
iif«. '-•' V""1!""!"

3-1
• •

STRAPDOMH SYSTEM ALGORITHMS

AD-P003 621 By

Paul G. Savage
President

Strapdown Associates, Inc.
Voodbridge Plaza, Suite 150

10201 wayzata Blvd.
Minnetonka, Minnesota 55343

SUMMARY

This paper addresses the attitude determination, acceleration transformation, and
attitude/heading output computational operations performed in modern-day strapdown inertial
navigation systems. Contemporary algorithms are described for implementing these operations
in real-time computers. The attitude determination and acceleration transformation
algorithm discussions are based on the two-speed approach In which high frequency coning and
sculling effects are calculated with simplified high speed algorithms, with results fed into
lower speed higher order algorithms. i^This is the approach that is typically used in most
modern-day strapdown systems. DesignSftquat.ions are included for evaluating the performance
of the strapdown computer algorithms as\a function of computer execution speed and sensor
assembly vibration amplitude/frequency/phase environment.

Both direction cosine and quaternion based attitude algorithms are described and
compared in light of modern-day algorithm accuracy capabilities. Orthogonality and
normalization operations are addressed for potential attitude algorithm accuracy
enhancement. The section on attitude data output algorithms includes a discussion on
roll/yaw Euler angle singularities near high/low pitch angle conditions.

• •

Ü •

• •

P •

* •
1. INTRODUCTION

The concept of strapdown Inertial navigation was originated more than thirty years ago,
largely from an analytical standpoint. The theoretical analytical expressions for
processing strapdown inertial sensor data to develop attitude, velocity, and position
information were reasonably well understood in the form of continuous matrix operations and
differential equations. The implementation of these equations in a digitial computer,
however, was invariably keyed to severe throughput limitations of original airborne digitial
computer technology. As a result, many of the strapdown computational algorithms originated
during these early periods were inherently limited in accuracy, particulary under high
frequency dynamic motion. A classical test for algorithm accuracy during this early period
was how well the algorithm computed attitude under cyclic coning motion as the coning
frequency approached the computer update cycle frequency.

In the late 1960's and early 1970's, several analytical efforts addressed the problem
of splitting the strapdown computation process into low and high speed sections (7, 8, 10).
The low speed section contained the bulk of the computational equations, and was designed to
accurately account for low frequency large amplitude dynamic motion effects (e.g., vehicle
maneuvering). The high speed computation section was designed with a small set of simple
algorithms that would accurately account for high frequency small amplitude dynamic motion
(e.g., vehicle vibrations). Splitting the computational process in this manner allowed the
bulk of the strapdown algorithms to be iterated at reasonable speeds compatible with
computer throughput limitations. The high speed algorithms were simple enough that they
could be mechanized individually with special purpose electronics, or as a minor high speed
loop in the main processor.

Over the past ten years, the structure of most strapdown algorithms has evolved into
this two speed structure. The techniques have been refined today so that fairly
straight-forward analytical design methods can be used to define algorithm analytical forms
and computational rates to achieve required levels of performance in specified dynamic
environments.

This paper describes the algorithms used today in most modern-day strapdown inertial
navigation systems to calculate attitude and transform acceleration vector measurements from
sensor to navigation axes. The algorithms for integrating the transformed accelerations
into velocity and position data are not addressed because it is believed that these
operations are generic to inertial navigation in general., not only strapdown inertial
navigation.

For the algorithms discussed, the analytical basis is presented together with a
discussion on general design methodology used to develop the algorithms for compatibility
with particular user accuracy and environmental requirements.

i •

t •

t- •

I •

m*i^^^v

3-2

2. «TRAPDOWN COMPUTATION OPERATIONS

Figure 1 depicts the computational elements implemented by software algorithms in
typical strapdown inertial navigation systems. Input data to the algorithms is provided
from a triad of strapdown gyros and accelerometers. The gyros provide precision measure-
ments of strapdown sensor coordinate frame ("body axes") angular rotation rate relative to
nonrotating inertial space. The accelerometers provide precision measurements of 3-axia
orthogonal specific force acceleration along body axes.

BODY
ACCELERATIONS
(FROM STRAPDOWN
ACCELEROMETERS)

BODY
RATES
(FROM STRAPDOWN
GYROS)

VECTOR
TRANSFORMATION

NAVIGATION
FRAME
ACCELERATIONS

DCM OF BODY FRAME
RELATIVE TO NAV FRAME

ATTITUDE REFERENCE
INTEGRATION ROUTINES

EULF.R
ANGLE
EXTRACTION

NAVIGATION
FRAME
ROTATION
RATES

ATTITUDE/HEADING
DATA

FIGURE 1 - STRAPDOWN ATTITUDE REFERENCE OPERATIONS

The strapdown gyro data is processed on an iterative basis by suitable integration
algorithms to calculate the attitude of the body frame relative to navigation coordinates.
The rotation rate of the navigation frame is an input to the calculation from the navigation
section of the overall computation software. Typical navigation coordinate frames are
oriented with the z-axis vertical and the x, y, axes horizontal.

The attitude information calculated from the gyro and navigation frame rate data is used
to transform the accelerometer specific force vector measurements in body axes to their
equivalent form in navigation coordinates. The navigation frame specific force
accelerations are then integrated in the navigation software section to calculate velocity
and position. The velocity/position computational algorithms are not unique to the
strapdown mechanization concept, hence, are not treated in this paper. Several texts treat
the velocity/position integration algorithms in detail (1, 2, 3, 4, 12).

Figure 1 also shows an Euler Angle Extraction function as part of the strapdown attitude
reference operations. This algorithm is used to convert the calculated attitude data into
an output format that is more compatible with typical user requirements (e.g., roll, pitch,
heading Euler angles).

• •

• •

3. STRAPDOWN ATTITUDE INTEGRATION ALGORITHMS

The attitude information in strapdown inertial navigation systems is typically
calculated in the form of a direction cosine matri* or an an attitude quaternion. The
direction cosine matrix is a three-by-three matrix whose rows represent unit vectors in
navigation axes projected alony body axes. As such, the element in the itn row and jtn

column represents the cosine of the angle between the navigation frame i-axis and body frame
j-axis. The quaternion is a four-vector whose elements are defined analytically (5, 9) as
follows:

• •

a » (o^/a) sin (a/2)
b = (Oy/o) sin (a/2)
c = (aj/a) si" <a/2)
d * cos (a/2)

(1)

• •

IMMMISMMMli

"!" W'l"

3-3

where

«x*ay'°E
a

Components of an angle vector a.
Magnitude of a«

The a vector is defined to have direction and magnitude such that if the navigation
frame was rotated about a through an angle a, it would be rotated into alignment with the
body frame. The a rotation angle vector and its quaternion equivalent (a, b, c, d, from
equations (1)), or the direction cosine matrix, uniquely define the attitude of the body
axes relative to navigation axes.

3.1 Direction Coaine Updating Algorithms

3.1.1 Direction Cosine Updating Algorithm For Body Rotations

The direction cosine matrix can be updated for body frame gyro sensed motion in the
8trapdown computer by executing the following classical direction cosine matrix chain rule
algorithm on a xepetative basis:

C(m+1) - C(m) A(m) (2;

where

C(m) • Direction cosine matrix relating body to navigation axes at the mfc^ computer
cycle time

A(m) - Direction cosine martix that transforms vectors from body coordinates at the
(m+l)th computer cycle to body coordinates at the mtn computer cycle.

It is well known (9) that:

A(ra) - I + fx(ix) + f2(ix)
2

where

(3)

sin »
1 - $2/31 + *4/4l

1 - cos
1/21 - $2/4l + ^4/6| _.

= 4.x2 + *y2 + *z2
(4)

A 0

• z
~$y

X

3x3 unity matrix

•x'*y'*2 * Components of £.

Angle vector with direction and magnitude such that a rotation of the body
frame about £ through an angle equal to the magnitude of 4 will rotate
the body frame from its orientation at computer cycle m to its
orientation at computer cycle m+1. The £ vector is computed for
each computer cycle m by processing the data from the strapdown gyros.
The algorithm for computing ^ will be described subsequently.

3^

The "order" of the algorithm defined by equations (2) through (4) is determined by the
number of terms carried in the fj_» f2 expansions. A fifth order algorithm, for example,
retains sufficient terms in f^ and £2 such that A(m) contains all ^ term products out to
fifth order. Hence, fi would be truncated after the *4 term and f2 would be truncated after
the $2 term to retain fifth order accuracy in A(m). The order of accuracy required is
determined by system accuracy requirements under maximum rate input conditions when | is a
maximum. The computation iteration rate is typically selected to assure that ^ remains
small at maximum rate (e.g., 0.1 radians). This assures that the number of terms required
for accuracy in the f^, {2 expansions will be reasonable.

