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SUMMARY 

This paper addresses the attitude determination, acceleration transformation, and 
attitude/heading output computational operations performed in modern-day strapdown inertial 
navigation systems. Contemporary algorithms are described for implementing these operations 
in real-time computers. The attitude determination and acceleration transformation 
algorithm discussions are based on the two-speed approach In which high frequency coning and 
sculling effects are calculated with simplified high speed algorithms, with results fed into 
lower speed higher order algorithms. i^This is the approach that is typically used in most 
modern-day strapdown systems. DesignSftquat.ions are included for evaluating the performance 
of the strapdown computer algorithms as\a function of computer execution speed and sensor 
assembly vibration amplitude/frequency/phase environment. 

Both direction cosine and quaternion based attitude algorithms are described and 
compared in light of modern-day algorithm accuracy capabilities. Orthogonality and 
normalization operations are addressed for potential attitude algorithm accuracy 
enhancement. The section on attitude data output algorithms includes a discussion on 
roll/yaw Euler angle singularities near high/low pitch angle conditions. 
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1.  INTRODUCTION 

The concept of strapdown Inertial navigation was originated more than thirty years ago, 
largely from an analytical standpoint.  The theoretical analytical expressions for 
processing strapdown inertial sensor data to develop attitude, velocity, and position 
information were reasonably well understood in the form of continuous matrix operations and 
differential equations.  The implementation of these equations in a digitial computer, 
however, was invariably keyed to severe throughput limitations of original airborne digitial 
computer technology.  As a result, many of the strapdown computational algorithms originated 
during these early periods were inherently limited in accuracy, particulary under high 
frequency dynamic motion.  A classical test for algorithm accuracy during this early period 
was how well the algorithm computed attitude under cyclic coning motion as the coning 
frequency approached the computer update cycle frequency. 

In the late 1960's and early 1970's, several analytical efforts addressed the problem 
of splitting the strapdown computation process into low and high speed sections (7, 8, 10). 
The low speed section contained the bulk of the computational equations, and was designed to 
accurately account for low frequency large amplitude dynamic motion effects (e.g., vehicle 
maneuvering).  The high speed computation section was designed with a small set of simple 
algorithms that would accurately account for high frequency small amplitude dynamic motion 
(e.g., vehicle vibrations).  Splitting the computational process in this manner allowed the 
bulk of the strapdown algorithms to be iterated at reasonable speeds compatible with 
computer throughput limitations.  The high speed algorithms were simple enough that they 
could be mechanized individually with special purpose electronics, or as a minor high speed 
loop in the main processor. 

Over the past ten years, the structure of most strapdown algorithms has evolved into 
this two speed structure.  The techniques have been refined today so that fairly 
straight-forward analytical design methods can be used to define algorithm analytical forms 
and computational rates to achieve required levels of performance in specified dynamic 
environments. 

This paper describes the algorithms used today in most modern-day strapdown inertial 
navigation systems to calculate attitude and transform acceleration vector measurements from 
sensor to navigation axes.  The algorithms for integrating the transformed accelerations 
into velocity and position data are not addressed because it is believed that these 
operations are generic to inertial navigation in general., not only strapdown inertial 
navigation. 

For the algorithms discussed, the analytical basis is presented together with a 
discussion on general design methodology used to develop the algorithms for compatibility 
with particular user accuracy and environmental requirements. 
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2.  «TRAPDOWN COMPUTATION OPERATIONS 

Figure 1 depicts the computational elements implemented by software algorithms in 
typical strapdown inertial navigation systems.  Input data to the algorithms is provided 
from a triad of strapdown gyros and accelerometers.  The gyros provide precision measure- 
ments of strapdown sensor coordinate frame ("body axes") angular rotation rate relative to 
nonrotating inertial space.  The accelerometers provide precision measurements of 3-axia 
orthogonal specific force acceleration along body axes. 
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FIGURE 1 - STRAPDOWN ATTITUDE REFERENCE OPERATIONS 

The strapdown gyro data is processed on an iterative basis by suitable integration 
algorithms to calculate the attitude of the body frame relative to navigation coordinates. 
The rotation rate of the navigation frame is an input to the calculation from the navigation 
section of the overall computation software.  Typical navigation coordinate frames are 
oriented with the z-axis vertical and the x, y, axes horizontal. 

The attitude information calculated from the gyro and navigation frame rate data is used 
to transform the accelerometer specific force vector measurements in body axes to their 
equivalent form in navigation coordinates.  The navigation frame specific force 
accelerations are then integrated in the navigation software section to calculate velocity 
and position.  The velocity/position computational algorithms are not unique to the 
strapdown mechanization concept, hence, are not treated in this paper.  Several texts treat 
the velocity/position integration algorithms in detail (1, 2, 3, 4, 12). 

Figure 1 also shows an Euler Angle Extraction function as part of the strapdown attitude 
reference operations.  This algorithm is used to convert the calculated attitude data into 
an output format that is more compatible with typical user requirements (e.g., roll, pitch, 
heading Euler angles). 

•     • 
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3. STRAPDOWN ATTITUDE INTEGRATION ALGORITHMS 

The attitude information in strapdown inertial navigation systems is typically 
calculated in the form of a direction cosine matri* or an an attitude quaternion.  The 
direction cosine matrix is a three-by-three matrix whose rows represent unit vectors in 
navigation axes projected alony body axes.  As such, the element in the itn row and jtn 

column represents the cosine of the angle between the navigation frame i-axis and body frame 
j-axis.  The quaternion is a four-vector whose elements are defined analytically (5, 9) as 
follows: 

• • 

a » (o^/a)  sin ( a/2) 
b = (Oy/o)  sin (a/2) 
c = (aj/a)  si" <a/2) 
d * cos   ( a/2) 

(1) 
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where 

«x*ay'°E 
a 

Components of an angle vector a. 
Magnitude of a« 

The a vector is defined to have direction and magnitude such that if the navigation 
frame was rotated about a through an angle a, it would be rotated into alignment with the 
body frame.  The a  rotation angle vector and its quaternion equivalent (a, b, c, d, from 
equations (1)), or the direction cosine matrix, uniquely define the attitude of the body 
axes relative to navigation axes. 

3.1   Direction Coaine Updating Algorithms 

3.1.1 Direction Cosine Updating Algorithm For Body Rotations 

The direction cosine matrix can be updated for body frame gyro sensed motion in the 
8trapdown computer by executing the following classical direction cosine matrix chain rule 
algorithm on a xepetative basis: 

C(m+1) - C(m) A(m) (2; 

where 

C(m) • Direction cosine matrix relating body to navigation axes at the mfc^ computer 
cycle time 

A(m) - Direction cosine martix that transforms vectors from body coordinates at the 
(m+l)th computer cycle to body coordinates at the mtn computer cycle. 

It is well known (9) that: 

A(ra) - I + fx(ix) + f2(ix)
2 

where 

(3) 

sin » 
1 - $2/31 + *4/4l  

1 - cos 
1/21 - $2/4l + ^4/6|  _. 

= 4.x2 + *y2 + *z2 
(4) 

A 0 

• z 
~$y 

X 

3x3 unity matrix 

•x'*y'*2 * Components of £. 

Angle vector with direction and magnitude such that a rotation of the body 
frame about £ through an angle equal to the magnitude of 4 will rotate 
the body frame from its orientation at computer cycle m to its 
orientation at computer cycle m+1.  The £ vector is computed for 
each computer cycle m by processing the data from the strapdown gyros. 
The algorithm for computing ^ will be described subsequently. 
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The "order" of the algorithm defined by equations (2) through (4) is determined by the 
number of terms carried in the fj_» f2 expansions.  A fifth order algorithm, for example, 
retains sufficient terms in f^ and £2  such that A(m) contains all ^ term products out to 
fifth order.  Hence, fi would be truncated after the *4 term and f2 would be truncated after 
the $2 term to retain fifth order accuracy in A(m).  The order of accuracy required is 
determined by system accuracy requirements under maximum rate input conditions when | is a 
maximum.  The computation iteration rate is typically selected to assure that ^ remains 
small at maximum rate (e.g., 0.1 radians). This assures that the number of terms required 
for accuracy in the f^, {2  expansions will be reasonable. 

3.1.2 Direction Cosine Updating Algorithm For Navigation Frame Rotations 

Equation (2) is used to update the direction cosine matrix for gyro sensed body frame 
motion.  In order to update the direction cosines for rotation of the navigation coordinate 
frame, the following classical direction cosine matrix chain rule algorithm is used: 

C(n+1) • B(n) C(n) (5) 

where 

B(n) • Direction cosine matrix that transforms vectors from navigation axes at 
computer cycle n to navigation axes at computer cycle (n+1). 

The equation for B(n) parallels equation (3): 

B(n) «I - (ex) + 0.5(8x)2 

with 

(6) 

(ex) 
0 "?,* ev 

»It 0 ~f* -ey üx 0 
(7) 

where 

6x'V8z = Components of Q_- 

6.   = Angle vector with direction and magnitude such that a rotation of the 
navigation frame about Q_  through an angle equal to the magnitude of e 
will rotate the navigation frame from its orientation at computer cycle n 
to its orientation at computer cycle n+1. The 9  vector is computed for 
each computer cycle n by processing the navigation frame rotation rate data 
from the navigation software section (12). 

