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" RANDOM NUMBERS FROM SMALL CALCULATORS

Donald W. Rankin
Army Materiel Test and Evaluation Directurate
US Army White Sands Missile Range
wWhita Sands Missile Range, New Mexico 88002

AD-P003 850

ABSTRACT. > Random number generators are notoriously wasteful of digits;
however, applying an augmented precision technique to a linear congruential
generator enables one to produce on even a small calculator a set of pseudo-
random numbers which contains & useful numbher of elements.

forth such a method. (o
\

This paper sets

1. INTRODUCTION. Most modern computers and many programmable calcu-
lators include in their softwares a function for generating "random" numbers.

Such numbers are required any time a "Monte Carlo"

test technique is
employed.

It is usual to tailor each algorithm to a specific type of use, and to a
specific size of computer. Probably it is not feasible to transfer such a

tailored algorithm to a calculator of smaller size--particularly to one of
shorter word lenqth.

Perhaps the most efficient and certainly ‘the most popular of these

algorithms is the "Linear Congruential Generator." Mathematically stated,

Xis1 2 (ui + c) mod m.

A1l quantities are considered to be integers. If the modulus m be taken as

some power of ten (or of two if in binary), the modular operation is effected
by simple truncation.

Most calculators have the ability to truncate at the decimal point. A
decimal point, therefore, is inserted solely for this purpose.

Conceptually,
the numbers remain integers.
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Given that the modulus m is some (positive integer) power of ten, it 15
found that the algorithm generates a full set of mn inteqers (ranqing from

zero to m-1, inclusive) whenever both

a 21 (mod 20) and
c = (1, 3,7, or 9) (mod lUj).

The selection of values for a and ¢ is an important part of adapting the
algorithm to a specific case.

2. PSEUDORANDOM NUMBERS. Let us suppose that we have defined a set of
m inteqers, all different. A random selection from the elements of this set

requires that for any element, the probability of selection be 1/m.  Since
this orobability remains unchanqed for subsequent selections, sampling with
replacement is indicated.

We wish to develop an algorithm that does not depend upon an outside
stimulus. However, it remains necessary to provide a value for x, so that
the rrocess can begin. This value should be an element of the set, but the
choice can be arbitrary. It is called the "seed."  After each xj is
computed and used, it serves in turn as the "seed" for the next calculation.
To avoid repetition, some programmers employ a date-time group from which to
extract a value for x,.

If any computed value of

Xi +g 41 ° (axi gy iy c)(mod m)

fs ever equal to some previously used value of xj, the algorithm will repeat
itself over a subset of size (s+l), exactly duplicating the previous cycle.
If xj+1 = x;, it is found that s = 0, and the algorithm has already
deqgenerated into uselessness. To circumvent this, sampling without replace-
ment is used. But this causes the probability of selection to increase as

1 1 l 1

s s-15s- 2’ Y s - (s - 1).
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Thus, the 1ast remaining element of the subset can be predicted with
certainty. :t is, of course, equal to Xj, the seed which began the cycle.

How then can we presume to use these sequences of numbers as "random"
sequences? It is found that if the cycle length is very large (two hundred-
fold would not be excessive) when compared with tne quantity (of numbers)
required, the sequence selected will exhibit certain of the characteristics
éssociated with random sequences.

The term “pseudorandom" is wused to indicate that the sequence is
qenerated by an algorithm so that each element is a function of its
predecessor.

3. PARAMETER SELECTION. At this point, let us limit the discussion to
the case

m = 1028,
“e" heing a small, positive integer. Immediately
vm = 108,
It was observed in Section 1 that, under these conditions, maximum cycle

length is achieved if ¢ and m are relatively prime, and additionally a =1
(mod 20).

There are other requirements, however. Foremost among these is the
restriction that ax; must never overflow the computer word length.
Should this occur, digits will be lost from the right, interrupting the flow
of the algorithm and seriously shortening the cycle length.