3.1.2 Direction Cosine Updating Algorithm For Navigation Frame Rotations

Equation (2) is used to update the direction cosine matrix for gyro sensed body frame
motion. In order to update the direction cosines for rotation of the navigation coordinate
frame, the following classical direction cosine matrix chain rule algorithm is used:

C(n+1) • B(n) C(n) (5)

where

B(n) • Direction cosine matrix that transforms vectors from navigation axes at
computer cycle n to navigation axes at computer cycle (n+1).

The equation for B(n) parallels equation (3):

B(n) «I - (ex) + 0.5(8x)2

with

(6)

(ex)
0 "?,* ev

»It 0 ~f* -ey üx 0
(7)

where

6x'V8z = Components of Q_-

6. = Angle vector with direction and magnitude such that a rotation of the
navigation frame about Q_ through an angle equal to the magnitude of e
will rotate the navigation frame from its orientation at computer cycle n
to its orientation at computer cycle n+1. The 9 vector is computed for
each computer cycle n by processing the navigation frame rotation rate data
from the navigation software section (12).

It is important to note that the n cycle (for navigation frame rotation) and m cycle
(for body frame rotation) are generally different, n typically being executed at a lower
iteration rate than m. This is permissable because the navigation frame rotation
rates are considerably smaller than the body rates, hence, high execution rates are not
needed to maintain e. small to reduce the order of the iteration algorithm. The algorithm
represented by equations (5) and (6) is second order in £. Generally, first order is of
sufficient accuracy, and the (ex)2 term ne-id not be carried in the actual software
implementation.

3.2 Quaternion updating Algorithms

3.2.1 Quaternion Transformation Properties

The updating algorithms for the attitude quaternion can be developed through an
investigation of its vector transformation properties (5, 9). We first introduce
nomenclature that is useful for describing quaternion algebraic operations. Referring to
equation (1), the quaternion with components a, b, c, d, can be described as:

= ai + bj + ck + d (8)

«^..•^Mi-V—1P<*^>v*>pi-fnp^> •jp^iwy«^^»—i^nm—^w '"»y •• •I1"""1 '• ')"•

3-5

where

a.b.c

i.j.k

« Components of the "vector" part of the quaternion.

- Quaternion vector operators analagous to unit vectors along orthogonal
coordinate axes

• " Scalar" part of the quaternion.

We also define rules for quaternion vector operator products ast

ii - -1 ij - k ji - -k
jj - -1 jk - i kj - -i
kk - -1 ki - j ik « -j

With the above definitions, the product w of two quaternions (u and v) becomes:

w - uv - (ai -f bj + ck + d) <ei + f j + gk + h)

» aeii • afij * «gik + ahi
*• beji + bf jj + bgjk + bhj
+ caki • cfkj + cgkk + chk
+ dei ••• df j • dgk + dh

' {ah + de • bg - cf)i
+ (bh + df • ce - ag)j
+ (ch + dg + af - be)k
+ (dh - ae - b£ - eg)

or in "Four-vector" matrix formt

e
f
g*
h'

" d -c b a e
c d -a b f
-bad c q
-a -b -c dw *

We also define the "complex conjugate" of the general quaternion u in equation (8) ast

u* •« -ai - bj - ck + d

We now define a quaternion operator h(nu for the body angle change £ over computer cycle
m as:

(•,/•) «in (*/2)
h(m) - (*y/#) sin U/2) Mm) (ej/i) sin U/2)

cos (t/2)

19)

where the elements in the above column matrix refer to the i, j, k, and scalar components of
h. We also define a general vector v with corcroponents vx, vv, vz, and a corresponding
quaternion v having the same vector components with a zero scalar component:

vx

0

Using the above definitions and the general rales for quaternion algebra, it is readily
demonstrated by substitution and trigonometric manipulation that:

Mm) v h(ra)* «= A' (m) v (10)

where

.».--,. iftin •HMHI

3-6

A'(in)
fACro) Ol
L ° °J

vy.

A(m) * As defined in (3).

Equation (10), therefore, is the quaternion form of the vector transformation equation
that transforms a vector from body coordinates at computer cycle (m+1) to body coordinates
at computer cycle mt

v' Aim) v (11)

where

v' »v

v

v'

"Three-vector" form of v* and v (i.e., with components vx', vy', ve' and vx, vy« vE)

The general vector v in body coordinates at computer cycle (m+1).

The general vector v in body coordinates at computer cycle m.

3.2.2 Quaternion Updating Algorithm For Body Motion

Equation (10) with its equation (11) dual can be used to define analagoua vector
transformation operations between body coordinates and navigation coordinates at computer
cycle ra as:

q(m) v' q(m)*

C(ra) v'
(12)

where

q(m)

Y.'

v"

v* ,v"

Quaternion relating body axes to navigation axes at computer cycle m.

The vector v in navigation coordinates.

The vector v in body coordinates at computer cycle m.

Quaternion ("Pour vector") form of v', v".

The q quaternion has four elements (i.e., a, b, c, d) that are updated for body motion
^ at each computer cycle m. The updating equation is easily derived by substituting
equation (10) into (12):

v" • q(m) h(m) v h(m)* q(m)*

Using the definition for the quaternion complex conjugate, it is readily demonstrated
that:

h(m)* q(m)* - (q(m) h(ra))*

Thus,

v" • q(m) h(m) v (h(m) q(m))*

But we can also write the direct expression:

v" • q(m+l) v q(m+l)*

Therefore, by direct comparison of the latter two equations:

q(m+l) = q(m) h(m) :i3;

•Mtf^UMW

3-7

Equation (13) is the quaternion equivalent to direction cosine updating equation (2).
For computational purposes, h(m) as defined in equations (9) is equivalently:

h(ra) «

f3 *x f3 •£

f4

fi -
sin (»/2)

- 0.5(l - (0.5*)2/3l + (0.5*)4/5l

(14)

cos (*/2) - 1 - <0.5*)2/2l + (0.5*)4/4!

(0.5*)2 « 0.25 >x2 4- *y2 • *z2)

The "order" of the equation (13) and (14) updating algorithm depends on the order of •
terms carried in h which depends on the truncation point used in f3 and ff^. The rationale
for selecting the algorithm order and associated algorithm iteration rate is directly
analagous to selection of the direction cosine updating algorithm order (discussed
previously).

3.2.3 Quaternion Updating Algorithm For Navigation Frame Rotation

Equation (13) with (14) is used to update the quaternion for body frame motion sensed by
gyros. In order to update the quaternion for rotation of the navigation coordinate frame,
an algorithm analagous to equation (5) (for the direction cosino matrix) is used with a
navigation frame rotation quaternion r:

q(n+l) r(n) q(n)

r(n)

-0.5 8X
-0.5 6y

-0.5 81
1-0.5(9/2)2

(15)

(6/2)2 0.25 (8X2 + 9y2 + 8Z2)

where

9„,9V,9 y"z Components of 9_ as defined previously for equations
(6) and (7).

The development of equation (15) parallels the development of (13). The equation for
r(n) is a truncated form of the theoretical exact analytical expression (analagous to the
second order truncated form of equation (14)). The 92 term in equation (15) generally is
not required for accuracy (due to the smallness of 9_ in typical applications).

As for the direction cosine updating algorithm for navigation frame motion, the
equivalent quaternion updating algorithm (equation (15)) updating cycle n need not be
processed as fast as the body rate cycle ra to maintain equivalent accuracy. This is due to
the considerably smaller navigation frame rotation rates compared to body rotation rates.

3.2.4 Equivalencies Between Direction Cosine And Quaternion Elements

The analytical equivalency between the elements of the direction cosine matrix and the
attitude quaternion can be derived by cirect expansion of equations (12). If we define the
elements of q as:

i «in« • • ••• y

3-8

equation (12) becomes after expansion, factorisation of v*# and neglecting the scalar part
of the v" and v* quaternion vectors (i.e., carrying only the vector components v" and v*)

(d2 + a2 - b2 - c2)
2(ab + cd)
2(ac - bd)

2(ab -cd) 2(ac + bd)
+ b2 - c2 -a2) 2(bc - ad)
2(bc • ad) (d2 + c2 - a2 - b2

(16!

