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( SUMMARY

s This papar addresses the attitude daterminaticn, acceleration transformation, and
L attitude/haading cutput computational opsrations parformed in modern-day strapdown inertial
. navigation systams. Contemporary algorithms are described for implementing these operations
in raal-time computers. The attitude determination and acceleration transformstion
algorithm discussions are basad on the two-speed approach in which high frequency coning and
sculling effects are calculatad with simplified high speed algorithms, with resulte fed into
lower speed higher order algorithmas. _This is the approach that is typically used in most
modern~day strapdown systems. Desigﬁat.ions ara includad for evaluating the performanca

of the strapdown computer algorithms ash\a function of computer execution speed and sensor
assenbly vibration amplitude/frequency/p Q:f-jfjironment.

.
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Both direction cosine and quaternioa based attitude algorithms are described and
compared in light of modern-day algorithm accuracy capabilities. Orthogonality and
normalization operations are addressed for potential attitude elgorithm accuracy
enhancemant. The section on attituds data output algorithms includes a discussion on
roll/yaw Buler angle singularities rnear high/low pitch angle conditiona.

1. INTROOUCTION

Ths concept of strapdown inertial navigation was originatad more than thirty yaars ago,
largely from an analytical stendpoint. Tha thaor<tical enalytical expressions for
processing etrapdown inertial sensor data to develop attitude, velocity, and position
information were reescnably well understood in the form of continucus matrix cparations and
differential equations. The implementation of thesa equations in a digitial computer,
however, was invariably keyed to severe throughput limitations of original airborne digitial
computer technology. As a result, many of the strapdown computational algorithms originated
during these early periods wsra inherently limited in accuracy, particulary under high
frequency dynamic motion. A classical test for elgorithm accuracy during this early period
wes how well the algorithm computad ettitude undar cyclic coning motion as the coning
fregquency approached the computer updata cycle frequency.

7n the latc 1960's and aarly 1970's, several analytical efforts eddrassed tha problem
of splitting the strapdown camputation process into low end high speed sections (7, 8, 10}.
Tha low spaed section contained the bulk of the computational equations, end wes designed to
accurately account for low fraguency lerge emplitude dynamic motion effects (a.g., vehicle
maneuvering). Tha high speed computetion section wes designed with a small sat of simple
algorithms that would accurataly account for high fregquency small amplituda dynamic motion
{e.9., vehicle vibrations). Splitting the computeticnal process in this mannar allowed the
bulk of the strapdown algorithms to be itarated at reesonabla speeds competible with
computer throughput limitations. The high speed elgorithms wera simpla anough that they
could be machenized individuelly with special purposa alactronics, or es a minor high speed
loop in the main procassor.
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Over the past ten years, the structura of most etrapdown algorithms hes evolvad into
this two speed structura. Tha techniquas have been refinad todey so that fairly
strajight-forward anelytical dasign methods can be usad to dafine elgorithm analytical forme
and computational rates to echieve requirad levels of parformance in spacified dynamic
anvironments.

This paper dascribes the algorithms used today in most modern-day strapdown inertiel
navigation systams to calculate ettitude end transform acceleration vector measuraments from
sensor to navigation axes. The algorithms for integrating the transformed eccelerations
into velocity and position data are not addressad because it is believed that thase
operations are generic to inertial navigation in genera., not only strapdown inertial
navigation.

For the algorithms discussad, the analytical basis is prasantad together with a
discussion on general design methodology used to develop the algorithms for compatibility
with particular usar accuracy and anvironmental requirements.
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2. STRAPDOWN COMPUTATION OPERATIONS

Figure 1 depicte tha computational elamants implementsd by software algorithms in
typical atrapdown inertial navigation systems. Input data to the algorithms is provided
from a triad of strapdown gyroa and acceleromatsra. Tha gyros provide pracieion maasure-
menta of strapdown aensor coordinate frame (“"body axaa") angular rotation rate relative to
nonrotating inertial space. The accelarometars provida precision measuremants of 3-axis
orthogonal apecific forca acceleration along body axes.
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ACCELEROMETERS)
DCM OF BODY FRAME
1 RELATIVE T0 NAV FRAME
b NAVIGATION
RATES —| ArmiuoeReremence | NAVID
(FROM STRAPOOWN INTEGRATION ROUTINES
GYROS) ROTATION
1 RATES
::},?; | ATTITUDE/MMEAQING
EXTRACTION DATA

FIGURE 1 - STRAPDOWN ATTITUDE REFERENCE OPERATIONS

The strapdown gyro data ils procassed on an iterative basis by sultable integration
algorithins to calculate the attitude of the body frame ralative to navigation coordinates.
The rotation rate of the navigation frame is an input to tha calculation from the navigation
section of the overall computation software. Typical navigation coordinate frames ara
oriented with the z-axis vartical and tha x, y. axes horizontal.

The attitude information calculated from the gyco and navigation frama rate data is used
to transform tha accelerometer specific force vector measurements in body axas to their
equivalent form in navigation coordinatas. The navigation frame spacific force
accalerations are then integratad in the navigation software saction to calculate velocity
and pusition. The velocily/positicn computational algorithms are not unique to the
strapdown mechanization concept, hence, are not treated in this papar. Sevaral texts treat
tha velocity/position integration algorithms in datail (1, 2, 3, 4, 12).

Figure 1 also shows an Eular Angla Extraction function as part of the strapdown attitude
reference operations. This algorithm is used to convert the calculated attitude data into
an output formmat that is more compatible with typical user requiramants {e.g., roll, pitch,
heading Euler anqgley).

3. STRAPDOWN ATTITUDE INTEGRATION ALGORITHMS

The attituda information in strapdown inertial navigation systems is typlcally
calculatad in the form of a direction cosine matrix or a3 an attitude gquaternion. The
direction cosine matrix is a thraa-by-three matrix whose rows represent unit vectors in
navigatina axes projected alony body axas. As such, the alamant in the i*h row and jth
column represants the cosine of the angle between the navigation frame i-axis and body frame
j-axis. The quaternion is a four-vector whose elemente are defined analytically (5, 9) as
follows:

a= (wx/a) sin (a/2)

b= (a,/0) sin (a/2} (1)
c = (a/a) sin (a/2)

d = cos {a/f2)
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where

AygrGyr Gy = Componante of an engla vector g.
a = Magnitude of a.

Tha & vector is defined to have direction and magnitude such thet if the nevigetion
frame wae roteted ebout g through en angle a, it would be roteted into elignment with the
body frame. The a rotation angla vector end ita quaternion equivalent (a, b, c, d, from

equetione (1)), or tha direction cosine matrix, uniquely defina tha ettitude of the body
axea relative to navigation exea.

3.1 Direction Cosina Updeting Algorithms

3.1.1 Direction Coaina Updating Algorithm For Body Rotetions

Tha diraction cosine matrix can be updeted for body frame gyro sensad motion in tha
strepdown computer by executing the following claasicel diraction cosine matrix chein rule
elgorithm on e crepetativa basis:

C{m+l) = C{m) A{m) (2)

where

C(m) = Direction cosina matrix relating body to navigetion axaa at the mth computer
cycle time

A{m) = Direction cosine martix that transforms vectora from body ccordinetas et the
{m+1)th computer cycle to body coordinetes et the mth computer cycle.

It is well known (9) thet:

Alm) = I + £1{9x) + £5(9x)2 {3)
where

ain
£, = _";‘i =1 - §2/31 + ¢4/41 -0

1l - cos
£2 -“—oz—i = 1/21 = 2741 + ¢¥/61 -0

{4)

¢2 = ¢X2 + ¢y2 + 022

ne
o
I
N
[
-
]
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(3x) by 0 -
“ty Ox 0
I = 3 x 3 unity matrix

$xsd¢yrby = Components of 4.

ry = Angle vector with direction end magnitude such thet e rotetion of the body
frame about ¢ through an angle equal to tha magnituda of ¢ will rotate
tha body frame from its oriantation at computar cycle m to its
oriantation at computer cycle mtl. The § vector is computad for
eech computer cycle m by processing the dete from the strepdown gyros.
The elgorithm for computing § will ba describad subsequantly.
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The "order" of the algorithim defined by equationa (2) through (4) is determined by the
number of terme carried in ths £,, £, expansiona. A fifth order algorithm, for example,
retaine sufficient terme in £, and £; such that A(m) containe all ¢ term products out to
fifth order. Hence, f; would be truncated after the ¢4 term and fn would be truncated after
the ¢2 term to retain hfth ordsr accuracy in A(m). The order of accuracy required is
determined by system accuracy requiremsnts under maximum rate input conditions when ¢ is a
maximum. The computation iteration rate is typically selected to aseure that ¢ remains
small at maximum rate (e.g., 0.1 radiana). This aseures that the number of terms required
for accuracy in the f,, f; expansiona will be reasonable.

3.1.2 Direction Coeine Updating Algorithm For Navigation Frame Rotations

Equation {(2) is used to update the direction cosine matrix for gyro sensed body frame
motion. In order to update the direction coeines for rotation of the navigation coordinate
frame, the following claseical direction cosine matrix chain rule algorithm is used:

c{n+l) = B(n) <(n) (5)
where
B(n) = Direction cosine matrix that transforms vectors from navigation axes at

computer ¢cycle n to navigation axes at computer cycls (ntl).