The formula for serial correlation is

LA 18 U N
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where |e|< T:- .

It can be seen that the numerator varies from -0.5 to +1.0C and that the two
terms are of the same nrder of magnitude when

al =« m,

The numerator can be reduced to zero by solving the associated quadratic in
c¢/m. It is found that

£ .
m

N o

tl \/5_,
6

Now L V3 = 0.28867 51345 94812 88225 45,33 90 . . . is irrational, so that
6
no element of the set can furnish a value for ¢ which will reduce the

numerator exactly to zero. It can, however, be made guite small, whence "a"
can be set to a value somewhat less than/m without adversely affecting the
serial correlation.

At this point, it will be instructive to examine the sequence generated
bv the following parameters:*

xg =0

= 81

= 788677
m = 1000000

This sequence is found in Table 1-1. The entries are to be read as integers.

It is easy to observe that the least significant digit (units digit) is
not “"random" at all, since it can be predicted exactly. In the case at hand,

*All examples in this paper will assume an 8-digit calculator.
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TABLE 1-1.

CYCLES OF DIGITS

a = A

m = 1,000,000
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it cycles through all ten digits, then repeats itself exactly. The two least
significant digits, viewed as a single number, exhibit a similar cycle. A
qo00d generator will continue this effect until a cycle of length m s
achieved. If m is a power of 10, this maximum cycle length is obtained
whenever both of the following conditions are met:

1. a =1 (mod 20)

2. ¢ and m are relatively prime. This requires only
that the final (mmils) digit of ¢ be 1, 3, 7, or 9.

As an aid to continuing the study of the cycling effect, let us define
S
a; = a~ (mod m)
and
G *cllvacate,., o as~1)(mod m).
Given a=281,s =10, c = 788677 we find
a,o = 928801
Cio = 939970
Note that, since xy = 0, c,, appears in the tenth position in Table 1-1.
Now c,, may be viewed as having only five digits. It is therefore completely

exercized by a five-digit multiplier, and we need merely use the last five
digits of a,,. The parameters

xg =0

d10 ¢ 28801
Clo = 93997
mlo = 100 000

will qenerate the sequence X g, X9, X300 +---
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At fir<t glance, this appears to exceed the calculator word length.
However, if we multiply xj (axo'l) and then truncate, the algorithm will run
without difficulty. To express the complete formula

X x(a =-1)(modm) +x +¢c (mod m)

“ib - 1 10 £

It is convenient to compute ag by means of the binomial expansion. Hence

(1 +80)40 = 1 + 10(80) + 45(6400) +
+ 120(80)3 + 210(80)% +
+ 252(80)5 + immaterial terms

The previous strategem will thus be available whenever s is a multiple of
ten. The sequence thus generated is found in Table 1-10.

In a similar manner, the procedure can be reiterated and the sequence
X,00* X200° X300 + - - 9enerated. Required values of the parameters are:

g * 0

3,00 * 8001
5197
10 000.

€100
Moo

This sequence is illustrated in Table 1-100.

The process can be carried no farther. To do so results in a .0, = 1, and
the algorithm degenerates to the successive multiples of X000+ This can be
observed by looking at every tenth entry in Table 1-100. The phenomenon can
be called a "quasi-cycle" of length 1000 and additive constant 197. 1.
appears that original values of "a" congruent to 1 (mod 100) will hasten this
effect and therefore should be avoided. Further scrutiny reveals that the
"quasi-cycle" is actually of length 500 and additive constant 598.5.
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©6.519700
0.639400
0.359100
0.678800
0.5985060
6.118260
9.2372900
0.9576006
8.277300
6.197600

©.716700
0.836400
©.556160
0.875800
8.795500
0.315200
©.4349060
©.154600
@.474300
©.394000

6.913700
0.0633400
0.753100
0.672800
8.992500
8.512200
0.631900
8.351600
0.671300
0.591000

6.1108700
6.230400
6.9586100
6.269800
8.1895060
6.769200
8.328900
6.548600
6.8683006
8.7880800

TABLE 1-100.

