvas used by Laes and Lia (1984), 18 the 1D ccapressille coumterpart of the
Pagleigh equation. A second-order equation for ¥/(ilew) follows direstly free M. (981

DAL/ (aD=)] o BLAIR/(1-08) JIB(O/ (aBea) ) = 320 1)(0/(a8)) 0 0 . (9.9)
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The correspon.ing equation for P i»
%P - Dl1n(H2) 1D = (1%¢2)(1-HP)P » O . (9.9)
9.2 Uniform mean flow

In the freeatream, Eq. (9.9) reduces to
02 - (e B)(1-HR)p = 0 . (9.10)
The sclution which satisfies the boundary condition at infinity is
p/mf . 1[(uu«‘\l-»)/(uaodz)”%clp(-(nz‘:?)‘/2(1-51;")”21] . (9.11)

which agrees with Eq. (8.1%¢). Equations (9.11) and (8.1Ad) provide the initial values Tor the numericel
integration.

The freeptreas sclutions say de olnungg into three groupe: subeonic vaves with w2 ¢ 1; sonic
vaves with Mf = 1; and saupersonic waves with My > 1. Neutrel supereonic waves are Nach veves of the
relative flov, and can exist as either outgoing or inorming waves. True instability wevee, which must
satisfy the boundary condition at y = 0 as well as infinity, are elmost all subsonic, but eigenmodes which
are auperscnic waves of the outgoing family in the freeetream have been found for highly cocled boundary
layera [Mack (1969)]. A combination of incoming and outgoing wavea parmits the boundary condition at y =
0 to be satisfied for any comdination of :, - end ~, as pointed out by Lees and Lin (1346), It ie when
only one family of waves 13 present thret we have an eigenvalue problea. The combination of both families
18 the basis of the forcing theory presented in Section 11,

9.3 Some smathesatical results

The detajled atudy of the two-dimeneionel inviacid theory carriad out by Lees end Lin (1946)
eatablished a numbdber of izportant resulte for temporal waves. Lees end Lin classified all instability
vaves as aubsonic, sonic, or supersonic, depending on whether the relative {rssairsas Mach nusber ﬁ, is
lsss than, egual to, or greater than one. Their ochief results are:

(4} The mecessary and sufficient condition for the exiatence of e pgutral subsonic wave is that there ie
scle point Y, > ir the boundary layer where

b-ov) = 0, (9.12)

and y, 1s the point at whioh U s 1 - 1/N,. The phese velooity of the nevtrel wave is o , the mean
velooity at y,. This necessary oondition ie the gensralizetion of Rayleigh'e condition for incoapressidle
ficw that there muat de a point of infleotion in the velocity profile for e neutrel weve to exist. 7The
point y,, wbich plays the ease role in the compressible theory as the inflestion poiat ia the
incoepressible theory, i» called tbe generalized inflection point. The proof of sufficiency given by Lees
and Lin requires M to be everywhers subsonic,

{11) A aufficient condition for the exiatence of ez yoatabla wvave e the pres¢nce of s gesnereliszed
inflection point at some y > Yo+ where y, ia the point at which U ¢ ' - 1/M,. The proof of chis oondition
also reguires M to be subeonic,

(1i1) There 13 a neutral scnic wave with the eigeovalues 1 s 0, o s 9y s 1 = /N,

{1v) 1t %% ¢ 1 everywners 1in the boundary layer, there is s unique wevenuaber i, correeponding to o, for
the neutral su.sonic wave,

Less end Lin odtained these resulte by o direct exteasion of the methode of procfl used for
{nconpreesible flov. The necessery ocondition for e zeutral sudasonio weve was derived fros the
disooatimuity of the Reyaclds tress : » - Cuv> ot the critical point Yo 40 1n focompressidle flow, :
1a constant for & neutrel inviscid vive eRospt possibly et the critical poiat. For -y . 0,

C(7g00) =i(y,~0) v (*/1)[DL-DUI/DO) <¥E> . 19.13)

Baustion {(3.13) 1s the same as Bq. (3.9) ia the imocapressible theory ezcept that D{ DU) sppears ia place
of DU, Simoe * fe Berc at the wall snd in the frecstream by the Douadary conditions for s eubsoale
vave, it fellove that D(, vu) lrt bgaur‘ht Yoo Vo 2ay olso aste that {or & neutral supersonio vave,
whore ¢ < ¢, a8d ! (g ¢0) o (/2)(NF-1) fros the fresatreas soluvions, the diecomiizulty st the
eritical poiat avat equal this value ! and ibe phass valocity asust be other thes U,

4% thia point we cen exemine the aumerical cossaquences o' the finding that nsutral and unatadle
veves depend o the exiotesve of a gomeralised iaflestion poist. Yor the Blasius bousdary layer, U e
negative everywhere sxcept ot y s 0. Nowvever, for a soapressidle doundary layer os an {niulated flat
plate, D( DU) ia alvays serc somevhere (3 the Dousdary layer. Comswqueatly, &)l such bouddary layers ais
usateble to iaviseid weves., Pigure 9.1 shdve that Sy tho 802z veloeity at the generalised 1aflection
puint aad thus the phase veloeity of the aswtral subsemie wave, imerease) wild inarsasing freesiraan Mash
ssmber N, 1ia sscordenee with the owtward soveaest of ihe gomsralised iafiestica peiat. If we reesll fres
Jecvtion § that ioviscld Lastadility Lloeredses for the adverss pressure-gradiest Falkmer-Skan prefiles a8
the iaflectica peist soves svay fres the wall, we ean expest 1a this i1astasce Lhat iavissld Lnetability
vill isereass vith Laeressing Nach auaber. Figure 9.1 alse insludes both Sqs the rhase veleeity of a
ssuirel suaie vave, and the phase veleaity fer whieh N s -1 at the wall, In the ezaet suserieal seluticas
of the mmp-lqor oquations vhish were uned for Fig. 9.7, the wall ¢ tasulated and the frecstireaa
teaperaters T; 15 sharssteristic of wisd-tunasl ecaditisns. The stagnetiss tempersturs is bheld constamt
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nt.°311°l until, with increasing M,, 1‘; drops to 50°K. For higher Mach nuabers, ‘l‘; is held conatsnt at
507K,

For a wave to be subsonic relative to the freeatreas, and hence have vanishing amplitude at y - even
when neutral, ¢ must be greater than Oge It £a often asid that only aubeonic waves are oconsidered in
atability theory, Dut this atatement ia not entirely correot. It 1s true that the neutral aubaonioc wave
vith eigenvalues 1,,0, can Only exist when 0y > 1 = 1/Ky However, thia does not rule out ssplified and
damped vaves with o < 1 = 1/M,, Or even neutral supersonic wavea with a ¢ different from 0, Examples cf
auch wavea have been found, all of which satisfy the boundary conditions et infinity and ao are aolutions
of the eigenvalus prodblea. For «, # 0, the amplitudes of outgoing asplified and inooming damped waves
vanish at infinity regardleses of téo value of of for peuiral waves, the amplitude will oanly be bounded at
infinity when o < c,. What does turn out to be true ia that the most unstable wavea are always subsonic.
Furtheraore, for one class of weves, the amplified first-mode waves, the phase velocily is alwaya between
o, and c,.  This result has importent consequences.

9.8 Nethods of solution

The methods for obtaining solutions of the inviacid equations for boundary-layer profiles have been
patterned -ncs oorreaponding methods in inocompressible flow, Leea and Lin (1936) developed pover-series
solutions in .“, and also used the gensralizations of Tollmien'a incompressible solutions

$(r) = (r-y )0 (5y,) (9.1%)
0,(0) o 2y(r-y5) + (F2/00%) (DG DO)) 0, (P)10ly-y ), ¥ > ¥g. (9.14n)

For y <y, In(y-y.) » lo y-y,,~1° as for 1aconpreasible flow. The leading teras of Py snd P, are DU,
and T,/DU, rnmcunly. 20 ihn. 0‘ and 02 are normalized here in a different sanner than in Section 1.1,
These solutions have been worked out in more detall by Reabotko (1960). Both ¢ and @ hcve the same
analytioal behavior as in incompressible flow. VWhat i3 new here ia the tempersture fluotuation, which,
according to Reshotko, has the bebavior

E 2 9/7(y-yy) o (1/00) (D(-D0) ] 2n(p-F,) ® ... (9.19)

Hence, even for a neutral subsooic wave, where [D(. DU)), » O and ¢ and O are both regular, S haa a
singularity at

Two methods have been devised for the numerical integration of the inviaoid stability equations. The
first method {Less and Besbotxo (1962)) transforms the aecond-order limear equation into a first-order
nonlinsar equation of the Ricoati type. This equation is sclved by rumserical integration except for the
regior around the critical poirt, where the power aseriea in y-y, are uaed. The second method {Mack
(1965%s) ia a gensralizatica to compressibic flew of Zsat's {1958) methosd. This method has already been
deacribed 1a Section 3.2. For neutral and damped solutions, tha contour of {ptegratior is indented under
the singuiarity, Jjust as for incompressibdle flow.

9.% MHigher modes
9.5.1 Inflecticnx! meutral waves

Although the Leea-Lin proof for meutral sudbaoajc vaves thet ! 1a a uaique fuaoction of o, vas
dépsndant on N° < 1, and although Leea and Reahotko (1962) sentivned the posaibility that ', may sot be
unique for N* > i, == serious coasiderstios was glvea Lo the possidility of multiple solutions uatil the
extensive numerical work of Mack {51251.1964,10650) brought thes Lo 1ight. 3Similar multiple solutioas wvers
found independently at adout the ssse time by Uill (1943, paper presected im 1961) ia bia etudy of ®top-
nat® jats and wakes. With Lthe benefit of Rindaight, 4t La asisally rather casy 1o demoastrate thelr
exjatence. 9he¢ iaviacid equatioms for #/(:0-.) and [} Bqs. (9.8) sad {¥.5), amite evideatly dave 2
differsat asalytical charscter depeadiag os whether N® ic leas than or gr’nor tham waity. It fae
instructive, as sugpested by Lees [privets coawunizatios (1964)), to comaider ;¢ large caough s0 that the
first-dorivetive tore ocan Do meglectet Thea By. (9.8) reducss to

LW (at)] = 200-08) (W 0=)) 0 0 . (9.14)

vhen W ¢ 1, e solutions of fAg. (9.16) are elijptie, and it i under Lhis cirevastasee that Lees and Lis
proved tae usiquensds of g Bevever, wbea > 9, Bg. (9.14) bdeconmes & wave oquetio=, 204 80 in all
prodions goversed By a wave aquatiea, ve ¢ expect there to Do an iafiaite sequense of waveduabers thet
will satiafy the bSoundary eoaditioss. Ve 4y aela thet for o swbesai: wave (this termimslagy otill relers
Lo he frecatrea) and the wdual sert of deundary-layer prefiles, the relative superecaie regisa ocewre

-

below the eriticsl peist where K ¢ O,
If y, 1s the 7 vhere W o 1, apprexisate seluiiens of By. (9.16) of the VED type are
§ y
Vs s 2 u-(:.,.[ BV, ycy,. (9.170)

y
0/i9s) 0 - m{-i..‘[u-k')'"q!. 127, (9.17%)
[ ]

vhere Sy, (%.17a) fellows frea *de Joundary ecatitiss ¥eC) s 0. ummsmé‘:i he sudsaript
a doseten & mouiral suwdoeaie solutise a8 Befere; the avdeoript a refers to e sslutison. The
sonstast 10 Bq. (9.170) is ehesen as =1 te nabe § real aad pesitive for v > 5. Either oigs 1s pessidle
fer y >y, 8 § 10 contisueus and finsteat yo 5, , ""‘“",‘i”?ﬁ" 9.52), aset go Lo sore a0
y 7,80 ‘7‘. The Serivative of #/(58-w) gives a faster (RE-1)'/7, and Lo required seditiosal
fester of M*-1) mmmmmﬂummnmnrc Conpeguently,

it
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m(,."j: (W-1)V2a9) 00, (9.18a)

Ya

-,,[ R0y o (0=3) , B 1,23, (9.180)

e Y

Rqustion (9.180) is the fine] result, sad demonstrstes thst there 1s sn infizite sequence of discorete
neutral veveousbers with the phase velooity oy, The forence between adjacent values of .. 18

a -1

nel) = ‘en "'.(j (?.')112") . (9.19) :
5 E
) Ve x37 «lso obarrve that sccording to Bq. (9.18D), the sequence of vslues of 2 1, /" 18 1,3,5,7,ccc. This
' result was first noted and given a physical explenation by Norkovin (privste comzurication (1982)]).
Because Bq. (9.16) is only approxisste, the magnitude of g the difference formule, sad the ratio
sequence are not expected to be nuserically correct. HNowever, as ve shall aee dDolov, with sn isportast

‘ exception they are either ocorrect, or approxisately oorreot.

¥hen the nuaericsl integrstion of Eqs. (9.2) 18 cerried out for 2D wveves with o e ¢_ and «, o 0 for
the fnsulated-well flat-plete boundary layers desorided in Seotion 9.3, the igg Yhich sre fouad by the
elgenvalues sesrch procedure sre shown ia Fig. 9.2. The solution fcr esch n -hl be referred to ss s
sode: n s 1 §s the first mode, B s 2 tLe sed0nd BOde, otC. The wgvenumbers of the first mode vere first
computed dy Lees and Reshotho (192). VWith ¢ » Cgr & Jo Vhore N® . 1 oocurs first at My » 2.2 (y, 0).
¥ith inorsasing ll‘. Lhe relstive sonic poist y_ soves out into the boundery leyer, and i__ varies in
inverse proportice to y, ss required by Bq. (5.18d). Mo higher modes with o » o, oou’% be found
waerically for M, < 2.2, in agreement vith the theory gives adove.

A 1 s AR

A proainest feature of Fig. 9.2 1is that the upward slopiag portion of the first-mode ourve betwveea LD

s 2 and 4.5 18 18 aense continuous through the other sodes, 1.0, there is a Mach nusber range for esch

®ode where the . . va. N, curve Ras s positive siope. The end poist of this regiom for ope mode is close

to the starting point of s similser region for the next Righer node. The opproach decomes closer es N

increases. The asignificance of these iatervels of positive slope is that they provide the exoeptiocas tu

b the correctnens, or approzimate correctasss, of the results given by, or deduced from, Eqs. (9.18d).
Indeed we oou.d well jdentify these sodes 88 the “exoeplional® sodes.

LIS SRS
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Vith the wavenumbders of the sultiple seutral vavee estediioded, the next step i to examine the
eiganfunctions. For this purpose, the siger”unction B/, 1s shown in Fig. 9.3 for the first six wmodea
st My o 10, The first thing to mote 18 * . the Dumber o}uma 1a § 15 000 lese than the sode number o
For ezsaple, the necond mode has oss &' -, and $(0) 15 180° out of phase with $:); the third mode has two
serces and $(0) 15 1n phane with §(). The nuaber of zerces 10 f(y) 1s the surest 1deetifiostion of the
80de under cohsiderstion DBy keeping Lreck of the phase difference betweea P(0) and P(‘), it is posaidle
to éetersine wvhen there 15 s change from ome mode Lo emother.

it

o i o

The appearsace of the elgenfunelions 1e Fig. 9.) coafirss the simple Lheory gives adove: there ia aa :
ieflagte sequence of perlodic sclutions 1o Lhe supersconie relative flow regios ubich cas satiafy the N
boundary conditions. The magaitude of £(0) 1s o mininua for the fourlth mode (P{ ) ts tde sane for sll
socées). 3ince the fourth mode At M, s 1L is ea the upvard aloping portion of the eigeavalus ourve ia Fig.
9.2, this 10 asother iadication of the special Ratvre of such newtral solutioss. For other modes,
$0)/$( ) temss to Becvms lerge sway froe a o 3, ase tends to 1A£INILY 08 B -~ .