The equation for B(n) parallels equation (3}:

B(n) = I -~ (8x) + 0.5(gx)2 (6)
with
a |0 -8, @
(ex) = [o, 0% -of (7)
-8y 8, O
where

Oxs0y,8, = Componsnts of §.

[:] = Angle vector with direction and magnitude euch that a rotation of the
navigation frame ebout @ through an angle equal to the magnitude of @
will rotete the navigation frame from its orientetion at computer cycle n
to its orisntation at computer cycle n+l. The g vector is computed for
each computer cycle n by processing the navigation frame rotation rate data
from the navigation software section (12).

It ie important to note thst the n cycle (for navigation frame rotation) and m cycle
(for body frame rotation) are generally different, n typically being executed et a lower
iteration rete than m. This is permissable becsuse the navigstion frame rotation
rates are considerably smaller than the body rates, hence, high execution ratee are not
needed to maintain § smsll to reduce the order of the iteretion slgorithm. The algorithm
represented by equetione (5) and 56) is second order in 8. Generally, first order is of
sufficient accuracy, and the {0x)<¢ term ne=d not be carried in the actual software
implementation.

3.2 Quaternion Updating Algorithms

3.2.1 Quaternion Transformation Propertiee

The updating algorithms for the attitude quaternion can be developed through an
investigation of its vector transformation properties (5, 9). We first introduce
nomenclature that is useful for describing quaternion algebraic operations. Referring to
equation (1), the gquaternion with components a, b, ¢, d, <¢an be described as:

u = ai +bj+ck +d {(8)

L
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Whara

a,h,c = Componsnts of the "vsctor" part of the quatarnion.

i,j.,k = Qusternion vector oparators analagous to unit vactoras along orthogonal
coordinata axes.

4 = “Zcalar” part of the quaternion.

Ws also define rules for quaternion vector operator products as:

i = -1 ij = X i X
jj = -1 Je = 1 kj = ~i
kk = =1 ki = j ik = -3

With the above dsfinitiona, tha product w of two quatarniona {(u and v) becomes:

weuy = (ai+bj +ck+ d) (ai + £j + gk + h)

= asii + afij + agik + ahi
+ baji ¢+ bfij + bgjk + bhj
+ caki + cfkj + cgkk + ¢hk
+ dei + dfj + dgk + dh
= {ah + da + bg - cf}i

+ (bli + Af + ce - ag)j

+ (ch + dg + af - be)k

+ {dh - ae - bf - cg)

or in "Four-vector" matrix form:

A e’ fid-c b a e

w = £'}) =| e d-a b f
g' -b a & ¢ g

h' -a -b ¢ d hj

Ws also define tha “complex conjugats" of tha general quaternion u in equation (8) as:
A
ux = .ai -bj -ck + 4

We now define a quatarnion operator hi{m) for tha body angle change § over ccmputar cycle
m as:

(oy/¢) 8in (3/
him) = (Qy/‘) ein (‘]
{92/¢) sin {s/

cos ($/2)

2)
2
2) (9}

whera the alements in tha above column maktrix refer to tha i, j, Xk, and scalar components of
h. Wa also defina & general vsctor v with commponents V,. V.. V,., and a corrasponding
guaternion v having the same vector components with a zaro scalar componant:

Vx
v = p1
v;
0

Using the above definiticns and the ganaral rules for quatarnion algabra, it is readily
damcnatrated by substitution and trigonometric manipulation that:

vi % nm vhim* =al(m) v (20)

whers
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s [Atm) 0
A'm} = | 0 O
vx'
A v,
[l Yl
v = |
§
A(m) = As dsfined in {(3).

Equation (10}, tharefora, ia tha quatarnion form of tha vector tranafcrmation equation
that transforms a vactor from body coordinatas at computer cycle (m+l) to body coordinatea
at computar c¢ycla m:

¥\ = Alm) vy (11)
whera
v',v = "Thras-vsctor” form of v' and v (i.a., with componants ve's vy', vg' and vp. Vyr vz).
¥ = Tha ganaral vactor Vv in body coordinatss at computar cycla (m+l).
v' = Tha ganaral vactor v in body coordinatas at computer c¢ycCle m.

3.2.2 Quaternion Updating Algorithm For Body Moiion

Equation (10) with ita equation (11) dual can be used to dafine analagoua vactor
transformation oparationa between body coordinatss and navigation coordinates at computer
cycla m as:

v* = g{m) v' g{m)*
(12)
!n = c(m) !‘

whsra
gq{m) = Quatarnion relating body axss to navigation axas at computer cycla m.
¥' = Tha vector v in navigation coordinatss.
v = Tha vactor v in body coordinatss at computar c¢ycla m.
v',v" = Quatarnion ("Four vactor") form of ', v".

The g qustarnioit has four alements (i.e., a, b, ¢, 4) that ara updated for body motion
¢ at aach computar cycla m. The updsting equation is easily darivad by substituting
cquation (10) into (12):

v = g(m}) him} v him}* g{m)*

Using the dafinition for the quatarnion complax conjugata, it is raadily demonstratad

that:

him)* g{m)* = (q(m) h(m))*

Thus,
v* = q{m) him) v (h(m} q(m))}*

But we can alsoc writa ths direct exprassion:

v' = gimtl) v g{m+l)>

Tharafore, by direct comparison of tha lattar two equations:

g{m+l) = qim) him) (13}
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Equation (13) is tha quaternion equivalent to direction cosine updating equation (2).
For computational purposea, h{m) as dsfinad in equations {(9) is equivalently:

him} = £ .Y

w.m
[ .1
o
-
N
-
®

sin (%/2)
£ = T, = 0.5(1 - (0.56)2/31 + {0.5¢}4/5; =+.:.]}
' (14) -
| Ve
£, = cea (#/2) = 1 - (0.56)2/21 + (0.5¢)4/41 -+...) '

(0.56)2 = 0.25 (052 + 0,2 + ¢;2)

Y
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The “order" of the equation {13) and (14} updating algorithm depsnds on the order of ¢
tsrms carried in h which depands on the truncation point used in f£3 and f4. Ths rationala
for selecting ths algorithm order and associated algorithm iteration rate is directly
analagous to selection of ths direction cosins updating algorithm order {discussed

previoualy).
) ®
3.2.3 Quatsrnion Updating Algorithm For Navigation Frams Rotation
Egquation (13} with {14) is used to updata the quaternion for body frame motion sensed by S
gyroa. In order to update the quatarnion for rotation of the navigation coordinata frame, -H. -
an algorithm analagous to aquation {5} {for the direction cosine matrix) is used with a
navigation frame rotation qguaternion r: i
qin+l} = r{n) q{n} ] L
~0.5 84 (15) ‘o
-0.5 Oy L
r{n) = | o.586
1-0.5(8/2)2 :
L
(6/2)2 = 0.25 (8,2 + 8,2 + 6,2}
where
ex,ay.az = Components of 8 as defined previously for equations
{6) and (7). ’ [ ]
The development of equation (15) parsllels tha development of {13). Ths equation for
r{n) is a truncated form of the thacretical exact analytical exprassion {analagous to the
sacond order truncated form of equation {14)). The 8 tarm in equation (15) ganarally is
not reguired for accuracy {due to the smallness of € in typical spplications}.
As for the direction cosine updating algorithm for navigation frame motion, the ] LN
equivalent guaternion updating algorithm {equation {15)) updating cycle n naed not be
procassad as fas: as the body rate cycle m to maintain equivalent accuracy. This is due to
tha considersbly smaller navigation frame rotation rates compared to body rotation rates.
3.2.4 Equivalancies Betwean Direction Cosins And Quaternion Elamants , °
The analytical equivslency between the elements of the diraction cosine matrix and the N o
attitude qguaternion ¢an be derived by uiract expansion of equations (12). If we define the
elements of q as:
a
b
9 = c
a LA 4
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equation (12) becomes aftsr expansion,

factorization of v', and neglecting the scalar part

of the v" and v' quaternion vectora (i.e., carrying only the vsctor components v" and v' }:

25

(d2 +a? -p? - c2) sab -_cd)
2{ab + cd) (a2 + b 2 a2y
2{ac - bd) 2(bc + ad}

Defining C in

equation (16}

n
C12
C13
21
C22
C23
C31
€32

C33

equation (12) as:

€11 C12 Q3
C1 S22 €23
Ci1 C32  Ci3
whan comparsd with (12} ahowa that:

a2+ 42 - b2 -2

2(ab
2(ac

2(ab

- ¢d)
+ bd)

+ cd)

a? + b2 - o2 - a2

2({be
2{ac

2(be

a? + ¢2 - a? - p?

2{ac + bd)
2(bg - agd}
(a2 + cS g

v' (16)

(17)

LA

The converse of equation (17} is aomewhat mors complicated.
(from equation (1)) that :

Using ths propsrty
a2 +b? +c? +a2 =)

ths converse of
of operations:

equation (17) can be shown (11} to be computeble from the following sequence

i

[
B EULNI
HFHEFMAO

+ + +
3 N

Q

X

X

w5

[ ol
(2]
b
-
]

max (P ' sz P3| o ), ther.
1/2 signlagrayious!