CYCLES OF DIGITS

d100 F 8001
mloo - 10.000

8.397700
6.427400
©.147100
0.466800
8.386500
0.906200
6.08625900
6.745600
0.065300
8.9850600

@8.504700
0.624400
9.344100
6.6638060
8.583500
6.103200
6.222900
8.942600
0.262300
6.182000

e.701700
0.821400
6.541100
0.860800
6.7806500
6.3006200
6.419900
0.139600
8.4593060
@0.379600

0.8987¢0
0.018400
6.738100
6.0657800
6.977500
6.497200
0.616900
06.336600
6.656300
8.5760006

211

Cio0

0.292700
6.412400
0.132100
©.451800
8.3715060
6.891200
0.0106900
0. 730600
0.050300
6.970000

©.489700
@0.609400
08.329100
0.648800
6.568500
6.088200
0.2067900
8.927600
©.247300
0.167000

6.6236700
0.806400
8.526100
0.845800
8.765500
0.285200
0.4604900
6.124600
0.444300
0.364000



The conclusion to be drawn is this: Even though the values of a and c
be chosen so that the algorithm generates the full cycle of m integers
before repeating, the number of elements of any "useful" subset probably does
not exceed %-\fﬁ. What is needed is a device to increase the effective word
length of the calculator. How this can be done forms the subject matter of
the next section.

In summary, let us view the number axj + c¢ before truncation.
Obviously, the left-hand (most signifirant) digits are lost via the modular
operation, leaving

Xj+] = (axj + c)(mod m).

Now the xj can assume, at most, "m" different values. Therefore, since both
"a" and "c" are fixed, the quantity axj + c also can assume, at most, "m"
different values. What this means is that, provided the values of "a" and "c"
are selected to produce maximum cycle length, the act of truncation does not

reduce the quantity of numbers--only their size. It also shuffles their
order.

What remains is, of course, xj4]. It is wusual to regard several of
the right-hand (least significant) digits as "not significantly random." They
are retained, however, for smooth operation of the algorithm, and to ensure
that the fuil complement of "m" different numbers is delivered.

4. AUGMENTED PRECISION ARITHMETIC.

‘Double precision arithmetic 1is available in the software of many
computers, and even in some calculators. It is cumbersome to program and
executes very slowly. This is particularly true with division.

However, the algorithm for the linear congruential generator does not
employ division. Moreover, since a2 < m, the word length (nlvﬁi - 1) is
sufficient.
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Let m = 102%, where e is any small positive integer. The
"augmented" word consists of three parts, each of which consists of "e"
digits.

Let us express x; in the form

e
. = U, X + V.
X P 10 v

Thus a, u;, and v; are all integers less than vm, and the product of any
two of them will not cause overflow.

Some calculators will compute (but not necessarily display) an extra
digit. For them, the procedure is extremely easy. First, compute

(au; x 10%)(mod m).

To this quantity, add (avy; + c) and truncate again. The result is

‘i*l.

When place for an extra digit is lacking, it is necessary to devise a
procedure which avoids overflow. The following method, which assembles
Xi41 by parts, beginning at the right, works quite well.

As before, express x; in the form
Xg = Uy X 108 + Vi
In analoqous fashion, express "c" as
c=px10°+q,
Store p, q, Ujs and v; separately. Select "a" so that
a < 10°

a =1 (mod 20)
a £1 (mod 100)
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It will be found that a < 10¢ . 18.
parts will nct produce overflow,

Convequently, multiplication by

We hrave immediately

Visl = (3V5 + q) mod 10°.

Since we wish to retain both parts of canpute

g) x 10'9. then "FRC" ((av, + q) = 10'0).*
i

(avi + q), we (av‘ +

Vi+l 1is now stored, replacing vj. Then (auj + »

109(avi +q - vi+1)) mod 10€.