It is important to note that the n cycle (for navigation frame rotation) and m cycle 
(for body frame rotation) are generally different, n typically being executed at a lower 
iteration rate than m. This is permissable because the navigation frame rotation 
rates are considerably smaller than the body rates, hence, high execution rates are not 
needed to maintain e. small to reduce the order of the iteration algorithm.  The algorithm 
represented by equations (5) and (6) is second order in £.  Generally, first order is of 
sufficient accuracy, and the (ex)2 term ne-id not be carried in the actual software 
implementation. 

3.2 Quaternion updating Algorithms 

3.2.1  Quaternion Transformation Properties 

The updating algorithms for the attitude quaternion can be developed through an 
investigation of its vector transformation properties (5, 9). We first introduce 
nomenclature that is useful for describing quaternion algebraic operations.  Referring to 
equation (1), the quaternion with components a, b, c, d, can be described as: 

= ai + bj + ck + d (8) 
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where 

a.b.c 

i.j.k 

« Components of the "vector" part of the quaternion. 

- Quaternion vector operators analagous to unit vectors along orthogonal 
coordinate axes 

• " Scalar" part of the quaternion. 

We also define rules for quaternion vector operator products ast 

ii - -1 ij -    k ji - -k 
jj - -1 jk -    i kj  - -i 
kk - -1 ki -    j ik « -j 

With the above definitions, the product w of two quaternions (u and v) becomes: 

w - uv -  (ai -f bj + ck + d) <ei + f j + gk + h) 

» aeii • afij * «gik + ahi 
*• beji + bf jj + bgjk + bhj 
+ caki • cfkj + cgkk + chk 
+ dei ••• df j • dgk + dh 

'    {ah + de • bg - cf)i 
+ (bh + df • ce - ag)j 
+ (ch + dg + af - be)k 
+ (dh - ae - b£ - eg) 

or in "Four-vector" matrix formt 

e 
f 
g* 
h' 

" d -c    b a e 
c    d -a b f 
-bad c q 
-a -b -c dw * 

We also define the "complex conjugate" of the general quaternion u in equation (8) ast 

u*  •« -ai - bj - ck + d 

We now define a quaternion operator h(nu for the body angle change £ over computer cycle 
m as: 

(•,/•) «in (*/2) 
h(m) - (*y/#) sin U/2) Mm) (ej/i) sin U/2) 

cos (t/2) 

19) 

where the elements in the above column matrix refer to the i, j, k, and scalar components of 
h.  We also define a general vector v with corcroponents vx, vv, vz, and a corresponding 
quaternion v having the same vector components with a zero scalar component: 

vx 

0 

Using the above definitions and the general rales for quaternion algebra, it is readily 
demonstrated by substitution and trigonometric manipulation that: 

Mm) v h(ra)* «= A' (m) v (10) 

where 

.».--,. iftin •HMHI 
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A'(in) 
fACro)  Ol 
L  °   °J 

vy. 

A(m)  * As defined in (3). 

Equation (10), therefore, is the quaternion form of the vector transformation equation 
that transforms a vector from body coordinates at computer cycle (m+1) to body coordinates 
at computer cycle mt 

v' Aim) v (11) 

where 

v' »v 

v 

v' 

"Three-vector" form of v* and v (i.e., with components vx', vy', ve' and vx, vy« vE) 

The general vector v in body coordinates at computer cycle (m+1). 

The general vector v in body coordinates at computer cycle m. 

3.2.2  Quaternion Updating Algorithm For Body Motion 

Equation (10) with its equation (11) dual can be used to define analagoua vector 
transformation operations between body coordinates and navigation coordinates at computer 
cycle ra as: 

q(m) v' q(m)* 

C(ra) v' 
(12) 

where 

q(m) 

Y.' 

v" 

v* ,v" 

Quaternion relating body axes to navigation axes at computer cycle m. 

The vector v in navigation coordinates. 

The vector v in body coordinates at computer cycle m. 

Quaternion ("Pour vector") form of v', v". 

The q quaternion has four elements (i.e., a, b, c, d) that are updated for body motion 
^ at each computer cycle m.  The updating equation is easily derived by substituting 
equation (10) into (12): 

v"  • q(m) h(m) v h(m)* q(m)* 

Using the definition for the quaternion complex conjugate, it is readily demonstrated 
that: 

h(m)* q(m)*  -  (q(m) h(ra))* 

Thus, 

v"  • q(m) h(m) v (h(m) q(m))* 

But we can also write the direct expression: 

v"       •    q(m+l)   v q(m+l)* 

Therefore,   by direct comparison of the  latter two equations: 

q(m+l)     =    q(m)  h(m) :i3; 

•Mtf^UMW 
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Equation (13) is the quaternion equivalent to direction cosine updating equation (2). 
For computational purposes, h(m) as defined in equations (9) is equivalently: 

h(ra) « 

f3 *x f3 •£ 

f4 

fi  - 
sin (»/2) 

- 0.5(l - (0.5*)2/3l  + (0.5*)4/5l 

(14) 

cos (*/2) - 1 - <0.5*)2/2l  + (0.5*)4/4! 

(0.5*)2 « 0.25 >x2 4- *y2 • *z2) 

The "order" of the equation (13) and (14) updating algorithm depends on the order of • 
terms carried in h which depends on the truncation point used in f3 and ff^.  The rationale 
for selecting the algorithm order and associated algorithm iteration rate is directly 
analagous to selection of the direction cosine updating algorithm order (discussed 
previously). 

3.2.3  Quaternion Updating Algorithm For Navigation Frame Rotation 

Equation (13) with (14) is used to update the quaternion for body frame motion sensed by 
gyros.  In order to update the quaternion for rotation of the navigation coordinate frame, 
an algorithm analagous to equation (5) (for the direction cosino matrix) is used with a 
navigation frame rotation quaternion r: 

q(n+l) r(n) q(n) 

r(n) 

-0.5 8X 
-0.5 6y 

-0.5 81 
1-0.5(9/2)2 

(15) 

(6/2)2 0.25 (8X2 + 9y2 + 8Z2) 

where 

9„,9V,9 y"z Components of 9_ as defined previously for equations 
(6) and (7). 

The development of equation (15) parallels the development of (13). The equation for 
r(n) is a truncated form of the theoretical exact analytical expression (analagous to the 
second order truncated form of equation (14)). The 92 term in equation (15) generally is 
not required for accuracy (due to the smallness of 9_ in typical applications). 

As for the direction cosine updating algorithm for navigation frame motion, the 
equivalent quaternion updating algorithm (equation (15)) updating cycle n need not be 
processed as fast as the body rate cycle ra to maintain equivalent accuracy.  This is due to 
the considerably smaller navigation frame rotation rates compared to body rotation rates. 

3.2.4  Equivalencies Between Direction Cosine And Quaternion Elements 

The analytical equivalency between the elements of the direction cosine matrix and the 
attitude quaternion can be derived by cirect expansion of equations (12).  If we define the 
elements of q as: 
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equation (12) becomes after expansion, factorisation of v*# and neglecting the scalar part 
of the v" and v* quaternion vectors (i.e., carrying only the vector components v" and v* ) 

(d2 + a2 - b2 - c2) 
2(ab + cd) 
2(ac - bd) 

2(ab -cd)        2(ac + bd) 
+ b2 - c2 -a2)     2(bc - ad) 
2(bc • ad)     (d2 + c2 - a2 - b2 

(16! 

Defining C in equation (12) as: 

cll ?12 13 
C21  C22  C23 
c31 c32  c33 

equation (16) when compared with (12) shows that: 

Cll 

Cl2 

Cl3 

C21 

c22 

C23 

C31 

C32 

C33 

d4  + a* . b* - c" 

2(ab - cd) 

2(ac + bd) 

2(ab + cd) 

d2 + b2 - c2 - a: 

2(bc - ad) 

2(ac - bd) 

2{bc + ad) 

d2 + c2 - a2 - b: 

(17) 

The converse of equation (17) is somewhat more complicated.  Using the property 
(from equation (1)) that s 

a2 + b2 + c2 + d2 - 1 

the converse of equation (17) can be shown (11) to be computable from the following sequence 
of operations: 

= C + c. + C- 

P2 

,11 ZJ-22  V33 
*  1 + 2C,, - T 
=  1 + 2C22 " Tr 
=  1 + 2C-J, - T, 

1 + T, 
33 

If Fx - max (r,, r2, r3, r ), then. 
* 0.5 a   = U.b P,l/2 signla  vious) 
= (C2i * Cl2)/4a 12' 
"  <Cl3 + C31>/4a 

C32 - C23)/4a 

If P2 • max (P1# P 
b 
c 
d 
a 

; (P1# P,, P3, P0), then: 
0.5 P2l72 sign(b   ious 
(C32 + C23)/4b 
(C13 - C31)/4b 
(C21 + Cl2)/4b 