(cz1 Ve 12)/48 F

(C13 + C31)/4a

(C32 - 023)/4a

hweunn

If Py = P B ), then:

0.5 P21 slgn( revioua)
(C32 + Cp3)/4b
(Cy3 - C33)/9b
{Ccz; *+ Cy2)/4p

max (P }2

(18)

1f P3 =

]

P3, P.), then:
. P3E/2 Bign
(Czl N Cl Y ac
(€13 + C31)/4c
(C32 + C23)/4C

cptEVIOUS)

nmYynk a

o Qn

If P =

»

gr Pza P3. po), then:
é;i)jign(dprev1ous)
C12)/4d

(C32 bl
(€13 -

muw i g

(o ="
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3.3

The Computation Of ¢

3.3.1 Continous Form

The ¢ "body attitude change" vector ie calculated by processing data from the strapdown

gyroe. Under situations where the angular rotation rate vector (eeneed by the gyroe) lies

along a fixed dirsction (i.e., is nonrotating in inertial space), the § vsctor is equal to

the eimple integral of the angular rats vsctor over the time interval from computer cycle m
to computer cycle (m+l):

¢ = w dt for casse when w ie nonrotating. (19)

where

w = Angular rate vector eeneed by the strapdown gyros.

Under general motion conditions (whan w may be rotating), equation (19) hae the more

complex form {ae derivsd in (10) or alternatively, in Appendix A):

t
alt) = [ (w+1/2a xuw+ 1 (l—ﬂ‘i"“)sx(gx_g)]dt
t

: w2 (1%sIng)

{20}
s = alt=ty,)
It can verified by powsr ssries expansion that to firet ordsr,

2 - a el - 1
(1/e) Q (1—coeaa) 12

Hence, q(t) in eguation (20). tc third order accuracy in g can be approximated by:

t
al(t) = ftm(g +1/2 g x w + _%5 & x(a x w))dt (21)

A sscond order expression for a(t) csn be obtained from (21) by dropping the 1/12 term.

An even simpler expression for g(tT is obtained by dropping the 1/12 term, and approximating
the a term in the integral by the direct integral of w:

gle) = It w dt
tm

t
sp(t) =1/2 X w dt (22)
£ Itm g xu

L] = Blt=tps) + 8B(t=tpe)

An interesting characteristic about egquation (22) is that its accuracy is in fact

compsrabls tc that of third order equstion (21). In other words, the simplifying assumption
of replacing a with f in the 1/2 a¢ x w term is in fact equivalent to introducing an error in

equation (21} that to third order, equals the 1/12 a x (a x w) term. This property can be
verified by simulation as well as analytical expansion under hypothesized angular motion
ccnditions.

Equstion (22) is the eguation that is mechanized in software in most modern-day

strapdown inertial navigation systems to calcuste ¢. It c¢an be demonstrated analytically
and by simulation that for representative vehicle angular motion and vibration, equation
(22} faithfully calculates ¢ to accuracy levels that sre compatible with high performance
strapdown inertial nsvigation system requirements.

For situations where w is nonrotating, the 8p teri in (22} is zero and ¢ equals the

simple time integral or w over the computer interval m (i.e., the equatiocn T19)
spproximation). For situations where w is rotating (s situation defined analytically as

L ol e 4 iy -
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“coning”), the §p tarm is nonzero and must be calculated and ussd as a correction to the w
intagral to proparly calculata §.
It is important to note that the accuracy by which equation (22) approximates (20) iwm
dependant on ¢ being small (e.g., less than 0.1 radian). In order to protect tha accuracy .
n of thia approximation, tha computer iteration rats muat bu high anocugh that # remains small - e
undar maximum vehicla rotation rata conditiona. L
3.3.2 Recursiva Algorithm Form
X
Y The implementation of equation (22) in a digital computar implies that a highar spaed :
h intagration summing operation he performed during each body motion attitude updata cycle. A - e
computational algorithm for the integration function can be derived by first rewriting ®
equation {22) in the equivalent incremental updating form:
t
{ Ble) = B(r) + [ wadt
£y
ﬁ tiy) °
1 5B(A+1) = 8B(1) +1/2 [ ., Blt) xuat (23)
1
-
Bl141) = Blemty,)
I -
. 2 = Blemtyyy) + SB(emtnyy) ! ¢
with initial conditions:
1 ﬁ(t-tm) =0
(24) .
SB({t=tp) =0 b ®
whare
) = High spead computar cycla within tha m body rata updats cycla.
The intagrals in (23) can be replacsd by analytical forms that are compatibla with gyro ! ®
input data procsssing if w is raplaced by a ganaralized time sarias expansion. For ‘
aquations (23), it is sufficiant to approximata w over tha 1 to I+l time interval as a
constant plus a linaar ramp:
w =~ A+3B (t-ty) (25)
wherc [ @
A, B = Constant vactors.
Subatituting (25} in (23), and racognizing with tha equation (25) approximation that:
Altgy - tg) = 1/2 (86(2) + 26(2-1))
» ®
1/2 Bltyyy = t4)2 = 1/2 (ae(r) ~ ap{a-1))
whare by dafinition:
t L]
ae(ry & [y g -~
ty .
yialds the dasirad final form for tha ¢ updating algorithm:
L ®
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SB(a+1) = 8B(R) + 1/2 (p(r) + 1/6 a8(a~1)) x A6(R)
L3 231 trel
a6(2) » wdt = a8
ty ty (26)
Bla+l) = p(1) + ag(4)
[ = plt=tpyy) + Splt=to,y)

with initial conditions:

[ 1-4

Blt=ty) pla=g) = 0
sp(tmty) = 8p(1=0) = O
whers

ds = Gyro output pulse vector. Each component (x.,y.2z) repreasents the occurance
of & rotation through a specified fixed angle increment about the gyro input
axis.

A8 = Gyro output pulse vsctor count from L to A+l.

The computational algorithm described by equation (26) is used on a recursive basie to
calculata 4 once each m cycle. After § is calculated, the f and ép functione are reset for
the next m cycle ¢ calculation. The iteration rate for & within m is majintained at a high
enough rate to properly account for anticipated dynamic w motion effects. Section 6.
dsscribes analytical technigues that can be used to aeeess the adequacy of the L itaration
rate under dynamic angular rate conditiona.

3.4 The Computation Of 6

The § vactor in equations (6) and (15) is computed as a simple integral of navigation
frame angular rate over the n cycle iteration period:

tn+l
) - f g at (27}
5 ty
where
Q = Navigation frame rotation rate as calculated in the navigation software

aection (12).

Standard recursive integration algorithme can be uaad to calculate § in egquation (27)
(e.g., trapezoidal) over the time intervel from n to n+l. The update rate for tha
integration algorithm is eelacted tc be compatible with software accuracy requiraments in
the anticipated dynamic maneuver environment for the user vehicle.

3.5 QOrthogonality And Normalization Algorithms

Moat strapdown attitude computation techniquas periodically employ self-conaistancy
correction algorthms as an cuter-loop function for accuracy enhancement. If the basic
attituda data ia computed in the form of a direction cosine matrix., the self-conaistancy
check is that the rows should be orthogonal to each other and equal to unity in magnitude.
This condition is besed on tha fact that the rows of the direction cosine matrix represent
unit vectors along orthogeonal navigation coordinate frame axea as projected in body axes.
For the quaternion, the self-consistancy check is thet the sum of the squarea of the
quaternion elemanta be unity (this can be verified by operation on equation {1)).

3.5.1 Direction Cosine Orthogonalization And Normalization

The test for orthogonality between two direction cosine rows is that the dot product be
zero. The error condition, than is:

-t

Lol

[ d

o




312

Egy = ¢ &y (28)
where
¢ = ith row of C

cy = Ith row of C

T = Transpose

A calculated orhogonality error Ejy can be corrected by rotating ¢; and C; rslative to
each other about an axie perpendicular”"to both by the srror angle Eiz. Since” it is not
known whether Cy or Cj is in error, it is assumed that each are equally likely to be
generating the error, "and each is rotated by half of Eij to correct the error. Hence, the
orthogonality correction algorithm is:

Ci(n+l) = Cil{n) - 1/2 Egy C4(n) (29)
9
Cj(n+1} - Cj{n) - l/2 Eij Citn)

It is easily verified using (29) that an orthogonality error Ej4 originally present in
Citn) and Cj(n) is no longer present in C;{(n+l) and Cj(n+l) after application of equation
(29)

The unity condition on C; (i.e., normality) can be tested by comparing the magnitude
squared of C; with unity:

By = 1 -cy¢yT (30)

A measured normality error Ejy can be corrected with:
Ci(n+1) = Ci(ﬂ) -1/2 E:y Cy (n) (31)
Equations (28} through (31) can be uged to measure and correct orthogonality and

normalization errors in the direction cosine matrix. In combined matrix form, the overall
measurement/correction operation iz sometimes written as:

el * Cner/2 (5 - ¢ ) cp (32)

3.5.1.1 Rows or Columns - The previcus discussion addresssd the problem of orthogonalizing
and nomalizing the rows of a direction cosine matrix €. In combined form, equation (32}
shows that the corrsction is:

6C = 1/2 (1 - ¢ccT) ¢ (33)

Fguation (223) can be cperated upon by premultiplicaticn with C postmultiplication by CT,
and combining terms. The result is:

6C = 1/2 ¢ (I - CTc} (34)

The (I - CTC) term in (34) is the error matrix based on testing orthogonality and
normality of the columns of C. Thus, if the rows of C are orthonormalized (i.e., &C is
nulled), the columns of C will alsc be implicitly orthonormalized. The inverse applies if
the columns are directly orthonormalized with (34). The question that remains is, which is
preferren? The answer is related to the real time computing prchblem associated with the
calculation and correction of orthogonalization and normalizstion errors.