There 3o oos lmportanst Ciffarence bDetwees tde simple theory amd Fig. 5.). Accordiag to the theory,
$( ) 1s jositive fcr all modes; Lhere are no serces in the (aterval y ) 7., 884 the nuader sof seroes
i8 y <y, lncresses by one for ssch auccessive node. Ve see frea Fig. O.S\Iu §( ) 3» negative for a > E
4, and the auabder of gerees fo y ¢ ¥g 18 the sase for 5 o 3 o8 for a » &, The total auader of serces 2
fucreases dy cne from 0 s & 1o & ¢ § oaly becsuse of the sere ia §y > y,. However, we nste Last the i
progressien of zerees s serreel ia the supersenie region if we oeNelude the meds a ¢ &, Tifs
‘eaceptiionsl® meds 15 eilrenseus Lo Lhe siBple theory, and preserves sosetiing of & firel-seds charsoter g
which predbetly detlrays & differsat physicel origia fres lhe other medes ladead, e olher Migher Nodes ;
are aolling acre Lhad 30udd weves which refleet Dock and forlh Melvoen Lhe wall ond the scaie iine of the S
relative flew ol 3 o y_as First suggested by Leos snd Cole (1943°. Nerkevis's theery 48 daced va this 35
18va, emié 2 l-puut\u of the vavesunder rstio sequesse 1,),%,... sttests Lo its correctaess. The #
‘ezeeptienal® nedes are wiil 27t of LRl Lheory; they are perbads vertielty vaves assvciated vith the %
eesarulized 1aflestion Solatl &5 are 1ACERressiiis 224 lew Rash susber firet-acde weves, lo thls view, X
Lhe moder whieh Bave Dooan 140ntified 10 Fige. 9.2 and 9.} o0 First-00de saires far N, >3 are set firet-
8000 vaves at all; LAis Qlatinstichd in recerved for Lhe 0edes ¥heode VaveMuUBIEre lterease BoGstonidalis
vitlh lasressing N,. Nowever, ve shall comtinwe to refer Lo & ¢ ! a5 Lhe Fire: mode.

e

9.9.2 Bealaflectiiom sowirs) weves

e re

4 further consoquetes of & regica of suporecale relative flow 18 Lhe Deundery Jayer 10 Lhe existesse
of 8 ¢lass of wutrel voves vwiled I ssgplotely ¢ifferent froe asything coccwtiered {8 tde i{nsespressidle
- Whsery. Thess veves are sharasterised iy heving phase veleeilies o the reage ' § ¢ 5 1 ¢ /N, Per gash
et valdsitly there 15 aa 18fialle saquedoe of wovenushers, just a0 fur the iafleoeticnal ssuiral waves,
4 wove with e s | 35 ot L Uith respeet Lo the frecotreda; & vave wilh e o o,s 51 ¢ I/R, prepagatos
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the requirement that %25 somewhere, The importance of the os! neutral waves is that in Lhe absence of
an interior generalized inflection point they are ecoompanied by a neighdoring family of unstable waves
with ¢ < 1, Consequently, a ocompressidle boundary layer is unstable to invisaid waves vhenever > 1,
regardless of sny other feature of the velooity end tempersture profiles.

If ve axamine the inviacid equaticna (5.2), we see thet when o > | they are no longer singuler;
f.e., thara 18 no oritical layar. Evan whan o = !, and tha oritical layer ia in a sense the entire
freestream, £q. {9.28) 1o still not singular beceuse DW(U-1) snd £{y)/(U«1) both have finite limite as
Yoy, We call this cless of solutions the noninflectional neutral veves. These weves persist to low
aubsonic Mach nuabers, because, exocept et lt, s 0, 1t 1a alvays possible to find a o large enough 80 that
A & -1 somewbere in the boundary layer.

The approximsta theory of tha preceding Section spplies to the noninflectional neut.-al waves just as
vell as to the inflecticnal neutral waves provided the initialisation is changed for o = 1 to make /(a0
.) finite in the fresstream. This ochange 18 needed Decause with o = 1 the weve motion ia oconfimed to the
boundary layar and ¢ sust be zero fory >y. An irfinite sequence of wevenuabera is odtained with the
specing given dy Bg. (9.19), but since o 1a different from o, the ouseriocal values are not the same as for
the {nflecticaal waves. Tha wavenusbera odtained froa the sumerical integration with o = 1 are showa in
Fi1g. 9.8 as funotions of Mach nuabder. Thesa wavenusbers are denoted dy Yge vhere the firet sudsoript
refars to ¢ s 1, snd the second ia the mode number. There is now no portion of eany wevenumbder ourve with
a positive alope, and the spacing agrees reasonsbly well with the epproximate formula. The disorepancy is
about 10§ for the first two modes, end decreasea to about 1§ for the fifth end sixth modes.

The aigenfunctions [{y) of the firat siz sodes of the noninflectional neutrsl waves with o s 1 at
M, = 10 are abown {n Fig. 9.5. Mere tha retio §(y)/(0) ts plotted, rather than f(y) witk B(4) fixed as
in Fig. 9.3. The eppearance of these eigenfunctions is ia complete acoord with the simple theory, ualike
the infleoctional neutral waves where the modes on the upward slopiag portions of the wevenusbder curves
interrupt the orderly sequence, and where an outar sero auppears in the eigeafunctions for n > &,

The numarical results for ¥ Co (1 o /M, are aimilar to thosa preaented for o s 1. Since these
vavea have nc neighdboring unstable or dasped waves, they are of less importance in the fsaviscid theory
than tha othar neutrsl vavaa. Consequently, thass waves will not be conaiderad further, and the ters
noninflectional meutrsl wave will refer oaly to a ¢ s | wave. Nowever, we might mentios that the visoous
counterparta of the o > | wveves, which are damped rether tran seutral, do have s rols to play in certaia
canes.

9.6 Unatsdle 2D waves

A detailed discusaion of the eligeavalu=s of asplified oad damped weves as ¢ function of Mach nuaber
for the firet fev modes hes been given Dy Nack (1969). V¥hat we are mainly intarested in here ip the
saximum amplification rate of the various sodee, ané thia is shown in Fig. 9.6, where the mazisus teaporsl
saplifioation rats 1 given as o fusction of Naoh suaber uwp to N, ¢ 10. The ocorreapoading frequescies are
shown {n Fig. 9.7. Ve aee fros Fig. 9.6 that delov adout N, = }.1 the fanmily of boundary layera ve ere
considering is virtually stadle to ioviscid 2D vaves, and that sbove M, s 2.2 the second 20de is the most
unstable mode., The latter result bolds for 2D wveves i¢ ail boundary layers that have beea studied, and ia
one of the festures that maksa aupersonic atabiliily theory so ¢iffereat from the facompressible theory.
Bot oniy is thera more then ose mode of fastabiiity, dul 1t ja one of the edéitional soaea thet 18 the
sost unstable. Above Ny ¢ 6.5, Lhe first mode is ROt even Lhe second most uastable sods. The 2e00nd-mode
suplification rates ca® be epprecisdle, At N, s 3, the saplitude growth over & bouadary-layer thiokness
1o about doublas what is peaaidle 1a a Blasius bDourdary layer el the Seysclds nunbder of the saszinmue
amplificatica rate, and about 253 of the mazimus growth in & Falkasr-Skaa separstioe® bousdary layer.

9.7 Turee-dissasicsal waves

In the Gotalled atudy of ihe eigenvalues of umatabls 2D first-mede vaves [Mack (1969)), it ves moted
thal the phase velocity 1a slways between o, and ¢ Thsse two velosities are almost ideatical dear N, »
1.6, whieh suggeata why doundery layers near f'm Naeh auader sre olacat stadle evel though llc
geesralised Safleelion poiat hes o 7od eut to U, o 0.38. The iafleetioa puist 1o e 7ized featuwre of the
toundary lager prefile, and se ia indepesient of the wave orlestatica. The phase veleeity L of ¢ 3D wove
fa U oeay, and the phase velooiiy o 1 (t=1/N,)oesv, where W, » N,06a% Thua a8 the wave asgle v
Inereases fres sere, ¢, doercases More thas by sed:, and the ¢ifioreass <, - o, inereases. Cocsequesily,
nmmlmﬂntoﬁ-ummmm:; nu.u,.ou-otnﬁxmnmwo
relative flow region, vhere ome saists, vwilli deersshe aleag with l, ond veo shill amt be surprised to fint
thet Lhe hAigher 30des deoeme Bere tadla

Figure 9.0 shova the tenporal amplifteation rete 4 of the firat end seesad Bodea ot N, ¢ 0,5 00 s
fusctiea of the freguensy -, far sovers]l veve anglea. Tires-dincasionn] first-asde waves are iadeed were
ussteble thas 2D weves, u‘mnummmomummmu&um The
latter resvit 2lo= halde for all of the kigher nedes. The meot uastadie firsie-nede wave 15 at e8
clese o $0° wilh as asplifisation Fits adowt twiee lhe Bamiwe 2D rele and with o frequessy & 11
ever sas-balfl of the frequeasy of the mest wastable 20 wveve,

At M. o 8.9, the uastable reglens of the First Lue 0odes are separated by o ¢anped regies for all
wveve asglen. Nevever, ot N, s 8.0, Fig 5.9 cheus that for 20 vaved the first Lhres 8o0dee are Berged iste
hnmnmuummntwmmmmam
the taird aode. Thus ve 040 a5L0 200LBor feature of LD R04lral VAVEREAdEre 3, of Lhase
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f In Pig. 9.10, the saximua %saporsl ssplification rete with respect to frequency is plotted agairat
5 for the four Maoh numbers 3.5, 5.8, 8.0 and 10.0. At sll of these Neoh nusbers the most unstadle firat-
= mode vave 1a at an sangla of between 30° and 60°, and has & mexinum sanpiificstion rats that is roughly

) joudble the most unstadle 2D wave. The effeot of Mach number on the maxisum first-sods amplifiocstion rate
‘tth respect tc both frequenoy and vave angle is shown in Pig. 9.11. The wave sagle of (ke moat unstadle
e 18 noted on the figure to within 5°, and the maximus 2D asplification rates are showh fOF COBPArisSOA.
1 {nteresting change in the relationship between the 2D and 3D amplification rates takes place for M, ¢
| 4. Tha ID saximum amplification rate is 8o longe™ only coudbls the 2D rate as st higher Nach nuabers;
| fnstead, st Ny = 3.0 the ratio of the 3D rate to the 2D rate 1s 5.8, st M, = 2.2 1t 15 33, snd et M, = 1.3
t 1t 18 130. Ve recall from Pig. 9.1 that it is near M, = 1.6 that the difference o, = o, 18 the saa lest.
Therefore, the sonio limit aots a3 & aevere constraint on the asplification o'f 2D waves at lowvw Nach
nurbers. When this constraiat is removed, as it is for 3D waves, the amplification rates increase
sharply. Ve may consider the 3D smaximua amplification rate as the one that properly reflects the izherent

instadility of a given boundary-laysr profile.

9.8 Effeot of wall cooling

Perhaps the moat celsdrited result of the earliy stability theory for compressibls boundary layers was
ths prediotion by Lees {1947) that cooling the wall stabilizes the boundary layer, This prediotion was
sede on the basia of the asymptoiic theory, ond a coriterion was providec for the ratic o7 wall temperature
to recovery temperature at which the oritical Reymolds number becomes imfinite. Although Lees’a original
calculations contoined numerical srrors, the tempersture ratic for complste stabilization was later
cosputed correctly by a nuaber of suthors. The most socurste calcoulatisons gave the result that ocomplete
stadility oan be ackieved for 1 ¢ Ny < 9 by suffioient cooling. These ocaloulaticns 222 be orit‘cized in
thrse important respsots: First, no indication is given as tc how the amplificetion rate varies with wail
temperature; second, the calculations are for 2D waves only; and third, no accoun. is taken of the
exiatence of the higher modes. In this Section we alall see that the curcent faviscid theory oas resedy
all of these deficiencies.

As the boundary layer 15 ocoolad a second gemsrulized {aflection poiat appears for U < 1-1/!!,. As the
0ooiing progresses, thia second inflection point coves towards the first one and then doth dissppear for
highly conled walls. The complete sooount, as given by Meok (1969), of how these two inflectiom pointa
) affect the 1ustadility of 2D snd ID vaves {a & lengthy one and also briags in uastable auperscnic wseves,
The conclusion Lfa that when the generalised inflection goiats disappear, 0 do th first mode waves, but
the higher sodea, being dependenl oniy on & relative supsrsonic region, resain Some results are sdown in
Fig. 9.12, vhers the ratio of the maxisum teapors] saplification rate to ita unocooled valus 19 plotted
ezainst the ratio of wall temperature 1' to recosery tesperature 1,, st B, s 3.0, 4.5,, and 9.8 for 3D
{irst-sode waves, and at W, s 5.8 for 2D ascond-mode waves. In easch imtsnce, the vave angle given in the
figure 2o the aust unstables. The first-moue waves, even when odligue, dan be ocompletely atabilized st ths
Kach suabers shows, Just &8 originmlly predicted vy lLees (1937), Novever, the seocond aode is not oaly pat
stadilized, 1t ia actuslly daatabilised, slithcught 1f the aaplification rete 1a desed on Lhe bouadary-layer
thicknesa, the incresse 1o <4 18 just about compensated for by ths reductioa ip y: and ~y. 1s virtuslly
unchanged by cooling.

As s fina]l result on the effect of cooling, we give Fig. 9.13 whieh showa Lhe temporsl saplification
rate at M, « 10 a3 » funotion of ravesutder :6r an fasulsted wall sud s highly-cooled wall (T /T s 0.0%),
for the forser, the firat four mCdea are marged to form a single uastsble egiom, and the u-ufu upper
vaviauaber i1a the exoedtiona)l wavenuaber of Pig. ¥%.2. For tae latter, tke unstadle regions of the four
8088 are separate, as 1a true at lover Nash muabers for an ipsuls.ed wall, and t1he saxisua asplification
rete of eack mode 15 adoul double the umroolnd velue

4\

10, CONPRESSIBLE YISCOUS TusORY

3 N

The cariy theoretical work oa the vicoous wladility theory of cepressidie boundary layers was based
ob the asysptetic methods that had prover Lo de aueceasful for Lnoompreasidle flov. Rowever, these
theoriss, which were developed by Lees and Lin (1944), Duza snd Lin (1953), and Lees and Beahotio (1942),
turoed out to de valic only up to lov supersonic Mach nuBbers, 3nme resultls for Lnsuisted~wall flat-plate
boundary layers obtajined wilh Lhe saysptotic metbod are givan in Fig. 0.1, and cospared wilh dtrect
suaerical solutliocs of the eigsavalue prodviem. All susertical resuits in tals Sectlics sre for ibe sase
fasiiy of flateplate bDouvadary layers used is 3eoctlice 9, la Pig. 10.% seutral-atabilitly eurves of
/ frejuency ot M, ¢ 1.6 and 2.2 a3 cosputad from (he Duste=ils (1999) theory ¥y Mack (1940) are compared wildh
resuits oMaiand ¥y aueerical integretion uaing bGth the alstd-erder #i8plified equations of Duan and Lin,
akd Lhe alyth-order comatast Prandt]l muader version of the complete stadilitly equations of Appendix 1, At
Ry o 1.6, the 2ares caloulatiocns are 1o goot agreemeat for I > 700, But at N, o 2.2, Lhe agreemest betlwesa
the Duan~Lin theory and the aumerissal 20)Jullen with ths coxplete oguations 1¢ povr st sil Reysolida
mabere. The asynplolic Lheory 12 supposed Lo 20lve v 3iBplified equaticna wilh AR erroer 20 largsr thas
the errur Lavolved 30 drepping the misaling visoows lercs. Il fa evigest from the nuaerical solutions of
the Duan-Lic oqustions is Fig 10.), that tis equstionc are dettar LRas Lhe acihed wwed to solve thes, dut
oven 50 at N, o 2.2 the Ciffurenses ccqpared to 1he ccajpinte eguetians are toe large te parail thelr woe
Bovwver, thare Lo lillie reasey 18 ol case Lo wse thess ogualicas i sumerical werk, becsuse they are of
the sane arder o8 the owpliote 2D wustions, &ad for 1D waves Lhe BIEtD-0rdur agpr-uinstiea gives 1a tals
Jeotios 40 mofe arcurste.
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10,1 Effont of Mash mmber oo visoour fastability

™he visosus theary Sust of coures be wped for ¢11 mupericel saleciatiess st fiaite Meysslde sumbers.
An Lopertant Lhenretical questiion that we are 20le 18 Snawer wilh the vierouws Doy 10 the iafiwense of
Machk seader o8 riscous imatadility. The cafiaities of visesus i1retadility that we wad RQere fer
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and the s0plificatlivon rete 18 reforsaced to L [3q. (2.97)). & seuiral-stabilit) eurve with a8 xpper-
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,‘? an indioator of visoous instability, We start by examining the curves of neutral atability for 2D waves
. presented in Pig. 10,2, where at five Mach numbers the wavenumber is plotted agsinst 1/R to emphasize the

- higher Reynolds nuaber region. The neutral curve at M, s 1.6 18 of the aame general type ss for a low=-
spsed boundary layer with only viacous instability. The low values of the neutral wavenumbera reflect a
drastic weakening of visooua instadility compered to the Blasius bdoundary layer. We alresdy know from
Fig. 9.6 that the maximum inviacid amplificstion rete inoreaaea sharply for M, > 2.2. ¥What we see in
Fig. 10.2 ia that as the Mach number increasea auove 1.5, viacous inatadility continues to weaken and the
effect of the incressing inviscid instability extends to lower and lower Reynolda numbers. Finally, at M,
= 3.8 the influence of inviscid instability is dominant at all Reynolda numbers, and no trsce of viscous
instability can be seen. Viacosity sota only to damp out the inviscid instability, juat as for the low-
speed Falkner-Skan boundary layers with a strong adverae pressure gradient., As a result, the instadility
charscteristica of flat-plate boundary layers above M, » 3 are more like those of a free shear layer than
of a low-speed zerc pressure-gradient boundary layer.