(18) 

If P3 - max (Pj, P- P„). then: l*»i, F2, f3, KQi,   tnen: 
=0.5 P3I/2 8ignTcpreviou8) 

d = (C2, - C,2)/4c 
a = (Cl3 + C31)/4e 
b   =  (C32 + C23)/4c 

If P, max   (Pi then: iwx \r]>   c2'   r3' 
'd = 0.5 P4  1/2 sign(dprevious) 
a » (C32 - C23)/4d 
b        = (C,3 - C3,)/4d 
c = (C21 - C12)/4d 

•--'-• 



3.3    The Computation Of •. 

3.3.1  Continous Form 

The A "body attitude change" vector is calculated by processing data from the strapdown I     • 
gyros.  Under situations where the angular rotation rate vector (sensed by the gyros) lies 
along a fixed direction (i.e., is nonrotating in inertial space), the 4 vector is equal to 
the simple integral of the angular rate vector over the time interval from computer cycle m 
to computer cycle (m+1): 

.*m*l 
«   •  /    w dt      for cases when u is nonrotating. (19) »    

where 

Angular rate vector sensed by the strapdown gyros 

Under general motion conditions (when u may be rotating), equation (19) has the more }     • 
complex form (as derived in (10) or alternatively, in Appendix A): 

a(t) » / (w + 1/2 o x w + 1  (1 - .g.-»*" «) a x(a x u))dt 
tro-     "     IF U-sin«) "  " 

(20) 

1   " «tt-t^i) *    • 

It can verified by power series expansion that to first order» 

(1/a2) (1 - J «*",«)  •    1 
(1-coso)        12 

I • 
Hence, a(t) in equation (20), to third order accuracy in a can be approximated by: 

t 
o(t)  -  /  (u + 1/2 a x w + _i_ a x(o x w))dt (21) 

tm 12 ~ 

A second order expression for o(t) can be obtained from (21) by dropping the 1/12 term. I    * 
An even simpler expression for a(tT is obtained by dropping the 1/12 term, and approximating 
the a term in the integral by the direct integral of u* 

£(t)  * /  u dt 
tra 

6£(t)  «= 1/2 /  i x a) dt (22) 

»     • 

t m 

i  - itt-tm+x) + 6fi<t«tm;1) 

»       • 
An interesting characteristic about equation (22) is that its accuracy is in fact 

comparable to that of third order equation (21).  In other words, the simplifying assumption 
of replacing o with ß in the 1/2 a  x u term is in fact equivalent to introducing an error in 
equation (2l) that to third order, equals the 1/12 £ x (« x w) term.  This property can be 
verified by simulation as well as analytical expansion under hypothesized angular motion 
conditions• 

Equation (22) is the equation that is mechanized in software in most modern-day |    # 
strapdown inertial navigation systems to calcuate £.  It can be demonstrated analytically 
and by simulation that for representative vehicle angular motion and vibration, equation 
(22) faithfully calculates £ to accuracy levels that are compatible with high performance 
strapdown inertial navigation system requirements. 

For situations where w is nonrotating, the 6£ term in (22) is zero and <|> equals the 
simple time integral or w over the computer interval m (i.e., the equation Tl9) 
approximation).  For situations where w is rotating (a situation defined analytically as >    • 
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"coning"), the ££ term is nonzero and must be calculated and used as a correction to the u 
integral to properly calculate ±. 

It is important to note that the accuracy by which equation (22) approximates (20) is 
dependent on • being small (e.g., less than 0.1 radian).  In order to protect the accuracy 
of this approximation, the computer iteration rate roust bo high enough that • remains small       **-"  ro- 
under maximum vehicle rotation rate conditions. * 

3.3.2  Recursive Algorithm Form 

The implementation of equation (22) in a digital computer implies that a higher speed 
integration summing operation be performed during each body motion attitude update cycle.  A       -r- 
computational algorithm for the integration function can be derived by first rewriting • 
equation (22) in the equivalent incremental updating formt 

ß(t)  - 1(1)  -f / w dt 
tl 

tA+x • 
6ß(A+l) - mi)  • 1/2 /     S(t) x u dt (23) 

A(*+l) - £(t«tl+1) 

1        -£<*-*«fX>  •Ü<t"tm+1> F • 

with  initial conditions! 

(24) „ , 
6£(t«tm)   » 0 > * 

where 

I        • High speed computer cycle within the m body rate update cycle. 

The integrals in (23) can be replaced by analytical forms that are compatible with gyro      |    • 
input data processing if w is replaced by a generalized time series expansion.  For 
equations (23), it is sufficient to approximate u over the A to A+l time interval as a 
constant plus a linear ramp: 

u   - A + B (t - tji) (25) 

where ft     • 

A, B • Constant vectors. 

Substituting (25) in (23), and recognizing with the equation (25) approximation that: 

^(tjt+i - tjt) = i/2 (MU) + *£U-U) 

i/2 B(ti+1 - tA)2 » i/2 (aeU) - M<*
_1) 

i   • 

where by definition: 

itu)  A   /*»! Wdt *•      9 

yields the desired final form for the _$ updating algorithm: 
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&U+1)      -   ££<*> • I/2 (&U> • 1/6 A£U-i)) * Ae<*> 

A8(l) /       u dt -     T     de 
(26) 

S_U+1) -     B.U)   • A£U) 

i -  I<*-*«•!> + 6£<t-Wi> 

with initial conditions: 

B_(t-tm)  - B.U-0) - 0 

6£(t«tm)  - 6£(W» - 0 

where 

de 

Ae 

• Gyro output pulse vector.  Each component (x,y,z) represents the occurance 
of a rotation through a specified fixed angle increment about the gyro input 
axis. 

* Gyro output pulse vector count from I  to Jt+1. 

The computational algorithm described by equation (26) is used on a recursive basis to 
calculate ± once each m cycle. After ±  it calculated, the B and 6jj functions are reset for 
the next m cycle j> calculation. The iteration rate for Jt within m is maintained at a high 
enough rate to properly account for anticipated dynamic u motion effects. Section 6. 
describes analytical techniques that can be used to assess the adequacy of the I  iteration 
rate under dynamic angular rate conditions. 

3.4    The Computation Of 9 

The 6 vector in equations (6) and (15) is computed as a simple integral of navigation 
frame angular rate over the n cycle iteration periods 

e 

where 

Q 

tn+1 
/   a dt (27) 

Navigation frame rotation rate as calculated in the navigation software 
section (12). 

Standard recursive integration algorithms can be used to calculate 9  in equation (27) 
(e.g., trapezoidal) over the time interval from n to n+1.  The update rate for the 
integration algorithm is selected to be compatible with software accuracy requirements in 
the anticipated dynamic maneuver environment for the user vehicle. 

3.5 Orthogonality And Normalization Algorithms 

Most strapdown attitude computation techniques periodically employ self-consistancy 
correction algorthms as an outer-loop function for accuracy enhancement.  If the basic 
attitude data is computed in the form of a direction cosine matrix, the self-consiatancy 
check is that the rows should be orthogonal to each other and equal to unity in magnitude. 
This condition is based on the fact that the rows of the direction cosine matrix represent 
unit vectors along orthogonal navigation coordinate frame axes as projected in body axes. 
For the quaternion, the self-consistancy check is that the sum of the squares of the 
quaternion elements be unity (this can be verified by operation on equation (1)). 

3.5.1  Direction Cosine Orthogonalization And Normalization 

The test for orthogonality between two direction cosine rows is that the dot product be 
zero.  The error condition, then is: 
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Eu • CiCjT 

where 

ci - itn row of C 

CJ • jth row of c 

T a Transpose 

(28) 

A calculated orhogonality error Ej4 can be corrected by rotating CA and Cj relative to 
each other about an axis perpendicular to both by the error angle EM»  Since it is not 
known whether Cj or Cj is in error, it is assumed that each are equally likely to be 
generating the error, and each is rotated by half of E^j to correct the error.  Hence, the 
orthogonality correction algorithm is: 

Ci(n-H) - C^n) - 1/2 Ejj Cj(n) 

Cj(n+1) - Cj(n) - 1/2 Eij Ci(n) 
(29) 

It is easily verified using (29) that an orthogonality error Ej* originally present in 
Cj(n) and C*(n) is no longer present in CWn+l) and Ci(n+1) after application of equation 
(29).     J J 

The unity condition on C^ (i.e., normality) can be tested by comparing the magnitude 
squared of C^ with unityt 

Eii - I - Ci  C4T ^ii i ui' (30) 

A measured normality error E^ can be corrected witht 

Ci(n+1) « C^n) - 1/2 ELi CL  (n) (31) 

Equations (28) through (31) can be used to measure and correct orthogonality and 
normalisation errors in the direction cosine matrix.  In combined matrix form, the overall 
measurement/correction operation is  sometimes written as: 

Cn+1 " cn+l/2 U - Cn CnT) cn (32) 

3.5.1.1  Rows or Columns - The previous discussion addressed the problem of orthogonal!zing 
and nomalizing the rows of a direction cosine matrix C.  In combined form, equation (32) 
shows that the correction is: 

6C « 1/2 (I - CCT) C (33) 

Equation (33) can be operated upon by premultiplication with C poctmultiplication by CT, 
and combining terms.  The result is: 

6C « 1/2 C (I - CTC) (34) 

The (I - CTC) term in (34) is the error matrix based on testing orthogonality and 
normality of the columns of C.  Thus, if the rows of C are orthonormalized (i.e., 6C is 
nulled), the columns of C will also be implicitly orthonormalized.  The inverse applies if 
the columns are directly orthonormalized with (34).  The question that remains is, which is 
preferred?  The answer is related to the real time computing problem associated with the 
calculation and correction of orthogonalization and normalization errors. 