Defining C in equation (12) as:

cll ?12 13
C21 C22 C23
c31 c32 c33

equation (16) when compared with (12) shows that:

Cll

Cl2

Cl3

C21

c22

C23

C31

C32

C33

d4 + a* . b* - c"

2(ab - cd)

2(ac + bd)

2(ab + cd)

d2 + b2 - c2 - a:

2(bc - ad)

2(ac - bd)

2{bc + ad)

d2 + c2 - a2 - b:

(17)

The converse of equation (17) is somewhat more complicated. Using the property
(from equation (1)) that s

a2 + b2 + c2 + d2 - 1

the converse of equation (17) can be shown (11) to be computable from the following sequence
of operations:

= C + c. + C-

P2

,11 ZJ-22 V33
* 1 + 2C,, - T
= 1 + 2C22 " Tr
= 1 + 2C-J, - T,

1 + T,
33

If Fx - max (r,, r2, r3, r), then.
* 0.5 a = U.b P,l/2 signla vious)
= (C2i * Cl2)/4a 12'
" <Cl3 + C31>/4a

C32 - C23)/4a

If P2 • max (P1# P
b
c
d
a

; (P1# P,, P3, P0), then:
0.5 P2l72 sign(b ious
(C32 + C23)/4b
(C13 - C31)/4b
(C21 + Cl2)/4b

(18)

If P3 - max (Pj, P- P„). then: l*»i, F2, f3, KQi, tnen:
=0.5 P3I/2 8ignTcpreviou8)

d = (C2, - C,2)/4c
a = (Cl3 + C31)/4e
b = (C32 + C23)/4c

If P, max (Pi then: iwx \r]> c2' r3'
'd = 0.5 P4 1/2 sign(dprevious)
a » (C32 - C23)/4d
b = (C,3 - C3,)/4d
c = (C21 - C12)/4d

•--'-•

3.3 The Computation Of •.

3.3.1 Continous Form

The A "body attitude change" vector is calculated by processing data from the strapdown I •
gyros. Under situations where the angular rotation rate vector (sensed by the gyros) lies
along a fixed direction (i.e., is nonrotating in inertial space), the 4 vector is equal to
the simple integral of the angular rate vector over the time interval from computer cycle m
to computer cycle (m+1):

.*m*l
« • / w dt for cases when u is nonrotating. (19) »

where

Angular rate vector sensed by the strapdown gyros

Under general motion conditions (when u may be rotating), equation (19) has the more } •
complex form (as derived in (10) or alternatively, in Appendix A):

a(t) » / (w + 1/2 o x w + 1 (1 - .g.-»*" «) a x(a x u))dt
tro- " IF U-sin«) " "

(20)

1 " «tt-t^i) * •

It can verified by power series expansion that to first order»

(1/a2) (1 - J «*",«) • 1
(1-coso) 12

I •
Hence, a(t) in equation (20), to third order accuracy in a can be approximated by:

t
o(t) - / (u + 1/2 a x w + _i_ a x(o x w))dt (21)

tm 12 ~

A second order expression for o(t) can be obtained from (21) by dropping the 1/12 term. I *
An even simpler expression for a(tT is obtained by dropping the 1/12 term, and approximating
the a term in the integral by the direct integral of u*

£(t) * / u dt
tra

6£(t) «= 1/2 / i x a) dt (22)

» •

t m

i - itt-tm+x) + 6fi<t«tm;1)

» •
An interesting characteristic about equation (22) is that its accuracy is in fact

comparable to that of third order equation (21). In other words, the simplifying assumption
of replacing o with ß in the 1/2 a x u term is in fact equivalent to introducing an error in
equation (2l) that to third order, equals the 1/12 £ x (« x w) term. This property can be
verified by simulation as well as analytical expansion under hypothesized angular motion
conditions•

Equation (22) is the equation that is mechanized in software in most modern-day | #
strapdown inertial navigation systems to calcuate £. It can be demonstrated analytically
and by simulation that for representative vehicle angular motion and vibration, equation
(22) faithfully calculates £ to accuracy levels that are compatible with high performance
strapdown inertial navigation system requirements.

For situations where w is nonrotating, the 6£ term in (22) is zero and <|> equals the
simple time integral or w over the computer interval m (i.e., the equation Tl9)
approximation). For situations where w is rotating (a situation defined analytically as > •

3-10 Q

"coning"), the ££ term is nonzero and must be calculated and used as a correction to the u
integral to properly calculate ±.

It is important to note that the accuracy by which equation (22) approximates (20) is
dependent on • being small (e.g., less than 0.1 radian). In order to protect the accuracy
of this approximation, the computer iteration rate roust bo high enough that • remains small **-" ro-
under maximum vehicle rotation rate conditions. *

3.3.2 Recursive Algorithm Form

The implementation of equation (22) in a digital computer implies that a higher speed
integration summing operation be performed during each body motion attitude update cycle. A -r-
computational algorithm for the integration function can be derived by first rewriting •
equation (22) in the equivalent incremental updating formt

ß(t) - 1(1) -f / w dt
tl

tA+x •
6ß(A+l) - mi) • 1/2 / S(t) x u dt (23)

A(*+l) - £(t«tl+1)

1 -£<*-*«fX> •Ü<t"tm+1> F •

with initial conditions!

(24) „ ,
6£(t«tm) » 0 > *

where

I • High speed computer cycle within the m body rate update cycle.

The integrals in (23) can be replaced by analytical forms that are compatible with gyro | •
input data processing if w is replaced by a generalized time series expansion. For
equations (23), it is sufficient to approximate u over the A to A+l time interval as a
constant plus a linear ramp:

u - A + B (t - tji) (25)

where ft •

A, B • Constant vectors.

Substituting (25) in (23), and recognizing with the equation (25) approximation that:

^(tjt+i - tjt) = i/2 (MU) + *£U-U)

i/2 B(ti+1 - tA)2 » i/2 (aeU) - M<*
_1)

i •

where by definition:

itu) A /*»! Wdt *• 9

yields the desired final form for the _$ updating algorithm:

3-1!

&U+1) - ££<*> • I/2 (&U> • 1/6 A£U-i)) * Ae<*>

A8(l) / u dt - T de
(26)

S_U+1) - B.U) • A£U)

i - I<*-*«•!> + 6£<t-Wi>

with initial conditions:

B_(t-tm) - B.U-0) - 0

6£(t«tm) - 6£(W» - 0

where

de

Ae

• Gyro output pulse vector. Each component (x,y,z) represents the occurance
of a rotation through a specified fixed angle increment about the gyro input
axis.

* Gyro output pulse vector count from I to Jt+1.

The computational algorithm described by equation (26) is used on a recursive basis to
calculate ± once each m cycle. After ± it calculated, the B and 6jj functions are reset for
the next m cycle j> calculation. The iteration rate for Jt within m is maintained at a high
enough rate to properly account for anticipated dynamic u motion effects. Section 6.
describes analytical techniques that can be used to assess the adequacy of the I iteration
rate under dynamic angular rate conditions.

3.4 The Computation Of 9

The 6 vector in equations (6) and (15) is computed as a simple integral of navigation
frame angular rate over the n cycle iteration periods

e

where

Q

tn+1
/ a dt (27)

Navigation frame rotation rate as calculated in the navigation software
section (12).

Standard recursive integration algorithms can be used to calculate 9 in equation (27)
(e.g., trapezoidal) over the time interval from n to n+1. The update rate for the
integration algorithm is selected to be compatible with software accuracy requirements in
the anticipated dynamic maneuver environment for the user vehicle.

3.5 Orthogonality And Normalization Algorithms

Most strapdown attitude computation techniques periodically employ self-consistancy
correction algorthms as an outer-loop function for accuracy enhancement. If the basic
attitude data is computed in the form of a direction cosine matrix, the self-consiatancy
check is that the rows should be orthogonal to each other and equal to unity in magnitude.
This condition is based on the fact that the rows of the direction cosine matrix represent
unit vectors along orthogonal navigation coordinate frame axes as projected in body axes.
For the quaternion, the self-consistancy check is that the sum of the squares of the
quaternion elements be unity (this can be verified by operation on equation (1)).

3.5.1 Direction Cosine Orthogonalization And Normalization

The test for orthogonality between two direction cosine rows is that the dot product be
zero. The error condition, then is:

^^ l<M*|MI p p

3-12

Eu • CiCjT

where

ci - itn row of C

CJ • jth row of c

T a Transpose

(28)

A calculated orhogonality error Ej4 can be corrected by rotating CA and Cj relative to
each other about an axis perpendicular to both by the error angle EM» Since it is not
known whether Cj or Cj is in error, it is assumed that each are equally likely to be
generating the error, and each is rotated by half of E^j to correct the error. Hence, the
orthogonality correction algorithm is:

Ci(n-H) - C^n) - 1/2 Ejj Cj(n)

Cj(n+1) - Cj(n) - 1/2 Eij Ci(n)
(29)

It is easily verified using (29) that an orthogonality error Ej* originally present in
Cj(n) and C*(n) is no longer present in CWn+l) and Ci(n+1) after application of equation
(29). J J

The unity condition on C^ (i.e., normality) can be tested by comparing the magnitude
squared of C^ with unityt

Eii - I - Ci C4T ^ii i ui' (30)

A measured normality error E^ can be corrected witht

Ci(n+1) « C^n) - 1/2 ELi CL (n) (31)

Equations (28) through (31) can be used to measure and correct orthogonality and
normalisation errors in the direction cosine matrix. In combined matrix form, the overall
measurement/correction operation is sometimes written as:

Cn+1 " cn+l/2 U - Cn CnT) cn (32)

3.5.1.1 Rows or Columns - The previous discussion addressed the problem of orthogonal!zing
and nomalizing the rows of a direction cosine matrix C. In combined form, equation (32)
shows that the correction is:

6C « 1/2 (I - CCT) C (33)

Equation (33) can be operated upon by premultiplication with C poctmultiplication by CT,
and combining terms. The result is:

6C « 1/2 C (I - CTC) (34)

The (I - CTC) term in (34) is the error matrix based on testing orthogonality and
normality of the columns of C. Thus, if the rows of C are orthonormalized (i.e., 6C is
nulled), the columns of C will also be implicitly orthonormalized. The inverse applies if
the columns are directly orthonormalized with (34). The question that remains is, which is
preferred? The answer is related to the real time computing problem associated with the
calculation and correction of orthogonalization and normalization errors.