We have lesrned {n Seotion 9 that 2D amplification rates above M, = 1 are strongly influenced by the
conatraint of %he sonic limit on the phase velocity, and do not represent the true inatability of a
boundary=-layer profile. Therefore, to get a complete view of the influence of Mach number on viscous
instsbility we must turn to 3D wavey, The instability of 2D and 3D waves up to M, ¢ 3.0 ia susmarized in
Fig. 10.3, where the maximum temporal amplification rate fa given at M, = 1.3, 1.6, 2.2, and 3.0 ss a
function of Reynolds number up to ! = 2000. The most unstable wave angles (to within 5%) of the 3D waves
are shown in the figure. It ia spparent that these anglea differ little from the inviacid valuea except
nesr the oritical Reynolds number st M, = 1.3, We see¢ that viscous inatability, which at My = 1.3 s
totally responsible for both 2D and 3D instability at the Roynolds numbers of the figure, decreasea with
increasing M, for 3D as well as for 20 wsvea, Howsver, there is little change in the maximum 3D
amplificstion rate with inoreasing Mach number, in contrsst to the large decrease in the maximua 2D
amplification rste. At M, = 3.9, viscosity acts only to saintain the msximus amplification rate at about
ihe sume level down to lov Reynolds numbers, rathwr than as the msin source of inatadility as st lower
Hach numbers,

There are unfortunately no caloulations availstle between M, ¢ 3.0 and 4,5, dbut the distribution with
Resnolds number of the maximum tempural amplification rate is given in Fig. 10.4 at M, = 4.5, 5.8, and 7.0
for wasve angles that sre approzisately the most unstable. All of these waves are first-mode waves. it M,
b » 10 1t 18 difficult to assign a maximum in the firat-mode region as the single pesk in the 4, va 1 curves

for . > 50° occurs near the tranaition from the firat to the second mode, and 55° has been rather
arbitrarily selectad as the most unaiadle angle. In any csae, it 1s clear from Fig. 10.4 that in this
Fach nuaber rasnge there s no viscous inatavility and the influence of viscoaity s only stabilizing.

10.2 3econd mcde

The lowost Mach number at whioh ihe unstsble second mode region has been located st finite Reynolds
nusbers is M, s 3.0, where the minimum oritical fleynolds nusber R . ia 13,900 [Mack (1988)]. As the Masch
nusber {ncresses, the irsi2cid second-mode maximum amplification rate inoreases, as shown in Fig 9.6, and
the unstable second-modi reglon moves rapidly tc lower Neynolds nusbers. At My » 1.8, Rop 18 827; st My =
4.2 1t 1o 355; and at M s 8.5 it 18 235. Furthermore, Lhe firyt and higher-mode unstable regions go
through the aame process of syrcessive mergers s» they do in the inviscid theory. The firat merger,
between the first and second~sode unstable regions, takes place at about M, v 3,6, Examwples of neutral-
stability curves of wsvenuaber juat bdefors merger (M, « 4.5), and just after merger (M, = §.8), are shown
tn Fig, 10.5. The shapes of the neutrsl-ctadility curves, doth before and after mergsr, ars auch as to
suggest that viscosity is only stabilizing for ali higher modes, and thia is oonfirmed for the 2D second
sode by Fig. 10.5, where the distribution of t-’).“ with Reynolds nuaber is showa for M, = 3.5, 5.8, 7.0,
anc 10,0,

The «ffecl of wave sngle on sscond-acde amplification rates 1s shown in Fig, 10.7, where (‘t) ax 18
plctied againat wave angle for the sape Nach nusbers as in Fig 10.6. Thnis figure ia to be oolpcres with
lthe comparadle invisoid results im Fig., 9.10. In doth instancea, incressing Mach number bdrings s
reduction in the rapidity with whiob the mazimum ampiification falls off with tnoreeasing vave angle.

10.3 Effact of wall cooling and heating

Few reauita have Deen computed from the visasous theory for doundary layers with cooled and heated
walls, Une result, shown in Fig. 10.8, gives the effect of hesting and cooliag on the stability of «
/ low-speed boundary layer (N, » 0,05). The z-Reynoids nuabers of 20D porsel modes fur three oonstant valuss
of the ¥ fadtor, ia(A/d;) ., are plotted against the wvall temperature ratio T /T.. Ve see Lhat coolirg
has & strong atabilizing o"nt. and that hesting has a strong deatadilizing of’nt. The frequencies that
correapond to the N factors are also sirorgly u‘oatod by the wall teaperature. Tor on'ph, at T /T, »

90, the frequercy for K » 9 1o F o 0,157 x 10%7; at T /T, « 1.1%, 1t 1a F « 0088 3 1077,

As sn example of the effect of wall cooling at hypersoni: speeds, Fig, 10.9 abowz 2D meutral ourves at
N My o 0.8 for T /T, & 1.0, 0,63, 0,25 sad 0,05. The freestrean teapersture {s $0°K ex0e )t for the loweat
wall temperatare where it 1s 125°L  Wrea the wall ia cooled to T,/ « 0.65, a notiosable stabilisation
takes Dlace for the firsi-mods, but oaly a merrowing of the uuu‘u vavenupber band can be dstected in
the Ls0ond-m0de region, AL Lhe other two tempersture rutios, there (s 80 uastadle first-sody region. The
lovest tesperature retio is of iatsrest decause thers 1s no generalized inflection gojat is e bouzdary
layer, asd thus a6 ' Lo serve as the iimit of the upper dranch of the meutral aurve. Ve aay odaerve
that the wevenumbars &t the critical Reyrcids auabera of the three¢ cocled cases are in the funverse
proportina 1,010.71:0.88, and the correspondiang doundary-lsyer thickassses are ia the proportios
1,0:0.69:5.5). Cornequestly, the length scsle i the costrolliang fastor fo the lecation of the seeond-
8060 uastsdis regicna in terms of wevecimber,
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10.4 Uee of sixth-order systea for 3D waves

Ve have already noted in 3ection 8.5 that only s single dissipation ters couplea the energy equation
[{8.9¢)] to the other equations for s 3D wave in either a 2D or 3D boundary layer, end mentioned the
econoay messure proposed by Mack (1969) of uring the sixth-order system that resulta from negleoting this
ters for 3D waves., These equations asre essentially the 2D equations in the direction of k. In Table 10.1
the teaporal saplification rates computed from the sixth- end eighth-order systems are compsred for
varicus wave snglea and Reynolde numbers st five Mach nuabers. In all osees the wavee are close to the
most unstabdle firet-mode wavea at tha particular Mach and Reynolda numbers listed, We aee that the sixth~
order syatea is aurprieingly good, and can be used at R = 1500 for all Mach numbers with & saxisua error
of lees than 58, The error of the sixth-order ayatem, vhioh depends not only on the Maci: and Reynolds
uu:bor, but also on the wave argle, is usually sinimel up to sbout ¥ = 30° end can become large ford >
70%.

Table 10.1. Compeiiaon of teazporal amplification rates for 3D
waves as oomputed from eixth-order and eighth-order syetems of
equations &t eeveral Mach numbers.

) r ‘ v w0 wx10® § difference
6th order O8th order

1.3 500  0.075  As°  0.883  o0.82% 1.2
1.3 1500 0.060  A5° 1,467 1,005 1.5
1.6 500 0.070 55° 0.9  0.8MA 1.4
1.6 1500 0,050  55%  1.388 1,38 2.8
2.2 500  0.055  60°  1.198 1.066 12.4
2.2 800 0.085 60°  1.39 1.300 7.0
2,2 1500 0.03% 60° 1.32% 1.273 N1
as 500 0.08% 60° 1,117 1.039 7.5
A 1500 0.0%0  60°  1.6M 1.613 1.7
5.8 500 0.050 S5°  0.790  0.73 7.3
5.8 1500  0.060 55°  1.803 1.30 1.4
10.0 1500 0,080  55°  0.MAN  0.A3N 2.3

Ther« are three other diaaipation terma in the energy equation beaidea the coupling term, and their
effect on the amplification rate has also been examined dy Mack (1969) at R = 1500 and N’ » 2,2, 5.8 and
10.0. The wevenuxbere were the aame as in Tadle 10,1, At n‘ = 2,2, the coupling term haa the largeat
inflvence on the amplification rete. Novever, at the two higher Mach aumbers the other teras increase in
iaportance. Sinoce some terns are stadbilizing end others deatadilixing, the error with ail disaipation
terma 2ero is saaller at these two Maoch oumbers than with only the coupling term zero. It ia not known
how genersl this result {s, but experience with the Duan-Lin equations indicatea that it 1a limited to
weves with s well sway from zero.

The amall effect of the disaipation terms on the amplification ratea of the 3D wvaves in the above-
nentionsd oslouletions ie in diatinmot oorrast to what happens when the Duan-Lin equations are used for
2D wavesa. The sixth-order ayates with only the ooupling tera sero 1a exact for ¢ « 0, ualike the Dunn-
Lin equations where all of the diasipation terme are neglected eloag with a auader of other tersa that are
aupposed to b of the eame order. The differences betwoen the neutrel-stabdilit) survea {n Fig. 10,
computed directly fros the Duman-Lin equeticas and those computed froe the oceplete wqualioks testify to
the {mportence of the neglected termas, 4 caloulation at Ny ¢ 2.2 end R » 600 for .. 1.085 gave ile
reault that the maximus 29 amplification rete froam tbe Duan-Lin squations ia 633 larger than :he> computed
from the cosplete aquatio~z, A more fevoradble result ia odtaioed at this Mach numbder for a 60" wave with
1 = 0,045 at 0 s 1000, where tde Duan-Lin equations give en amplification rate that 10 158 too high.
This 3o en taprovement over the 2D resujlts, Dut atill mot aas good a3 the result odtatned vhen oaly the
coupling term le neglected. At M, = 8.5 and R » 1500, the amplificstion rate of the meat unstable 30
first-msode wave computed from the Lin equations is in error by 233; the error for the moet unstadle
(2D) second-node wave is 108, The ocomcluaica to be drava 1a that the Duam-Lin spproxzisation is too
severo, and the equations sre unsuitable for nuaericel work above adout ll| » 1,6. On the contrary, the
eizth-ordar systeom with only the ocoupling terr meglected ocas be used for numeriocal computationr whare Righ
acourasy ia mo. isportast, and they offer s substaatial saving in occaputer time and supense.

10.9 Spatial theory

Both the theoretieal snd muserisal aspects of the atability of compreasidle boundary layers wcre
vorked out almeat ccmpletely on the baais of the temporal theory., In coatrast, alasost all stadility
oslovlations sre sov routimely dome with the apatial theory. Twe ezoeptions are the 3ALLY (Srokowsiki and
Orssag (1977)) and CIAL {Malik and Urazag (1981)] codse for 3D beuadary layer stadility, which caloulate
eigervalues from the temporal theory asd use the 3D Gaster trassformatioa to comvert to apatial
eigeavaluea. Thi2 approsch, vhich iatroduces a asall error iato the oalsulation has the advastags of
alloviag the use of poveriul satriz setheds. The COSAL cods exploits thia posaidility by providiag s
giobal eigeavalue search waioch relieves Lhe user from the ascessity of saking an iaitisl eigeavalue gwess.
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Some of the extensive temporsal ocalculations of Mack (1969) have been recaloulated by El-Hady and
Nayfeh (1979) using the spatiai theory. 4All findings were in accord with the temporal ocaloulstions, A
recent series of spatial caloulstions by Wazzan, Taghavi and Keltner (1988) found important differences
with the calculations of Msck, but there is good resson to telieve that the new calculaticons are not
correct ([Mack (1984d)].

A3 an exsmple of the same calculation performed with the temporal and spatial tb~ories, Figs, 10,10
and 10.11 give the respective maxiaum smplification rstes of the most unstable first and second-mode waves
at R = 1500 as o funotion of freestreanm Msch number. The differences between the teaporal and spatial
first-gode curvesz are due to the {norease in the group velocity froms about 0.4 at H, 2 0 to near 1.0 at
high Mach nuaber. However, both ourves reflect the fasot that at first increasing Mash number brings a
reduction in the maximum amplification rste because of the weakening of viacous instability, then the
increasing inviscid i{nstability becomes dominsnt, snd finslly the increasing boundary-layer thickness
causes 8 proportionate reduotion in the smplification rate, Furtheramore, it is {mportsnt to keep in mind
that both the spatial theory snd the teaporal theory plus the Gaster trsnsforms.ion give almost {dentioal
values of the amplitude rastio, and so either can be used in tresnsition-prediction calculstions,

11, FORCING THEORY
11.1 Formulation and numerical results

The structure of linesr stsbility theory allows the forced response of the boundary layer on s flst
plate to a particular type of external disturbance field to be readily obtained [Mack (1971,1975)]. One
of the independent sclutions of the stability equstions in the freestream is, for ty = 0 snd in the limit
of large Reynolds number, the inviscid flow over sn oblique wavy wall of wavelength 27/: moving with the
velooity o. The time-independent part of the pressure fluctuation given by this solution ia [Eq. (9.11)]

P 1My (- dexp 1uLx3 (-1 2y (11.1)

far a wave which 13 oblique to the freeitreas, 1 and ﬁ1 are taken in the direction normal tc the constant
phase 1ines in the x,z plane. It is seen from %q. (11.1) thst when ll1 > 1, the constant phsse lines in
the x,y plane sre Mach waves., With the negative sign in Eq. (11.1), the Mach waves are outgoing, i.e.,
energy is transported in the directicn of incressing y; with the positive sign, the Msch waves sre
incoming. When H‘ ¢ 1, the solution with the upper sign decays exponentially upward, snd the other
sclution increases exponentially upwsrd, In stsbility theory, only ~olutions which are at least dounded
as y-r are permitted, but no suoh restriction is present in the forcing theory where the incoming wsve
has been produced elsevhere in the flow. The full viscous counterpart of Eq. (11,1) for in i{ncoming wave
has a slov exponentisl inorease upward, which is perfectly scceptabdle.

The incoming-wave solution bear» 3<5e resembls' e to a Fourier component of the sound field radisted
from turbulent boundary lsyers st high aupersonic speeds sccording to Phillips’ (1960) theory. In this
theory, each acoustic Fourier component 1, is produced by the same Fourier component of the frogzen
turbuient field moving st s superscnic source velocity o relstive to the freestream. Thus the turbulent
boundary layer 1s deocomposed into oblique wavy wslls moving supersonicslly, and the associated outgoing
Msch waves sre the incoming Msch waves of the receiving laminar boundary layer st y s 0, However, in
Philline’ theory, the field is random, snd each "wavy wall®" exists for only a finite time rolated to the
lifetim:: of an individual turbulent eddy. 1In the present theory, the inooming wvsveé fie'd ic ateady to an
obaervwr moving with o.

4 solution for the boundary-layer renponse &t each Reynclds nusber can be found for each 1 and o
by using both inviscid solutiona of the eighth-order system, Eqs. (8.11), together with the usual three
viscous aolutions which go to zerc as y -~ , to satisfy the boundary conditions as y =« 0. The combined
sclution, {n addition to giving the boundary-layer response which results from the {nooaing scoustic wsve,
alsc provides the smplitude and phase of the cutgoing, or reflscted, wave relative to the incoming wave.
The cembined, or responae, wave 18 neutral in the sensv of stability theory, but {ts smplitude L= the
boundary layer 1s s funotion of Reynolds number., If the loocal msas-flow fluctuation amplitude m(y) s

b to repr nt the asplitude (s hot-wire anemoseter measures primarily m), the ratio of a_, the peak
value of m(y), to my, the msssflov fluctuation of the incomiug weve, oan be called 4/1y, uns used ;u a
manner similar to the smplitude ratio A/dy of sn instability wave, in increase in lpll‘ u}th increasing 1
represents an *amplifioatior?; s decrease, a damping®.

The most important result of the foroing theory is saown in Fig. 11.1, vhere s &y fros Lhe viscous
theory ia plotted against Reynolds nusber for waves of six dimensioriess Jrequenaies 1n an insulsted-vall,
flat-plate boundary iayer at N, s 4,5 The wavea are 2D, and the rase velocity has been assumed to be ¢
s 0.5, Ve see thet the smplitude of esch wave starts to grov at ‘he leading edge, reachss & peak at a
Beynolds number that ve-iea inversaly with frequency, and then deulines. The lower the frequency, the
Righer the maxiaus value of B /B,. T™his 1s the principal result of the forcing theory, and has been found
to be true for all bouadary layers and sll vavea regardleas of ~he vasve angle and the phase velooity
(proviced only that N, > 1). 4s a oconsequence of this behavior, t7: forcing mechanism providea boundary~
layer wavea with asplitudes froa 6+~18 tises as large as fresat/¢.B sound waves without any lastadility
saplificstioa,

In the iaviscoid theory, omoe ¢ and ; have deed apecified the ualy resalning parameter 19 .. ¥When the
maas-Tlov fluotuation amplitude ratio ia plotted against & four i 2D vave with o o (.65 and the sane
boundary layer as ia Fig. 11.1, the iaviacid Ltheory gives a reault that 15 aignificantly diflereat from
the visoous theory. 3imce F » ac/R, 2 wave of givea dimensicaless frequoncy F travelliing dovastresa at s
coastast ¢ will have its dimensicalass wavenuaber 1norsase iinearly with R Consequently, thea axis i»
eguivaleat o the K axis ia Pig. 11.1. What we find fros the 15viaold theory fa that inviscid vavea
deorease in smplitude for a) 0,0075. All of the amplitude peah in Fig. 11.) cgour at an 1 larger than
this ezoept for the loweat fregquescy. Coasequantly, the initial trowth of Fig. t1.1, whioh 1s just what
ia found 10 experisenta ia superscaic and hyparsomio wind tumms. . sith turbuleat douadary layers on the
tunesl walls, 15 & purely viaoous phencsenca Nowever, when th visoous respoae ourves from Fig. 11,9
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are alsc plotted againat 1, they show that the decrease in amplituds which follows the region of growth in
Fig. 11.1 1s descrided closely by the invisoid theory., This result is in contrast to stebility theory,
where the inviscid amplification end damping rates are only approached by the visoouz theory im the limit
R*v, The higher the frequency, the lover the Reynolds number at which the viscous curve joins the
inviscid curve.