Ideally, the orthogonalization and normalization operations are performed as an outer
loop function in a strapdown navigation computer so as not to impact computer throughput
requirements. A computstional organization that facilities such an approach divides the
orthonormalization operations into submodules that are executed on successive passes in the
outer—loop software path. A logical division of the orthonormalization operations intoc
submodules is as defined by equaticons (28), (29), (30}, and (31).

This implies that measurement and correction of orthogonalization and normslization
effects are performed at different times in the computing cycle. Such an approach is only
valid if the orthogonality and normalizations errors (i.e., Eij and E;;} remain reasonably
stable as a function of time.

To assess the time stability of the orthogonality/normalizstion error is to investigate
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the rate of changa of the breckatad terma in eguetions (33) and (34). For convanienca,
thess will be definad es:

1>

Ep {1 - cch
(35)
A
Ec = (I -cTe)
The time derivative of (35) iw:
ER "-C.CT-C(.:T
(36)

-

E. =-cTe - cTc

Expressions for ¢ end €T cen be davaloped by rsturning to equations (2), (3), (5), and
(6). Thsss equetions cen be reerrengad to show thet ovsr a given time intervel, tha change
in C is given by:

a¢c = c{aA-1I)+ (B -I)C

which with (3) end (4) becomes to first order:
AC = c{sx) - (8x)C (37)
Dividing by tha time intarval for the change in C, recognizing that ¢ end @ ere
approximately integrals of w end @ ovar the time interval, and letting the time interval go

to zerc in the limit, yields the classicel equetion for the rete of chenga of C:
¢ = Clux) - (g@x)C (38)

where

(wx), (8x) = Gkew symmetric matrix form of vsctors w, fi.

The trenspcose of (28) is :

+

T = - (ux) cT + cT (gx) (39)

Wa now substituta (38) end (39) into (36). Aftar combining terma end epp.ying equations
(35), ths finel result is:

';:R = BR (EK) - (9_!) ER
{40)

E.:U = EC (Ex) - (“_1!! Ep

Equetions (40) show thet th: reta of chengs of Ep is proportional to Eg and tha
navigation frame rotetion rate U, wharaas the rata of chenga of Ep is proportionel to Eg end
tha body rotation rete y- Since @ is ganarally much lergar than g, Ec is generally lergar
then Eg. It can be concluded that Zp is mora stebla over tima, hence, orthonormalizing tha
directfon cosine matrix rows (besed con tha EE measurament) is ths praferred computational

8

epproach if tha raal time computing problem tekan into account.

3.5.2 Queternion Normalizetion
The gquetarnion is normalizad by measuring its magnituda squarad comperad to unity, end
edjusting each elamant proportionally to correct tha normalization error. The normalization
error is givan by:
Eq = gg* -1 (41)
It is aesily verifiad using the rulas for guatarnion algabric that E¥ equals tha sum of
v

the squares of the elaments of q minus 1. The corraction algerithm is given by:

9n+1) = 9(n) - 1/2 Eq 9(n) (42)
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3.6 Direction Cosine Versus The Quaternion For Body Attitude Referencing

The tradeoff betwsen direction cosine versus quaternion parameters as the primary
attitude reference data in strapdown inertial syatems haa been a papular area of debate
between strapdown analysts over ths past three decades. In its original form, the tradeoff
centered on the relative accuracy between ths two methods in accounting for body angular
motion. Thease tradeoffs invariably svolved from tha differential equation form of the
direction cosine and quatsrnion updating equations and investigated the accuracy of
equivalsnt algorithms for integrating thess equations in a digital computer under hypoth-
scized body angular motion. Invariably, the body motion investigated was coning motion at
varicus frequencies relative to ths computer update frequency. For these early studies, the
tradeoffs gensrally demonstrated that for comparable integration algorithms, the quaternion
approach gsnerated solutions that more accurately replicsted the true coning motion for
situations whers ths coning frequency was within a decade of the computer update frequency.

As presented in this paper, both the quaternion and direction cosine updating algorithms
hava been bassd on processing of a body engle motion vector ¢ which accounts for all
dynamiic motion effects including coning. Thsse updating algorithms (equation (2} and (3}
for direction cosines and (13) and (14) for the quaternion) represent exact solutions for
the attitude updating procsse for s given input angle vector ¢. Consequently, the guestion
of accuracy for diffarent body motion can no longsr be consideéred a viable tradeoff area.
The principle tradeoffs that remain between the two approaches ere the computer memory and
throughput requirements assoclated with each in a strapdown navigation aystem.

In ordsr to assess ths relative computer memory and tnroughput requirements for quater-
nion parameters versus dirsction cosines, the composite of all computer requirements for
aeach muat be assesssd. In general, thess can be grouped into three major computional arsas:

1. Basic updating algorithm
2, Normalization and orthogonalizetion slgorithms

3. Algorithms for conversion to the dirsction cosine matrix form needed for
acceleration tramsformation and Eulsr angle extraction

Basic Updating Algorithms - The basic updating elgorithm for the quatsrnion parameters
is somewhat simpler than for direction cosines as expansion of equations (2) and (3}
compared with (13) and (14} would reveal. This results in both a throughput and memory
advantage for the gqusternion approach. Part of this advantage arises because only four
quaternion elementa have to be updeted compared to nine for direction cosines. The
advantage is somewhat diminished if it is recognized that only two rows of direction cosines
{(i.e., 6 elements) need actually be updated since the third row can then be casily derived
from the other two by a cross-product operation (i.e., the third row represents a unit
vector along the z-axis of the navigation frame as projected in body axes. The first two
rows represent unit vectors along x and y navigation frame axes. The cross-product of unit
vectnrs along x end y navigation axes equela the unit vector along ths z-navigstion sxis).

Normalization And Orthogonalization Algorithms - The normalization and orthogonalization
operations associated with direction cosines are given by equation (28} through (31). The
quaternion normalization equetion is given by equations (41} and (42}.

The normalization equation for the gquaternion is generally simpler to implement than the
orthogonalization and normalization equations for the direction cosines. If only two rows
of the direction cosine matrix are updated (as described in the previous paragraph) the
direction cosine orthogonalization and normalization operations requirzd are half that
dictated by (2B) through (31}, but are still more than required by (41) and (42) for the
qusternion. Since the orthonormalizetion operations would in general be iterated at low
rete, no throughput edvantage results for the quaternion. Some memory savings may be
realized, however.

A key factor thst must be addressed relative to orthonormalization tradeoffs is whether
or not orthonormalizstion is actually needed st s8ll. Clearly, if the direction cosine or
quaternion updating algorithms were implemented perfectly. orthonormalization would not be
required. It is the author’s contention that, in fact, the accuracy requirements for
strapdown systems dictate thet strapdown attitude updating software cennot tolecrate any
errors whatsoever (compared to sensor error effects). Therefore, if the attitude updating
software is designed for negligible drift and scale factor error (compared to sensor errors)
it will also implicity exhibit negligible orthogonalization and/or normalization errors.

The ¢bove argument is valid if the effect of orthonormalization errors in strapdown
attitude .lata is no more detrimental to system performance than other software attitude
error effecta., This is in fact the case, as detailed error analyses would reveal. Since
modern-day general purpose computers used in today’s strapdown inertial navigation systems
have the capability to implement attituds updating algorithms essentially perfectly within a
reasonable *hroughput and memory requirement, it is the author’s opinion that
orthonormalization error correction should not be needed, hence, is not a viable tradeoff
area relative to the use of quaternion parameters versus direction cosines.

Algorithms For Conversion To The Direction Cosine Matrix — If the basic calculated
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attituds data is direction cosinea directly, no conversion procsse ia required. For cases
whers only two rows of dirsction cosines ars updated, ths third row must be gsnsrated by ths
cross-product betwesn the two rows calculated. For example:
g:u B glz a3 - gn C22 =
32 13 21 T %11 23 = i—=
€33 = € C2 -C)2 ¢ ’ L

For quaternion parameters, equation {17) must be implementsd to davelop the direction
cosine matrix, a significantly more complex operation compared with {43]; for the two row
direction cosins approach. Since direction cosins elementa ars gensrally required at high
rats {for acceleration transformation and Euler angls output sxtraction) both a throughput
and memory penalty ia accrusd for the quatsrnion approach. Ths penalty is compounded if ths
calculated direction cosine outputs are required to greeter than single precieion accuracy » <
{including computational round-off error). For noise-frss acceleration transformation
operations {such as may be nssdsd to sffect an accurate system calibration) doubls-precision
accuracy ie needsd. The rssult is that equation (17) for ths quatsrnion vsrsus {43) for
direction cosinss would have to be implemented in doubls-prscision imposing a significant
penalty for the more complex gquaternion conversion process.

