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We assume a population of one-shot missiles which are stored
in & ready or near ready state at the physical point of their
deployment. We hope: that the missiles will sit in idle waiting for i.
many years, but this allows environmental effects to degrade the ;ﬁfLM:H
missiles’ capability of successful deployment. Since even a brand .2l
new missile may fail to operate properly, and there are no 'jff‘u;i
important physical differences between the individual missiles in . IC’T}
the given population, . we ghall’ assume that a randomly selected 6" °
missile will have a probability p. of successful deployment, or . - -.
reliability, at time t. J{¢1_¢j
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It is obviously important to monitor p., so a sample of the ::~ﬁﬁﬂfj
missiles is tested periodically. Since the testing is destructiva, o
the population is eventually depleted by the testing. Furthermore, ¢
defects in migsile design may be uncovered, so modifications may o o

be introduced which will have a tendency to increase the jﬁﬁﬁ:;;
reliability. For technical reasons, however, we choose to describe .. 720 .-
a test which is designed to detect a deterioration in the D

reliability.

No target value for the reliability is given by management, so
that the testing at time t is used to determine if there has been
& change 1in the reliability since time t-1. The +following
requirements are given and will be used to formalize a test of
hypothesis to accomplish the goals of the testing procedure.

It is required to:

1. detect whether p. has changed by an amount d* since the -Ja-l-
immediately preceeding  testing period, with a probability of at SN

-------

least 7 at time t=2,3,4,... -

2. compensate for the sampling wuncertainty in p., the
estimate of pe, in constructing the test of hypothesis.
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3. use the minimum possible sample sizes in accomplishing f;;ﬁcﬁ
requirements 1 and 2, above. R

Bince the test data are pass-fail in nature, the binomial
probability model 1{s appropriate for describing the stochastic
sample behaviour. Suppose we choose the test size to be « for the
hypotheses:

Hos Pe=Pe-3
Hl: Pt“ (pv_—-x ) -—-d=*
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Requirenent 1, above, leads to a type Il error, wp=i-1, We are
then lead to solve the following inequalities simul taneously for

Nne and x¢ a< follows. Let B(x,nip) represent the cumulative
binomial probaoility of x or fewer successes in n trials., That is,

X

BOxy,nip) = 3(7)ps(1-p) ¢ -2

=

Then the inequalities of interest are:

B(xE,neipe) <o (1)

B(t2,neipe-d*) » 1-4 (2)

For p. s known, the null hypothesis is rejected if the
current sample yields x? or fewer reliable missiles. Since pe., is

not known, however, (1) and (2) are solved after substituting p.-,
for pe-, since we have no target value for it. We will account for
this uncertainty by avercging the pair x&, n, with respect to the
prior distribution for p.. First, however, we shall introduce a
sequential scheme to reduce the sample sizes required.

For practical reasons, the missiles are tested sequentially
in time. Therefore, when a critical sample value is obtained, the
sampling may be curtailed. That is, if x&+1 successful tests or if
Ne—XE+1 failures are e:perienced before the sample is completed
then the test may be curtailed (terminated prematurely) withou&
effecting the error distribution of the test. The curtailed
sampling distribution is expressed as follows. Given p. and xt,
the probability that ne=x when a curtailed sampling procedure is

used is:
/[ x-1 Ne=XE  X=(Ne=xP)
(1-pe) Pe y De—XEC{ne
Ne=4AP-1
=1 Ne=X¢ 2("(”:"'}({)
Flne=xip.l = (1-p¢) Pe + (3)
Ae=xi-1
w=1 K=KE-1 KE+]
(1-p.) Pe y KEIxin,
H=ME=1 -

I order to obtain Pln.=x]), we compute the average with
respect to the prior probability for p., given by g(pcI#). In the
absence of information to the contrary, the conjugate prior in
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the binomial case, {8 not only convenient, but also natural. This

prior is the Beta distribution given by:

9(pla,b,H) = B='(a,b)pe-t(1-p)u-v, axl, b>t,
where,
B(a,b) = (a)r(b)/r(a+bh) ,
rx) s the gamma function (1, p. 259), and H refers to the
experi{imental hypothesis relevant to our situatior. The averaging

process ylelds:

F H=1
( ) B-1(a,b) Bk=ne+x+a,ne-xpr+b)
Ne=-Xf-1

for ne-xrixsup

®=1
Flnes=x] = ( )B"(a,b) Blk=ne+xf+a,ne-upr+b) + (4)
Ne-X¥-1

x-1
( B-*(a,b) B(xE+l+a,x-x&-1+b)
H=XE-1

for xe<ix{n.
The expected sample size, Eln.]), can be obtained by computing:

EfNel = § xPlne=x]

o -

A full Bayesian treatment of the problem is developed as
follows. Equations (1) and (2) are averaged with respect to the
prior as shown below.

1
_/0 BOXE,neipe)glpetifidpe ¢ w (5)
1
‘/0- B(X:int;pt—d)g(pt”‘,)dpg 21— (&)

Integrals (5) and (4) may be re-expressed in closed form which
allowgs them to be solved iteratively for %X, and N,. These values
are then used 1n equations (3) for computing the expected sample
sizes. We point out that (5) is related to the predictive
distribution which is used for model checking or informal

hypothesis testing in the Bayesian context [2, p.3851].




Generally, prior distributions on unknown parameters involve
parameters of their own which, in turn, depend on the experimental
conditions or hypotheses. In our exiample the parameters are 'a' and
b'. The experimental hypotheses and specific parametric values for
our situatior are abtained and applied by using the following line
of reasoning. Before the init.al test, little or no a-priori
Information is available about p, so a flat prior distribution is
assumed. The uniform prior corresponds to the parameter values
a=b=1, and essentially assigns equal weights to all values of p.
in the {nterval (0,1). After the first test sample has been
obtained, say x, and n,, the posterior distribution is a Feta
distribution with parameters a+4, and b+n,-%,. The mode of the
posterior may be used as an estimate for p,. This is given by
Pi=(a+x,-1)/(a+b+n,-2), and as npted previously, 1s the value
against which the second sample is tested. The complete testing
strategy is outlined below.

1. DBefore testing begins, the nrior distribution is defined. This
should be based on engineering knowledge and experience and
developmental history. Since it is not usually possible to obtain
that 1information +from engineers, it 1is imperative to provide a
reasonable alternative. For this we suggest using an initial
sample, corresponding to time t=0, The implied prior for the
initial sample is the uniform distribution of the Beta family.

2. The monitoring procedure beqgins with the first test sample and
proceeds as follows. At time t(=1,2,3,...) the prior distribution,
g.(.), 1is the posterior distribution from the test ot time t-!, or
he -1 (). The mode of the prior is the value for p.-, in the null
hypothesis against which the sample at time t is tested.

3. The sample size and critical value for the test is obtained
from equations (1) and (2). If the sample results on an acceptance
of the null hypothesis, then the sample values are used to update
the prior, resulting in the posterior distribution. A new modal
value for p 1is obtaimed which will be used in the test at time
t+1, and a new sample size and critical value are obtained.

4. If the sanple results in a rejection of the null hypothesis at
time t, then the currenc prior is discarded, and the current
sample 1is used to determine the prior for the following test of
hypothesis.
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