11,2 Medeptivity in high-o7022 wind tunnels

The quantity = /a iaterpreted as Ul,, is the most important result in superscnic and hypersonic
wind tunnela, It frov des an essential piece of inforaation which has been missing up to now: the
relation of the amplitude of a boundary-layer wave to the amplitude of the fresstream weve whioh causes
1t, In other words, we now have a solution to one partioular receptivity prodblem. Striotly speaking, m
13 equivalent to the A of stability theory only when the m distridution is selif-similar, but such 1s no
always the case. However, this situation is no different from the usual comparisons of the quasi-parallel
stability theory with experiment, as in Seotion 7.5, wvhere the peek m is followed downstream and
identified with ( evei though the amplitude distributions are nonsimilar,

The major Gifficulty in using the foroing theory as e molution of the receptivity problem 1s that
forced vavea are distinct froa free weves, end the process by which the foraer becomse tho latter is
unknown. An experiment by Kendall {1371) showed that, as measured by the phase velocity, a forced wsve
near the lesding edge evolves into a free instability wvave farther dovnatream. In the paper fros which a
portion of the text of this Section has been adapted {Meck (1975)], we essumed thet the foroing theory
applies up to the neutral-atedbility point of the particuler frequenoy under consideration, and that
stability theory applies downstream of thet point. The conversion from one wave to the other would seem
moat likely t> ocour if the amplitude disiribution through the boundary layer et the neutral-stability
peint matched the eigenfunction of the instadility wsve of the same frequency and wavelength, A limited
nusber of calouletions et M, » 3.5 shov that the two distributions are indeed close together for the sase
F, - and R VWith the only miametoh between the two waves a phase-velocity difference of 20§, oonversion
of forced into free waves can bde expected to take plsoce quickly.

Cunsequently, with the approach just oui.ined the forcing theory can be used to calculete Ag/Aqs the
ratio of the instadbility-wave amplitude et the neutral point to the amplitude of the sound weves radleted
by the turbuleant boundary layer on the wind-tunnel wall, The subasjuei® istio of the instadility-wuve
amplitude to A, is found by multiplying Ayl Ay by the usual amplitude ratio Ay caloulated from stability
theory. Thus, with the foroing theory ve cen replace the previocusly unknown oonstent Ao with a known
frequency-dependent Ay.

17.3 Meflection of scund wvaves fros a laminar boundary layer

A more strajghtforvard use of the foroins theory is to caloulate the reflection of a monochromatio
aound wave from & boundary leyer, Figure 11,2 gives the retio of "‘r the asplitude of the reflected wave,
«o Ay, the amplitude of tbe incoming vave, as e function of 1 for 0 » 0.65 end the sase M, s 1.5 boundary
layer used previcusly. Figure '1.3 gives the retio of $(0), the pressure fluotuation at the wall, to
01(0). the pressure fluctuation of the inocoming wave at the position of the wall with no boundary layer
present, In each figurc the uppsr curve {s the invisoid result, and the other curves ere the viscous
results for a series o frequencies.

According to the inviscid theory, when = O, A /A, » 1,0 snd $(0)/3,(0) s 2,0; when s°~, A /%, ¢
1.0 snd 55!3}1'55(0) = 0. Thus for is 0, the dboundery leyer effectively has sero thicksess ead the sound
veve refleots as froa a s0lid surface {n the ebsenve of e boundary layer. The refleocted wave has the same
saplitude and phaae at y = 0 a» the {ncoming wvave so thet the wall preasure fluctuation s twice §,(0).
At the other limit, .+, the doundary lsyer ia infinftely thiok compared to the wavelength, ud‘ the
reflection is the asame as from a oconstant-pressure surfecc. The amplitude of the reflected wvave is again
equal to that of the incoming weve, but 1ts phase at y = 0 differs by 180° from the incoming wave. Thus
the preaaure fluctuetior st the wall is zero. Between these two limits, the asplitude of the reflected
wave ia > lways graater than the asplitude of the incoming wave,

The visoous resulta are quite ¢ii"erent, For small i, A_ 18 alwvays less then A,. Furthermore, a
aintmum exists in A, for each ‘requsncy. A sisilar minimus exists (n 30), but 1t 1s Jocated at & larger
: than is the A minimum, If the A_ minimum were to reach zero, thet partioular : would constitute en
instabllity eigenvalus for the ?ulfy of incoming weves. MNowever, in stability theory, this type of veve
hias not beet. suvountered, either as 2 *upersouio weve with o < 1-'/!1 a8 {a the presesnt example, or a5 a
subsonic wave with o > 1-1/M, where the asplitude inoreases :xposentially with iooressing y. Pigure (1.2
indicates that if asuch an sigenvaiue exists it would be at auoh ¢ low Beynolda suaber to meake the use of
toe quasi-parsllel theory invalid,

¥hen the ifmooming Madk wvaves of the externcsal travelling aound field reflect froa e solid surface in
the absence of ¢ boundery lsyer, there is Bo phese shift el the well. Cosmpresaion weves reflect es
SOBpression waves, 2ot the reflected vaves originste et the points where the corresponding incoming weves
intersect the aurfece, flowever, whes a boundary leyer is presest, there {8 a phese shx‘t at the well,
Condequentily, a reflsoted Mach wave of the sase phase appaers to origisate at & distsaoe ! awvay fros the
poiat of interseotion. This offset distance, exprossed as a ru’ 10 to the boundary=layer taluknoes, 18
given by

£ %o (ormy, M ng(0)en (O)) (11.2)

vhere "1(0) 19 the phase ({2 radiers) cf the oressure fluotuation of the fncoming wvave at the vall, and
2 (0) 15 the seme quantity for the reflected vave. Vhea tis jaase of the reflecitd weve lags the phase of

e iscoming weve, the reflected wave origisates at a point dovastracn af e interseetica poiat of the
incoming weve. ¥hen the phase differemce i 2r tategir gultiple of ', the inacaing vave reflects asa
vave of the opposite afgn at tdhe poiat of ifstersection.
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In Fig. 11.5, the ratio N2 is given at R = 600 as a funoufn of frequenoy for the same conditions
as 10 Piga. 11.3 sad 11,8, At only one frequency, F « 0.975 x 10°7, 18 the offset diatance sero, ror‘an
amaller frequencies, the phase of the refleoted u‘v lags behind the phase of the inooming wave, and 4 i
positive with a maximum qf 8.5.at F « 0,08 x 107", Beosuse of the long wvavelength at this frequency,
this offset fa only 0.077%°, ~r 28° in phase. Offsets have been obasrved experimentally ia unpublished
aeasurements of Xendall. Tne measurements were made with a dbroad-band hot-vire signal, 80 no direct
comparison with the single~frequency ocaloulations is posaibdle.

11.8 Table of bdoundary-laysr thicknesses

As o final item in Part B, we append Table 11.1 whioh givea the three ocommon dimensionless boundary-
layer thicknesses as functions of the freestream Mach number for the family of insulated-wall, flat-plate
boundary layers for which numerical results hsve been qun in Seotions 9, 10 and 11. These guantities
Bay be used to convert the a, 7 and R (all based on L ) into, say, ay 40y and R;o based on &. The
oonversion is achieved by multiplying ., v and R by Y.

Tadle 11,1 Dimensionless boundary-layer thiockness (U « 0.999), displacement thickness
and somentum thiokneas of insulated-wall, flat-plate boundary layers.
(¥ind-tunnel temperature conditions.)

N1 A y.* Yy
0 6.0 1.72 0.664
0.7 8.2 1.92 0.660
1.0 6.8 2.13 0.656
1.6 7.0 2.17 0.6a8
2.0 7.6 . 0.6R%
2.2 8.0 3.72 0.643
3.0 9.8 5.48 0.642
3.8 12.1 7.83 J.64%
L J9% 13.5 9.22 0.685
4.5 13.6 10.33 0.686
L 15.8 11.55 0.686
5.8 20.0 15.713 0.636
6.2 2.7 17.89 n.629
7.¢ 25.4 21.19 0.616
7.% 27.8 23.62 c.607
8.0 30.3 26.13 0.598
8.5 32,9 28.72 0.590
9.0 5.5 31.38 0.581
9.5 38.2 34,10 0.513
10.0 LA 3.88 0.565%
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PART C. THREE-DIMENSIONAL BOUNDARY LAYERS
12. AQOTATING DISK - A PROTOTYPE 3D BOUNDARY LAYER

Up to thia point wa have been conocerned in the numericsl examples exclueively witk two-dimensional
boundary layers, although the forsulations of Seotions 2 and 8 are slsoc valid for thrae-dimensional
boundary layers. In the final thres Sections we shall take advantege of thie fact to pressnt » nuabdber of
results for 3D boundsry layers. A fundssentsl difference between the atadbility of 3D and 2D doundary
layers 1a that a 3D bourdary lsyer is subject to orcesflow instability, This type of instsbility, which
eshnot occur in 8 2D boundery laysr, is responaible for early tranaition on aweptback winga. Its
essential features can best be introduced by etudying the aimple boundary layer on a rotating disk. Thie
self-similar boundary layer of constant thickness was first used for thie purpose by QOregory, Stuart and
Walker (1955) in their classio paper on three-dimensional boundary-leycr instadility.

12.1 Mesn toundary layer

The exact sclution of the Nsvier-3tokes equations for a rotating diak waa given by von Karsan (1921),
and later an acourate numerical solution vep uork‘a out by ioohrln (1938) 3nd is given in Schliohting’a
( 9) book. We use the ooordinate gystes r ; 6, 3, uhor,o r is the radiua, 6 ie the azimuth angle, and
T 18 in the direction of tha engulsr velocity vector ., The radial, szimuthal and axial velooity
oomponents can be written

u'(r'.l.) -R'r‘U(f,) . "(r'.s') -u'r'v(c) '
. (12.1)
va% s O 0 .

The dimensionless valooity componenta U, ¥ and W are funotions oaly of the axial similarity variable

e st (12.2)
where

Lt e (12 (12.3)

i the length ecale. In terms of the length scale and the veloaity scale si.r.. the Reynclds numbder is

YT 3 A TS T A (12.8)

which {s aimply the dimensionlese radial coordinmate r, The Reynclds numbder bdased on the local azisuthal
velocity and radius is

N T ] e LA (12.%)
Thua R » Ic"z. Just a» o the 2D boundsry.hnr. we have deen atudying. The diaplacement thickneas of
the rotatiang-disk bouadary layer is 1.27L .

The dimenajonlesas asiauthal and redial velocity profiles in the ocoordinate aystes roteting with the
diak are ehown 1n Fig. 12.1. The azimuthal, or cirousferential, profile 1a of the asme type ae in e 2D
boundary layer with the velocity increasing monmotoaicaily froa the eurfsce to the outer flow, and it will
be referrcd to aa the stresmvise profile. With the diek rotating in the direotion of poeitive 9
(counterclocokwiae), the outer flov relative to the diek 10 in the negstive (olookvies) direction. The
radial profile is of & type that cannot oocur is a 2D boundary layer. The velocity, directed ovtward fros
the disk center, is zero both at the wall and in the ocuter flow, e0 that there ia of meceeceity an
inflection potat, which 10 located at -« 1.812, where U » 0,13) sad V s -0,.760. The radial velocity,
being sormal to the atreanvise flow, 18 by defiaition the crossflow velocity, The saximus redial velocity
of Uyun *® 0.18% {» Jocated at _» 0.938, where Y s -0.096,

12.2 Crosaflow inatadlility

The phenosench of croasflow i1adtadility was discovered Guring early work oa the flow over awept-dack
wings. Trancsition 1a flight teats wap observed by Grsy (1952) to oecur sear the lesding edge at
sbacrsally lov Beynolda sumbers cospared to ab usswepl wiag Flow visualiszetioe revealed that the wing
surface bdeforw tramsition wes covered with closely-spaced parallel atreaks ia Lhe directicsa of the local
putentisl flow, as shows ia Fig IR0 of lhe review article by Stuart (1941). The atreaks were fised to
the wing, and, cace formed, d41¢ not chaage vwith time. They were cenjeetured to bes Lhe resuit of
statiomary vortices ia the boundary layer. This sase pheasaeiod wes demonsirated dy Gregory, Stuari and
Valker {19%3) to exiet oa & rotating ¢isk. The atrechs were fuund by Lhe chide-ciay teehaigue Lo take oe
the form of logsrithmie epirale at an angie of about 13° Lo 14° to the cirouafereatial directien {ane
froatiapiece of Roseahesd ('+°3)], with Lo redius of the apiral ¢ecressing with iscreastiag angle . As
i the ving sxperinest, the etreak patlare ves fized to Lhe aurfaee, a2d 50 coulé W photographed at the
coacluaion of the experiseat uith the diak at rest.

Stuart {Gregory ot al. (1999)] used et arder-ef-nagaitude srgunent Lo reduce the exsot linearised
Savier-3tokse equatioas for & rotatiag disk to the fourth-orser Orr-Soamerfelé ogmatioa fer the
dotorniaation of eigenvaluee. o this eade, a8 we have already diecussed is Jectica 2.4.1, the IO
stability prodies reduces to ¢ 2D etadility prebles fer the veloeily prefile 56 the direetios of the
vavenunber vettor. Sinse the valazity profile is & 3D beue ‘== layer, walibe & 20 bouadary layer, deponds
o8 the direction, there is o differeat stebility predlea te seive for saed wave direstioa, The
circunforeatial profile has caly visoows imstadility, and 1s sueh tes atable te have anythiag to @ with
the odserved iastadility phencacns. The radiel veleelty prefile, ea the contrery, has iaviseld
1a0tadility becauwse of the i1aflectieon peist, As the (afleciicn paint 1s loeated well awsy frea the disk
surfase, we can sxpoet there to Do ¢ olreag 1mstadility.
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In sddition to ths infleotionsl radial profile, there is s whole femily of profilse in dirsotione
close to tha radisl which siso have inflsotion points. Stuart noted that for tha velooity profile at an
angls of « = 13,2°, where ' 1s messured fros the radius in the poeitive O direotion, the inflecotion
point 18 locatad whars tha magnituda of the veloaity is zaro. Consequsatly, socording to the Rsyleigh
thaoram, whioh wes shown to still de valid for this typs of profile, a stationary neu’rsl norssl mode
(phase vslocity c = O) osn exist with a wave sngle equsl to <. Stusrt slso shovsd by ocsloulsting
streanlices in the plane of '/, and the wavenuader vector for the rotating disk with large suction that the
stationary inviscid disturdbance oconsists of a system of vortices olose to the surfsce, all rotsting in the
same direotion (clockwise, looking slong the spiral towvards the disk oenter) and spaced one wavelength
apart, and s seocond systes of vortioes farther from the surface. Brown (1960) repested this oaloulstion
for the rotsting disk without suotion using the visoous equations, and confirmed the vortioces near the
surface, but not those farther out. The vortioces near the surface wers in socord with oonjectures made
earlier, Thus the streaks and the spirsl sngle were explained as manifeststions of inflectional
instability associsted with the crossflow, and the whola phencaanon was named orossflow instsbility,

This explanstion, while very suggestive, left sasny questions unanswered. The asimuthal wavelasngth
caloulsted by Stusrt for the invisoid neutrsl wave, gava the result that thera should de 113 vortises
around the cirocumfarance at & = §33, wvherass in the szperiments only adbout 30 were cdservad, This
disorepancy was attributed to the negleot of viecosity. Another reason for the discrepancy, not sentioned
st the tima, is that the theory dealt with nsutrsl weves, while ths wvaves thst fora in the chinm clay were
unstabls spatisl wvavas, i.a.,, thay ware amplifying in the outwsrd rsdisl direction. Brouwn (1960)
cslculatad s neutral-stsdility curve from tha Orr-Soamarfeld equation for ths valocity profila in the
direction 11.5° [#81d to bs messured from ths photograph in Gregory st sl. (1955)], and slso datarsined
the loous 1n :-R space of unatsble stationary temporal waves with thie wave angle. Acoording to Brown's
calculation, the number of vortices at R ¢ 433 is 23.6, snd st % ¢« 5S40 is 31.5. These numbers are more in
accord with experisent, but nv explanetion was givan ss to why thase particular waves should be observed.