Tradeoff Concluaions — Fram ths abovs qualitative discussion, it is difficult to draw
hard conclusions rsgarding a prefsrencs for direction cosines vereus quaternion parametere
for attitude refsrencing in strapdown inertial syeteme. Pros and cons sxist for sach in ths
different tradeoff arsaa. Quantitative comparisons based on actual softwars sizing and
computer loading studies have led to eimilar inconclusivs rseults. Fortunately, today's
computer technology ie such that the slight advantage one attituds parameter approach may
havs over the other in any particular application is insignificant compared with composite
total atrapdown insrtial syetem throughput and memory software requiremente. Hsnce,
ultimate selsction of the attituds approach can be safsly made based on “"analyst's choics”.

i LI
L

4. STRAPDOWN ACCELERATION TRANSFORMATION ALGORITHMS

The accsleration vector meaeurement from the accslsrometers in a etrapdown insrtial
system is transformed from body to navigation axee through a mechanization of the claesical
vactor tranformation equation:

—— =

» ®
al = ca {44) R
whsrs
a = Spscific force acceleration measursd in body axes by the strapdown
accelsrometers
gN = Specific forcs acceleration with componente svaluated along navigation axes. !‘ 'J!F

The implsmentation of equetion {44) is accomplishsd on a repetative basis as a recursive
algorithm in a digital computer such that its integral propsrties are preserved at ths
computer cyule times. 1In this mannsr, the velocity which ie formed from the integral of
{44) will be accurate undsr dynamic conditions in which aN may havs srratic high frequency
components. The recursive alqorithm for (44) muet account for the effects of body rotation
{and sscondarily, rotation of ths navigation coordinate frams) ae well as variations in a

nver the computsr itsration period. h L
4.1 Acceleretion Traneformation Algorithm That Accounts For Body Rotation Effects
To develop an algorithm for squation {44) that preservss ite integral propsrties, we
begin with its integiral over a computsr cycle:
] ®
tm+l
N = f C adt . (45)
tm s
where
uN = Change in the integral of equation (44) (nr siecific force vslocity change) L °
over a computer cycle m T R
The velocity vector in the nevigation computsr is generetsd by summing the g“'a
corrscted for Coriolie and grevity sffects.
The C matrix in {45) is a continuous function of tims in the interval from tp to tp4),
An equivelent form for C in tsrme of its value at the computsr update time {m) is:
]
C = C{m) A{t) {46) 2 =
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- C(m) = Value of C at tg
g

A(t) = Direction cosine matrix that traneform vectore from body axee at tima t to the
body attitude at the etart time for the computation interval tp. S —

Equation (46) with the dafinition for A{t) above accounte for tha affect of gyro seneed
body motion over the computar intarval. The next section will diecuas the correction usad
to account for tha small rotation of the navigation frame ovar the computer interval.

Subatituting (46) in (45) and expanding: : .
to+l :

W o= cim) [ A(t) adt Ly
tm

We now uee a first order approximation for A(t) as given by equation (3), with ¢ traatad
as a function of time in the interval as definad to first ordar in equation (22):

t
eft) « p(t) = f w 4t ®
tm
Thus,
a(t) = I+ (p(t)x) (47) _
| L
and -
Cm+l , 'f
uv . cim) | (I + (p(t)x)) a at
tm o
t t i i
m+l m+l
= clm) (f adt + | {pl{t) x a) dt) '
tm tm
We now dafine
A tmal ] L4
w = [ adt R
tn
Hence,
t
EN = c(m) (u+ ftm+1(ﬂ_(t) x a) at) (48) » b
& .
with
t
Bit) = Itm w dt ° P
tm+l
u = a dt
Ll tm
@ ®
An alternative form of (48) can also ba derived through diract apglicntion of the - T
integration by parts rula to tha integral term in tha equation (48) u" axprassion.:
uN = c(m) (u+1/2p xu+ 1/2!: (B{t) x a + ul{t) x w) at) (49)
m
d ®

with
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alt) ft dt
" 8
tm
u{t) = jt a dt
tm
g = ple=tpy)
L - E(tstnﬂ-l)
Equations (48) and (49) ara algorithmic forme of equation (44) that can be uead to
calculate EN in the strapdown computer exactly (within tha approximestion of equation (47}).

Thaae equations show that the epecific force valocity change in navigation coordinatas is

approximately equal to tha integrated cutput from the strapdown acceleromatar {u) ovar tha
¥ computer cycle, timas the direction cosine mstrix which waa +-.1id at the praviocus computar
update time. Correction tarms ara applied to account for body rotation. In ganeral, tha

corraction tarm involves an integral of tha intarractive effecte of angular w and linaar a
motion ovar the update cycle. Tha integral terms have been coined "eculling™ affacte.

The equation (49) form of the uN equation includes a 1/2 g x u term which can be
evaluated at t,; a# the aimpla cross-product of intagratad gyro and accalarometar
meagurements (T.a.. without a dynamic intagral operation}. PFurthermora, it ie easily
damonetratad that for approximately conatant angular rates and accalerations ovar the
computer cycla, the integral term in (49) ia idantically gzero. This forma the basis for an
approximate form of (49} which is valid under benign flight conditiona (i.a., ueing equation
{49) without including the integral tarm). The 1/2 g x u tarm in (49) ie acmetimes denoted
as “rotation compensation”.

4.1.1 Incremental Form of Transformation Oparationa and Sculling Tarms

In a severe dynamic anvironment, eguations (48) or (49) would be implamanted axplicitly
with tha integral terms mechanized as a high spead digital algorithmic oparation within tha
ty to tp4) update cycle. The integral tarms we are daaling with are from (48) and (49):

A tmel
S, = (t) x a) at
5 ftm (8 a)
{50)
S2 2 1/2 I:mtﬂ(t) x a +ult) x y) at
m

With the aguation (50} definitions, (48) and (49) become:

u¥ = c(m) (u +8,;) (51)
or

w = o(m) (u +1/2 g xu+S,) (52)

Racureiva algorithms for S or S, can be darivad by firet rawriting (50) in tha
eyuivalent form:

Blt) = plg) + jt w 4t
ta
t
uft) - u(2) + [ aat
ty
Ll
il = pn(y + jt (g{t) x a) at
L
tasl
y2lal) = yolg) + 1/2 jt (Blt) x a + ult) x w) dt {53)
]
_ﬂ(l"’l) e B(t=t£+1)
u{ gtl) = ultet )

81 = mltstpy)

S, = yplt=tyy)
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with initial conditiona
Ble=t ) =0

ult=ty) =0

{54) ——
11_(t'tm) = 0 ®
Y2({t=tn) = o '
where S
h 1 = High spaed computer cycle within m lowar speed computation cycle. :.,..;_.;._;;
T The intagrals in (53) can be replacad by analytical forma that are compatible with gyro
3 and accelerometer input data proceasing if w and a are replaced by a generalized tima saries
3 expanajon. For equations (53), it is sufficlent to approximate w and a over the X to 2+l
;- time interval as conatanta. Using this approximation in {53) yialda the final algorithm
forms. For S;, the companion to equation (51), the algorithm ia:
ﬁ : ®
o xp(2+1) =y, () + (p(r) + 172 a8(0)) x svi(a) .y
[ 4
Blr+l) = B(r) + a8(r)
where - - :
' [ )
+1 tryl .
Ae(z)sj wdt =] a8
£ £
t1+1 tl+l
avir) = [ Tade =] dv
ty ty ——
3 ®
and
5y = ¥yltmtyy) (55)
For equation (51): ;‘
a(2+1) = u(l) + Av(2) 4 o
A
4 = ult=tpy)
with initial conditions:
A P @
plt=t, ) = B(1=0) = 0
A
Il(tstm) = ll(lsn} s
where 4 2
de, dv, = Gyro and accelerometer output pulse vectors. Each component (x, ¥, z)
reprasente tha occurance of a rotation through a specifiad angle about the
gyro lnput axia {(for d8 componenta) or an accelaration through a specific
force velocity change along the acceleromater lnput axie (for dv
componenta).

46, Av, = Gyro and accelaromater pulse vector counta from & to t+l.

For the alternative S, form, the companion to egquation (52), the algorithm is:
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8

Yo (41} = yol0) 4 1/2 (B{4) x av(R) + u(a) x 86(1})

] B(r+1) = B(L) + 40(1)
| ul{a+l) = u() + av(L)
' whara - ® -
] tesl tis] '
i 80(1) = [ TTwar= [T a0
Ly ty L
-
: tagy tiy L
h su(d) = [ TTade =] av °
o ty T ty '
- and (56)
- Sp = Xalt=tpy)
E For equations (52): T e
i B = Ble=tpy)
) u = ult=tyy)
with initial conditions: g o
A * ¢
Blt=ty) = f(4=0) = O
A .
u(t=t ) = u(L=0) = 0 -
A —

Ta(t=ty) = 1p(4=0) = 0 .