Ideally, the orthogonalization and normalization operations are performed as an outer
loop function in a strapdown navigation computer so as not to impact computer throughput
requirements. A computational organization that facilities such an approach divides the
orthonorraalization operations into submodules that are executed on successive passes in the
outer-loop software path. A logical division of the orthonormalization operations into
submodules is as defined by equations (28), (29), (30), and (31).

This implies that measurement and correction of orthogonalization and normalization
effects are performed at different times in the computing cycle. Such an approach is only
valid if the orthogonality and normalizations errors (i.e., E^j and Ej^) remain reasonably
stable as a function of time.

To assess the time stability of the orthogonality/normalization error is to investigate

• •

• •

3-13

the rate of change of the bracketed term» in equations (33) and (34). For convanience,
these will be defined ass

ER « (I - CCT)

Ec i (I - CTC)

The time derivative of (35) is:

ER » - CCT - CC
T

Ec - - C
TC - CTC

(35)

(36)

Expressions for C and CT can be developed by returning to equations (2), (3), (5), and
(6). These equations can be rearranged to show that over a given time interval, the change
in C is given by*

AC C(A - I) + (B - I)C

which with (3) and (4) becomes to first order:

AC - c(±x) - (ex)c (37)

Dividing by the time interval for the change in C, recognizing that • and £ are
approximately integrals of u and Q over the time interval, and letting the time interval go
to zero in the limit, yields the classical equation for the rate of change of C:

C(ü)x) - (Qx)C (38)

• •

where

(ux), (Qx) » Skew symmetric matrix form of vectors w, £j.

The transpose of (28) is :

CT - - (ax) CT + CT (QX) (39)

We now substitute (38) and (39) into (36). After combining terms and applying equations
(3b), the final result ist

" ER (9_*) " <Q*> E!

E<j " Ec (vx) - (wx) Ec

(40)

Equations (40) show that th-j rate of change of ER is proportional to ER and the
navigation frame rotation rate Q, whereas the rate of change of EQ is proportional to Ec and
the body rotation rate w« Since w is generally much larger than Q, Ec is generally larger
than ER. It can be concluded that ER is more stable over time, hence, orthonormalizing the
direction cosine matrix rows (based on the ER measurement) is the preferred computational
approach if the real time computing problem is taken into account.

• •

3.5.2 Quaternion Normalization

The quaternion is normalized by measuring its magnitude squared compared to unity, and
adjusting each element proportionally to correct the normalization error. The normalization
error is given by:

q q* - 1 (41)

It is easily verified using the rules for quaternion algebric that E~ equals the sum of
the squares of the elements of q minus 1. The correction algorithm is given by:

9<n+l> q(n) " 1/2 Eq q(n) (42)

•• • - iii

pi» f.m. " H'«n,

3-14

3.6 Direction Cosine Versus The Quaternion For Body Attitude Referencing

The tradeoff between direction cosine versus quaternion parameters as the primary
attitude reference data in strapdown inertial systems has been a popular area of debate
between strapdown analysts over the past three decades. In its original form, the tradeoff
centered on the relative accuracy between the two methods in accounting for body angular
motion. These tradeoffs invariably evolved from the differential equation form of the
direction cosine and quaternion updating equations and investigated the accuracy of
equivalent algorithms for integrating these equations in a digital computer under hypoth-
esized body angular motion. Invariably, the body motion investigated was coning motion at
various frequencies relative to the computer update frequency. Por these early studies, the
tradeoffs generally demonstrated that for comparable integration algorithms, the quaternion
approach generated solutions that more accurately replicated the true coning motion for
situations where the coning frequency was within a decade of the computer update frequency.

As presented in this paper, both the quaternion and direction cosine updating algorithms
have been based on processing of a body angle motion vector $_ which accounts for all
dynamiic motion effects including coning- These updating algorithms (equation (2) and (3)
for direction cosines and (13) and (14) for the quaternion) represent exact solutions for
the attitude updating process for a given input angle vector •• Consequently, the question
of accuracy for different body motion can no longer be considered a viable tradeoff area.
The principle tradeoffs that remain between the two approaches are the computer memory and
throughput requirements associated with each in a strapdown navigation system.

In order to assess the relative computer memory and throughput requirements for quater-
nion parameters versus direction cosines, the composite of all computer requirements for
each must be assessed. In general, these can be grouped into three major computional areas:

1. Basic updating algorithm

2. Normalization and orthogonalization algorithms

3. Algorithms for conversion to the direction cosine matrix form needed for
acceleration transformation and Euler angle extraction

Basic Updating Algorithms r The basic updating algorithm for the quaternion parameters
is somewhat simpler than for direction cosines as expansion of equations (2) and (3)
compared with (13) and (14) would reveal. This results in both a throughput and memory
advantage for the quaternion approach. Part of this advantage arises because only four
quaternion elements have to be updated compared to nine for direction cosines. The
advantage is somewhat diminished if it is recognized that only two rows of direction cosines
(i.e., 6 elements) need actually be updated since the third row can then be easily derived
from the other two by a cross-product operation (i.e., the third row represents a unit
vector along the z-axis of the navigation frame as projected in body axes. The first two
rows represent unit vectors along x and y navigation frame axes. The cross-product of unit
vectors along x and y navigation axes equals the unit vector along the z-navigation axis).) #

Normalization And Orthogonalization Algorithms - The normalization and orthogonalization
operations associated with direction cosines are given by equation (28) through (31). The
quaternion normalization equation is given by equations (41) and (42).

The normalization equation for the quaternion is generally simpler to implement than the
orthogonalization and normalization equations for the direction cosines. If only two rows
of the direction cosine matrix are updated (as described in the previous paragraph) the | 9
direction cosine orthogonalization and normalization operations required are half that
dictated by (28) through (31), but are still more than required by (41) and (42) for the
quaternion. Since the orthonormalization operations would in general be iterated at low
rate, no throughput advantage results for the quaternion. Some memory savings may be
realized, however.

A key factor that must be addressed relative to orthonormalization tradeoffs is whether
or not orthonormalization is actually needed at all. Clearly, if the direction cosine or
quaternion updating algorithms were implemented perfectly, orthonormalization would not be
required. It is the author's contention that, in fact, the accuracy requirements for
strapOown systems dictate that strapdown attitude updating software cannot tolerate any
errors whatsoever (compared to sensor error effects). Therefore, if the attitude updating
software is designed for negligible drift and scale factor error (compared to sensor errors)
it will also implicity exhibit negligible orthogonalization and/or normalization errors.

The above argument is valid if the effect of orthonormalization errors in strapdown
attitude -iata is no more detrimental to system performance than other software attitude
error effects. This is in fact the case, as detailed error analyses would reveal. Since
modern-day general purpose computers used in today's strapdown inertial navigation systems
have the capability to implement attitude updating algorithms essentially perfectly within a
reasonable throughput and memory requirement, it is the author's opinion that
orthonormalization error correction should not be needed, hence, is not a viable tradeoff
area relative to the use of quaternion parameters versus direction cosines.

Algorithms For Conversion To The Direction Cosine Matrix - If the basic calculated

MS r W

attitude data is direction cosines directly, no conversion process is required. For cases
where only two rows of direction cosines are updated, the third row must be generated by the
cross-product between the two rows calculated. For example:

C31 - c12 c23 - cl3 c22
C32 * Sl3 C2i " CU C23 (43) ~ ~-
c33 " cll c22 - cl2 C21 P •

For quaternion parameters, equation (17) must be implemented to develop the direction
cosine matrix, a significantly more complex operation compared with (43) for the two row
direction cosine approach. Since direction cosine elements are generally required at high
rate (for acceleration transformation and Euler angle output extraction) both a throughput
and memory penalty is accrued for the quaternion approach. The penalty is compounded if the
calculated direction cosine outputs are required to greater than single precision accuracy
(including computational round-off error). For noise-free acceleration transformation
operations (such as may be needed to effect an accurate system calibration) double-precision
accuracy is needed. The result is that equation (17) for the quaternion versus (43) for
direction cosines would have to be implemented in double-precision imposing a significant
penalty for the more complex quaternion conversion process.