12.3 Instadbility charactaristics of norsal msodes

The Orr-Sommarfald csloulstions of Brown (1959,19560,1961) for various directional vslocity profilas
gave a oritical Raynolds number of sbout 180. In none of the sxperiments were waves deteoted st anything
approsching this low s Raynolds number. Mslik, Wilkinson snd Orsszag (1981) derived s nev system of
equations in which sll terss of order 1/r wers retained. Thesa equstions ars of sixth order for the
detarasinstion of eiganvsalues, rather than fourth ordar. With the sixth-order equations, the critical
Reynolds number was computed to bs 287 [lster correoted to 275 by Malik (1983, privats oomauniocation)).
This large difference between the fourth and sirthe-order equations oasts serious doudbt on the usa of the
foreer in the rotating-disk prodleas.

The stadility snalysis is carried out in tha polar coordinates r, ', 7. The wavanumber vector k st
an angle . to tha radisl diraction has compurants » in tha radisl direotion and £, 1n the szimuthal
direction. The wavs angle . is easured from the radius end is positive countsrclockwise as usual. In
Fig. 12.2, the spatial asplification rata ° in tha rsdial direction, computed sa en aigenvalus with (E*.i)1
» 0 free the sixth-order equations of Malik at al. (1981), 1s plotted against the azimuthal wavenumber 3
s 2°/+., whera +. 18 tha ssimuthal wavslangth in rsdisns, This wavenumber axprasses tks nuaber of
wavelangths sround a cirouaference, whioh, 1n.u:o present case, is equivalsnt to the number of vortioes.
It is relatad to tha wavanusber : based on L by:s : /A The ceritiosl Reynolds nuaber is seen to be
sbout R s 27), in reascnable agreement with Malik's sost recent value. For R greater than sbout 400, tha
saximus spatial amplification rate in P 18,2 1a larger than in any 2D Palkner-Skan bdoundary layer (for
the separstion profile, - . » 48 x 1077), The group-velooity angle :. of the most unstsbls normal mode
at R s %00 18 <8Y° (.mw-o'tf fros the redial direction), so that the amplification reta in that direotion,
g v ‘co3l., 18 only 89 = 10"3. Tha lerga vsiues in tha rasdial direction css be regsrded as »
c‘lﬂ.qu.let of tha long spiral path length rather than a reflection of the inhsrant instadility of ths
valooity profile.

Tha wave amgla v is giver in FPig. 12,) at seversl Reynolds numbers ss a fuvotion of “n, The
16terest §n this figure 18 the prominent maximum in . that increases with R To understand this bdehavice
1t i3 necessary to mentioa that the norsal-mode solution represented in Figs. 12.2 and 12.] is 2ot unigue.
There 15 8 seoond solution with larger wave o,}u that s ocsplately damped for R ¢ %00, At R s . the
sinieun wave angle of this solution s 18.3% st .. s 23,5, and the asninus danping 48 1.8 x 10°7 st i e
2%.2. At 8 Baysolde nuabder somsvhere sdove 500, the two eolutions exchsage fdentities for certain *.,
uwilk oconsequences that have not yet been worked out.

The logarithm of the amplitude ratio lflo obtained by intagrating ' slong the rséius is gi/en in
Fig. 12.0 at R » 330, 800, 450 and 500, Tha referesce smplituds is at R ¢ 250, rather than at the
lower-branch neutral point of esch Fourier compomsat. The wav? anglé at the saxisua amplitude of esck R
$s nuted 1s the figure These Buserical results differ frea those of Malik et al. (1981) decsuss here the
irrotstienal ity aendition, Bg. (2.5%5¢), ase Deen appiied to the vsveauaber vector of esed Fourier
coaponsatl. FPor Lhe diak, thie condities is that the asisuthul vaveausber f';, of nuaber of vortices, ie
constsat. Thet fo, in Fig. 12.2 ths path of fategratios is parallel to the ordinate. 12 Pig. 12,3,
18(8/4,)) 10 given As & funetion of Doth ¥, sad (7 .)o, the value of 7. at the reference Reysolds auabder of
290. b3 observe thst sithough the bdaadwidth of “. for whiech I is grester then i, tncresses vith
iacreosing R, the basdvwidtdh for whioch /8y 18 within V/e of the maxipum saplitude ratio decreases
olightly. The values of u(uy 1a this figure ocesirest with sveh higher valuves obtaimed by Cebeci and
Stevartacs (19809) fres the aysten and the parellel-flow saddle-poist oriterica, Trenmsitios
15 uavailly edserved to otart at & Reynelds sumber 1a the vioiaity of 500, so that the N faetors of Fig.
122 are of he sagnitude oustonarily assosiated with trassition ia 20 deundary layere. Thus we see thet
creseflov fnatability §s the retating-disk bovndary layer 1is peverful encugh to lead to troasition at
lower-than-serual Beywclds vabere where the streamwise prefile is campletaly stable,
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12.8 Nave pattern from a steady point souroce

The wvave angles and nuaber of vortices at the peak amplitudes of Fig. 12.4 are closs enough to what
13 observed in the experiments to auggest that the normal modea whioh yield those valuea are the dominant
nodes of the atationary wave syateam thst appears in the flow-viasualization photographs. However, ve are
atill left without any explanation of how only the most-amplified mode oould be present st each radius.
The filtering action of the boundary layer is not strong enough to socompliah this, and the oconstrainta of
constant F and i, do not sllov any initial Pourier component to be the moat-amplified normal mode at more
than one radius. Besidea, the experiment of Gregory et al. (1955) ahowed clearly that a band of
ciroumferentisl uavelengtha 1a present at each rsdius, not just the msost amplified.

A definite step forward was acoompliahed by the experiment of Wilkinson and Malik (1983). Thease
investigatora used s hot-wire anemometer instead of flov viaualization, and ao could more acourately
resolve the disturbance atructurs on the disk, Although it bad been oconjectured by Gregory et al. (1955)
that minute roughnesses aight pley a role in fixing the vortex pattern with reapect to the diak, the
Wiikinson~Malik experiment revealed for the firat time that the wave pattern reaponsible for the
stationary vortex lines emanates from point sources randoaly looated on the diak. All of the observed
propertiss of the waves can thus be sxplained as charsoteriatic featurea of the interference wvave pattern
that reaults froa the auperposition of the entire azimuthal vavenuaber apectrus of squal-phase zero-
frequency normsl modes produced by the point-source roughness slesent, The streaka of the flowv-
visuslization photographa are the constant-phase lines of the vave pattera. The wave patterns from a
numaber of sources eventually merge and cover the entire oircumference of the disk., It ia this merged wave
pattern that sppeara in the flow viauslization experiments. The auch greater sensitivity of the hot wire
ccapared to flow visualization techniques made it posaible to detect the waves at small radii vhere the
merger vas not yet complete,

¥ilkinson and Malik (1983) made the phhenomenocn even clesrer by placing an aitificial roughness on
the disk, The wvaves froa this roughnesa wvere of larger amplitude than the vaves froa the naturally
occurring mimte roughasasea, and so offered an opportunity to study the essential phencaenon in a purer
fora. Pigure 12,5, taken froa Pig. 18 of their paper, showva the staasdy vave pattern fros the aingle
roughnens, 83 well as cothers froa usavoidadle matural roughneases. in thia figure, which was odbtained by
foraing sn ensemble average of the amplitude ameasurementa at svery diak revolution, the amplitudea have
been norealised to a oonstant value of the ssximum amplitude at each rediua,

The wave pattern of Pig. 12.5 1a of the ssme type that ve atudied in Section 7 for » haraonic point
source in a Blssius bdoundsry lasyer, with due asllowance made for the very different instability
charsoteristics of 2D dboundary layers and 3D boundary layers with crosaflov instability. We therefors
modified our oslculation procedure for planar bdboundary layers to fit the different geometry of the
rotating disk and the lack of sn axis of aymmetry, and have calculated the vave pattern producec by a
zero-frequency point source located at the Reycolds number of the roughneas element in the Wilkinson-Malik
experiment {Mack (1984¢)]. The wave forms, normalized to a conatant value of the maxiaum amplitude es in
Fig. 12.%, are shown in Fig. 12.6 slong with the conatant phaae lines, The nuabdbering of the conatant-
phase lines corresponds to the syetem used by VWilkinson and Malik, It ia evident that the caloulated wave
pattern i{s in the cloaeat posaidle agreement with the measured wave pattern aa to the location of the
constant-phase lines, the nuamber of ocscillations at each radius, and the azimuthal wavelength, The latter
quantity varfes with both redius and azisuth angle. The shift of the wave pattern to the right in Pigs.
12,5 and 12.6 with reapect to the oonstant-phsse linea 1s because amplitude propagates sssentislly along
group-velocity trajeotories., The agreement between Figs. 12.5 and 12.6 conclusively desonstrates that the
obesarved atationary vaves on & rotating diak are the reault of the auperposition of the entire apectrus of
norsal sodes, both amplified and dasped.

The osloulated amplitudes aloog the conataat-phase 1inea sre giveo 1n Pig. 12.7. Vortex No. 11 io
tne one thet comes from the point souroce, and it 1a the only one with ap :aplituds ainimum, vhiok, it
should be noted, s vell beyond the critical Reynolds number of 273. The reference amplituds of this
vortex vas selected to fit the miniaus aaplitude Of the experiaent, and Lthen uaed for all of the other
vortices. A comperison ia givea in Pig. 12.8 of the calculated and experisental envelope amplitude
distridbutions st R « 300 and M6, 1o this figure, the experiments] amplitudss have been normalised to the
arbitrery thecretical saximus amplitude at R » 300, At R » X300, the agreement is exorllent exocept at the
right-band edge of the wave patiern, vhere 8 seocodd vave patterr vas present in the expsriment, At R s
A66, the influence of the ascond wave pattern haa spread simost to the center of the prinoipal wave
pattarn, and is the resson for Lhe disagressment betveen theory and experiment ia Pig. 12.8 to the right of
the mazisus amplitude.

13. PALKNER-SKAR-COOKE BOUNDARY LAYEAS
11.1 Neen boundary layer

In order to more fully study the influence of three dimensiosality 1o the aean flow on boundary-layer
stadility than §s posaible with the rotatiag diak, it 1a necesaary to have a fuaily of doundary-layera
where the magnitude of the crossflow cas be varied ia s aystesat!ic sanner. The tvo-paresetsr ;swed-vedgs
flows {ntroduced by Cooke (1950) are suitadle for thia purpose. One poraseter ia the usual Palkner-3kan
dimensionlesa pressure-gradient paraseter i,; the othe: ia the rctio of the spanviae and ghordwiae
velocitiea. 4 comdination of the two pnrno?-n makea it possible to simulate sinple planar three-
dimenaional bousdary layera.

The inviscid valooity iz the plane of the vedge and normsal to the leading sdge in the direct{on 2, {0

o ctade, (13.1)

vhere the vedge angle 10 (2/2) 5 and i) s 2u/(m+1) as in Eq. (2.62). We abal) refer to this veloaity as
the ochordvise velocity. The veloeity parsllel to the leading edgs, Or spanvise velosity, 1s
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¥y, = oconst. (13.2)

The subsoript ! refers to the loocal freestreas. Por thia invisoid flow, the boundary-layer squations in
the x, direction, as shown by Cooke (1950), reduce to

£ 117 o 8 [(me1)/2-1'2) s 0 . (13.3)

Thia equation ia the usual Palkner-Skan equation for a two-dimensional boundary layer, and is
independent of the spanwise flow. The dependent variable f(y) is related to the dimensionless ochorduise
velocity by

U, = U0, « [2/(m0))E(y) (13.8)
and the independent variable ia the similarity varisbdle
y s y'(u:,/v'::)"z . (13.5)
Once f{y) 1s known, the flow in the spanwise direotion 3: is obtained from
g + fg' =0, (13.6)
where
v, s W s aly) . (13.1)

Hullk 5y snd gly) are zero at y = 0 and approsch unity aa y -+, Tabulated values of g(y) for a few _
valusa of r, msay be found in Rosenbead {1963, p. A70). !

The final atep 1is to uae f'(y) and g(y) to conatruct the streamwiee and croseflovw velooity
components needed for the atadility squations. A flov geometry appropriate to a evept back wing ie shown
in Fig. 13.5. There ia no undiaturded freestreas for & Falkner-Skas flow, but such a direction ie assused
and a yaw, or aweep, angle ., . 18 defined with respect to it., The loocal freestreas, or potential flow, is
at an angle .  with respect to the undiaturbed fresstreas. It is the potentisl flow that definea the X,z
coordinates op the stability equations. The angle of the potentis] flow with reapect to the ohord e

“* a tan- (w300, (13.8)

and ' ia related to ‘ow and '&’ by

Cs ., (13.9)

¢ oy p°
With the local potentia)l veloeity, u,' . (nfi . w:f)"‘. a5 the reference veloaity, the dimensionless
streanwvise and crossflow velocity cosponents are

Uly) » £'(y) ooel" « gly) stnd~ , (13.10a)
W(y) s [«f'(y) « g(y)) o008 *atn ., (13.100)

Theaw velocity profilea are defined by “,, which fizes f'(y) and g(y), and the angle *'. Ve note from Iq.
(13.10b) that for & given pressure gradient all crosaflov profiles have the sase shape; only *he magnituds
of the crosaflov velocity ochanges with the flow direction, Ia comtraet, according to Iq. (13.10a)
streanvise profiles ohange shape ae * vartea. For ‘s 0, Bly) s £°(y); for s 90°, U(y) o g(y); for s
452, the two funotions make an equal ocomtridution.

Yhen the Bq. (13.10) volooity profiles are veed directly in the atadility equations, the velooity
and ‘out& scales of the equations sust de the aame as in Bg. (13.10). This itdeatifies the velocity scale
as U, the length socale as

L. (~'x'fuf!;"’ , (13.11)

and the Reyncids numbder U’L.I . as

| Y .°/m Y ("-‘2)

where R_ o (U,',:?/ ')"2 is the square root of the Beymolds nuader aloag the ohord. For positive pressure
gradients (s > 0), "= 90° at 3,5 0and - - 0% ae 3. 1 for adverse preasure gradients (m < 0), e 0°
st 3, ¢ 0 and - - 9% as 1, --. The Reynolds nusber B 13 serc at 3 = 0 for all pressure gradiests, &s i
R ul‘h one fmportant exceplioa. The eiception is Igoro ast{-_=s1), Vor a 20 plasar flov, x‘. « 18
the stagmstion-poiat solutioa; here it feo the attachaest-lime uh\lu In the violmity of x, * 0, the
chordwise veloaity e

o), et wlral, (13.13)
e potential veiccitly along the attacheeat lime fa I:K. sdd Lhe Meymoids Jumbder 10
oo * V/0ed vty o) s (13.18)

& ROB~3810 Yalwe.

Por our purposss 1a tals Soctica, we may regard ¢ ad & fres parancter, uad wee the veloaity prefiles
of 8q. (13.10) at any Reynelds sumber. Nowever, for 1he flov over o given wedge, * san e oot
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erbitrerily at only one Reynolds number, If A er 18 1 et L ('c)ror' the & at sny other R, is given

by

frey

ten: = tanipge [(M)pgp/M IV (21 (13.15)

For m << 1, the dependence on R_ 18 so week that " 1s constant slmost everyvhere. One way of choosing

(R )r" within the present congon 13 to meke it the ohn,d Reynolds number where U » G} 1,0, the loosl

po?.onual flow is in the direotion of the undisturbed freestresa, Then r’i,,.r is -qenl to the ysw angle

‘“.

Figure 13.2 shows the crossflow velocity profiles for fs 4592 3ad four values of R,. The inflection

point end point of saximus oroasflow velocity (I.u) are also noted on the figure. In Fig. 13.3, W, for

e 45° 43 given as s function of fros nesr sepsration to 8, = 1.0. The crossflow velooity ,or sny

other flow sngle is oblained by mulliplying the W of the figure by cosieini The maximus orosstlow

: velooity of 0.133 is genersted by the separstion mﬂlo rether than by the stagnation profile, where ¥ ax

J » 0.120. However, W, . varies rapidly with £  1in the neighdborhood of separetion, ee do ell ot‘.r
‘ boundary-layer nru.tcn, and for t, s -0.190, J’.u is only 0.102.