Ideally, the orthogonalization and normalization operations are performed as an outer 
loop function in a strapdown navigation computer so as not to impact computer throughput 
requirements.  A computational organization that facilities such an approach divides the 
orthonorraalization operations into submodules that are executed on successive passes in the 
outer-loop software path.  A logical division of the orthonormalization operations into 
submodules is as defined by equations (28), (29), (30), and (31). 

This implies that measurement and correction of orthogonalization and normalization 
effects are performed at different times in the computing cycle.  Such an approach is only 
valid if the orthogonality and normalizations errors (i.e., E^j and Ej^) remain reasonably 
stable as a function of time. 

To assess the time stability of the orthogonality/normalization error is to investigate 

•     • 

•     • 
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the rate of change of the bracketed term» in equations (33) and (34).  For convanience, 
these will be defined ass 

ER  «  (I - CCT) 

Ec  i     (I - CTC) 

The time derivative of (35) is: 

ER  » - CCT - CC
T 

Ec  - - C
TC - CTC 

(35) 

(36) 

Expressions for C and CT can be developed by returning to equations (2), (3), (5), and 
(6).  These equations can be rearranged to show that over a given time interval, the change 
in C is given by* 

AC C(A - I) + (B - I)C 

which with (3) and (4) becomes to first order: 

AC  - c(±x) - (ex)c (37) 

Dividing by the time interval for the change in C, recognizing that • and £ are 
approximately integrals of u and Q over the time interval, and letting the time interval go 
to zero in the limit, yields the classical equation for the rate of change of C: 

C(ü)x) - (Qx)C (38) 

•    • 

where 

(ux), (Qx)  » Skew symmetric matrix form of vectors w, £j. 

The transpose of (28)   is : 

CT  - - (ax) CT + CT (QX) (39) 

We now substitute (38) and (39) into (36).  After combining terms and applying equations 
(3b), the final result ist 

"  ER (9_*) " <Q*> E! 

E<j  " Ec (vx)   -  (wx) Ec 

(40) 

Equations (40) show that th-j rate of change of ER is proportional to ER and the 
navigation frame rotation rate Q, whereas the rate of change of EQ  is proportional to Ec and 
the body rotation rate w«  Since w is generally much larger than Q, Ec is generally larger 
than ER. It can be concluded that ER is more stable over time, hence, orthonormalizing the 
direction cosine matrix rows (based on the ER measurement) is the preferred computational 
approach if the real time computing problem is taken into account. 

•    • 

3.5.2  Quaternion Normalization 

The quaternion is normalized by measuring its magnitude squared compared to unity, and 
adjusting each element proportionally to correct the normalization error.  The normalization 
error is given by: 

q q* - 1 (41) 

It is easily verified using the rules for quaternion algebric that E~ equals the sum of 
the squares of the elements of q minus 1.  The correction algorithm is given by: 

9<n+l> q(n) " 1/2 Eq q(n) (42) 

•• • -   iii 
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3.6    Direction Cosine Versus The Quaternion For Body Attitude Referencing 

The tradeoff between direction cosine versus quaternion parameters as the primary 
attitude reference data in strapdown inertial systems has been a popular area of debate 
between strapdown analysts over the past three decades.  In its original form, the tradeoff 
centered on the relative accuracy between the two methods in accounting for body angular 
motion.  These tradeoffs invariably evolved from the differential equation form of the 
direction cosine and quaternion updating equations and investigated the accuracy of 
equivalent algorithms for integrating these equations in a digital computer under hypoth- 
esized body angular motion.  Invariably, the body motion investigated was coning motion at 
various frequencies relative to the computer update frequency.  Por these early studies, the 
tradeoffs generally demonstrated that for comparable integration algorithms, the quaternion 
approach generated solutions that more accurately replicated the true coning motion for 
situations where the coning frequency was within a decade of the computer update frequency. 

As presented in this paper, both the quaternion and direction cosine updating algorithms 
have been based on processing of a body angle motion vector $_ which accounts for all 
dynamiic motion effects including coning-  These updating algorithms (equation (2) and (3) 
for direction cosines and (13) and (14) for the quaternion) represent exact solutions for 
the attitude updating process for a given input angle vector ••  Consequently, the question 
of accuracy for different body motion can no longer be considered a viable tradeoff area. 
The principle tradeoffs that remain between the two approaches are the computer memory and 
throughput requirements associated with each in a strapdown navigation system. 

In order to assess the relative computer memory and throughput requirements for quater- 
nion parameters versus direction cosines, the composite of all computer requirements for 
each must be assessed.  In general, these can be grouped into three major computional areas: 

1. Basic updating algorithm 

2. Normalization and orthogonalization algorithms 

3. Algorithms for conversion to the direction cosine matrix form needed for 
acceleration transformation and Euler angle extraction 

Basic Updating Algorithms r The basic updating algorithm for the quaternion parameters 
is somewhat simpler than for direction cosines as expansion of equations (2) and (3) 
compared with (13) and (14) would reveal.  This results in both a throughput and memory 
advantage for the quaternion approach.  Part of this advantage arises because only four 
quaternion elements have to be updated compared to nine for direction cosines.  The 
advantage is somewhat diminished if it is recognized that only two rows of direction cosines 
(i.e., 6 elements) need actually be updated since the third row can then be easily derived 
from the other two by a cross-product operation (i.e., the third row represents a unit 
vector along the z-axis of the navigation frame as projected in body axes.  The first two 
rows represent unit vectors along x and y navigation frame axes.  The cross-product of unit 
vectors along x and y navigation axes equals the unit vector along the z-navigation axis).       )    # 

Normalization And Orthogonalization Algorithms - The normalization and orthogonalization 
operations associated with direction cosines are given by equation (28) through (31).  The 
quaternion normalization equation is given by equations (41) and (42). 

The normalization equation for the quaternion is generally simpler to implement than the 
orthogonalization and normalization equations for the direction cosines.  If only two rows 
of the direction cosine matrix are updated (as described in the previous paragraph) the |     9 
direction cosine orthogonalization and normalization operations required are half that 
dictated by (28) through (31), but are still more than required by (41) and (42) for the 
quaternion.  Since the orthonormalization operations would in general be iterated at low 
rate, no throughput advantage results for the quaternion.  Some memory savings may be 
realized, however. 

A key factor that must be addressed relative to orthonormalization tradeoffs is whether 
or not orthonormalization is actually needed at all.  Clearly, if the direction cosine or 
quaternion updating algorithms were implemented perfectly, orthonormalization would not be 
required.  It is the author's contention that, in fact, the accuracy requirements for 
strapOown systems dictate that strapdown attitude updating software cannot tolerate any 
errors whatsoever (compared to sensor error effects).  Therefore, if the attitude updating 
software is designed for negligible drift and scale factor error (compared to sensor errors) 
it will also implicity exhibit negligible orthogonalization and/or normalization errors. 

The above argument is valid if the effect of orthonormalization errors in strapdown 
attitude -iata is no more detrimental to system performance than other software attitude 
error effects.  This is in fact the case, as detailed error analyses would reveal.  Since 
modern-day general purpose computers used in today's strapdown inertial navigation systems 
have the capability to implement attitude updating algorithms essentially perfectly within a 
reasonable throughput and memory requirement, it is the author's opinion that 
orthonormalization error correction should not be needed, hence, is not a viable tradeoff 
area relative to the use of quaternion parameters versus direction cosines. 

Algorithms For Conversion To The Direction Cosine Matrix - If the basic calculated 
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attitude data is direction cosines directly, no conversion process is required.   For cases 
where only two rows of direction cosines are updated, the third row must be generated by the 
cross-product between the two rows calculated. For example: 

C31 - c12 c23 - cl3 c22 
C32 * Sl3 C2i " CU C23 (43) ~ ~- 
c33 " cll c22 - cl2 C21 P    • 

For quaternion parameters, equation (17) must be implemented to develop the direction 
cosine matrix, a significantly more complex operation compared with (43) for the two row 
direction cosine approach.  Since direction cosine elements are generally required at high 
rate (for acceleration transformation and Euler angle output extraction) both a throughput 
and memory penalty is accrued for the quaternion approach.  The penalty is compounded if the 
calculated direction cosine outputs are required to greater than single precision accuracy 
(including computational round-off error).  For noise-free acceleration transformation 
operations (such as may be needed to effect an accurate system calibration) double-precision 
accuracy is needed.  The result is that equation (17) for the quaternion versus (43) for 
direction cosines would have to be implemented in double-precision imposing a significant 
penalty for the more complex quaternion conversion process. 