Tradeoff Conclusions - From the above qualitative discussion, it is difficult to draw
hard conclusions regarding a preference for direction cosines versus quaternion parameters I •
for attitude referencing in strapdown inertial systems. Pros and cons exist for each in the
different tradeoff areas. Quantitative comparisons based on actual software sizing and
computer loading studies have led to similar inconclusive results. Fortunately, today's
computer technology is such that the slight advantage one attitude parameter approach may
have over the other in any particular application is insignificant compared with composite
total strapdown inertial system throughput and memory software requirements. Hence,
ultimate selection of the attitude approach can be safely made based on "analyst's choice".

4. STRAPDOWN ACCELERATION TRANSFORMATION ALGORITHMS

The acceleration vector measurement from the accelerometers in a strapdown inertial
system is transformed from body to navigation axes through a mechanisation of the classical
vector tranformation equation:

aN • C a (44)

where

a • Specific force acceleration measured in body axes by the strapdown
accelerometers

I •

»N » Specific force acceleration with components evaluated along navigation axes. I •

The implementation of equation (44) is accomplished on a repetative basis as a recursive
algorithm in a digital computer such that its integral properties are preserved at the
computer cycle times. In this manner, the velocity which is formed from the integral of
(44) will be accurate under dynamic conditions in which aN may have erratic high frequency
components. The recursive algorithm for (44) must account for the effects of body rotation
(and secondarily, rotation of the navigation coordinate frame) as well as variations in a
nvflr the computer iteration period. | •

4.1 Acceleration Transformation Algorithm That Accounts For Body Rotation Effects

To develop an algorithm for equation (44) that preserves its integral properties, we
begin with its integral over a computer cycle:

I §
Wl

uN - / C a dt (45)
tm

where

uN = Change in the integral of equation (44) (or specific force velocity change) I *
over a computer cycle m '

The velocity vector in the navigation computer is generated by summing the uN's
corrected for Coriolis and gravity effects.

The C matrix in (45) is a continuous function of time in the interval from tm to t^i.
An equivalent form for C in terms of its value at the computer update time, (m) is:

C - C(m) A(t) (46)

•HMtaaMMM

—I \••!"•''••-'!• I i« m m iy «i.

3-16

where

C(m)

A(t)

Value of C at tro

Direction cosine matrix that transform vectors from body axes at time t to the
body attitude at the start time for the computation interval tm.

Equation (46) with the definition for A(t) above accounts for the effect of gyro sensed
body motion over the computer interval- The next section will discuss the correction used
to account for the small rotation of the navigation frame over the computer interval.

Substituting (46) in (45) and expanding:

^m+1
uN - C(m) / A(t) a dt

TO

We now use a first order approximation for A(t) as given by equation (3), with ± treated
as a function of time in the interval as defined to first order in equation (22)t

*_(t) - &(t) - / u dt
TO

Thus,

A(t) - I + (£(t)x) (47)

and

tm+l
uN . c(m) / (I + (&(t)x)) a dt

TU

Tn+1 Wi
- C(«) (/ a dt + / (£(t) x a) dt

tra fcm

We now define

u • / a dt

Hence,

C(m) (u + Jtm+1(g.(t) x a) dt) (48)

with

£(t) « / u dt
fcm

tm+l
u - / a dt

fcm

An alternative form of (48) can also be derived through direct application of the
integration by parts rule to the integral term in the equation (48) u• expression.:

C(m) (u + 1/2 £ x u + 1/2/ (£(t) x a + u(t) x w) dt] (49)

with

 UHtl

«MM mw^rnuß if w"1 i ' '«'• • •'• •y i •>"

3-17
• •

l(t) / u> dt

u(t)

u

- / a dt

" H(t-tro+1)

• •

Equations (48) and (49) are algorithmic forms of equation (44) that can be used to
calculate uN in the strapdown computer exactly (within the approximation of equation (47)).
These equations show that the specific force velocity change in navigation coordinates is
approximately equal to the integrated output from the strapdown accelerometer (u) over the
computer cycle, times the direction cosine matrix which was "-.lid at the previous computer
update time. Correction terms are applied to account for body rotation. In general, the
correction terra involves an integral of the interractive effects of angular u and linear a
motion over the update cycle. The integral terms have been coined "sculling7 effects.

The equation (49) form of the uN equation includes a 1/2 _g x u term which can be
evaluated at t„+1 as the simple cross-product of integrated gyro and accelerometer
measurements (i.e., without a dynamic integral operation). Furthermore, it is easily
demonstrated that for approximately constant angular rates and accelerations over the
computer cycle, the integral term in (49) is identically zero. This forms the basis for an
approximate form of (49) which is valid under benign flight conditions (i.e., using equation
(49) without including the integral terra). The 1/2 £ x u term in (49) is sometimes denoted
as "rotation compensation".

4.1.1 Incremental Form of Transformation Operations and Sculling Terms

In a severe dynamic environment, equations (48) or (49) would be implemented explicitly
with the integral terms mechanised as a high speed digital algorithmic operation within the
tro to tm+i update cycle. The integral terms we are dealing with are from (48) and (49)»

§1 " Jtm+1U<t) x a) dt
fcm

S2
A 1/2 / tro+tfi(t) x a + u(t) x y) dt

(50)

With the equation (50) definitions, (48) and (49) become:

,N C(m) (u • SjJ (51)

C(m) (u + 1/2 j x u + S2) (52)

Recursive algorithms for S^ or £>2 can be derived by first rewriting (50) in the
equivalent form:

.g(t) = jU) + / <* dt

u(t) - u(i) + / a dt

^U+l) = JXU) + / *+1[£(t) x a) dt

A+l
J2(A+1) = J*2<A) + i/2 / Cfi(fc) x a + H<t> x Ü») dt 153)

jU+D - ß(t=t A+1)

uQ+1) = uU-tj^!)

Sx = Jl<t=tm+1)

S2 = ja(t*tm+l)

»^^^^m^^tmpm^^^^rm. I n »i mi^F^^^-i •• •' u yg-^w^i

3-18

with initial conditions

l(t-tm) - 0

u(t-tm) - 0
(54)

Il<t«tro) » °

I2<t-tm) - 0

where

I - High speed computer cycle within m lower speed computation cycle.

The integrals in (53) can be replaced by analytical forms that are compatible with gyro
and accelerometer input data processing if u and a are replaced by a generalised time series
expansion. For equations (53), it is sufficient to approximate u and a over the * to A+l
time interval as constants. Using this approximation in (53) yields the final algorithm
forms. For Sj, the companion to equation (51), the algorithm is:

IiU+1) « Ii(*> + (PU) + 1/2 Mil)) x AvU)

£(A+1) - £(*) + A9(Jt)

where

A8(i) « / « dt « I d«
— *-l " *l ~~

tjui tjl+i
Av(A) » / a dt « I dv

*Jl *-l

and

Sx - Y!(t-tm+1) (55)

For equation (51):

u(A+l) « u(A) + Av(A)

A

with initial conditions:

A
ß_(t«tm) - £U»0) - 0

Ll<*"tm) " lit*»0) = 0

where

d8, dv, • Gyro and accelerometer output pulse vectors. Each component (x, y, z)
represents the occurance of a rotation through a specified angle about the
gyro input axis (for d9 components) or an acceleration through a specific
force velocity change along the accelerometer input axis (for dv
components)•

A8, Av, « Gyro and accelerometer pulse vector counts from I to Jt+1.

For the alternative S2 form, the companion to equation (52), the algorithm is:

MA

in ill, min my •.nil mi,, imm «. -

3-19

jr2(X+l) - v^U) • 1/2 (£(1) x AvU) + u(X) x Ae(l)3

£(1+1) - £<*) • Afl(i)

uU+l) * u(A) + AvU)

where

- .. rfc*+l rtjl+l Ä A9(t) « J w dt • 1 d«

A**! t^l+l ou(i) - / a dt - I dv

and (56)

§2 " Ja**"***!)

For equations (52):

£ -Kt-Wi)
u - utt-t^i)

with initial conditions:

£(t-tm) - ld-0) » 0

u(t-tra) - uU-0) - 0

I2(t-tm) - Y2U-0) - 0

Equations (51) with (55), or (52) with (56) are computational algorithms that can be
used to calculate the navigation frame specific force velocity changes. Two iteration rates
are implied: a basic m cycle rate, and a higher speed Jt cycle rate within each m cycle.

The m cycle rate is selected to be high enough to protect the approximation of
neglecting the (j}(t)x)2 term in A(t) (contrast equation (47) with the equation (3) exact
form for A). This design condition is typically evaluated under maximum expected linear
acceleration/angular rate envelope conditions for the particular application. Typically,
the m cycle rate required for accuracy in the attitude updating algorithms is also
sufficient for accuracy requirements in the m cycle of the acceleration transformation
algorithms.

The I cycle rate within m is set high enough to properly account for anticipated
composite dynamic w, a effects. Section 6. describes analytical techniques that can be used
to assess the adequacy of the S iteration rate for the sculling computation under dynamic
input conditions.