-
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The function g(y) ia only veakly dependent on By, s0d, unlike f*(y), never has sn inflection point
even for en adverse pressure gradient. Indeed it remsins o0lose to the Blesius profile in shape, as
underiined by s sheps factor H (ratio of displscement to momentum thickness) that only changes fros 2.703
to 2.539 ss =, goes fros =0.1988377 (seperstion) to 1.0 (stsgnation). The veak dependence oi 3{y) on Y
has been made the basis of sn rpproximate method for oaloulating boundary layers on yswed oylinders. Fuor
our purposes, it allovs some Of the results of the stadility oaloulstions Lo be anticipated. For waves
with the wsvenumber veoctor aligned with the local potential flow, we can expect the amplifiocation rate to
vary ssoothly fros its value for a two-dimensional Falkner-Skan flow to s value not too far froa Blasius
es ' goes from sero to 90°.

e

i m.. stability results will be presented in terss of the Reynolds mumber R and the similarity leogth
scale L . In order that the results msy be converted to the length sosles of the doundary-lsyer
| uugn-u. a‘pp{mnnt thickness or mosentus thicknsss, Tsble 13.1 lists the dimensionleas quantities Y:"
| ‘JL, yies “/L end and the shepe fector H of the streamvwise profile for several combinations of 8h snd
». Also listed are W___, the everage orossflow velooity W « ("Way)/y ; ¥y ape the y of the infleation point
] of the crosaflow velocity profile; and ¢ rr the defleotion engle of the atresmline at ys y, o The

e S 0 W

) quantity y. 1s defined ap the point where U = 0.999.
TABLE 13.1 Properties of three-dimeasional Falkner-Skan-Cooks boundary layers.
rh Y Y. L] 'm v t inf ,‘“ 3
ser 2.2 8,238 3.09% 4,028 0.0102 0.0C876 0.4087 8,306
5.0 8.236 1.409 8,010 0.023% 2.01077 1.100
10.0 8.229 3.866 3.9%9 0.045% 0.02123 2.156
A0 8.09% 3.07% 3.200 0.1310 0.06214 5.709
50.0 8,017 2.9 3.064 0.1310 0.06278 5.516
«0.10 85,0 6.%22 1.998 2.698 0.0349 0.01619 1.498 y.213
=0.02 8%.0 6.098 1.763 2.60% 0.0058 0.00267 0.2%49 2.9%0
0.02 M50 .90 1.682 2.578 =0.00%% =0.00228 -0.232 2.835
0.04 83,0 5.8%2 1.686 2.564 =0.0108 =0,00480 -0.889 2.187
0.10 #5.0 5.688 1.9%1 2.929 =0.0239 «0.0109% -1.029 2.6%9
0.20 85,0 5,348 1,828 2.482 -0.0423 «0.01928 -1.02) 2.478
1.0 2.8 3. 183 0.6094 2.3t «0.0100 -0.005%0) 0,806 1.924
10.0 3.19 0.660) 2.226 «0.0410 «0.02021 -1,669
8.0 3.5T% 0.80%0 2.21% 6.1181 =0.05208 5,129
.0 J.621 0.0378 2.301 -0,1191 «0.05217 -$.291
0.0 3.661 0.8708 2.332 0.1 «8,05081 -5.29% .
$%.0 3.69% 0.902% 2.386 .17 =0 .04808 «5.13%
80.0 3. 1.01%) 2.52% «0.0810 «0.01T0A -1.987
" 3.199 1.0260 2,902 -0.0100 -0.00816 -0.489 i

13.2 Bousdary layers with srwll orcsaflow

is & tvo-dimemsiosal douadary lager, lhe Dost uastadle veve 15 two dimetsioan). Therefors, we can

sspeoct that is three-disensicnal boundary layesrs with ssall crosallov the scat wastadle wvave will bave {ts

vavesuber veelor mearly aligaed vwith Lhe loeel petestial flow, sad we oas restricl ourselves to waves

. vith , s 0° for the purpose of Getersicing the Bazimus asplification rate This procedure 1s equivaleat to
studying ids two-Cimenmiomal 12stedility of the streasvise profile previded that (s O (asmplificatioa rate

. in stresmwise directioca). la the ealoulatioar of this Sectlon,, vas taken Lo be either sero or } le

the lstter sase, . 15 almest léentical (0 °, vhish we Sefine &0 the anplificstion rete with T e 0‘: oad
ve shall igmere \l' sifferesse.

T™ve offset of Lhe flow asgie v oa the nanisus spetiel saplificetioa rete sf (he vaves with (o 0° §s

-+ 3 : shous 1a Fig. 138 For ©y = 2 0.02 and tve Beymelds sunbers. The espiifiestien rete - 13 expressed as
. s ratie te the Blasive value (o)) It will be recalied that with & o 0, g(y) o £'(3}; and the velosity

o prefile resains tde Blasiue Muu for all flow angles. The effect s wa=serv llov angle with 8, 4 0

is dostadilising for s foveradle pressure gradient, sod stadilining for an adverse presaure gredlient,
i Conseguesntly, it reduees e pressoure-gredicsat offeat of 20 Faliner-Skpa douadery layers. The reasce for
4 this resuit 15 casy te usderstand by reference to 84. (13.10). Ve have already peinted out 15 Seetios
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13.1 that the apenwise velooity profile g(y) is always close to the Blasius funoticn, Thua as the flow
angle increases from gsero, the amplificstion rate must change from the two-dimensional Falkner-Skan value
st “a 0° to s value not far from Blasius at fs §0°,

As d1scussed provicualy, the only physically meaningful flow with s 90° and & non-sero Reynolde
number 1s the sttaschaent-line flow (i, « 1.0}, For sli other values of i), R at this flow angle must be
either zero (¥, > 0) or fnfinite (B, ¢ 0). With ¢) s 1.0 and R s 106‘0 (k= 808.2, where R, is the
somentun~thiokness Reynolds nuaber), u/(' ) = 0.766. The sinimums oriticsl Reynolds nuader of this
profile 18 (R,).. = 268 (the nmlol—dov l;bu?ﬁ'. value is 201), yet turbulent burats have been observed
as lov as R, = 250 for small diaturbances by Poll (1977).

¥ must atill show that the waves with us 0° properly represent the saximus instadility of three-
dimensional profiles with small orossflow. For this purpoge s calculation was made of ¢ ss a function of
.for vy = 0,02, " » 45% R s 1000 and 7 = 0.8256 x 1077, the most unsteble frequenoy for y = 0° at
this Reynolds number, It was found that the orosaflow indeed introducea an saymmetry into the
distribution of -~ with \, and the maximum of " 1is located st V= «6.2° rather than at 0°, Bowever,
this maximum value differs from the ", . of Pig. 13.3 by oaly 0.7%.

13.3 Boundary layers with crossflov instadility only

The main advantage that the Falkner-Skan-Cooke bDoundary layers offer over the rotating-disk boundary
layer for studying orosaflow instadility i{s that the maximus crosaflow velocity 1s not oonstant, dut is &
function of r, and . Ths ocrosaflow velocity ia s maximum at s 85° for & given 2,, and we can expect
the croasflov inatability to slso be & maximus neer this angle, Figure 13.5 shows Ju sinisus oritiocal
Feynolds nusbder l" st s 45° for the sero=frequency orossflovw disturdsnces as a function of B‘h' Por
comparison, R . for Tollmien-3ohlichting waves in 2D Falkner-Skan crossflow boundary layers, ss co@puted
ty Wazzar et -L (1968), 1i» alao given. For adverse pressure gradients, the steady crosaflow disturbances
become unstable at Neyuolds numbers well adove tbe R.,. of the 2D profiles. Oa the ocostrary, for i, > 0.07
the reverse is trus, and for sost pressure gradients in this range the stesdy diaturbancea become unatadle
at auch lover Reynolds numbderas then the 20 Rep (for fy = 1,0, the 2D R, e 19,280 compared to 'or s 212
for zero-frequency croasflow instadility).

The distribution of Rop with 19 shown ir Fig 13.6 for ;) = 1.0 over the ooaplete range of “, and
for the separstion profiles (r) « -0.1988377) over the range <n <50°% Mear " = 0° and 90°, R . 1
very sensitive to . ; near, but not precisely at, ~a A5° l" has 8 aininua. Tois sinimums ococurs close to
the maximum of the streasline deflection engle at y e ¥ ‘yap {see Tabdle 13.1), which, unlike Vaax' 19
not symmetrical sbout "= 45° Table 13.2 lists the orlt csl vave paraaeters for a few combinetions of
and ., The extensive computations needed to fix these paraseters precisely were mot carried out in nue
cases, and 3o the vaiues in the Table are 2ot exact. It can De noted that the relation

.. (:‘h/ ‘n ) (90~ . ‘“) (13.16)

gives . to within m degree for the separation profiles, and to within 0.1° for the other profiles of
Tatles 1‘9‘:1 and 13.2. This recull holds in general for the soat unstabie wave angle

TABLE 13.2 Weve parameters at ainimum criticsl Reynolds nuaber of
zoro=frequency disturbances,

‘n o Ror Yor *or

b 44 2.2 53% 0.21) -89.81
5.0 3 0.21} -88.68

10.0 121 0.21% -87.08

80,0 8.5 0.2% ~83.5

4.6 .7 0.2% -03.57

50.0 M. 0.23 ~43.50

0,10 85,0 216 0.29 ~88.42
-0.02 8.0 1888 0.310 -59.18
0.02 45,0 F13) ] 0.322 .7

¢.08 45.0 129 c.37 9.9

0.10 4.0 sn 0.3 8.9

0.20 5.0 328 0.358 .12

1.00 2.8 7% 0.%%) 83.60

10,0 M 0.987 4.3

80.0 ane 0.948 84.88

45,0 mn2 0.%5%0 .70

%0.0 212 0.5 .1

$5.0 ne 0.538 Nn.»n

6.0 %) 0,932 $8.00

7.6 2328 0.932 ”».N

As an exemple of & douadary layar whieh 1o vastadle at lev Beynclde asader saly aa a resvll of
ecrosaflev fastadility, ve seleet ﬂ‘ » 1.0 and 5= 43%, and preseat resuils fer the senplete raage of
uastchle freoquaneios. Altdeugh thie pressure gradiont cas oaly ceeur at 08 stlasheoest line, Pig. 133
icada us Lo sapoet that all prefiles with a stroag faverndle presewrs gredieat will have aimiler results.
Tor Lhis type of profile, the sinisus eritics! Beysslés aumber of Lhe lsast stable frequensy 13 very slese
tothe B . of Pig. 13.3. ¥e therefore sheoose N o 80Q, vh.oh $0 vell adave B__ 504 wvdhore the 10atabliitly

1 fully Geveloped, ond pressat a sumsery of the 1astebility sharseteristies ia Pig 1LT.
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Figure 13.7s gives . as & funotion of the dimensionless frequency P, and also shows the portion of
the «~F plane f~r which there is instability. The unstable region is enclosed bdetween the curves merked
v end v Theas ocurves represent either neutral atadility points or extress of v. The corresponding
wavenumber sagnitudes are shown in Pig. 13.7b. The negative frequenciea sigaify thet with y taken to be
contiauous through F « 0, tha phasa valooity ohanges sign. If wa choose v 80 that the wsvenuabder and
phass valocity are both positive, then it is  that changes sign at F s 0. Consequently, there ars two
groups of positiva unstable frequencies with quita different wave angles, The first group, whioh includea
the pesk asplification rate, i3 oriented anywhere fros 5° to 31° (clockwise) from the direotion opposite
to the crossflov direction. The second group is orisnted olose to the crossflow direotion itself,

13,8 Boundary layers with dboth crossflow and streamwise instadbiiity

As an example of a boundary layer which has both orcsaflow and atresawiss inatsdility at low Reynolds
nusbars, wa selsct ;= «0.10 and = 45°, In contrast to the previous ¢csse, the steady disturbsnces do
not becoms unstadle until s Reynclds numbder, R ¢ 276, the peak amplification rate 1s already 7.35 x
10°3, {ror 1y, = ~0.10 and - s 0°, ‘aax * 110 x 107 at P » 2.2 x 107 nco‘dlu to Vazzan et al.
(1968)). The distridution of : with q. is Povu in Pig. 13.8 for 7 » 2.2 x 10", a frequency close to
the moat unstabdle frequency o ® » 2.1 x 107", Wa see that with a maxisus crossflow velooity of 0.0389
(ef. Table 13.1), the distridujion of ' about Y e 0° 1s markedly asysmsetric, asd the saxisus
amplification rate of 7.31 x 107 19 located at vs -29.4° rather thas nesr zero. This saymmetry was
barely perceptible for the smsll crosaflow voundary lu!n of Fig. 13.8, wvhere the crossflow ia oaly coe-
s1xth 39 large. The st ,s 0% of Pig. 13.8 (5.82 x 10°7) 4 close to ax Yith respect to frequescy of
the .« 0° waves (5.91 x 10°3). Since this value 1s 208 dolow the pesk amplificatioen rate, thev = 0°
waves are no loager adequate to represent the sazxisus inatsbility as with asall crosaflow boundary layers.
rig. 13.0 slao gives the distridbution with v of k and the real group-veloeity angle, 0,.. The latter
quantity remains within % 7.5° of the potemtial-flow direction throughout the unstable rejion.

Becosuse N s 276 i3 the ainimum critical Reyaolds numbder of the ateady disturbdanors, the unatable
region tersinates in s weutrél ctability poiat at F = 0. ¥e are particularly icterestzZ berse in Reynolds
nusbers where F = 0 18 also unstadle, and as an a2zasple, Fig. 13.9 gives reaults for sll unatsbdle
frequencies at R = 555, Figure 13.9a ahows a‘ a8 » funotion of I (here, as in Pig. 13.7, ‘aax 10 the
nazimus with respect to k), as well as the uns “h region of the k-F plase; the unstable region o'f the v =
F plane appears in Fig. 13.9b. Thase two uaatsble regions are quite different froa those of Fig. 13.7
where there is only orossflov iastability. The negative frequeacies ¢o resemdle those of Pig. 131.7 in
thst the unstadle range of v is ssall, the uastable range of k 18 large, and with i redefinsd ac that ?
> 0, the orientstions are close to the orcssflov directioa. Novever, for Lhe higher frequescies, which
sre by far the sost uastebdle, the unstadis regiona of Fig. 13.9 dear nore of a resesdlance to those of &
2D boundary layer than to Fig. 13.7. The sain ¢ifferences froa the 2D case the asymsetry about i » 0°
a)ready noted in Fig. 13.8, the cae-sidednens of v ___, and, for F ¢ 0.8 x 1077, the replacemest of a lower
cutoff frequency for imstadility by a repid abift with deoreesing frequescy Lo waves orieated opposite to
the crossflow direction and whioh are unstable dowa to serc frequeaey. The iastadility shown ia Pig. 13.9
represents prisarily aa evolutios of the saall flow bousdary layers of Fig. 13.8 to larger crosaflow.
Only the lower frequeacses, say F < 0.2 x 107", hava to ¢o with the pure ocrosaflow instadility of Pig.
13.7. For frequescies near 0.0 3 1077, varies little with k 1a one part of the usatadle regioa, &»
with crossflow imstabdility; is the other part, 8 vitlh streasvise iastadility, the opposite 15 true. This
behavior becnBes Bore proacvaced at high 7 ,mo0lds auabders.

14, TRANSOBIC INFPINITE-SPAN SWEPT WING BOUNDARY LAYER

The 3D boundary layera lhat have received the noat atteatien ia serctsutiscal prestice are Lhose oa
tradsoalc svept winga. The desiradility of satataining lasinar flovw oa the vioge of lerge tramsosnic
sircraft has led to the study of the fastadility of sued deundary lajyer as a neasns of estimsting the
cceurreace of tranaition and the effectivensas of varioua sstheds of lasinar-flow eestrol. The Basie
phencacaca of cresaflev imstadility wes cassustered and 1ts origia eiplatioed b7 the early iavestigatere,
88 ve Bave jearsed 13 3ec0tios 12, and neans of coplag vith 1ta adVerse ConseqUeN0es were ¢sveloped.
Sovever, imterest (s lapimar-fiow costirel wed waning b7 the time woaputlor-aided stadiliiy asslysis teseme
conmespiane 10 the 1940%, and nothiag mere vas 6one o8 the audjeot of 3D deuandary-layer atadilitny
following Brewa’s werk (1959,1960,1941) uati) the esergy orisis of the 8l1¢-1970'a. Ia response L0 the
Suddon noed for s atalysis tee), Srokovaii and Orssag (1977) Provght out Lhe JALLY ecde. Ia splte of
weing the imocpressidle stability theory ond a mooa~-phiysicel wetdid of ccaputing weve asplitude, LRia code
has deon widely used. It has sines Boos superveded By COSAL, o sompressidle version of SALLY [Mslih
(1962}). Vert that was 2irested st Gevaloping sere Nuadanests. Setdode of atadility asalyeis fer svept-
ving bowsdary layers was carried sul by Codwel ond Stevariana (1980¢,19000), Lebowudis (1979,1980), Meck
(1979a,1981), ond Naylfeh (1900e,19000),

Stienting has 00 far dues restirieled to iafinita-szes swept vwiags. 0Bvea with thia sisplifieetios,
Lae nossinliarily of the boundary leyors has asée 't 29008027y 10 precesd os the Sanis of specifie
ssseples, ans o Lry and gless o guoerel wnderetandiag of e 1astadilily of tais type of bowndary layer
e e basis of ertemmive meorissl esslouistions. Ve shall fellow hie sane preeslies ia this Seetiea
Dotatied minerical resuits for & single szamplzc thet vere oltalned by aa applicetios of metheds alreagy
preceated ia thin Gocunoot {Maok (1979a)] are givea 1a Lhe hope Lhat ¢ sareful atudy will yield some
understanding of the 1aatadilitios Lhat arise ond the preocodures te fallow is amalysing thea.

