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1. INTRODUCTION

Acoustically induced fatigue failures in aircraft structural components
have resulted in unacceptable maintenance and inspection burdens. In some
cases, sonic fatigue failures have resulted in major structural redesigns.
Therefore, accurate prediction methods are needed to determine the sonic
fatigue life of structures.

Many analytical and experimental programs to develop sonic fatigue design
criteria, however, have repeatedly showa4L.poor comparison between analytical
and measured maximum root-mean-square (RMS)"strain at high sound pressure
levels. [1,21. Deviations in excess of 100 percent are common. Neglecting

(large-deflections in the analysis has been identified as a major reason for
/ the enormous discrepancy [2). Recently, analytical efforts [3,4) with a

/ single-mode approach, and a test program [5] have demonstrated that the
prediction of panel random response is greatly improved by including the
large-amplitude effect in the formulation. Test results [5] also show that
there is more than one mode responding. Multiple modes were also observed
by White [6] in experimental studies on aluminum and carbon fiber-reinforced
plates under acoustic loading. White also showed that the fundamental mode
responded significantly and contributed more than one-half of the total
mean-square strain response. Therefore, in order to have an accurate
determination of the random response of a structure, multiple modes should be
used in the analysis. NThis paper presents an analytical solution technique '
for the large-amplitude random response of clamped rectangular plates
considering multiple modes in the analysis. 'The von Kirmin large-deflection
plate equations are solved by a technique w6ch reduces the fourth order
nonlinear partial differential equations to a set of second order nonlinear
differential equations with time as the independent variable. A Fourier-type
series representation of the out-of-plane deflection and stress function is
assumed. The compatibility equation is solved by direct substitution, and
the equilibrium equation is solved through the use of Bubnov-Galerkin
approach. The acoustic excitation is assumed to be Gaussian. The
Krylov-Bogoliubov-Caughey equivalent linearization method [7,91 is then used
so that the derived set of second order nonlinear differential equations are
linearized to an equivalent set of second order linear differential equations. .
Transformation of coordinates from the generalized displacements to the
normal-mode coordinates, and an iterative scheme are employed to obtain RMS
maximum panel deflection, RMS maximum strain, and equivalent linear (or
nonlinear) frequencies for rectangular plates at various excitation pressure
spectral densities. Convergence of the results is demonstrated by using 4,
6, 10, and 15 terms in the transverse deflection function. | .

2. MATHEMATICAL FORMULATION AND SOLUTION PROCEDURE

Assuming that the effects of both inplane and rotatory inertia forces
can be neglected, the dynamic von Karm~n equations of a rectangular isotropic



* plate are
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The transverse deflection which satisfies the clamped boundary

conditions
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Upon examination of the foregoing expression for the transverse
deflection, it is found that the compatibility equation (2) can be
identically satisfied if the stress function F is taken in the following
form:.
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Direct substitution of Eqs. (4) and (7) into Eq. (2), performing the
* required differentiations, multiplications, and a Fourier analysis of the
*resulting terms yields a quadratic relationship between F and m

pq
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in hih pqmnkl ae integers (tabulated in Reference 10) and cama/b. A
complete description of the solution technique used to solve equation (2) is

*given in Reference [10].

The average edge loads Px and P yin Eq. (7) are determined from inplaneA

boundary conditions. The particular inplane boundary condition of most
interest in the study of sonic fatigue of structural panels is the one in

* which the edges are restrained from movement, that is
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Performing the differentiation and integration as indicated in Eq. (10)
yields relationships for P and P in terms of the.deflection coefficients

X yWinn These relations are too lengthy to reproduce here, but may be found ..........

in References [10] and [11].

With the assumed deflection w given by Eq. (4) and the stress function F
given by Ee-. (7), Eq. (1) is then satisfied by applying Bubnov-Galerkin
method:

ff'L(w,F)frgsdxdy .0 r,s 1,2,3,... (11)

The integration of each of the terms in Eq. (11) can be found in Ref. [10].
A set of nonlinear time-differential equations is obtained after performirg
the integration over the total area of the panel, and it can be written in
matrix notation as

EM]()W} + EC]){) + CK]L{W} + {p(W)} a (0pt)} (12)

where [(], [C], and [K]L are the generalized mass, damping, and linear

stiffness matrices, respectively, andtý} is a vector function which is cubic
in the generalized displacements WJ}.

If the acoustic pressure excitation p(t) is stationary Gaussian,
ergodic, and has a zero mean, then application of the Krylov-Bogoliubov-
Caughey equivalent linearization technique [3,4,7-9] yields an equivalent set - -
of linear equations as

[M]{W} + [C]{Q} + ([K])L + [K]EL) MW} - (p(t)) (13a)

or , 9
(13b)

EM](N) + [C]{•} + [K](W} - (p(t)} (13b)

The elements of the generalized equivalent linear or nonlinear stiffness
matrix [K]EL can be derived from the expression [8] -- 0

(KELlrslj * {[-rs) (14)
ELi ri awl.



* ~where {1is an expected value operator. The elements (Kg1 ri are too
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lengthy to reproduce here, but may be found in Reference [11). The
approximate generalized displacements {W}, computed from the linearized Eq.
(13). are also Gaussian and approach stationary because the panel motion is
stable.

To determine the mean-square generalized displacements W
an

an iterative process is introduced. The undamped linear equation of Eq.
(13a) is solved first, which required simply the determination of the
eigenvalues and eigenvectore of the undamped linear equation

2J
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Where W is the linear frequency of vibration, and in}• is the normal mode
shape.