4.1.3 Acceleration Transformation Algorithms Based on Quaternion Attitude Data

Equations (51) or (52) were based on the use of direction cosine data (C) in the
strapdown computer. If the basic attitude data is calculated in the form of a quaternion,
the equivalent C matrix for transformation can be calculated using equations (17).
Alternatively, the quaternion data can be applied directly in the implementation of the
tranformation operation through application of equation (12) to equations (51) and (52):

uN » q(m) (u + Sx) q(m)* (57)

or

uN • q(m) (u + S2) q(m)*

, A ,
S2 • 1/2 £ x u + S2

(58)

3-20

where u and the terms in the middle brackets are the quaternion form of the vector of the
same nonmenclature defined as having the first three terms (i.e., vector components) equal
to the vector elements, and the fourth scalar term equal to zero. The S^ and S2 terms are
calculated as defined by equations (55) and (56).

4.2 Acceleration Transformation Algorithm Correction For Navigation Frame Rotations

The acceleration transformation algorithms represented by equation (51), (52) or (57),
(58) with (55), (56) neglects the effect of navigation frame rotation. In general, this is
a minor correction term that can be easily accounted for at the n cycle update rate (i.e.,
the computer cycle rate used to update the attitude data for the effect of navigation frame
rotations). It can be shown through a development similar to that leading to equation (52),
that the correction algorithm for local navigation frame motion is given to first order by:

AuN(n) - - 1/2 8 x v(n) (59)

where

AuN(n)

v(n)

6

Correction to the value of uN computed in the m cycle that occurs at the
current n cycle time. (Note: the m cycle is within the lower speed n cycle time
frame).

Summation of u(m) over the n cycle update period.

Integral of the navigation frame angular rotation rate over the n cycle
period (as described in Sections 3.1.2 and 3.4)

5. EULER ANGLE EXTRACTION ALGORITHMS

If the body attitude relative to navigation axes is defined in terms of three successive
Euler angle rotations *, 8, $ about axes 2, y, x respectively (from --avigation to body
axes), it can be readily demonstrated (9) that the relationship between the direction cosine
elements and Euler angles is given by:

C* j^ • C-JS0 COS(J»

cl2 * ~ cos$ 8in4» • sin* sine cosij.

C^3 * sin$ sintj» + cos$ sine cos<j>

c21 * cos9 8^n<f'

C22 = cos$ cosij. + sin4i sine siity (60)

c23 * ~ Bi-n4> c°s4> + cos$ sine sir*j.

c31 " " sin9

C32 • sinifi cos6

C33 = cos4> cos8

For conditions where /e/ * %/2 the inverse of equations (60) can be used to evaluate the
Euler angles from the direction cosines:

tan
-1 C32

C33

• - tan
-1 C31

/(1-C312)
(61)

= tan C21

Cll

For situations where /8 / approaches it/2, the $ and 4 equations in (61) become
indeterminate because the numerator and denominator approach zero simultaneously (see

3-21

equations (60))• Under these conditions, an alternative equation for *, <\> can be developed
by first applying trigonometric algebra to equations (61) to obtain:

c23 * C12 " <8in6 " D »int* • •)

Ci3 - c22 " <»in9 " L> cos(4- + *)
(62)

c23 " C12 " <-ine + x> »*aU ~ •)
C13 + c22 * (sin9 + l) «©•(• - •)

Taking appropriate reciprocals of sine, cosine terms in (62) and applying the inverse
tangent function»

For 0 near + */2

-1 c23 - cl2 <!»-•* tan

For 9 near -K/2

-1 C23 + Cl2

:13 + c22

(63)

4» + t «• tan
:13 * C22

Equations (63) can be used to obtain expressions for the sum or difference of 4> and •
under conditions where /9/ is near K/2. Explicit separate solutions for 4» and * cannot be
found under the /9/ « K/2 condition because 4» and * both become angle measures about
parallel axes (about vertical), hence, measure the same angle (i.e., a degree of rotational
freedom is lost, and only two Euler angles, 9 » ± K/2 and 4> or * define the body to
navigation frame attitude). Under /9/ near n/2 conditions, 9 or 4» can be arbitrarily
selected to satisfy another condition, with the unspecified variable calculated from (63).
As an example, <t* might be set to a constant at the value it had from equations (61) when the
/e/ near K/2 region was entered. This selection avoids jumps in 4- as the solution equation
is transitioned from the (6l) to the (63) form.

6. ALGORITHM PERFORMANCE ASSESSMENT

The division of the attitude updating and acceleration transformation algorithms into
high and low speed loops for body motion effects (A and m rates) provides for flexibility in
selection of the iteration rates to maintain overall algorithm accuracy at system specified
performance levels. The Jt and m rate algorithms have been designed such that the high rate
i loop consists of simple computations that can be iterated at the high rate needed to
properly account for high frequency vibration effects. The m rate loop algorithms, on the
other are more complicated, based on computationally exact solutions.

Iteration rates tor the m loop are selected to maintain acuutacy under maximum maneuver
induced motion conditions. The m loop iteration rate to maintain accuracy under maximum
maneuver conditions can be easily evaluated analytically, or by simulation, through
con$>arision of the actual algorithm solution with the Taylor series truncated forms selected
for system mechanization. Iteration rates for the I loop are selected to maintain accuracy
under anticipated vibratory environmental conditions.

6.1 Vibration Environment Assessment

A fundamental calculation that should be performed prior to the analysis of * loop
algorithm iteration rate requirements is an assessment of the dynamic inputs that must be
measured by the algorithms. In essence, this consists of an evaluation of the continuous
(i.e., infinitely fast iteration rate) form of the algorithms in question under dynamic
input conditions. The specific continuous form equations of interest are equations (22)
for 6J3 and (50) for 8* or S2»

6.1.1 &£ Dynamic Environment Assessment (Coning)

We repeat equations (22) for &£ evaluated at t * t^i:

3-22

|_(t) - / w dt

(64)
tjj.4.1

Ütt-t^i) - 1/2 / |_(t) x w dt
tm

and analyse the solution for 5P(t"tm+1) under general cyclic motion at frequency f in axes x
and y with angular amplitudes"-^, 6y and relative phase angle 4> such that«

fwdt - (8. sin(2*ft), 9V •in(2«ft+*), 0)
T

0 "" *

2*f (8_ cos(2itft), 9V cos(2*ft+*). 0}T

(65)

Substituting (65) in (64), expanding through application of appropriate trigonometric
identities, and carrying out the indicated integrals analytically between the assigned
limits, yields zero for the x, y components and the following for the z component of

6Pas(t-tm+1) - x 8X 9 (ein*) f «t^ - tm) - Sln 2nf(tro+1 I tro))
2*f

Defining the m cycle time interval as Tro, the latter exression is equivalently:

sin 2nfT.
60. x 9X 9y (sin*) f 1 -

2*fT„
^) (66)

Hence, even though the u rate is cyclic in two axes as defined by equation (65) in x and
y, the value for 6ß. is a constant proportional to the sine of the phase angle between the
x, y angular vibrations. Under conditions where • • 0 (defined as "rocking" motion), 6ßz i8
zero. Under conditions where • • w/2, 6ß is maximum. The equation (65) rate when * •= */2
has been termed "coning motion" due to the characteristic response of the z axis under this
motion which describes a cone in inertial space.

Equation (66) can be pat into a "drift rate" form by dividing the ßß2 angle by the time
interval Tm over which it was evaluated!

6ß: % 9 x 9y (sin*) f 1 -
sin 2nfT„

2nfT
(67)

, Equation (67) is a fundamental equation that can be used to assess the magnitude of
6ßz that must be accounted for by the 6ß computer algorithm under discrete frequency input
conditions. If 6ßz is small relative to system performance requirements, it can be
neglected, and the I loop algorithm for 6ß need not be implemented.

Equation (67) describes how 6ßz can be calculated for a discrete input vibration
frequency f. In a more general case, the input rate is composed of a mixture of frequencies
in x and y at different phase angles * for each. If the source of the gereralized angular
vibration is random input noise to the strapdown system, the x, y motion is colored by the
transmission characteristics of the noise input to the x, y angular response. A more
general development of equation (67) that accounts for the latter effects shows that the
comparable equation for 6ßz is given by:

sintaT,
6ßz » J u Ax(w) Ay(w) sin(4>Ay(o>) - •Ax(«)) (1 -

0 •* * tüT,
) Pnn(J

w) dw (68)

where

Ax(u), Ay (to) • Amplitude of transfer function relating system input vibration noise
to angular attitude response of sensor assembly about x, y axes.

*Ax(u)' *Ay^"^ = Pfta8e °f transfer function relating system input vibration noise to
angular attitude response of sensor assembly about x, y axes.

^•«Mn^W^M^m^Hpi^^^^^^^^qp^^^^^M^^^W^p^n 1.111« >• -•!' .»f .wi.npi.1 ii Hi!!..!.).!.«. * i .