18,1 Meas denadary lager

™he fiou esaspie weed $a this fcetien 1o 10e douadary lager o0 a Y5° owept wing of 1afiaite spes wila
8 swpereritical airfell seelien, diotriduted suctica and s shord of o « 2.0 & (6.93 £t) sersal te the
lesdiag o6ge. 150 wadiasturbed flov conditions are it » 009117, T2 o INI®E, ans 00 o 0.3C44) atn. The
wpper-surfoee pressure mfrulut.l: i lluo‘}- Tabie 18,1 tegether with other preperiieos of the
peteatial flew as fusetions o'f ® .IP. m»m 8 10 the are leagth aleag tde airfeil seetioa. ™
ogegeipats syatqp Sa shoua o Pig. 0.4, Seyanlés suader w is stad y caloulations 18 8 ¢
B,L/-, vhere lz'n e potaatial velectity, The leagth seale l o (»:'.:.If"#”

reduees to the wisal
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boundary=layer length aen%o 'uho‘l the flov s two disensional, and is nop=-sero at the attachmant lime. The
Reynclds nuaber Re 18 U)a /v). The velocity derivative which defines m and thus the Hartree Bh vas
evaluated by the numeriocs)l differentiation of U, ss caloulated fros the presaurs coefficient. The very
large ~ i} necr the trailing edge have been omit from the Tabdle.

Tadble 18,1 Properties of potentisl flow

IS " ¢ ty ipldes)  107Sme, " 10 L%(cm)
1 (] 0,8859  0.7652 1.0000 55,00 0 2 0.0560
2 0.0011 0.293% 0.7527 0.9770 45.23 0.009 228 0.0560
3 0.0033 0.542% 0.6680 0,9306 29.26 0.028 225 0.0%93
z 0.0059 0.6261 0.51%1 0,875 16.96 0.056 301 0.0632
5 0,0087 0.7186 0.337%  0.7798 8.9% 0.091 358 0.0682
6 0.0120 0.8033 0.1715  0.6721 3.91 0.132 412 0.0747
7 6.0187 0.8806 0.20%1  0.6000 0.82 0.180 470 0.0818
[] 0.0199 0.9807 ~0.1104 0.5300 -2.06 0.23% 529 0.0096
9 0.0286 1.0008 <0,222% 0.4759 =3.90 0.296 588 0.0978
10 0.0299 1,062 ~0.3206 0.435% -5, 38 0.3)3 687 0.1068
" 0.0358 1.1095  <0.8081 0.3900 -4.36 0.437 105 0.1153
12 0.0492 1.1863  -0.5338 0.297% -8.06 0.608 823 0.1339
13 0.00%1 1.2306 ~0.60% 0.1583 -8.97 0.800 9 0.153%
n 0.0938 1,2062 -0,629% <-0.0137 -9.18 1,152 1N 0.1881
1% 0.1284 1,202 <0.6201 -0,059% -9.03 1.573 1323 0.2152
16 0.167% 1.2316  <0.6066 ~0.0558 -8.87 2,056 1515 0.2062
17 0.2113 1,2238 ~0,5983 -0.0%18 -2.7% 2.595 1701 0.2767
18 0.2991 1.2100  <0.5050 -0,00%9 -§.68 3.182 1884 0.3065
19 0.3101 1,2126  <0.5765 =0,051% -3.5% 3.809 2083 0.335%
20 0.3636 1.2070  <0.5676 -0.0T) .85 8,067 2238 0,334
21 0.4190 1.1990  <0.5%44 <0,131% -4.% 5,186 2800 0.3903
22 C.A754 1.1868 <0.5339 -0.220% -8.06 8.838 25%9 0.8162
23 0.5132 1.1762 <0.%172 0,220} ~7.86 6.300 2661 0.4329
b1 0.5508 1,170 <0.5076 <0.12)" «1.7% 6.761 2158 0.02088
2 0.5882 11663  -0.%008 -0,1882 -7.67 7.218 2850 9.8640
2 0.6250 1.1558 -0.0031 -0.062% ~7.88% 7.666 2940 0.4788
n 0.6610 11019 0,059 -0,667T -T1.17 8.101 3027 0.4933
28 0.6902 1,127 <0.4320 -0.978% -6.82 8.521 3109 0.5074
29 0.7302 1.1058  <0.3976 -1,802% 4.3 8.919 3108 0.521)
¥ 0.76 1,082 -0.3%68 -2.842 -5.83 9.293 3262 0.53%1
n 0.79% 1,053 -0.3000 - 5,16 9.638 3313 0.5490
3 0,828¢ 1.0229 -0.238) - 2,29 $.93) 3399 0.5636
1) 0.8832 0.9820 <0.1132 - -3.12 10.172 3061 0.5799
1] 0.8803 0.9%6 -0.087% - -1.6% 10.30 3519 0.5982
13 0.90%9 0.09060 =0.0094 - 0,18 10.479 7Y 0.6169

Table 132 lists scee properties of the Vumry-unr solution caloulated for the poteatial flow of
Tatle 18,% ane the suclion distridution co(- ) given 18 the laast coluan. For comparisen, the profile
parametors of an isaulated flat-plate doundary layer with no suction at N, s 1.2 8rey o 3.05..14 s
2.31 asé ¥ ¢ 394, The saziaus croesflow ia ¥W_ o =0.115, and 1t ocours st station M o A (0 /78 o
0.0089), This valus s virtually idemtical to tu sasisus possible ercssfiov geaersted Dby the Faliner-
3uas-Cosks prof1las of Sectios 1), where ¥ _ . ¢ <0.119 for -, o 1.0 a0d , o, @ 8%, ilithough the
preseyre. gredisst first bescass sdverse et s N2, v .. eoes 2ot change atge wetii’N ¢ 21, Por B o 19 to
2% (s /¢ o 0.920 to 0.629), there are two inflection ate 18 the cresallow velooity profile. Up to B &
20 (8 /o o 0.3608), ¥ has the sade 2ign ot uv fleaties points] for N > 20, ¥ has opposite aigas.
There 1o reverse creeaflow from ¥ » 17 to 27 (0 /0 s 0.211 te 0.661). The angls .. is the angle of the
veloaitly veelor at the  of the ialieetios peint of the cressflow veloeity prefile. Whea there are twoe
1aflectice points, the listed 1 ta Jor Lhe suter poiat whea Iw C 8, and for the laner polat whes U.u >
o.

14,2 Cressflow 10etadility

Surprisingly Jittle croasfiow is required fer crossflow lastability te eecur. Fer szample, It ves
found with the slailar Dousdary layere of Sectien 1) thet for . . o 2 302 and ., Lo, 242 (the angle
+hat gonerstes the Ral10us crossfllev for a J1veR prosaure ;n’un). the uu‘ul yoelds avaber of
oressfiov 1081adility for Sold beundary layers 10 elese Lo 1100 oven Lhoueh ¥, . 18 caly abewt 0.48.

Pigure 13,0 gives & qoaparises of the distridwiles of the enpliftiestiss reate ' vilk Lo sagnitude
of Lhe vavesumber veoter I 45 ssaputed at § s 3 fres Sold the ineesyressidle and un‘-m ssnpresaidlie
stabliityy tee. It 1o evidest t’» the lasoapressible thesry gived recssnsbly geed resulls, with -
© 7.50 3 1077 conpared 1o 5.39 1 10°) free the seaproqpidle Lhesry, & €ifferesse of 10.05. The oignli-
erder ccapreossible equatiens glive ses * 6,90 2 1677, o €ifforenve of ealy .28 Fres Lhe nisth-erder
s7eten. Comsmquently, there i iittle rsnm to uwhe the oightherrdar aystan, 08d for & geterel otady of
aressfiow 1metadility aser the lusding odge the i1nscapresaible theery is stegwete.

The angle + of the vavesuabder veoter oo sonpuled frea Lhe 10000pressitlie Lhesry is aloe shova 10
Pig. 10.2. Almest 1desiical resslis are gives by the cotpressitie Lhoory. The sarrev bendulcth of
wistad)e and wide beaduidth of wantedls b 15 charestoristiiec of sresaliov i1astadiiity. The sharpsees of
the aaguler tualng® fmerestes a8 the ervesliov Susrenses. Tor emample, ot £ ¢ 17 where ¥ o <0000,
the :nnuu of vastable ¥ 1o aboutl 0o 3800 88 38 Pig. 0.2, Put the Danduidtdh of wasta v o omly
0.18%,

|
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Table 14,2 Propei-ties of msan boundary layer

' ve yie " ® Vaux ¢, (deg) 103¢q

1 3.0a7 1.0800 2.693 239 0 0 ]

2 3.00) 1.0428 2.603 23 0.0808 -1.977 [}

3 3.891 1.0187Y 2.538 b1 -0.093% 4,362 ]

) 3.950  0.9914 2.506 299 «0,110% ~5.1802 0

s 3.9%  0.9511 2.480 338 0.1116 4,857 0.73%

¢ 8,017 0.9372 2.513 386 -0.098% -3,198 0.700

7 4.115  G.9819 2,614 862 -0.00866 =3.694 0.630

(] 8,218 1.0211 2.639 L] -0.0783 ~3.203 0.530

9 (P TY] 1.092¢ 2.187 682 -0.0717 -3.004 0.3
10 8,078 1.1590 2.870 749 0,0669 -2.79% 0.290
1 8,632  1.2088 2.97% 879 -0.0633 -2.632 0.163
12 4.900  1,.3860 3.106 1N =0.0568 -2.3M 0.135
k) 5,141 1.5201 3.229 1138 =0.0408 -1.943 0.123
n 5,082  1,.7008 3.352 1924 «0.0337 =1.317 0.18)
15 5.638 1.8190 3.399 2395 -0.021% =0.840 0.3
16 5.709 1,830 3.3 2176 «0.0180 -0,520 0.183
17 5.732  1.8292 3.348 N2 <0.0098 =0.349 0.143
18 5. 721 1.8030 3.308 1397 «0.3065% 0,202 0.183
19 5.706 1.781% 3.287 %75 «0.0046 -0.170 0.143
20 5.605 1.7603 3.24% 3938 «0.0031 «0.117 0.143
2 5.60% 1.7608 3.270 8226 0.00%9 0.273 0.143
22 5.701 1.71%4 3.2719 53 0.0113 0.637 0.143
3] 5.708 1.7823% 3.200 TR} 0.0148 0.8%1 0.143
2 5,623  1.7076 3.188 8709 0.015% 0.85) 0.21%
e 5.39% 1.6023 3.019 4567 0.01%% 0.81¢ 0.288
F 5.3%9  1.5099 2.9 (Y17 0.0191 1.01% 0.370
27 5,217 1.%001 2.090 238 0.0291 1.478 0.490
28 £.028 1.2608 2.770 3988 0.0309 1.8Mm 0.610
29 8827 1.1350 2,650 318 0.0369 2.281 0.75%
» 8,608 0.9%64 2.523 3250 0.0332 2.601 0.930
3 4.352 0.6 2.%09 209 0.0498 2.91% 1.090
32 8,205 0.7¢M 2.317 200 0.0579 3.an 1.21%
1" V062  0.693} 2,208 F31,] ©.0690 8,100 1,300
n 3.952 0.6 2.112 2% 0.0816 (WY 1.300
] .08 0.5700 2.0 2045 0.0912 $.3% 1.45%0

It 10 of isterest to acte that the amgle , s 84.8° at the sasiwue caplifiestion rate e slmost
fdentical to the aagle 90 - '« (e 88,9°), whare tg 15 the sngle defined 1n Seetloe 13.1 aed 11sted teo
Table 14,2, The near eguality of these twe angles has deon foued to be true Lo genersl for oroesflow
instability so loag as 90 - ', 5; given the aign of V__ . ¥heo there are tve fafleotice points and ¥
nes the same sigs at esch (15 SN S 20), 1t te the outer POLst, wbere DV 10 & Sazimep, that 18 aigaifisent
for tnatability. Vhea ¥ hae oppoaile signs al the tvo infleotion potata (213 N 3 2¢), Lt 10 the fnaer
poiat, vhere DV 17 & sinjues, that 15 aignificanst, The above cotvealent relation detvesa v and ‘e saked
it sasy Lo compule an 12it1s)] eigeavalue for srossfllow fretabllity.

The real and ipaginary parte of ¢ are also shevwe ia Fig. 10.2. The real part, 3., bas the same siga
as I.“. and ¢, at h.“, the vavenusher for sesins anplifiestiion rate, 1o proporticasl to ¥ . M
| . 88.67.  Purtder dask ot the wing, this difference sppreashes 90° ss Lhe oresaflevw

. L]
ah!unn. The isagirary part of 4, igs reversee aige at the poiat of ssainue smplifiestios rete, o
behavior thetl 10 true ot all statieas.

Although ercesflow 1atadility bas dyea dsliamd a8 Lhe esleterce of wastable steady distwrbanses, o
whole band of frequeacies Secanes .astladle at sdowt Lhe 248 oritical Beyaslies amaber, Pigure 14.) giwee
' a0 & funetioca of F ot B ¢ A as calouviated frea Doth Lhe Lnecaprescible and elsth-order scapreseidle
thoories for & » 0,520, the of ¥ = 0, It Lo apparoatl that offoet of compreasidiliity 15 sbeul the

sane for all frequansiod 4o for 7 « 0. The values of 3 107 for & & 0.320 aret issempreasible, 8.91;
elsth-arder coapreasible, 8.00; eighthd~order mxiﬁ! 7.90.

There are both poeitive oad negetivyg vastable frequencios 18 Fig. 14.3. The segative frequeneiss
0iuply veas thatl with the direetien of h dolfined by (he veluee of 3 sdheowe ia the Ffigurs, the phase
velocity is megative. If, Sastesd, the dircetion of § 2ad Doos ¢afined $a t2e usnal 3anser Lo bo the
direetion of the phase velecity, Lhore would Do twe greups of positive uestedle frequencies. Por Lhe
positive froquencios of Fig. 0.3, ¥ 15 within 25® of the directioa eppeeile to Lhe erssefleow; for the
amgative frequessies, b 1o withis §° of the direstice of Lhe sressfiew. The sigh esavestica of Pig 183
has booa odeplasd a0 thet the 1 9tability wiil alveye be aseeeiated wilh & pesitive freguasey, ond

tats sscatandard Sefintition of § 10 weed Dare, as 10 Boetica 13.3, Lo sake L saaier Lo plol the sumerieal
ressits.

mu\-tuuamgmum 1.3, The dincasicanl fregquesny serreapoating
teF e 2.0 210" to 97.0 ban, and the nostl uastedle fragusasy 10 odout 17 kha. The uwastadle daaduwidin
wesnes Bush aarrewer fNurtder Govestreas 20 botd the ereesfiow sdd sazisus amplificatiss rete éoereass.
It wes found is Mesk (19790) that far o boundary layer with crossflow lantability ealy, Rpey 000 20t vary
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such with frejusncy for F > 0, Por F < G, knu does change with frequency. It is estimated from Chap. 13
that the unstable ragion of negative fraquencias at N » & axtends to F « =1.5 3 107" with y = 92°, and
thet the maximum aaplification rate of the wave with k in the orossflow direction is about one-half of
that for the steedy disturbance.,

As ocrossflow instability is sn exsmple of infleational instability, !t is possible to deduce
sometting about the stability oharacteristics from the location Jof the inflsotion point of the relevant
velocity profile. It is not necessary for this purpose to consider the gensralized inflection point of
ths compreasible theory whioch is 1ittle different from the true inflection point at transonio Maoh
oumbers. The relevant velocity profile is the cne ir the direction of k. PFor the most unstabls stationary
wave (. » 84.8°), this profile has reverse flow, and the infleotion point ccours almost at the zero
velocity point in socordance with the thuorg of Stuart (Gregory et al.(1955)]. Inflectional profiles
exist for v both greater and less than 84.8”, The sign of the mesn velooity at the infleation point
determines the sign of the f{requency (except very uear F s O because of the iinite Reynolds numbder), The
profiles with V> B4.8° give the negative frequonoies; ihe profiles with ¥ < B88.3° the positive
frequennies.