Equations (51) with (55), or (52) with (56) are computational algorithms that can be S
used to calculate tha navigation frama specific forca velocity changes. Two iteration ratees o
ars implied: a baeic m cycle rate, and a higher speed A cycle rate within each m cycls. )

Ths m cycle rata is selacted to ba high enough to protact the approximation of h ®
neglecting tha (B(t)x)? term in A(t) (contraat equation (47) with the equation (3) exact = -
form for A). 'This design condition is typically avaluated under maximum expected linear
acceleration/angular rats envalope conditions for tha particular application. Typically.
the m cycla rete requirsd for accuracy in tha attituda updating algorithms is alao
sufficiant for accuracy reguirements in the m cycle of the acceleration transformation
algorithms.

Tha & cycle rata within m is set high enough to proparly account for anticipated ®
composite dynamic w, a effacts. Section 6. dascribae analytical tachniques that can be used -
to assess tha edequacy of the § iteration rata for the sculling computation under dynamic ‘
input conditions.

4,1.3 Acceleration Transformation Algorithms Basad on Quaternion Attitude Dete
®

Equations (51) or (52) were based on the use of direction cosine data (C) in the -
strapdown computer. If the basic attitude data is calculatad in the form of e quaternion,
the equivalent C matrix for transformation can ba calculated using equations (17).

Alternatively, the quaternion data can be epplied directly in the implementation of the
tranformation operation through application of equetion (12) to equations (51) and (52):

WN = g(m) (u+ 8y) q(m)* (57) Py
or

u¥ = gq(m) (u+ 85) q(m)*

{58)
A
1/2 8 xu+ 8,

I
0
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where u and the terms in the middle breckets are the queternion form of the vector of the
aame nonmencleture definad as heving the firat three terms (i.e., vector componants) egual
to the vector elemants, and the fourth sceler term equal to zero. The S; and S, terms ere
celculeted es defined by equetions (55) end (56).

tl 4.2 Accelaration Transformation Algorithm Correction For Navigation Frame Rotations

The acceleretion trenaformation elgorithms represented by equetion (51), {52} or (57),
(58) with (55), {56) neglecta the effect of navigetion frame rotation. In general, this is
e minor correction tsrm that can be easily accounted for et the n cycle updete rete {i.e.,
the computer cycle rete used to update the ettitude date for ths effect of nevigation freme
[ rotations). It can be shown through a development similar to thet leading to equetion {52),
that the correction algorithm for locel nevigation frame motion is given to first order by:

AuR{n) = - 1/2 g x vin) (59)

where

suN{n) = Correction to tha velue of g“ computed in the m cycle thet cccurs at the
current n cycle time. {Note: the m cycle ia within the lower speed n cycle time
freme).

R

v{n) = Summation of u(m) over the n cycle updete period.

s 8 = Intsgral of the nevigation frame angular rotation reta over the n cycle
L pasriod (as described in Sections 3.1.2 end 3.4)
.
°.
5. EULER ANGLE EXTRACTION ALGORITHMS

If the body ettitude relative to navigation axas is defined in terms of three successive
P Euler angla rotetions ¢, 6, ¢ about exes 2, ¥y, x reepectively {(from ravigetion to body
. exes), it cen be reedily demonstreted (9) that the relationship between tlie direction cosine
h elements end Euler engles is givan by:

cll = cog8 Ccosd

Cys = — cos$ sing + sing sind cosy

Ci13 =™ sinp singy + cosy sing cosy

Cy; ™ cosb sing

Cpa = cosd cosp + sing sing sing (60)
Ca3 = - 5ing cosy + cosp sing sing

C3; = - siné

Cis2 = sinp cosd

C33 = cosp cosb

For conditions where /8/ # n/2 the inversa of equations (60) can be used to eveluate the
Eular engles from the direction cosinas:

=1 C
¢ = tan 2
Ca3
-1 C
| = — tan ____El__ {61)
-1 ¢
¢ = tan _El
C11

For situetions where /6/ approaches n/2, the ¢ and ¢ equations in (61) become
indeterminata because the numeretor and denominator approach zero simultaneocusly (see

IS



T

equations {60))}. Under these conditions, an elternative equation for 4, ¢ can be dsveloped
by first applying trigonometric algebra to equations (61} to obtsin:

Cp3 + Cyp = {8in® - 1) sin{¢ + &)

Cy3 - Cyp = {sind - 1) cos(¢ + ¢)
{62)
C23 ~ Cy2 = (#ind + 1) sin{¢ - ¢)

Cy3 + Cpp = (=8ind + 1) cos(¢ ~ )

Taking appropriate reciprocals of sine, cosine terms in {62) and applying tha inverse
tangent function:

For 6 near + x/2

-1 C23 - €12

¢ - ¢ = tan s N
€3 *+ C22

{63)
For 8 near - =n/2

-1 C + C
¢ + $ = tan “33____13

C13 =~ C22

Equations (63) can be used to obtain expressions for the sum or difference of ¢ and ¢
under conditions where /8/ is near x/2. Explicit separate solutions for ¢ and ¢ cannot be
found under the /8/ = x/2 condition because ¢ and ¢ both become sngle measures about
parsllel axes (about vertical), hence, measure the same angle (i.e., a degree of rotational
freedom is lost, and only two Euler angles, 8 = # x/2 and ¢ or ¢ define the body to
navigation frame attitude}. Under /&/ near %/2 conditions, ® or ¢ csn be srbitrarily
selected to satisfy another condition, with the unspecified variable calculated from {63).
As an example, ¢ might be set to a constant at the value it had from equations {61) when the
/8/ near x/2 region wss entered. This sslaction avoids jumps in ¢ as the solution equation
is transitioned from the (61) to the {63) form.

6. ALGOR1ITHM PERFORMANCE ASSESSMENT

The division of the ettitude updating end acceleration transformation algorithms into
high and low speed loops for body motion effects (L and m ratee) provides for flexibility in
selection of the iteration rstes to maintain overall algorithm accurscy at system specified
performance levels. Ths 1 and m rate algorithma have been designed such that the high rate
1 loop consists of simple computations thet cen be itersted st the high rate needed to
properly sccount for high frequency vibration effects. The m rate loop algorithms, on the
other are more complicated, based on computstionelly exact solutions.

Iteretion rates tor the m ioop are selected to mainlala avcvucacy under maximum mansuver
induced motion conditions. Ths m loop iteretion rate to maintein accuracy under maximum
maneuver conditions can be easily eveluated enelytically, or by simulation, through
comparision of the actual algorithm solution with the Taylor series trunceted forms selectsd
for system mechanization. 1Itsretion rates for the L loop are selected to maintsin accuracy
under anticipated vibretory environmental conditions.

6.1 Vibrstion Environment Assessment

A fundemental cslculstion that should be performed prior to the anelysis of ! loop
algorithm iteration rate requirements is an sssesament of the dynamic inputs that must be
measured by the algorithms. 1n essence, this consists of an evalustion of the continuous
(i.e., infinitely fsst iteration rste) form of the elgorithms in question under dynamic
input conditions. Ths specific continuous form equations of interest are equetions (22)
for 58 and (50} for §; or Sj3.

6.1.1 QE Dynamic Environment Assessmsnt (Coning}

We repeat equations {22) for 68 evalueted at t = t_ 411

-
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= d
B(e) Itm w dt
(64)

Emtl
. SB(t=t, ) = 1/2 Itm Blt) x w At —

end enalysa the solution for 6f(t=t,, ) under ganerel cyclic motion et frequancy f in ares x
end y with enguler amplitudes Oy, ¢y end relative phase angle ¢ such thet:

t
IO wde = (6, sin(2nfe), 8, min(2nft+s), 0)T
(65)

w = 2xf (8, cos(2xft), &, cos(2xft+é), 0)7T

Yy

Substituting (65) in (64), expanding through epplicetion of epproprieta trigonometric ; . "6
identities, and carrying out the indiceted integrals enelytically betwaen tha assigned ‘
limits, yields zero for the x, y components end the following for the # component of

Sp(t~tpey):
sin 21!f(tm+l - tl'l!l) }
k133

Bg(t=tpe1) = ® 6, 8, (sine} £ ({tpyy = tp) -

Defining the m cycle time interval es Tp, the letter exression is equivalently:

sin 2n£T
88y = % 8, 8y (sine) £ p (1 - ) (66)
21:f‘rm

Hence, even though the @ rate is cyclic in two axas as defined by equation (65) in x end
y, the value for &8, is a constant proportionel to the sine of the phase engle between the
x, Yy anguler vibrations. Undar conditions where ¢ = 0 (definad es "rocking" motion), 4B, is
zero. Under conditions where ¢ = n/2, 8p_ is maximum. The equation (65) rata when & = =n/2
has been tarmed "coning motion® due to the cheracteristic responsa of tha £ exis undar this
motion which describes e cone in inertial space.