Tradeoff Conclusions - From the above qualitative discussion, it is difficult to draw 
hard conclusions regarding a preference for direction cosines versus quaternion parameters I    • 
for attitude referencing in strapdown inertial systems. Pros and cons exist for each in the 
different tradeoff areas. Quantitative comparisons based on actual software sizing and 
computer loading studies have led to similar inconclusive results. Fortunately, today's 
computer technology is such that the slight advantage one attitude parameter approach may 
have over the other in any particular application is insignificant compared with composite 
total strapdown inertial system throughput and memory software requirements. Hence, 
ultimate selection of the attitude approach can be safely made based on "analyst's choice". 

4.    STRAPDOWN ACCELERATION TRANSFORMATION ALGORITHMS 

The acceleration vector measurement from the accelerometers in a strapdown inertial 
system is transformed from body to navigation axes through a mechanisation of the classical 
vector tranformation equation: 

aN  • C a (44) 

where 

a   • Specific force acceleration measured in body axes by the strapdown 
accelerometers 

I    • 

»N » Specific force acceleration with components evaluated along navigation axes. I     • 

The implementation of equation (44) is accomplished on a repetative basis as a recursive 
algorithm in a digital computer such that its integral properties are preserved at the 
computer cycle times.  In this manner, the velocity which is formed from the integral of 
(44) will be accurate under dynamic conditions in which aN may have erratic high frequency 
components.  The recursive algorithm for (44) must account for the effects of body rotation 
(and secondarily, rotation of the navigation coordinate frame) as well as variations in a 
nvflr the computer iteration period. |    • 

4.1    Acceleration Transformation Algorithm That Accounts For Body Rotation Effects 

To develop an algorithm for equation (44) that preserves its integral properties, we 
begin with its integral over a computer cycle: 

I § 
Wl 

uN  - /   C a dt (45) 
tm 

where 

uN  = Change in the integral of equation (44) (or specific force velocity change)            I     * 
over a computer cycle m '  

The velocity vector in the navigation computer is generated by summing the uN's 
corrected for Coriolis and gravity effects. 

The C matrix in (45) is a continuous function of time in the interval from tm to t^i. 
An equivalent form for C in terms of its value at the computer update time, (m) is: 

C  - C(m) A(t) (46) 

•HMtaaMMM 
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where 

C(m) 

A(t) 

Value of C at tro 

Direction cosine matrix that transform vectors from body axes at time t to the 
body attitude at the start time for the computation interval tm. 

Equation (46) with the definition for A(t) above accounts for the effect of gyro sensed 
body motion over the computer interval-  The next section will discuss the correction used 
to account for the small rotation of the navigation frame over the computer interval. 

Substituting (46) in (45) and expanding: 

^m+1 
uN  - C(m) /   A(t) a dt 

TO 

We now use a first order approximation for A(t) as given by equation (3), with ± treated 
as a function of time in the interval as defined to first order in equation (22)t 

*_(t) - &(t) - /   u dt 
TO 

Thus, 

A(t) - I + (£(t)x) (47) 

and 

tm+l 
uN  . c(m) /    (I + (&(t)x)) a dt 

TU 

Tn+1 Wi 
- C(«) (/   a dt + /    (£(t) x a) dt 

tra fcm 

We now define 

u   • /   a dt 

Hence, 

C(m) (u + Jtm+1(g.(t) x a) dt) (48) 

with 

£(t) « /   u dt 
fcm 

tm+l 
u - /   a dt 

fcm 

An alternative form of (48) can also be derived through direct application of the 
integration by parts rule to the integral term in the equation (48) u• expression.: 

C(m) (u + 1/2 £ x u + 1/2/   (£(t) x a + u(t) x w) dt] (49) 

with 

  UHtl 
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l(t) / u> dt 

u(t) 

u 

-    /        a dt 

"   H(t-tro+1) 

• • 

Equations (48) and (49) are algorithmic forms of equation (44) that can be used to 
calculate uN in the strapdown computer exactly (within the approximation of equation (47)). 
These equations show that the specific force velocity change in navigation coordinates is 
approximately equal to the integrated output from the strapdown accelerometer (u) over the 
computer cycle, times the direction cosine matrix which was "-.lid at the previous computer 
update time.  Correction terms are applied to account for body rotation.  In general, the 
correction terra involves an integral of the interractive effects of angular u and linear a 
motion over the update cycle.  The integral terms have been coined "sculling7 effects. 

The equation (49) form of the uN equation includes a 1/2 _g x u term which can be 
evaluated at t„+1 as the simple cross-product of integrated gyro and accelerometer 
measurements (i.e., without a dynamic integral operation).  Furthermore, it is easily 
demonstrated that for approximately constant angular rates and accelerations over the 
computer cycle, the integral term in (49) is identically zero.  This forms the basis for an 
approximate form of (49) which is valid under benign flight conditions (i.e., using equation 
(49) without including the integral terra).  The 1/2 £ x u term in  (49) is sometimes denoted 
as "rotation compensation". 

4.1.1  Incremental Form of Transformation Operations and Sculling Terms 

In a severe dynamic environment, equations (48) or (49) would be implemented explicitly 
with the integral terms mechanised as a high speed digital algorithmic operation within the 
tro to tm+i update cycle.  The integral terms we are dealing with are from (48) and (49)» 

§1 " Jtm+1U<t) x a) dt 
fcm 

S2 
A 1/2 / tro+tfi(t) x a + u(t) x y)  dt 

(50) 

With the equation (50) definitions, (48) and (49) become: 

,N C(m) (u • SjJ (51) 

C(m) (u + 1/2 j x u + S2) (52) 

Recursive algorithms  for S^ or £>2 can be derived by  first  rewriting   (50)   in the 
equivalent  form: 

.g(t)     =    jU)  +  /       <* dt 

u(t)    -    u(i)  +  /      a dt 

^U+l) =   JXU)  +  /  *+1[£(t)  x a) dt 

A+l 
J2(A+1)  =   J*2<A)  + i/2     / Cfi(fc)  x a + H<t>  x Ü») dt 153) 

jU+D  - ß(t=t A+1) 

uQ+1)   = uU-tj^!) 

Sx = Jl<t=tm+1) 

S2 = ja(t*tm+l) 
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with initial conditions 

l(t-tm)  - 0 

u(t-tm)  - 0 
(54) 

Il<t«tro) » ° 

I2<t-tm) - 0 

where 

I       - High speed computer cycle within m lower speed computation cycle. 

The integrals in (53) can be replaced by analytical forms that are compatible with gyro 
and accelerometer input data processing if u and a are replaced by a generalised time series 
expansion.  For equations (53), it is sufficient to approximate u and a over the * to A+l 
time interval as constants.  Using this approximation in (53) yields the final algorithm 
forms.  For Sj, the companion to equation (51), the algorithm is: 

IiU+1) « Ii(*> + (PU) + 1/2 Mil))  x AvU) 

£(A+1) - £(*) + A9(Jt) 

where 

A8(i) « /   « dt « I   d« 
—      *-l    "      *l    ~~ 

tjui     tjl+i 
Av(A) » /   a dt « I dv 

*Jl        *-l 

and 

Sx - Y!(t-tm+1) (55) 

For equation (51): 

u(A+l) « u(A) + Av(A) 

A 

with initial conditions: 

A 
ß_(t«tm) - £U»0) - 0 

Ll<*"tm) " lit*»0) = 0 

where 

d8, dv, • Gyro and accelerometer output pulse vectors.  Each component (x, y, z) 
represents the occurance of a rotation through a specified angle about the 
gyro input axis (for d9 components) or an acceleration through a specific 
force velocity change along the accelerometer input axis (for dv 
components)• 

A8, Av, « Gyro and accelerometer pulse vector counts from I  to Jt+1. 

For the alternative S2 form, the companion to equation (52), the algorithm is: 

MA 
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jr2(X+l) - v^U)  • 1/2  (£(1)  x AvU) + u(X) x Ae(l)3 

£(1+1) - £<*) • Afl(i) 

uU+l)   * u(A)   +  AvU) 

where 

- .. rfc*+l rtjl+l  Ä A9(t)  « J w dt • 1 d« 

A**! t^l+l ou(i) - /        a dt - I        dv 

and (56) 

§2    "    Ja**"***!) 

For equations   (52): 

£ -Kt-Wi) 
u - utt-t^i) 

with initial conditions: 

£(t-tm)  - ld-0)  » 0 

u(t-tra)  - uU-0)  - 0 

I2(t-tm)  - Y2U-0)  - 0 

Equations (51) with (55), or (52) with (56) are computational algorithms that can be 
used to calculate the navigation frame specific force velocity changes.  Two iteration rates 
are implied: a basic m cycle rate, and a higher speed Jt cycle rate within each m cycle. 

