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Abstract 

^The bounds of Boyd (1959) and Soms (1980a, I980brfor the tall areas 

of the normal and t-dlstrlbutlons are used to obtain a new method of 

evaluating the tall areas.   The absolute and relative errors and numerical 

examples are given, 
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1.   Tha Method 

Mt btgln by Introducing notation ind stating the main results of Boyd 

(1959) and Sons (1980a. 1980b).   Boyd (1959) showed that if 
1 

♦(x) - (2ii)"Iexp(-x2/2)l   T(x) ■ S^ ♦(t)dt    . 

and      Rx     ■ T(x)/*(x), x > 0,   then 

P(K*W < \ < p(x» Y«ax)    » 

1 

where P(X.Y) • W ♦ l)/[(x2 + (2/H)(Y + I)2)1 + Yx], Y.,.^ - Z/d»-?). max 
Ym1n ■ ^ • !• an<* the bounds are the best possible In the class 

(P(X,Y).Y > - 1).   This Is also discussed In Johnson and Kotz (1970, Ch. 33). 

Sons (1980a, 1980b) extended the above results and showed that If for arbitrary 

real k > 0   and x > 0, 

Mt) - cW/k)-^1)/2. c,. uu&m— 
* K k     r(k/2)(iik)1/z 

T^x) - 1-Fk(x) -/^ fk(t)dt. 

Rk(x) - Fk(x)/[(Ux2/k)f|l(x)] 

for k > 2, Y,,,,^ - 4c?/(l-4c?)   and YM4n ■ y - 1. and for 
max        k k 'mln     2(k+2)cJ 

^ * i% Ym1n and Ymax are interchanged, 

and 

P(X.Y) ■     h   ^V TTT?  
(XZ+4.CJ(1+Y)Z)1/Z+YX 5C 

m 



then 

P(x'W < Rk(x) < P(x^ax) 

or equlvalently, 

(l*f )flc(x)p(«.vm1n) < Tk(x) < ('^^(«JPCx.Y^) 

and the bounds again are best In the same sense as for the normal. 

It was also shown there that If k » 2, y„ms, « y*    « Y* and Mx) ■ p(x,Yo) max       mm       c K C 

The numerical properties of these bounds are discussed In the above 

references.   The Important fact to be noted here Is that the bounds control 

both absolute and relative error.   Using the bounds as a starting point 

we now develop a simple method of evaluating normal ano t-tall areas that 

controls both absolute and relative error, as opposed to the usual methods, 

which generally only control absolute error. 

We consider estimates of the tall area of the form 

&(«-W*(«' * (' - f^(»'W*()<> "•" 

for the tall area of the normal and 

Op(x.vm1n)fk(x) * (1 - f^Mx.WV«) 0.2) 

for the tall area of the t.    We want the estimates to He between the upper 

and lower bounds for the tail area and be strictly decreasing functions 

of x and therefore Impose the added restrictions that 

be > ad l'.'. 
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and 

0 1 7T771 1    .      all x > 0. 

Since f(0) ■ 7, we may, without loss of generality, assume that c » 1 and 

so our weight functions f are of the type 

««)•£&   . ('.3) 

where 0 < a ^ 1, d > 0,  be > ad,  and 7 1 ^ • We then seel( that 

particular choice of f which minimizes the absolute error. A direct computer 

search led to 

fOO-TT^I ('.4) 

for the normal and 

bk     - .70 + 1.82/k - .2/k2    . (1.6) 

for the t, where, as noted before, k Is the degrees of freedom.    (1.6) $1 

was obtained by finding the optimal constants for k = 25, 10, 5, 3, 1.5, 1,  .5 "^ 

and fitting a regression line to them.    However, In the Interests of simplicity, 

for k < 2, we did not Interchange y.m and Y„.„ and so (1.5) and (1.6) are — mm max 

understood to apply for all  k with Ymin and Ymax defined as for k > 2, 

Numerical evidence Indicates that, at least for k = 1, the above optimal 
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estimate Is still a decreasing function of x. 

The maximum absolute and relative errors of the optimal  estimates are 

remarkably constant over the range 1 £ k f. 00   and hence we only give the 

normal figures.    For (1.4), the maximum absolute error is  .66-10"   and the 

maximum relative error Is  .97-10    .   We emphasize once more, that, unlike 

the usual methods, which generally control only absolute error, the above 

controls both absolute and relative error and hence can be used to calculate 

ordinary and Bonferroni descriptive levels and ordinary and Bonferroni 

percentiles. 

As a check, we calculated the standard textbook table of the normal, 

given, e.g., in Brown and Hollander (1977) and found at most a difference 

of 1  in the fourth decimal  place.    We also compared the small  normal percentiles 

given in Abramowltz   and Stegun (1965, p. 977) to the ones obtained from (1.4) 

and aff,er rounding both to three decimal places found that there was at most 

a difference of 1  In the third decimal  place.    Similar results apply to the 

t. 

2.    Concluding Remarks 

We have given a method of calculating normal and t-tail  areas which controls 

both absolute and relative errors.    The listings of the short FORTRAN programs 

are available on request from the author.    Preliminary results indicate that 

it is possible to improve on the accuracy of the approximations here described 

at a modest increase in complexity and these results will  be reported shortly. 
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