Equation (66) cen be pat into a "drift rete" form by dividing the 68, angla by the tima i ©
interval T ovar which it wes evaluated: Sa e

2
sin 2n£T, ) (67)

bfy = =x By BY (sin¢) £ ( 1 - — T
m

. Equation (67) is e fundamental equation that can ba usad to essass the magnituda of
68, that must ba accountad for by tha $B computer algorithm under discrata fraguancy input
conditions. If 53, is small ralativa to systam parformanca requiramants, it cen be
naglectad, and the ! loop elgorithm for 6 need not be implamentad.

e
i@

Equation (67) dascribas how 3B cen be celculatad for a discreta input vibration
frequancy f£f. In a more ganeral case, tha input rate is composad of e mixtura of frequencias
in x end y at diffarent phese anglee ¢ for eech. If the source of tha gereralized angular
vibration is random input noise to tha strapdown eystem, tha x, y motion is colored by the
transmission cherecteristics of tha noise input to the x, y angular rasponse. A mora
ganaral devalopment of equation (67} thet accounts for the lattar effacts shows that the
comparable aguation for &8, is given by:

ST
®

® sinuTy,
8Bz = [ © Ag(w) Ay() ain(oay(@) - epg(0)) (1 - 2 P

nnljw) dw (68)
m

where 9 9

Ax(w). Ay(w) = Amplitude of trensfar function relating gystem input vibration noisa
to angular attituda rasponsa of sansor assanmbly about x, y axas.

¢Ax(”)'°ay(“) = Phasa of transfer function relating system input vibration noisa to
angular attitude responsa of sansor assembly about x, Yy axas.
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| ®
Pnn(ju) = Power epectral density of input vibration nocise.
w = Pourier frequency (rad/eec)
Note: Mean squared vibration energy = j; Ponlde) du ._-._..;....
5 )
Equation (68} can be used toc assess the extent of random spectrum dynamic angular
environment to be measured by the 5§ computational algorithm. The §g, valus calculated by .
{68) measuree the composite corrslated coning drift in the eensor assembly that must be
calcuated to accurately account for the actual motion present. If the §g, magnitude
calculated from (68) is small compared to other eystems error budget effects, the e e
mechanization of an algorithm to calculate 45 ie not needed (i.e., can be approximated by } ®
zero).
The extension of equations (67) and (68) to y, £ or £, x axis angular vibration motion
should be cbvious.
6.1.2 5), S; Dynamic Environment Aesesement (Sculling) | .
We repeat equations (50) with u and g from (48) and (49): .
. g
gty = [ g dt
tm
t L .
- uit) = [ adt :
tm
(69)
tmtl
s1 o= f(a(t) x a)at
tn = —
r i &
= toel o=
e 82 = 1/2 ] " (glt) x a + ult) x g)at o
‘:' and analyse the 5;, S; sclutione under general cycle motion st frequency f in axes x, y i
i with angular mplituﬁe 8x about axis x and acceleration amplitude D, along axis y at .
relative phase § euch that: . e
t
Joudt = (o, sin(2sft), O, 0)T
) @ = (2xf 9y cos(2xft), 0, 0)T (70) .
a = (0, D, ein(2xft+y), 0)T
Substituting (70) in (69), expanding through applicstion of appropriate trigonometric
identities, and cerrying out the indicated integrals analytically between the assigned
limits, yields zero for the x, y componentas and the following for the z component of §;
and S53: ...
8ingfTpy
S22 = 1/2 Ty 8y Dy (coey) (1 - __i_ﬂ_ﬁ‘;n.___) {1
Sz = 1/2 (g x u), + Sy, (72) :
®

where

(g x u), = z - component of § x u evalulsted at t = tyy]-

Hence, even though the , and a inpute are cyclic in two sxes as defined in equetions
(70), the value for S;, is a constent pProportional to the cosine of the phase sngle between . J
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the x angular vibretion and y lineer ecceleretion vibretion. Undsr conditions where #=x/2,
S5z is xaro. Under conditions where ¢= 0, S, is a maximum. Equation (70) motion when

¢= 0 hae besn termed "sculling motion" due to the analogy with the characterietic enqular
movement end acceleretion forces imparted to an car used to propel a boat from the stern.
Note also that S;, is equel to S3, plus the correction term (rotetion compensation) meesurad
aa the cross-product of the simple engular rate and linear acceleration integrals taken over
the m computetion cycle. {See equetions (48) and (49) for definitions).

Equation {71) for S, can be put into en “acceleretion bies" form by dividing the
velocity change correction Sy, by the time intervel T, over which it was evaluated:

sin 27 fTh )

—n el {73)
Ty

S2x = 1/2 9, D, (cose) (1 -

Equation (73) {with (72) for S;,) is a fundementel equetion that can be used tc essess
the magnitude of S,, that must be accounted for by the 5y or S, Computer algorithm under
discrete frequency input conditions. If S, is amall rejative to system performance require-
mente, it cen be neglected, end the X loop algorithm for celculating 8; or S; need not be
implemented. Under the latter conditions, 5; would be set equel to the cross-product term
in (72) which makes the basic equation (51) and (52) transformation algorithms identical.

Equation {73) deacribes how S, can be calculeted with a discreta input vibration
frequsncy £ for engular motion about x end lineer motion along Y. In e more general case,
the input retes end eccelereticns are composed of mixtures of engular end lineer motion
about x and y at different frequencies and relative phase engles. If the source of the
gensralixed vibretion motion is random input noise to ths strapdown systam, the x, y angular
end linear motion is colored by the trensmission cherecteristics of the ncise input to the
x, y anguler end lineer rssponse. A mors general development of equetion (73) thet accounts
for the latter effects show that the comparable equation for 8, is given by:

bpp = f (ay(@) By(w) cos(#py (@) - 4 (@) ~ Ag(w) By(w) coa(#pg(w)

0
sinwTy (74)
“fBy(w)) (1 - ) Ppplde) &
wTp,
whsrs
Ax(u)l (u)t
*azie). #p,(0), = As defined previously.
Pan(§0 ), ©
By(w}, (), = x, y, amplitude/phese linear acceleretion reaponse of the sensor
¢px(@), bpylw) assembly to the input vibration.

Equetion (74) cen be used to essess the extent of random spectrum dynemic motion
environment to be measured by the S; or 5; computetionel algorithms. The S35 value
calculated by (74) meesures the composite correleted sculling acceleretion bias in the
sensor essenbly that must be celculated to sccuretsly account for the ectuel motion present.
If the 55, magnituds celculeted from (74) is small compared to other eystem error budget
effects, the mechanixation of en algorithm to calculete S5; or Sy in the high rate &t loop is
not needed (i.e., S; can be approximated by zaro in (52) or S, can be set equel to the
cross~product term in {52}}.

The extension of equetions (73) and (74} for ¥y, Z or z, x exis vibration motion should
be obvious.

6.2 Algorithm Accuracy Assessment

The eccurecy of the computation elgorithm for 68 or §;. S2 cen be assessed by compering
their solutions to the comparable continucus form solutiofls d&velcped in Section 6.1 under
identical input conditions.

6.2.1 4B Coning Algorithm Error Asasssment

The computationel algorithm for celculeting 68 in e strapdown system is given by
equetion (26). A meesure of the accurecy of the equetion (26) elgorithm can be obteined by
enelytically calculeting the solution genereted from (26} under assumed cyclic motion end
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comparing this result to the equivalent solution obtained from the idealizsl continuous
algorithm described in Section 6.1. PFor a discrete frequency vibration input, the equation
(65) motion can be us¢d analytically in equation (26) to calculate the algorithm sclution
for 5B at t = t,) (i.e., analagous to the equation (67) solution for the continuous
{(infinitely faet)} algorithm. After much algebraic manipulation, it can be demonstrated that
the algorithm solution for §f ae calculated from equation (26) under equation (65) input
motion, has zero x, y components, with a z component rate given by:

. in 2xfT
8BzaLg = ® Oy 8, (sin ¢) ({1 + 1/3 (1 - cos 2xfTy)) .-%:'Ertr{_ (75)
ain 2%fT,
ZItTm

whers
GBzALG = Recursive algorithm solution for 5p, rate
Ty = Time interval for high speed & computer iteration cycle

Equation {75} for the §f discrete recursivs algorithm solution of equation (26) ie
directly analagous to the equation {67) solution of the equatieca {22) continuous 58
algorithm. It is easily verified that (75) reduces to (67) as T, approachas zero.

The error in the §p algorithm is measured by ths differencs between (67) and (75): i.e.:

ain 2xfT)
2lfT1

o(béz) = fo, 0, (sin (2 +1/3 (1 ~ com 2xfTy)) 1) (76)

where
e(8f,) = Error rate in the equation {26) algorithm.

Equation (76) can be usad to aseees the error in the equation {(26) §8 algorithm caused
by finite iteration rate (i.e., the effect of T;) under discrate frequancy input conditions.