The m cycle rate is selected to be high enough to protect the approximation of 
neglecting the (j}(t)x)2 term in A(t) (contrast equation (47) with the equation (3) exact 
form for A).  This design condition is typically evaluated under maximum expected linear 
acceleration/angular rate envelope conditions for the particular application.  Typically, 
the m cycle rate required for accuracy in the attitude updating algorithms is also 
sufficient for accuracy requirements in the m cycle of the acceleration transformation 
algorithms. 

The I  cycle rate within m is set high enough to properly account for anticipated 
composite dynamic w, a effects.  Section 6. describes analytical techniques that can be used 
to assess the adequacy of the S iteration rate for the sculling computation under dynamic 
input conditions. 

4.1.3  Acceleration Transformation Algorithms Based on Quaternion Attitude Data 

Equations (51) or (52) were based on the use of direction cosine data (C) in the 
strapdown computer.  If the basic attitude data is calculated in the form of a quaternion, 
the equivalent C matrix for transformation can be calculated using equations (17). 
Alternatively, the quaternion data can be applied directly in the implementation of the 
tranformation operation through application of equation (12) to equations (51) and (52): 

uN » q(m) (u + Sx) q(m)* (57) 

or 

uN •  q(m) (u + S2) q(m)* 

, A  , 
S2 • 1/2 £ x u + S2 

(58) 
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where u and the terms in the middle brackets are the quaternion form of the vector of the 
same nonmenclature defined as having the first three terms (i.e., vector components) equal 
to the vector elements, and the fourth scalar term equal to zero.  The S^ and S2 terms are 
calculated as defined by equations (55) and (56). 

4.2 Acceleration Transformation Algorithm Correction For Navigation Frame Rotations 

The acceleration transformation algorithms represented by equation (51), (52) or (57), 
(58) with (55), (56) neglects the effect of navigation frame rotation. In general, this is 
a minor correction term that can be easily accounted for at the n cycle update rate (i.e., 
the computer cycle rate used to update the attitude data for the effect of navigation frame 
rotations).  It can be shown through a development similar to that leading to equation (52), 
that the correction algorithm for local navigation frame motion is given to first order by: 

AuN(n) - - 1/2 8 x v(n) (59) 

where 

AuN(n) 

v(n) 

6 

Correction to the value of uN computed in the m cycle that occurs at the 
current n cycle time. (Note: the m cycle is within the lower speed n cycle time 
frame). 

Summation of u(m) over the n cycle update period. 

Integral of the navigation frame angular rotation rate over the n cycle 
period (as described in Sections 3.1.2 and 3.4) 

5. EULER ANGLE EXTRACTION ALGORITHMS 

If the body attitude relative to navigation axes is defined in terms of three successive 
Euler angle rotations *, 8, $ about axes 2, y, x respectively (from --avigation to body 
axes), it can be readily demonstrated (9) that the relationship between the direction cosine 
elements and Euler angles is given by: 

C* j^  • C-JS0 COS(J» 

cl2    * ~ cos$   8in4»  • sin*   sine  cosij. 

C^3    * sin$   sintj»  + cos$  sine   cos<j> 

c21 * cos9   8^n<f' 

C22 = cos$   cosij.   + sin4i   sine   siity (60) 

c23 * ~ Bi-n4>   c°s4>  + cos$   sine   sir*j. 

c31 " " sin9 

C32 • sinifi cos6 

C33 = cos4> cos8 

For conditions where /e/ * %/2  the inverse of equations (60) can be used to evaluate the 
Euler angles from the direction cosines: 

tan 
-1 C32 

C33 

• - tan 
-1 C31 

/(1-C312) 
(61) 

= tan C21 

Cll 

For situations where /8 / approaches it/2, the $ and 4 equations in (61) become 
indeterminate because the numerator and denominator approach zero simultaneously (see 
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equations (60) )•  Under these conditions, an alternative equation for *, <\>  can be developed 
by first applying trigonometric algebra to equations (61) to obtain: 

c23 * C12 " <8in6 " D »int* • • ) 

Ci3 - c22 " <»in9 " L> cos(4- + *) 
(62) 

c23 " C12 " <-ine + x> »*aU ~ •) 
C13 + c22 * (sin9 + l) «©•(• - •) 

Taking appropriate reciprocals of sine, cosine terms in (62) and applying the inverse 
tangent function» 

For 0 near + */2 

-1 c23 - cl2 <!»-•* tan 

For 9 near -K/2 

-1 C23 + Cl2 

:13 + c22 

(63) 

4» + t «• tan 
:13 * C22 

Equations (63) can be used to obtain expressions for the sum or difference of 4> and • 
under conditions where /9/ is near K/2.  Explicit separate solutions for 4» and * cannot be 
found under the /9/ « K/2 condition because 4» and * both become angle measures about 
parallel axes (about vertical), hence, measure the same angle (i.e., a degree of rotational 
freedom is lost, and only two Euler angles, 9 » ± K/2 and 4> or * define the body to 
navigation frame attitude).  Under /9/ near n/2 conditions, 9 or 4» can be arbitrarily 
selected to satisfy another condition, with the unspecified variable calculated from (63). 
As an example, <t* might be set to a constant at the value it had from equations (61) when the 
/e/ near K/2 region was entered.  This selection avoids jumps in 4- as the solution equation 
is transitioned from the (6l) to the (63) form. 

6.      ALGORITHM PERFORMANCE ASSESSMENT 

The division of the attitude updating and acceleration transformation algorithms into 
high and low speed loops for body motion effects (A and m rates) provides for flexibility in 
selection of the iteration rates to maintain overall algorithm accuracy at system specified 
performance levels.  The Jt and m rate algorithms have been designed such that the high rate 
i loop consists of simple computations that can be iterated at the high rate needed to 
properly account for high frequency vibration effects.  The m rate loop algorithms, on the 
other are more complicated, based on computationally exact solutions. 

Iteration rates tor the m loop are selected to maintain acuutacy under maximum maneuver 
induced motion conditions.  The m loop iteration rate to maintain accuracy under maximum 
maneuver conditions can be easily evaluated analytically, or by simulation, through 
con$>arision of the actual algorithm solution with the Taylor series truncated forms selected 
for system mechanization.  Iteration rates for the I  loop are selected to maintain accuracy 
under anticipated vibratory environmental conditions. 

6.1    Vibration Environment Assessment 

A fundamental calculation that should be performed prior to the analysis of * loop 
algorithm iteration rate requirements is an assessment of the dynamic inputs that must be 
measured by the algorithms.  In essence, this consists of an evaluation of the continuous 
(i.e., infinitely fast iteration rate) form of the algorithms in question under dynamic 
input conditions.  The specific continuous form equations of interest are equations (22) 
for 6J3 and (50) for 8*  or S2» 

6.1.1  &£ Dynamic Environment Assessment (Coning) 

We repeat equations (22) for &£  evaluated at t * t^i: 
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|_(t)  - /  w dt 

(64) 
tjj.4.1 

Ütt-t^i) - 1/2 /   |_(t) x w dt 
tm 

and analyse the solution for 5P(t"tm+1) under general cyclic motion at frequency f in axes x 
and y with angular amplitudes"-^, 6y and relative phase angle 4> such that« 

fwdt - (8. sin(2*ft), 9V •in(2«ft+*), 0)
T 

0 "" * 

2*f (8_ cos(2itft), 9V cos(2*ft+*). 0}T 

(65) 

Substituting (65) in (64), expanding through application of appropriate trigonometric 
identities, and carrying out the indicated integrals analytically between the assigned 
limits, yields zero for the x, y components and the following for the z component of 

6Pas(t-tm+1)  - x 8X 9  (ein*) f «t^ - tm) - Sln 2nf(tro+1 I tro) ) 
2*f 

Defining the m cycle time interval as Tro, the latter exression is equivalently: 

sin 2nfT. 
60. x 9X 9y (sin*) f 1 - 

2*fT„ 
^) (66) 

Hence, even though the u rate is cyclic in two axes as defined by equation (65) in x and 
y, the value for 6ß. is a constant proportional to the sine of the phase angle between the 
x, y angular vibrations.  Under conditions where • • 0 (defined as "rocking" motion), 6ßz i8 
zero.  Under conditions where • • w/2, 6ß  is maximum.  The equation (65) rate when * •= */2 
has been termed "coning motion" due to the characteristic response of the z axis under this 
motion which describes a cone in inertial space. 

Equation (66) can be pat into a "drift rate" form by dividing the ßß2 angle by the time 
interval Tm over which it was evaluated! 

6ß: %  9 x 9y (sin*) f 1 - 
sin 2nfT„ 

2nfT 
(67) 

, Equation (67) is a fundamental equation that can be used to assess the magnitude of 
6ßz that must be accounted for by the 6ß computer algorithm under discrete frequency input 
conditions.  If 6ßz is small relative to system performance requirements, it can be 
neglected, and the I  loop algorithm for 6ß need not be implemented. 