Urpe]

The sequence of numbers qenerated by

xg =0

a = 9941

¢ = 2113 2487

m = 100 000 000

is displayed in Table 2-1.

5. RANDOM SELECTION. RANDOM ORDERING.

So far, an algorithm has been developed which will generate a full set of

m pseudorandom numbers. However, the lengtn of a useful sequence of these

nunbers is, at best, uncertain and doubtless does not exceed -%\ﬂﬁﬁ
If a subset of far smaller but exactly known size is to be placed 11
random order, or if random selections from its elemnents are to be made, thc

following can be done.

*"FRC" means "fractional part of."

[ o

R

. e B
NN
:‘.':i":‘q"{-':-‘
et

- -
?. .] /<| \'.\.‘.; N \h




L

Storace space must he provided to accommodate all the elements of the
subset, plus one more. It may be possible that scratch-pad storage is
adequate.

Let us illustrate the method by example. Suppose the task at hand is to
shuffle a pack of 52 playing cards, i.e., to place them in random order. We
thus require 53 storage registers, which we number from 00 to 5¢, inclusive.
The individual card names are entered into registers 00 through 51 in any
arbitrary order. N = 52 is the subset <ize.

We employ the generated sequence of numbers given in Table 2-1. These
nunbers (integers) should be distributed uniformly on the interval 0 to m,
Dividing by m, then multiplying by 52, yields a sequence uniformly distri-
buted on the interval 0 to 51.99999 . . . . The "integer" portion of thi:
number is used as an address for selecting a card. That card is then placed
in storage register 52.

Next, all cards with location numbers greater than the "selected"
location are cascaded downward one position, This includes the card placed in
register 52, So far, the illustrative example has given 52 x 0,21132487 =
10,988 . . . . The card in location 10 was drawn and stored in location 52,
Say it is the Spade Jack.

After cascading, only 51 cards are of interest. Hence 51 x 0,99185754 =
50.564 . . . . The card in location 50--the King of Clubs--is drawn and
placed in register 52, Again after cascading, the subset of unshuffled cards
is reduced to 50 in number. Hence 50 x 0,26713001 = 13,356 . . . . The card
now in location 13--the deuce of Hearts--is drawn and placed in register 52,

Continuing as above, 49 x 0,75075428 = 36.786 . . . . The card in
location 36--say the King of Dianonds--is selected and placed in location 52.

When the size of the unshuffied subset is reduced to unity, that card

certainly will be found in location U0, and it certainly will be selected for
transfer to location 52, Conseguently, that transfer can be effected without
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a = 9941

TABLE 2-1.
CYCLES OF DIGITS

m = 100,000,000
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3 employing the algorithm, Further, cascading can be omitted or not, at tne

pleasure of *he progr ammer,

3 The final result is the shuffled deck, in order nof selection, in the
i des. .ated storage locations. Omitting the final cascading, the example .
" leaves the Spade Jack in 01, the Club King in 02, the Heart deuce in 03, the
:j Diamond King in 04, etc. The shuffled deck can now be put to the use for '*
J which it was intended. \:
) | o O
N If there is a requirement to "deal" the cards one at a time, it is o
Z:: suggested that the card in the highest nunbered location be taken first. Not ',:;l‘,fj.:a
f only is the programming simpler, but the stigma is avoided which usually is
i attached to dealing from the bottom, . )
D
: In summary, a set of uncertain size has been used to produce 8 much \
3 smaller subset of known, fixed size. *
,—:' _-.-.‘r:.
R 6. STATISTICAL TESTS. There is much to be found in the literature on !
the subject of testing sequences of numbers to determine whether or not a ‘
L sequence could have been produced by a random selection process. These ::
Y methods will not be repeated here. ,.
It is enough to be reminded that the answers to these statistical tests _\",'..:'-'_Z;j
: will be stated as probabilities. We should read nothing into the result -‘
l‘ beyond the probability statement itself. Ry
- g
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