Under random vibration input conditions, the equation (26) algorithm can be analyeed to
obtain the more ganeral eolution for the 8fgp1g rate:

6BZALG = jo W Ax(w) By(m) oin(tAy(m) - QAx(w)) ((l

sin wT sin wT {77)
+ 1/3 (1 - cosuTy) ______i - m) Pop(ju) dw
Ty wTy

The 8f algorithm error under random inputes ia the difference betwean the equetion (77}
discrete solution and tha equivalent continuous squation (68) solution form. The result ia:

e(6hg) = I7 w Agl) Ayte) sinleayle) = ape(e)) (01

: {78)
+ 1/3 {1 - cosuwTy) .S_Jf._.‘_"_'r_‘ - 1) Ppplie) de

wTy

Equations (76) and (78) can be ueed to assess the error in the equation (26) &8
algorithm caused by finite iteration rate under diacrete or random vibration input

conditiona. The extension of equations (76) and (78) to y. z or z, x axis effecte should be
obvious.

6.2.2 5 Sculling Algorithm Error Assesement

The computational algorithm for calculeting 8; or 83 is given by equations (55) and
(56). A measure of the accuracy O° these algorithms can be cbtained by analytically
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celculeting the solution generated from (55) or (56) under essumed cyclic motion end
comparing the rasult to tha equivelent solution obtained from the continuocus algorithm es
described in Saction 6.1.2. For a diacrsta frequancy vibration input, ths equation (70)
motion can be used analyticelly in equation (55) and (56) to celculete the algorithm
solution for 8;, S, {i.s., enelogous to the equation (72) end (73) aoclution for the
continuous (in inTgnly fest) elgorithm). After much algebreic manipuletion, it can be
demonstrated that the algorithm solution for S; end S; as calculated from equations (55) and
(56) undsr equation (70) input motion, hes zero g, y componeénta, with a z componant rete

givan by:

T -

sin 2x£T, sin 2xfTp
ZafT,_ 2xfTy,

(73]

ézmg = 1/2 ez DY (COI#) (

S1parc = 1/2 (B x ulyp * Saga1g (80)
whera

S1eALG: S2zALG ™ Racursive elgorithm solutions for S;,, Sge-

Equations {79) end (B0) for the S,., S, discreta racursiva elgorithm aolution is diractly
enalogous to the equetions (73) end T*z) aolution to the continucue §;. Sy algorithm. It is
easily varifiad thet (79) and (80) reduce to (73) end (72) as T epproachas zaro.

Tha error in tha §;. §; elgorithm is meesured by tha diffarsnce betwsan (79). (80) and
(73)1 (72) ; Ll.e.,

b~ . . sin 2xfT
g alf)y) = eldy) = 1/2 8, D, (comy) (1 - """ 1 (81)
! 25 £T,
whers
e(8)z), el(Sy,) = FError reta in the equetion (55) and (56) algorithm solutions.
Equation (Bl) cen be uaed to assass the error in tha equetion (55) end (56) algorithms
ceused by finita iteretion rete {i.a., tha effect of TL) under discrets frequancy input

conditions.

Under rendom vibration input conditiona, the equation (55) end (56) algorithma can be
enelyead to obtein tha more general eolution for 834, Syp:

§pg = ;: (Ay(w) Bylw) cos (eaylu) ~ egxle))

i T4
- Agle) Bylw) coslepg(w) - egylw))) (207 (82)

wTy

- _E_i.l'l me] Pnn(jw) dw
wTpy

Big = 1/2 {p z u), + Sy

The §),. By, algorithm error under vibretion is tha difference between the equetion (82)
discreta solutions end the equivalant continuous equation (74) with (72) forms:

s(Siz) = n(ézz) = f: (Ay(w) By (w) coe(ohy(w) - #pxlu))

= Aglw) Bylw) coslepxiu) = égyluw))) (1 (83)

_ sin wT1] B (40) du

wTy

Equation (B82) end (83) can be used to essass the arror in tha eguetion (55} end (56)
algorithms caused by finita iteration rate under discrete or random vibration input
conditions. Tha extension of equetion (83) to ¥y, 2 or z, x exis affacts should hbe obvious.
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7. CONCLUDING REMARKS

The strapdown computational algorithms and assoriated design considerations presented in
this paper are representative of the algorithms being used in most modern-day strapdown
inartial navigation aystems. The unique characteristic of the attituda and transformation
algorithme pressnted is the separation of each into a complex low speed and simple high
speed computation section. Due to the simplicity of the high speed calculations they can be
executed at the high rates necestary to properly account for high frequecy but generally low
amplituda vibratory eiffects without posing an insurmountable throughput burdan on the
computar. The lower speed calculations which contain the bulk of the computational
equations can than be executed at a fairly modest update rate selected to properly account
for lower freguency but larger magnitude maneuver induced motion effects. Perhaps the
principal advantage of the algorithm forms presented, is their ability to be analyzed for
accuracy using straight-forward analytical techniques. This allows the algorithms to be
easily tailored and evaluated for given applications as a function of anticipated dynamic
anvironments and user accuracy requirements.
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APPENDIX A

DERIVATION OF 4 EQUATION

A differential equation for the rate of change of the § vector can be derived from the
equivalent guaternion rate equation. The quaternion h in equations {13) and (14) is the
quaternion egquivalent. to the ¢ rotation angle vector. A differential equation for h can be
derived from the incremental equivalent to (13) that describes how h changes over a short
time period 4t {from t; to ty,;) within the larger time interval from t, to tg,j:

h{t+1) = h(t) p(t) (A1)

where

C @t
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93 %yx

g3 4y
p = 93 T
94
(a2}
sin («/2) ,
gz = ______i___ g4 = cos (a/2)
1T
x = Rotation angle vector associated with the small rotation
of the body over the short computer time interval from X to
L+] within the larger interval from m to mtl.
Cye8yrBp.8 = Components and magnitude of a.
Equation {4l)} is equivalently:
h(f+1} - h(k)} 1)-1
AU TR py PO (a3)
At .14
4
At = el - 8y
The basic definition of angular rate states that for small At,
T o~ wbt
(a4)
x 0~ w bt
Hence, for small At, & is small, and therefore, from (A2},
gz *~ 1l/2
{A5)
a? wlat?
94 = l-—~ 1=
2 2

Using mixed vector/scalar notation, subatitution of (A4} and (A5} in (A2) yields:

p T g3 % +dy
sztz

2

" 1/2 w At + 1 -

Substituting in (A3) obtains:

h(2+1} - h(x)
At

» wit) {1/2 0 + 1/2 wt)

In the limit as At + 0, the latter reduce to the derivative form:

h =1/2huw in6)

We now return to (14) and express h as a function of ¢ in mixed vector/scaler notation:

h =f3£+f4

fz3 = e Eiii) (a7}
L]
f4 = cos (8/2)
Substituting in (A6},
h o= 1/2€306w +1/2 fqu (A8)

It is readily demonstrated by algebraic expansion and using the rules of guaternion
algebra that ¢ w in (A8} is equivalently:
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® L
dw = $Xu=-9"w
Differentiation of (A7) shows that:
]:1 "f-a-!"‘fai“‘f‘; -
® ¢
. cos #/2 . ain ¢/2 .
£3 = 1/2 s - 2‘ ¢
L ¢
+ .
= (1/2 f4—f3] )
¢ =
. . . [ ] L
£4 = ~1/2 {8ine/2) ¢ = - 1/2 ¢ ¢ £3
Hence, with (A8},
i : . % : -
; h =f3 0+ (1/2 f4 - £3} 0 - 1/2 ¢ ¢ f3 =
.= ¢ G {
"1/2f3(1XQ)—1/2f31'Q+1/2f4m
i Dividing by f3 and solving for é:
b . f4 -
o L'} =1/2 — w+1/2 (g x 0 » '
. (n9)
£ 0
1 —_°_(1/2‘___._4 -1) 8 +1/2 ¢ 4-1/24 "y
L ¢ f3 .
Equation (A9) is now separated into its vector and scalar components: i . [
. fg ; £
¢ = 1/2 __ w+1/2 (gxw) -— (/2% - 1),
f3 [ £y {Al0)
1/2 ¢ 6 =1/2 ¢ * 4
» |
The scalar eguation is equivalently:
¢ _ 1 e
— g
¢ 62
Substituting in the vcotor part of {Al0) yields: _
. fa 1 f4
$=1/2 " o+ 1/2 (p x @) — o (1/2 2. - 1) (¢ " w) 8
£y 2 f3
Using the vector triple product rule, it is easily demonstrated that:
(0" w) g =ax(agxu)+edy ,
Substituting, -
. £ f 1 £
b=1/2 % /29 xw-(1/2 2 cn) e (1% ) ex(gxw
Combining terms:
. 1 £
dru+l/2gxut_(1-_2 )axtsxa ]

Using the definition for f4 and f3 from (A7), it can be shown by trigonometric
manipulation that the bracketed coefficient in the latter expression is eguivalently:
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Substitution yields the final expression for é:

E 1 i
2'2*1/2112+~——(1--1-f—2—3—)gx(2xg) {a11)
¢ 2({1-cos¢)

Equation (20) in the main text is the integral from of (All) over a computer cycle (from t
to toep)-