3-23

Pnn(ju) • Power spectral density of input vibration noise.

u Fourier frequency (rad/sec)

Notes Mean squared vibration energy - / Pnn(Jo>) <*<<>

Equation (68) can be used to assess the extent of random spectrum dynamic angular
environment to be measured by the öß computational algorithm. The ößs value calculated by
(68) measures the composite correlated coning drift in the sensor assembly that must be
calcuated to accurately account for the actual motion present. If the 68E magnitude
calculated from (68) is small compared to other systems error budget effects, the
mechanisation of an algorithm to calculate öß is not needed (i.e., can be approximated by
sero).

The extension of equations (67) and (68) to y, s or s, x axis angular vibration motion
should be obvious.

6.1.2 S^, S2 Dynamic Environment Assessment (Sculling)

We repeat equations (50) with u and £ from (48) and (49):

A(t) - /\dt

u(t) - ffc a dt 'v
(69)

Si - J (fi(t) x a)dt

t_Ai

§2 " l/2 J (!<*) x * + Stt) x M)dt

and analyse the Si, S2 solutions under general cycle motion at frequency f in axes x, y
with angular amplitude 9X about axis x and acceleration amplitude Dy along axis y at
relative phase $ such that:

J* u dt - (0. sin(2Rft), 0, 0)T ' 0 —

u - (2xf öx cos(2«ft), 0, 0)T (70)

a « (0, Dy sin(2nft+*), 0)T

Substituting (70) in (69), expanding through application of appropriate trigonometric
identities, and carrying out the indicated integrals analytically between the assigned
limits, yields zero for the x, y components and the following for the z component of S^
and S2*

S2z - 1/2 Tm 9X Dy (cos$) (1 - B"*" m) (71)
'•n ET.

slz " lf2 (1 x H>z + s2z (72)

where

(& x ü^z * z ~ component of | x u evalulated at t * tm+^.

Hence, even though the u and a inputs are cyclic in two axes as defined in equations
(70), the value for S2Z is a constant proportional to the cosine of the phase angle between

3-24

the x angular vibration and y linear acceleration vibration. Under conditions where *-it/2,
S2E is zero. Under conditions where •« 0, s2z is a maximum. Equation (70) motion when
• = 0 has been termed "sculling motion" due to the analogy with the characteristic angular
movement and acceleration forces imparted to an oar used to propel a boat from the stern.
Note also that Sllt is equal to S2x plus the correction term (rotation compensation) measured
as the cross-product of the simple angular rate and linear acceleration integrals taken over
the m computation cycle. (See equations (48) and (49) for definitions).

Equation (71) for S2r can be put into an "acceleration bias" form by dividing the
velocity change correction S2z by the time interval Tra over which it was evaluated!

S2t - 1/2 ex Dy (CO.*) (1 -
ai" *****) (73)

Equation (73)m(with (72) for Sl2) is a fundamental equation that can be used to assess
the magnitude of S2, that must be accounted for by the S% or S2 computer algorithm under
discrete frequency input conditions. If S2B is small relative to system performance require-
ments, it can be neglected, and the A loop algorithm for calculating SL or S2 need not be
implemented. Under the latter conditions, Sj_ would be set equal to the cross-product term
in (72) which makes the basic equation (51) and (52) transformation algorithms identical.

t •
Equation (73) describes how S2E can be calculated with a discrete input vibration

frequency f for angular motion about x and linear notion along y. In a more general case,
the input rates and accelerations are composed of mixtures of angular and linear motion
about x and y at different frequencies and relative phase angles. If the source of the
generalised vibration motion is random input noise to the strapdown system, the x, y angular
and linear motion is colored by the transmission characteristics of the noise input to the
x, y angular and linear response. A more general development of equation (73) that accounts
for the latter effects show that the comparable equation for S2z is given by: I •

m

S2s " / (Ay(w) Bx(w) cos(4Ay(<") - •Bx<w>) " Ax<w> By<w> costt^t«)

sinu.Tm <7«>
" •By(u»)) (1 -) Pnn(jw) dw £~- --

WT_. • •

where

Ax(w), Ay(W),
•AX(U)' *Ay(w)' * *• d«fin«d previously.
pnn(*>>' w

• •

Bx(u), By(u), « x, y, amplitude/phase linear acceleration response of the sensor
• BX(W), *By(

w) assembly to the input vibration.

Equation (74) can be used to assess the extent of random spectrum dynamic motion
environment to be measured by the S± or S2 computational algorithms. The S2z value • •
calculated by (74) measures the composite correlated sculling acceleration bias in the
sensor assembly that must be calculated to accurately account for the actual motion present.
If the S2x magnitude calculated from (74) is small compared to other system error budget
effects, the mechanization of an algorithm to calculate S^ or S2 in the high rate A loop is
not needed (i.e., S2 can be approximated by zero in (52) or S^ can be set equal to the
cross-product term in (52)).

The extension of equations (73) and (74) for y, z or z, x axis vibration motion should £ •
be obvious.

6.2 Algorithm Accuracy Assessment

The accuracy of the computation algorithm for 6ß_ or Sj_, S2 can be assessed by comparing
their solutions to the comparable continuous form solutions developed in Section 6.1 under % •
identical input conditions.

6.2.1 6ß_ Coning Algorithm Error Assessment

The computational algorithm for calculating 6g_ in a strapdown system is given by
equation (26). A measure of the accuracy of the equation (26) algorithm can be obtained by _• •
analytically calculating the solution generated from (26) under assumed cyclic motion and

m»^mää*+mm

3-25

comparing this result to the equivalent solution obtained from the idealise 1 continuous
algorithm described in Section 6.1. For a discrete frequency vibration in^ut, the equation
(65) motion can be used analytically in equation (26) to calculate the algorithm solution
for 6ß at t - tg+i (i.e., analagous to the equation (67) solution for the continuous
(infinitely fast) algorithm. After much algebraic manipulation, it can be demonstrated that
the algorithm solution for 6£ as calculated from equation (26) under equation (65) input
motion, has sero x, y components, with a s component rate given by:

6ß BALQ 1» 0 8 (,in •} ((1 + 1/3 (1 - cos 2*fTji)) x y
sin 2«fTji

sin 2«fTB

2nfT, ID

(75)

where

*P*ALG * Recursive algorithm solution for 6ßc rate

Tji - Time interval for high speed A computer iteration cycle

Equation (75) for the 6£ discrete recursive algorithm solution of equation (26) is
directly analagous to the equation (67) solution of the equation (22) continuous 6ß
algorithm. It is easily verified that (75) reduces to (67) as Tj approaches sero.

The error in the 6B_ algorithm is measured by the difference between (67) and (75); i.e.t

• Uiz) » * f 6X 0V (sin *)((1 • 1/3 (1 - cos 2*fTA)) JÜJ?
2*fT* - l) (76)

MTi

where

e(6ßs) - Error rate in the equation (26) algorithm.

Equation (76) can be used to assess the error in the equation (26) 6B_ algorithm caused
by finite iteration rate (i.e., the effect of Tj) under discrete frequency input conditions.

Under random vibration input conditions, the equation (26) algorithm can be analysed to
obtain the more general solution for the ößj^LG r»te:

6PsALG - J « Ax(u) Ay(w) sin(tAy(w) - •Ax(w)) ((1

sin wTi sin wT_.
+ 1/3 (1 - cosuTjt) ,. - m m) Pnn(Jw) dü)

(77)

«Tji wT„

The 6ß algorithm error under random inputs is the difference between the equation (77)
discrete solution and the equivalent continuous equation (68) solution form. The result is:

'*6M " C w Ax{w) Ay(w) sin(*Ay<w) " *AX
(<ü)

) Ul

sin wTt
+ 1/3 (1 - COBWTjt) Z - l) Pnn(Ju) du

u>Ti

(78)

Equations (76) and (78) can be used to assess the error in the equation (26) 6ß
algorithm caused by finite iteration rate under discrete or random vibration input
conditions. The extension of equations (76) and (78) to y, z or z, x axis effects should be
obvious.

• •

6.2.2 S Sculling Algorithm Error Assessment

The computational algorithm for calculating S± or £2 is given by equations (55) and
(56). A measure of the accuracy 0/ these algorithms can be obtained by analytically

• •

*• -••'•- iif -' •• -"-

3-26

calculating the solution generated from (55) or (56) under assumed cyclic motion and
comparing the result to the equivalent solution obtained from the continuous algorithm as
described in Section 6.1.2. For a discrete frequency vibration input, the equation (70)
motion can be used analytically in equation (55) and (56) to calculate the algorithm
solution for 8,, S, (i«««, analogous to the equation (72) and (73) solution for the
continuous (infinitely fast) algorithm). After much algabraic manipulation, it can be
demonstrated that the algorithm solution for S± and §2 as calculated from equations (55) and
(56) under equation (70) input motion, has zero x, y components, with a z component rate
given by:

. , sin 2*fT| sin 2*fT_
S2«ALG - I/2 «x Dy (cOB*> (" -) <79>

' 2*fT, 2*fTm

S1ZALG " !/2 <& * ü>z * S2zALG <80>

where

slzALG' s2zALG * Recursive algorithm solutions for Slz, S2x.