14,3 Streaswise instadility

Along wiih oropsflow inostability, which is particular to three-dimensionsl boundary layers, there are
alto inflectional and visoous instebilities whioch are more like those of a two-dimenajonsl boundary layer,
tut with modifiocations due to the crossflow. This type of inastability will be oslled stresmwise
irnxtability, and it refers to all instabilities that are not sssoocialed with a direotional velooity
profile of the type of the crossflow snd reverse-flow profiles,

Aa suotion ia more effeotive st ocontrolling streamvise than crossflow instability, only the lattar
tnstability is present over IN} o; the wing chord in the present flow example. The region of streamwise
ingtapility starts at N s 14 (a/c = 0.094), acocording to thy ogmpressible theory, and extends to X = 25
(s 70 = 0.588). Some stadility characteristics st N = 15 (s /0 = 0.128), where the edge Mach nucber of
1.26 is close to its maximum value, are shown in Pig, 18,3, Pigure 14.8a gives the distributions of ax
and F with wave angle from the incompressible snd sixth-order compressible theories. The orourrov
instability region (> 80°) 1s not shown. The crossflow (¥ az* -0.0215) hes introduced an asymmetry
into the distridutions, but otherwiss the results reseabdle u‘nf sight have been expected froms sasuming
that 2D results oould be spplied to 3D boundary layers. The two maxims in the amplifiocation rate of the
compressible theory contrast with the single maximus of the incompressible theory, and are in ocomplete
accord with 20 astability theory at My s 1.28,

The reason that Fig. 14.0a resemdles the results for s two~dimensional flat-plate boundary layer with
no suction fa that the shape factor H at M = 15 1s almost the same as for suoh a boundary lsyer at the
same Hach numbder, snd the crosaflow is not only small, but still in the direotion sssociated with a
favorable pressure gradient. The two {nfleotion points of the directional vslocity prufiles, which exist
for =90° ¢ .¢ -60°, are unimportent except near ; = -90%, decause o0no is looated near the vall snd the
olher st the edge of the boundary layer. Consequently, what Fig., 14.0s shows is yianous instadility, just
a: for a filst-plate boundary layer st the same Mach number,

The maxisum amplificetion rate with respect to vavenumber s shown in Fig. 14,4b as & funotion of
frequenny for both orcesflow and atreamwise inatability. It 1s evident that the incompreasidble theory
gives 5 tolally misleading result as to the importance of streamvise instability at this station, The two
naxims of Fig. 14,43 are shown by tvo separate curves, The orossflow inatability has the same general
festures ss at N s &, dut with an unstadle frequency band cnly about one-seventih as wide {af. Fig. 14.3).
Also the correspondi v are much closer to 90° for both positive and megative frequencies: B81.8°% ¢y ¢
69.8° for 7 > 0; 69.4° ( vC 90.4° for 7 € 0. It might also be observed that for we $50°, the mazimua
amplifiocation rate is about one-half of its F = O value, as surmised for ¥ « &,

e ters atreanvise instsdility oovera auch s wide variety of pou:bu;tl.c that it is vorthwhile to
give an sddaitionsl ezample., Figurs 14,5 is the counterpart at ¥ = 23 (8 /0 s 0.513) to Pig. 10,4, it
this station, the arcsafiow over the fnner two-thirds of the dboundary layer baa reversed, but is even
smaller than at M = 1% (v. s 0,0113), The adverse pressure gradient is larger (8. s =0.22), but because
the suction 1s also larger t‘cn is still no iaflection point in the streamvise velocity profile.

It 18 seen from Fig. 18.5s that the waves with +vC 0 are much more unstabdle than those with > 0
even though the mazlaus crossflow s positive. The reason is that for ¢ ¢ =30° the direotional velocity
profiles have infleotion points well out in the boundary layer (e.g., at U s 0,30 forvs =70°), &
significant ¢ifference between Fig. 4.5 and Pig, 4.0 43 that the secoth ¢ curves of the former do not
persit a olear uutmuut to be made detween crossflow and streanvise 1u'&uuy. The frequencies nsar
serc (say, 7 € 0.08 x 107") have the characteristies of orossflov tastability (wide band ‘r wnstable
wavenumbers, narrov band of uastable angles); the larger frequencies (say, F > 0.12 x 10°") have the
charscteristios of streansvwise inatability (narrov dand of unstable wavenumbers, wide band of unstable
angles). The intermediate frequencies, imscluding the most uastable, have the characteriastiocs of
atreasviase 1aatadility for a parrov dand of ssall vaveaumsbders, and of orcasflov iastadility for a wide
bund of larger wavesusbers.

The effeot of compressibility is large and sisilar to that »2 ¥ s 15 (Fig. 14.0) in the streanvise
inatadility region, and is alec a §ood deal larger in the crossflovw imstabdility region thaa at either ¥ e
& (Pige. 14,3 and 10.0) or N & 15, Iadeed the peak amplification rate of the incompressidle theory
differs by 215 from the sixtb-order compressible value and the ocorrespoading vave angle by 15°, whereas
the saxisus imcompressible aspiification rate of the steady disturbances 1s in error by 205, The lattar
difference deocresses furthear beek oa the wing 85 33 ampiifiocstion rete imoresses (%o 138 at ¥ = 35), but
318 alvays larger thaa in the megative orossfiov regiom oa the forvard part of the vwing

It 18 Laportast to mots the narrow bamdwidth of uastadle frequencies ia Fig. 10,50 compared to Figs.
18,40, and 18,3, The largest unstadle frequenocy at ¥ » 23 is only 5.2 khs, and the most uastadle
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frequency is 2.9 khs. Consequently, almost all unstable frequencies that exist upstream of N = 23 cannot
pereist to thia station ss amplified waves even when they are kinemstioally possible.

18,8 Wave amplitude

The wave amplitude rather than the locsl smplification rate 1s what 1s of interest in transition
studfes. In this Section, the frrotationslity condition on k will be spplied to the csloulation of
amplitude ratics of single Pourier components. The SALLY stability code of Srokowski and Orszag (1977)
calouletes 1n(A/A,) by whet is ocalled the envelope method, i.s., by integrsting (v_.) sloag the
trsjectory defined by the resl part of the group velooity. As a result, the nplundoﬁ'lﬂ:?o inocressee
monotonically to the end of the instability region. Here, s band of fnitisl v-nnu'bo‘- with the same
frequency 18 folloved downatream starting at the first unstadle ststion, ¥ = 3 (s /o = 0.0033). The
resulting smplification rates for seven fnitial wavenumbers with tero frequency are shown in Pig. 14.6 ss
computed from the incompressidle theory. The 1isted initisl vavenumbers sre thoae at X = 3, For
ocomparison, a portion of the "1 s 0.35 curve as computed from the sixth-order ocompreasible theory is also
shown,

FPor R < 1000, the 4ifferent i{nitial wasvenumbers in Pig. 1.6 sot suoh like different frequencies fn s
2D boundary layer. The lower the initis]l wasvemumbder, the further downstreaa is its unstable region, For
R > 1000, e rather different pattern is apparent in Pig. 8.6, The initis]l wsvenumber of the wvave
component wkich has the maxisum amplification rate at a given station becomes s elovly varyiny funotion of
Reynolds number. In other wvords, s eingle Fourier component is nearly the moat unatable over s wide rangs
of Reynolds mumbers. It is this pattern that prevails in the entire rear crosaflov instadbility region,
There the vdve component with kg = 0.35 ot N = 21 (Rs 2800, 3 /o = 0.319) is the moat unstadle from R s
2600 to at least R = 3570 (s /¢ = 0,906). Consequently, in this region the procedure ve ere using here
gives the same result for the amplitude rstio as does the SALLY code.

The lnu/lo) values that correspond to the amplification rates of Pig. 14.6 are shown in Fig. 14.7
for six Fourier componsnte along with the result given by the SALLY ocode (computed by Dr. A Sro nv).
The present method gives a peak in the envelope curve, lnu/lo) ax Y8 R, st about Rs 1200 (8 /0 =
0.128). . ln.oonv.rnt, the ourve from the SALLY code continues to rise to s value nf In{(A/A,) s 11,2 at R =
1880 (a /0 = 0.2599). The peak with the irrotationality condition is a oconsequen.. of following Fourier
components from a more unstable region to s leee unstsdle region, snd csb slso be encountered i{n 2D
boundary layera with laminar~flow control.

Two sdditional curves included in Pig.18.7 give 1n(A/A,) for k, = 0.35 ss computed froms the aixth-
and eighth-order comprassible equationa, The pesk ln(A/AOPor thn‘huor ie adout 6,9 compared to 7.8
from the imcompressible theory and 11.2 from the SALLY program. Consequently, the method of integrating
the maximum amplification rate overestimates the poak amplitude ralic dy over 70 times.

As both Figs., 148.3 and 13,40 show tRat a non~zero frequency has the waximus asplification rete for
crcasflov instadility, it 12 aiso a non-2ero frequency 2hat gives the maxisum ssplitude ratio, The
posaible importenco of these frequencies {2, however, counteraoted by the narrowing of the unatadle
frequeacy bancdwidth in the downzi;eam direction. The ruuli 1a that st N » 15 the frequency with the
naximum aeplitude ratio is the low frequency F = 0,05 x 10" (1.8 khx), and the peak 1n{A/A,) of this
frequency ia only 2% larger tham for terc frequency., Of courase, larger differencea than thie exist
upstreas of N = 15 where higher frequescios are atill unstadle,

At station N » 35 1in the rear crosaflov instabdility region, the amplitude rstio 5f the most unstabdle
zero-frequency vavs component, k, s 0.35, is 6.54 according to the imoompressidly thecry, s result slmost
1dentical to the SALLY value of 1 s 6,86, However, compressidility cannot be neglected ip thia region as
it vas 1in the forward instsbility region. The aixtb-order compressidle theory gives 1n(A/Ag) o 5.2% st ¥
s 3% thus the incompressaible theory overestimstes ln(A/lo) by 2%%.

Stresmwise inatabdility 15 iimited to the reglon Yrom N s 15 to 2 s 25 (8%7¢® = 0.588) snd 1eads to
sesller asplituds ratics than does orossflov 1nstadility. As these veves trevel downstream, their wive
angle , remains very ciose (within about 1°) to fts iagtisl value, in contrsst to ths crossflow
disturbancea which are required by the dispersion relstion to keep '.?xr angles within the narrov band set
by tae profile angle ‘4. Mcoording te Fig. 1445, ¥ « 0.375 x 10" 1e the most unstedle frequency for
streamwiase instability st K s 14, FHowever, thia and the neighboring usstable frequencies damp out quiokly
in the . downstream ur'to of. The fregquencies whica give the largest raplitude retios are thore vhioh are
unstadle st M = 23 (p /o @ 0‘513), whare the largest emplification rates of etreamvise inatadility oocour.
For example, 7 = 0.09 x 107" becomes unajeble at N = 21 sné hes s pesk u(nuo) of 2.3 st ¥ ¢ 25 for an
initial veve engle of ~70%; F 5 0,15 3 10”" becumes unateble st B s 20 snd has a sasllier peak st N o 28,
Comsequently, the maxinsum amplitude growtih of streamwise-1nstadility vaves is only about 18 cf that of the
croeaflow diaturbdances. Exsmplea of smplification rates for » wing without suotion may be found
elsevhere [Mack (1581)).
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g APPENDIX 1. COEFPICIENT MATRIX OF COMPRESSIBLE STABILITY EQUATIONS
‘% There are 30 non-sero elements of the coefficient matrix '15(” of Bq. (8.11). The Z, equation has
. only one non-sero coeffioient:
s, 1. (a1.1)
The Z, equation has six non-gerv coefficients:
ayy * (ARET) (aUsfio)ea®en? (A1.2a)
8y, «(1/u}(&i/aT)DT , (A1.2b)
8,3 = (MT)(1DUEDM)-1(ne22) (1/1) (a/T)DT
-1/ 20 G2 d) (o), (A1.20)
Gy ¢ AN (o0 2)=(1/3) (1024) (nPea DI Cate b= ) (A1.24)
a5 » (173341424) (12482) (1DeRN=0) /T (1/1) (&:/T) (aD2UeaD?W)
(17..)(¢%:/12)DT (3 DU DM) (41.20)
8y 8 ~(17:)(i/aT) (1 DU M) (a1.21)
The 13 equation has four non-gero toeffioients:
83y 8 -1, (41.3a)
033 0 O/T {(K1.3b)
a3y = 1B (0N (41.30)
} 835 0 (/T)(Deib=) . (11,34)
The z. eguation 1» the only one that requires a lengihy aanipulation to derive. With
B (R.)01(2/3)(200) 108 (Wacl=) (A1.4)
the six non-zero coefficients are
oy ¢ ~(U/E)((2/0)(d./70T)DTe(2/3) (2¢d) (DT/T)] (K1.58)
8y v -(E) (11,5b)
a3 o (/B)=02e:)4(2/3) (244) (DT2/1)(1/2) (Gi/0T)
(2/3)(26€) (FT/ ) o (AT (Woil=) ) (A1.50)
sy ~(1/B)(2/3)(264) ME[( iDori=)
X (1/.)(d/dT)DTesDUe Do (DT/T) (1Ueiil=s)) , {41.54)
! ayg * (1785 {17.)(8./4T) (1DU: DN) #(2/3) (200)
X {(1/.)(d.7dT)(DT/T) (1Uec¥=)o( 1DUs DN)/T)" (41.5e)
ayg v (1/B)(273)(2¢0) (WUei¥=.) o (A1.51)
The z., equation had only one non~-zero coefficient:
‘. agg = 1 . (A1.6)
The I, equation has six non-gerc coafficlentat
agy » =2-L=1BC Doe0M)/(Pesd) (A1.70)
agy o (R/L)(DT/T)e12:C =1 IM{( DUesDM) (a1.70)
! gy o =1V =R Calleces, (A1.70)
i ags ¢ AR/ (e ste)e ol (0?17 ) (01 /aT) (41.74)
: (01272 ) (6% 7a1)= (-1 R (110 0/ AT (DUZ o 00
PN . 8ec = ~(2/°) (@ /an)DT (A1.70)

} R I agp * 2 (1=1)08 (OM-: D0}/ (Per?) | (21.110)
§
§
1 4
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The l., equation has only one non-gzero coeffiocienv:
Spg =1 (AL.8)
The 28 equaticn has five non-tero coefficients:
agy = (R/:T)(: DW=t'DU) (41.99)
ags * ~(1/0){du/aT) (102W-8D20)-{1/2:) (420/aT?) DT (- O¥-¢DU) , (A1.90)
agg » =(1/71:)(du/dT) (:DM-8DU) (41.90)
agy © R/ CabegbimdenZeon? (A1.94)
agg = =(1/,)(d;/dT)0T . (41.9e)
In these equations, the ratic of the seoond to the first viscosity coefficient
de ify (41,10)
i3 taken to be 3 constant and equal to 1.2 (Stokea' assumption corresponds to ) s 0).
In the numerical computstions, we use
L0 x 105 . 1058132/ (1% 0.0y, t* 2 1o ,
° " (A1,11)
= 0.0693873 T~ , T < 110.4%
for the viscosity coefficient {n cgs units, and
L* v 0.63251" V210 (205.4/1) 1071/ T} (41.12)

for the thermal conductivity %oof‘lehm in ogs units, The Prandt]l number '« o;h./"' is computed a® a
function of temperature from ., :+ and a constaat specifio heat of cp s 0.28,

APPENDIX 2. FREESTREAM SOLUTIONS OF COMPRESSIBLE STABILITY EQUATIONS

In the freecatrean U-U,, Vek,, Tsl, .21, :21/3,, and ail y darivatives of mean-flow quantities are
zero. The firat aix of Eqs. (B.H; can be written sa three second-order equations:

D¥y = bygV¥y @ bysVy e byg¥y (A2.18)
D2V, ® byo¥, ¢ bysVy (A2.1b)
ere Dy« Byp¥y ¢ byg¥y (A2.1e)
Vyely , VasZy , Vyalg o, (A2,2)
The threae coafficients of Bq. (A2.1e) &re
byy o PerfesR(ib W W, m) (A2.3a)
byy s 1020 (et (1/)(1ea (10 00wy =) ), (42.30)
Byy & (1920120 2) (W0yeriy=) (42.30)

The two coaffivients of Bq. (A2.1d) are

byp o 120~ (VB[ IR=(2/3) (204} (=10 10y Wy =)?] (A2.80)

byy o (R/By)[1-(2/3)(2ed): JCalyortty= 0 (42.80)
whare E, is Iq. (A1.8) evaluated in the fresstream. The two oceffioients of Eq. (A2.1c) are

byz o =401 abyer¥y ) (A2.5a)

byy » 2%e? o L ROID Ny ) L (42.50)

The aix solutions of Eqs. (A2.1) have the fora
vy o sV exps ) (1a1,6) , (A2.6)

ubon(ﬁo '(” are the afx three-component solution vectors, the 1‘ are the sixz charactericetic values 224

the 3 sre the oix three-companant charzstsristic veolors, Upok substitutirz Rq, (A2.6) into Bgs.
(a2.1), the oharacteristic values are found to be
a2t ‘{(‘/2’(5zz°';3)-l(""‘°zz-'33’2*°z;=331"'}"’ . (A2.72)
ga sy, (a2.7%)
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‘5.6 " ;{(1/2)(b220b33)’[(1/')(b22'b33)20b239321”‘2}‘/2 ] (uo"o)

where the numbering has been arrange . 5o -zt th2 rirst two of these will correepond to the first two of
Eq. (2.49).

The iast two of Egs. (8.11) give a fuurth uncoupled seocond-order equation
022y o (Zei?eaRGU N ) 12y (A2.8}
with the characteristic values

17,8 F2er2eaRGug ey -1 2 (42.9)

vhich are the same as the charactcristic values ERE

The components of the characteristin vector corresponding to ‘3 are

B3 a1, 32(3.- 0 , 53(3) =0 , (A2.10)
and to ‘4 and ‘g ere,
51(3) . [b‘z(baa-.f)-bﬂba?]l(.f-b“) . (A2.11a)
B, ) o ,,33_,2)' . (A2.11b)
83“) r -by, (A2.110)

The compenents of the charasteristic vectors of the original eolutisas sre:
"(J) . 5!(3) , ‘2537 0 .Jg‘(J) . “(J) . 52(1)
AS(J) . 33i3§ , ‘6(3) . ‘153(j) . (3=1,8) , (A2.12)
and the component ‘i('ﬂ is found from the continuity equation:
A L AL TR RN SIS T 7+ TR ML) (A2,13)
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