Equation (67) describes how 6ßz can be calculated for a discrete input vibration 
frequency f.  In a more general case, the input rate is composed of a mixture of frequencies 
in x and y at different phase angles * for each.  If the source of the gereralized angular 
vibration is random input noise to the strapdown system, the x, y motion is colored by the 
transmission characteristics of the noise input to the x, y angular response.  A more 
general development of equation (67) that accounts for the latter effects shows that the 
comparable equation for 6ßz is given by: 

sintaT, 
6ßz »  J  u Ax(w) Ay(w) sin(4>Ay(o>) - •Ax(«)) (1 - 

0 •* * tüT, 
) Pnn(J

w) dw (68) 

where 

Ax(u), Ay (to)  • Amplitude of transfer function relating system input vibration noise 
to angular attitude response of sensor assembly about x, y axes. 

*Ax(u)' *Ay^"^  = Pfta8e °f transfer function relating system input vibration noise to 
angular attitude response of sensor assembly about x, y axes. 
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Pnn(ju)  • Power spectral density of input vibration noise. 

u Fourier frequency (rad/sec) 

Notes  Mean squared vibration energy - / Pnn(Jo>) <*<<> 

Equation (68) can be used to assess the extent of random spectrum dynamic angular 
environment to be measured by the öß computational algorithm. The ößs value calculated by 
(68) measures the composite correlated coning drift in the sensor assembly that must be 
calcuated to accurately account for the actual motion present. If the 68E magnitude 
calculated from (68) is small compared to other systems error budget effects, the 
mechanisation of an algorithm to calculate öß is not needed (i.e., can be approximated by 
sero). 

The extension of equations (67) and (68) to y, s or s, x axis angular vibration motion 
should be obvious. 

6.1.2  S^, S2 Dynamic Environment Assessment (Sculling) 

We repeat equations (50) with u and £ from (48) and (49): 

A(t) - /\dt 

u(t) - ffc a dt 'v 
(69) 

Si  - J   (fi(t) x a)dt 

t_Ai 

§2  " l/2  J   (!<*) x * + Stt) x M)dt 

and analyse the Si, S2 solutions under general cycle motion at frequency f in axes x, y 
with angular amplitude 9X about axis x and acceleration amplitude Dy along axis y at 
relative phase $ such that: 

J* u dt  - (0. sin(2Rft), 0, 0)T ' 0 — 

u    -  (2xf öx cos(2«ft), 0, 0)T (70) 

a   «  (0, Dy sin(2nft+*), 0)T 

Substituting (70) in (69), expanding through application of appropriate trigonometric 
identities, and carrying out the indicated integrals analytically between the assigned 
limits, yields zero for the x, y components and the following for the z component of S^ 
and S2* 

S2z    - 1/2 Tm 9X Dy (cos$) (1 - B"*" m ) (71) 
'•n ET. 

slz " lf2   (1 x H>z + s2z (72) 

where 

(&  x ü^z * z ~  component of | x u evalulated at t * tm+^. 

Hence, even though the u and a inputs are cyclic in two axes as defined in equations 
(70), the value for S2Z is a constant proportional to the cosine of the phase angle between 
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the x angular vibration and y linear acceleration vibration.  Under conditions where *-it/2, 
S2E is zero.   Under conditions where •« 0, s2z   is a maximum.  Equation (70) motion when 
• = 0 has been termed "sculling motion" due to the analogy with the characteristic angular 
movement and acceleration forces imparted to an oar used to propel a boat from the stern. 
Note also that Sllt is equal to S2x plus the correction term (rotation compensation) measured 
as the cross-product of the simple angular rate and linear acceleration integrals taken over 
the m computation cycle.  (See equations (48) and (49) for definitions). 

Equation (71) for S2r can be put into an "acceleration bias" form by dividing the 
velocity change correction S2z  by the time interval Tra over which it was evaluated! 

S2t -  1/2 ex Dy (CO.*) (1 - 
ai" ***** ) (73) 

Equation (73)m(with (72) for Sl2) is a fundamental equation that can be used to assess 
the magnitude of S2, that must be accounted for by the S% or S2 computer algorithm under 
discrete frequency input conditions. If S2B is small relative to system performance require- 
ments, it can be neglected, and the A loop algorithm for calculating SL or S2 need not be 
implemented.  Under the latter conditions, Sj_ would be set equal to the cross-product term 
in (72) which makes the basic equation (51) and (52) transformation algorithms identical. 

t    • 
Equation (73) describes how S2E can be calculated with a discrete input vibration 

frequency f for angular motion about x and linear notion along y.  In a more general case, 
the input rates and accelerations are composed of mixtures of angular and linear motion 
about x and y at different frequencies and relative phase angles. If the source of the 
generalised vibration motion is random input noise to the strapdown system, the x, y angular 
and linear motion is colored by the transmission characteristics of the noise input to the 
x, y angular and linear response.  A more general development of equation (73) that accounts 
for the latter effects show that the comparable equation for S2z  is given by: I    • 

m 

S2s " /      (Ay(w) Bx(w) cos(4Ay(<") - •Bx<w>)   " Ax<w> By<w> costt^t«) 

sinu.Tm <7«> 
" •By(u»))      (1 -  )  Pnn(jw) dw £~-       -- 

WT_. • • 

where 

Ax(w),   Ay(W), 
•AX(U)' *Ay(w)'       *    *• d«fin«d previously. 
pnn(*>>' w 

•    • 

Bx(u), By(u),    « x, y, amplitude/phase linear acceleration response of the sensor 
• BX(W), *By(

w)      assembly to the input vibration. 

Equation (74) can be used to assess the extent of random spectrum dynamic motion 
environment to be measured by the S±  or S2 computational algorithms.  The S2z value •     • 
calculated by (74) measures the composite correlated sculling acceleration bias in the 
sensor assembly that must be calculated to accurately account for the actual motion present. 
If the S2x magnitude calculated from (74) is small compared to other system error budget 
effects, the mechanization of an algorithm to calculate S^ or S2 in the high rate A loop is 
not needed (i.e., S2 can be approximated by zero in (52) or S^ can be set equal to the 
cross-product term in (52)). 

The extension of equations (73) and (74) for y, z or z, x axis vibration motion should      £ • 
be obvious. 

6.2    Algorithm Accuracy Assessment 

The accuracy of the computation algorithm for 6ß_ or Sj_, S2 can be assessed by comparing 
their solutions to the comparable continuous form solutions developed in Section 6.1 under      % • 
identical input conditions. 

6.2.1  6ß_ Coning Algorithm Error Assessment 

The computational algorithm for calculating 6g_ in a strapdown system is given by 
equation (26).  A measure of the accuracy of the equation (26) algorithm can be obtained by     _•    • 
analytically calculating the solution generated from (26) under assumed cyclic motion and 

m»^mää*+mm 
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comparing this result to the equivalent solution obtained from the idealise 1 continuous 
algorithm described in Section 6.1. For a discrete frequency vibration in^ut, the equation 
(65) motion can be used analytically in equation (26) to calculate the algorithm solution 
for 6ß at t - tg+i (i.e., analagous to the equation (67) solution for the continuous 
(infinitely fast) algorithm. After much algebraic manipulation, it can be demonstrated that 
the algorithm solution for 6£ as calculated from equation (26) under equation (65) input 
motion, has sero x, y components, with a s component rate given by: 

6ß BALQ 1» 0 8  (,in •} ((1 + 1/3 (1 - cos 2*fTji)) x y 
sin 2«fTji 

sin 2«fTB 

2nfT, ID 

(75) 

where 

*P*ALG * Recursive algorithm solution for 6ßc rate 

Tji   - Time interval for high speed A computer iteration cycle 

Equation (75) for the 6£ discrete recursive algorithm solution of equation (26) is 
directly analagous to the equation (67) solution of the equation (22) continuous 6ß 
algorithm. It is easily verified that (75) reduces to (67) as Tj approaches sero. 

The error in the 6B_ algorithm is measured by the difference between (67) and (75); i.e.t 

• Uiz)  » * f 6X 0V (sin *)((1 • 1/3 (1 - cos 2*fTA)) JÜJ? 
2*fT* - l)       (76) 

MTi 

where 

e(6ßs) - Error rate in the equation (26) algorithm. 

Equation (76) can be used to assess the error in the equation (26) 6B_ algorithm caused 
by finite iteration rate (i.e., the effect of Tj) under discrete frequency input conditions. 

Under random vibration input conditions, the equation (26) algorithm can be analysed to 
obtain the more general solution for the ößj^LG r»te: 

6PsALG - J « Ax(u) Ay(w) sin(tAy(w) - •Ax(w)) ((1 

sin wTi       sin wT_. 
+ 1/3   (1  - cosuTjt)       ,. -        m    m)  Pnn(Jw)  dü) 

(77) 

«Tji wT„ 

The 6ß algorithm error under random inputs is the difference between the equation (77) 
discrete solution and the equivalent continuous equation (68) solution form.  The result is: 

'*6M  " C w Ax{w) Ay(w)  sin(*Ay<w)  " *AX
(<ü)

)   Ul 

sin wTt 
+   1/3    (1   -   COBWTjt)    Z   -   l)   Pnn(Ju)   du 

u>Ti 

(78) 

Equations (76) and (78) can be used to assess the error in the equation (26) 6ß 
algorithm caused by finite iteration rate under discrete or random vibration input 
conditions.  The extension of equations (76) and (78) to y, z or z, x axis effects should be 
obvious. 