Equations (79) and (80) for the S,. S2 discrete recursive algorithm solution is directly
analogous to the equations (73) and 7*2)~solution to the continuous Sj_# S2 algorithm. It is
easily verified that (79) and (80) reduce to (73) and (72) as Tj approach's» zero.

The error in the Si, s2 algorithm is measured by the difference between (79), (80) and
(73), (72) ; i.e.,

e(Sl8) - e(S2.) - 1/2 ex D (cos*) (1 - *) (81)
2**Tt

where

e(slz:), e(s2z) » Error rate in the equation (55) and (56) algorithm solutions.

Equation (81) can be used to assess the error in the equation (55) and (56) algorithms
caused by finite iteration rate (i.e., the effect of TA) under discrete frequency input
conditions.

Under random vibration input conditions, the equation (55) and (56) algorithms can be
analysed to obtain the more general solution for Slz, S2Z:

82z " / (Ay(«) Bx^w> cos (•Ay<w> - •Bx(u)))

- AX(ü)) By(u) cos(*Ax(w) - •By(">))) (?•• " "T* (82)
wTjj

" -8in "T">) Pnn(j«) d«

Slz - 1/2 (£ x u)z + S2z

The S^z, S2z algorithm error under vibration is the difference between the equation (82)
discrete solutions and the equivalent continuous equation (74) with (72) forms:

e(siz) - e(s2z) » / (AyU) Bx(u) cosUAy(u) - +Bx(u>))

- Ax(w) By(u>) COs(*Ax(o)) - •ßy(w))) (1 (83)

sin wTj.

aiTjt
•) PnnO> <*«

Equation (82) and (83) can be used to assess the error in the equation (55) and (56)
algorithms caused by finite iteration rate under discrete or random vibration input
conditions. The extension of equation (83) to y, z or z, x axis effects should be obvious.

3-27

7. CONCLUDING REMARKS

The 8trapdown computational algorithms and associated, design considerations presented in
this paper are representative of the algorithms being used in most modern-day strapdown
inertial navigation systems. The unique characteristic of the attitude and transformation
algorithms presented is the separation of each into a complex low speed and simple high
speed computation section. Due to the simplicity of the high speed calculations they can be • •
executed at the high rates necessary to properly account for high frequeoy but generally low
amplitude vibratory effects without posing an insurmountable throughput burden on the
computer. The lower speed calculations which contain the bulk of the computational
equations can then be executed at a fairly modest update rate selected to properly account
for lower frequency but larger magnitude maneuver induced motion effects. Perhaps the
principal advantage of the algorithm forms presented, is their ability to be analyzed for
accuracy using straight-forward analytical techniques. This allows the algorithms to be
easily tailored and evaluated for given applications as a function of anticipated dynamic 9 4
environments and user accuracy requirements.

• 1

P «

REFERENCES

1. Pitman, George R. Jr., ed., Inertial Guidance, John Wiley and Sons, New York, 1962.

2. Leondes, Cornelius T., ed., Guidance and Control of Aerospace Vehicles, McGraw-Hill,
1963.

3. Macomber, George R. and Fernandes, Manuel, Inertial Guidance Engineering, Prentice-Hall
Englewood Cliffs, New Jersey, 1962.

4. Britting, Kenneth R-, Inertial Navigation System Analysis, John Wiley and Sons, New
York, 1971. "

5. Morse, Philip M. and Feshback, Herman, Methods of Theoretical Physics, McGraw-Hill,
1953.

6. A Study of Critical Computational Problems Associated with Strapdown Inertial
Navigation Systems, NASA Report CR-968, April 1968. 9 |

7. Savage, P.G., "A New Second-Orier Solution for Strapped-Down Attitude Computation",
A1AA/JACC Guidance & Control Conference, Seattle, Washington, August 15 - 17, 1966.

8. Jordan, J.W., "An Accurate Strapdown Direction Cosine Algorithm", NASA TN D-5384,
September 1969.

9. Mckern, Richard A., A Study of Transformation Algorithms For Use In A Digital Computer, 9 I
Massachusetts Institute of Technology Master's Thesis, Department of Aeronautics and
Astronatics, January 1968.

10. Bortz J.E., "A New Mathematical Formulation for Strapdown Inertial Navigation, "IEEE
Transactions on Aerospace and Electronic Systems, Volume AES-7, No. 1, January 1971.

11. Shcppcrd, Stanley W., "Quaternion from Rotation Matrix". AIAA Journal of nutd'ano* *nd
Control, Vol. 1, No. 3, May-June 1978. 9 <

12. Savage, P.G., Introduction To Strapdown Inertial Navigation Systems, June 1, 1983
(Third Printing); Third Strapdown Associates Open Seminar On Strapdown Inertial
Navigation Systems, Marquette Inn, Minneapolis, Minnesota, November 14 - 18, 1983.

APPENDIX A

DERIVATION OF £ EQUATION

A differential equation for the rate of change of the §_ vector can be derived from the
equivalent quaternion rate equation. The quaternion h in equations (13) and (14) is the
quaternion equivalent to the $_ rotation angle vector. A differential equation for h can be
derived from the incremental equivalent to (13) that describes how h changes over a short
time period At (from tjj. to t^+^) within the larger time interval from tm to t^^:

hU+1) • h(X) p(*) (Al)

where

3-28

93 ax
93 «y
93 az

94

93
sin (a/2)

(A2)

g4 = cos (a/'l)

a » Rotation angle vector associated with the small rotation
of the body over the short computer time interval from Jt to
A+I. within the larger interval from m to m+1.

aX'°v'az*a = Components and magnitude of a.

Equation (7il) is equivalently:

h(>+l) - h(*) ,,.. p(*)-l
 = n(*)

At At
(A3)

&t - tA+1 - tA

The basic definition of angular rate states that for small At,

a * u At

a - a) At

Hence, for small At, o is small, and therefore, from (A2),

g3 " 1/2

a2 u2At2
g4 - 1 - - 1 -

2 2

(A4)

(A5)

Using mixed vector/scalar notation, substitution of (A4) and (A5) in (A2) yields:

p r-. g3 o + g4

- 1/2 to At + 1 -
o>2At2

Substituting in (A3) obtains:

h(*+l) - hU)
• hfJU f 1/2 w + 1/2 w2At_)

At

In the limit as At + 0, the latter reduce to the derivative form:

h = 1/2 h « (A6)

We now return to (14) and express h as a function of £ in mixed vector/sealer notation:

fa • f3 £ + f4

sin U/2)
*3 (A7)

f4 - cos U/2)

Substituting in (A6),

h = 1/2 f3 * u + 1/2 f4 w (A8)

It is readily demonstrated by algebraic expansion and using the rules of quaternion
algebra that £ w in (A8) is equivalently:

3-29

^ u * .i x H ~ .i * £>

Differentiation of (A7) shows that:

h » f3 ± + f3 ± + f4

cos A/2 . sin A/2 .
f3 « 1/2 !l_ * - —_!_ *

* _L (1/2 f4 - f3)

f4 * - 1/2 (sin*/2) i - - 1/2 # i £3

Hence, with (A8),

h » f3 i + JL (1/2 f4 - fa) i - 1/2 • • f3

* 1/2 f3 (± x jg) - 1/2 f3 ± * £ + 1/2 f4 u)

Dividing by f3 and solving for 4:

£ = 1/2 —Z_ 10 + 1/2 (£ x u)

*3

(1/2
. f4 - I) ± + 1/2 A A - 1/2 4 •

(A9)

Equation (A9) is now separated into its vector and scalar components:

1 = 1/2 _!_ u + 1/2 (A x u) - — (1/2 _L - 1) ±
f3 * f3

1/2 A i = 1/2 £ • Ä

(A10)

The scalar equation is equivalently:

A _ 1
 " = A ' <Ü
A A^

Substituting in the vector part of (A10) yields:

i = 1/2 _fl_ u + 1/2 l± X w) - —-- (1/2 —i- - 1) (l * uj) i
f3 *2 f3

Using the vector triple product rule, it is easily demonstrated that:

(i ' w) 1 • i x (4 x U)) + <|>2 u

Substituting,

i = 1/2 _i_ w + 1/2 _$_ x u - (1/2 „_1„. - 1) w + (1 - —i_) & X (1 x u)
£3 f3 *2 2f3

Combining terms:

± - w + 1/2 £ x w + (1 - —1—) 4 x (4 x w)
A2 2f3

Using the definition for f4 and f3 from (A7), it can be shown by trigonometric
manipulation that the bracketed coefficient in the latter expression is equivalently:

1 - _ U
2f-

1 A sin *
 \\~
>2 2(1-COSA)

3-30

Substitution yields the final expression for ^:

•, • « + 1/2 %_ x u» + [1 -) • x (• x u>)
$2 2(1-C08$)

(All)

Equation (20) in the main text is the integral from of (All) over a computer cycle (from tm