Apply a coordinate transformation, from the generalized displacements to
the normal coordinates (this analysis will use the first 4 modes), by

MW} * r#] {q) 4cm (16) '
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where each column of [€] is a normal mode {0}, The damped linear equation of
Eq. (13a) becomes
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The jth row of Eq. (17) is

+ C i~ +i 41 + (19)

The mean-square normal coordinate is simply

P )(20)

where Sp(w) is the spectral density function of the excitation PM(t). The

convariance matrix of the linear generalized displacements is

__________-_______I
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This initial estimate of expected value on generalized displacements can now
be used to compute the generalized linear stiffness matrix [K]EL through Eq.

(14). The undamped linearized equation of Eq. (13) is solved again
[M]( K + rK)EL){*}j (22) .

where j is the equivalent linear or nonlinear frequency of vibration, and
{.j } is the associated equivalent linear normal mode shape. Then Eq. (13)
is transformed again and has the form as

DQ(j) + M{ *) + tK.l(q) (P(t)) (23) ... .

in which
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the jth row of Eq. (23) is | .
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and the displacement convariance matrix is 
"
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The diagonal terms of [WmnWkl] are the mean-square generalized displacements

W7 mn" As the iterative process converges on the iter-th cycle, the relations
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become satisfied. Convergence is considered achieved when the difference of
the RMS displacements satisfies the requirement { *

(RMS Wmn)iter - (RMS Wmn)iter-l 3(28)
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Once the EMS generalized displacements are determined, the 'MS
deflection and the maximum EMS strain can be determined from Eqs. (4), (7)
and the strain-displacement relations as follows.



For a rectangular plate (a_.b) with clamped support along all four
edges, the maximum bending strain occurs at the extreme-fiber perpendicular
to its long edge at the midpoint.

h 82w 29a) -(y b 777• *

or
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The membrane strain is given by

(C ) (F - ) (30a) .

or
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in which
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From
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the maximum mean-square strain becomes

S€ cbZ cb 2  cb 2  (33)

For Gaussian random processes with zero-mean we have
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+ E(WtjWmn) •(Wk1Wrs) + C(W MWWW

ij~n k rs iJ rs ~(kIWmn)

and the maximum RMS strain can be determined from Eq. (33).

1. ____________



3. RESULTS AND DISCUSSION

Using the present formulation, the nonlinear response of square and
rectangular (a- 2) plates with all edges clamped and subjected to broadband
random excitation are studied, In the results presented, the white noise - .
excitation is band-limited with a frequency bandwidth of 25 Hz to 6000 Hz,
the damping ratio is assumed to be constant for all four normal modes and
Poissonst ratio is equal to 0.3. Mean-square center deflection and maximum
mean-square strain are presented in a nondimensional form. The
nondimensional forcing spectral density parameter is defined as

2 7T S (W) (36) •

Sf 4 ýPD 37 2Phh

Also, since the loading is symmetric, only symmetric generali.zed S
displacements Wn are retained in the transverse deflection function.

The convergence of the solution technique was examined in order to
determine the degree of accuracy possible with a highly truncated transverse
deflection function series. The mean-square center deflection versus the
non-dimensional spectral density parameter using 4, 6, 10, and 15 terms in
the deflection function for a square plate is shown in Figure 1. The
particular generalized displacements that make up the various orders of the
deflection function are shown in Table 1. Figure 1 clearly indicates that a
6-term solution gives accurate results for the nonlinear maximum defection
while a 4-term solution will provide accurate linear results. The maximum
strain occurs at the extreme fiber of the panel and at the midpoint of the
long edge. The direction is perpendicular to the edge. Figure 2 shows the
maximum mean-square strain versus Sf for the square plate using 4, 6, 10 and
15 terms in the deflection function. The convergence of the mean-square
strain is much slower as compared with that of the mean-square deflection.

TABLE I
Generalized Displacements Used in Convergence Studies

Number Generalized Displacements
of terms W11  W13 W3 1 W3 3 W.5 W5 1 W3 5 W5 3 W1 7 W7 1 W5 5 W37 W7 3 W1 9 W 91 .

4 X X X X

6 X X X X X X

10 X X X X X X X X X X

15 X X X X X X X X X X X X X X X

Figures 3 and 4 show the maximum mean-square nondimensional deflection
versus the nondimensional spectral density of acoustic pressure excitation
for rectangular panels of aspect ratios of 1 and 2 with the damping ratio
equal to 0.009, 0.018 and 0.027. Figures 5 and 6 show the maximum
nondimensional mean-square strain versus the nondimensional spectral. density
for rectangular panels of aspect ratios of 1 and 2 with the damping ratio



equal to 0.009, 0.018 and 0.027. Ten terms were included in the deflection
function, to generate the results shown in Figures 3 through 6.

4. CONCLUDING REMARKS

An analytical solution technique is presented for determining the
large-amplitude random response of clamped rectangular panels while including
multiple modes In the analysis. Accurate mean-square deflections can be
obtained with the use of 6 terms in the deflection function, while it is
necessary to consider as many as 10 or more terms for the accurate deter-
mination of the strains. In the numerical examples presented , a constant
damping ratio for all four modes has been used. However, nonlinear damping
phenomena have been observed in experiments (5,61. Therefore, further
effort, is needed to better understand the effects of nonlinear damping or'
panel response.
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