•    • 

6.2.2  S Sculling Algorithm Error Assessment 

The computational algorithm for calculating S±  or £2 is given by equations (55) and 
(56). A measure of the accuracy 0/ these algorithms can be obtained by analytically 

•    • 

*• -••'•- iif -' •• -"- 
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calculating the solution generated from (55) or (56) under assumed cyclic motion and 
comparing the result to the equivalent solution obtained from the continuous algorithm as 
described in Section 6.1.2.  For a discrete frequency vibration input, the equation (70) 
motion can be used analytically in equation (55) and (56) to calculate the algorithm 
solution for 8,, S, (i«««, analogous to the equation (72) and (73) solution for the 
continuous (infinitely fast) algorithm).  After much algabraic manipulation, it can be 
demonstrated that the algorithm solution for S±  and §2 as calculated from equations (55) and 
(56) under equation (70) input motion, has zero x, y components, with a z component rate 
given by: 

. , sin 2*fT|   sin 2*fT_ 
S2«ALG - I/2 «x Dy (cOB*> (  "  -) <79> 

' 2*fT,      2*fTm 

S1ZALG " !/2 <& *  ü>z * S2zALG <80> 

where 

slzALG' s2zALG * Recursive algorithm solutions for Slz, S2x. 

Equations (79) and (80) for the S,. S2 discrete recursive algorithm solution is directly 
analogous to the equations (73) and 7*2)~solution to the continuous Sj_# S2 algorithm. It is 
easily verified that (79) and (80) reduce to (73) and (72) as Tj approach's» zero. 

The error in the Si, s2 algorithm is measured by the difference between (79), (80) and 
(73), (72) ; i.e., 

e(Sl8) - e(S2.)  - 1/2 ex D (cos*) (1 -        * ) (81) 
2**Tt 

where 

e(slz:), e(s2z)     » Error rate in the equation (55) and (56) algorithm solutions. 

Equation (81) can be used to assess the error in the equation (55) and (56) algorithms 
caused by finite iteration rate (i.e., the effect of TA) under discrete frequency input 
conditions. 

Under random vibration input conditions, the equation (55) and (56) algorithms can be 
analysed to obtain the more general solution for Slz, S2Z: 

82z " /   (Ay(«) Bx^w> cos (•Ay<w> - •Bx(u))) 

- AX(ü)) By(u) cos(*Ax(w) - •By(">))) (?•• " "T* (82) 
wTjj 

" -8in "T">) Pnn(j«) d« 

Slz  -  1/2 (£ x u)z + S2z 

The S^z, S2z algorithm error under vibration is the difference between the equation (82) 
discrete solutions and the equivalent continuous equation (74) with (72) forms: 

e(siz)  - e(s2z) »    /    (AyU) Bx(u) cosUAy(u) - +Bx(u>)) 

- Ax(w)  By(u>)   COs(*Ax(o))   -  •ßy(w)))   (   1 (83) 

sin wTj. 

aiTjt 
•)   PnnO> <*« 

Equation (82) and (83) can be used to assess the error in the equation (55) and (56) 
algorithms caused by finite iteration rate under discrete or random vibration input 
conditions.  The extension of equation (83) to y, z or z, x axis effects should be obvious. 
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7.      CONCLUDING REMARKS 

The 8trapdown computational algorithms and associated, design considerations presented in 
this paper are representative of the algorithms being used in most modern-day strapdown 
inertial navigation systems. The unique characteristic of the attitude and transformation 
algorithms presented is the separation of each into a complex low speed and simple high 
speed computation section.  Due to the simplicity of the high speed calculations they can be       •    • 
executed at the high rates necessary to properly account for high frequeoy but generally low 
amplitude vibratory effects without posing an insurmountable throughput burden on the 
computer.  The lower speed calculations which contain the bulk of the computational 
equations can then be executed at a fairly modest update rate selected to properly account 
for lower frequency but larger magnitude maneuver induced motion effects.  Perhaps the 
principal advantage of the algorithm forms presented, is their ability to be analyzed for 
accuracy using straight-forward analytical techniques.  This allows the algorithms to be 
easily tailored and evaluated for given applications as a function of anticipated dynamic 9    4 
environments and user accuracy requirements. 

•    1 

P « 
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APPENDIX A 

DERIVATION OF £ EQUATION 

A differential equation for the rate of change of the §_  vector can be derived from the 
equivalent quaternion rate equation.  The quaternion h in equations (13) and (14) is the 
quaternion equivalent to the $_ rotation angle vector.  A differential equation for h can be 
derived from the incremental equivalent to (13) that describes how h changes over a short 
time period At (from tjj. to t^+^) within the larger time interval from tm to t^^: 

hU+1)  • h(X) p(* ) (Al) 

where 
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93 ax 
93 «y 
93 az 

94 

93 
sin (a/2) 

(A2) 

g4 = cos (a/'l) 

a »  Rotation angle vector associated with the small rotation 
of the body over the short computer time interval from Jt to 
A+I. within the larger interval from m to m+1. 

aX'°v'az*a = Components and magnitude of a. 

Equation (7il) is equivalently: 

h(>+l) - h(*)   ,,..  p(*)-l 
 = n(*)   

At At 
(A3) 

&t  - tA+1 - tA 

The basic definition of angular rate states that for small At, 

a  *  u At 

a  -  a) At 

Hence, for small At, o is small, and therefore, from (A2), 

g3 " 1/2 

a2      u2At2 
g4 - 1 -   - 1 -   

2        2 

(A4) 

(A5) 

Using mixed vector/scalar notation, substitution of (A4) and (A5) in (A2) yields: 

p r-.    g3 o + g4 

- 1/2 to At + 1 - 
o>2At2 

Substituting in (A3) obtains: 

h(*+l ) - hU) 
• hfJU f 1/2 w + 1/2 w2At_) 

At 

In the limit as At + 0, the latter reduce to the derivative form: 

h = 1/2 h « (A6) 

We now return to (14) and express h as a function of £ in mixed vector/sealer notation: 

fa   • f3 £ + f4 

sin U/2) 
*3 (A7) 

f4  - cos U/2) 

Substituting in (A6), 

h = 1/2 f3 * u + 1/2 f4 w (A8) 

It is readily demonstrated by algebraic expansion and using the rules of quaternion 
algebra that £ w in (A8) is equivalently: 
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^ u  * .i x H ~ .i * £> 

Differentiation of (A7) shows that: 

h  » f3 ±  + f3 ±  + f4 

cos A/2 .       sin A/2 . 
f3 « 1/2  !l_ * - —_!_ * 

* _L  (1/2 f4 - f3) 

f4  * - 1/2 (sin*/2) i - - 1/2 # i £3 

Hence, with (A8), 

h   » f3 i + JL (1/2 f4 - fa) i - 1/2  • • f3 

* 1/2 f3 (± x jg) - 1/2 f3 ± * £ + 1/2 f4 u) 

Dividing by f3 and solving for 4: 

£   = 1/2 —Z_ 10 + 1/2 (£ x u) 

*3 

(1/2 
. f4 - I) ± + 1/2 A A - 1/2 4 • 

(A9) 

Equation (A9) is now separated into its vector and scalar components: 

1   = 1/2 _!_ u + 1/2 (A x u)   - —   (1/2 _L - 1) ± 
f3 *      f3 

1/2 A i = 1/2 £ • Ä 

(A10) 

The scalar equation is equivalently: 

A  _  1 
  "  = A ' <Ü 
A       A^ 

Substituting in the vector part of (A10) yields: 

i = 1/2 _fl_ u + 1/2 l±  X w) - —-- (1/2 —i- - 1) (l * uj) i 
f3 *2        f3 

Using the vector triple product rule, it is easily demonstrated that: 

(i ' w) 1 • i x (4 x U)) + <|>2 u 

Substituting, 

i = 1/2 _i_ w + 1/2 _$_ x u - (1/2 „_1„. - 1) w +   (1 - —i_) &  X (1 x u) 
£3 f3 *2      2f3 

Combining terms: 

± -  w + 1/2 £ x w +   (1 - —1—) 4 x (4 x w) 
A2       2f3 

Using the definition for f4 and f3 from (A7), it can be shown by trigonometric 
manipulation that the bracketed coefficient in the latter expression is equivalently: 

1 - _ U 
2f- 

1      A sin * 
  \\~  
>2     2(1-COSA) 
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Substitution yields the final expression for ^: 

•, • « + 1/2 %_  x u» +   [1 -  ) • x (• x u>) 
$2        2(1-C08$) 

(All) 

Equation (20) in the main text is the integral from of (All) over a computer cycle (from tm 


