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\   LNTRODUCTION M^ 

~~^) Owfpnrpose in writing this paper is to review some of-owt-recent work in the calculation 

of optimal meshes for the solution of parabolic and elliptic partial differential equations (PDE). 
-rt *'c'* '"Y   Wflrst explain our strategies for the adaptive placement of mesh points. In addition, w^ make 

some speculation as to promising avenues for future research in mesh adaptation. Finally, iW ^«y 

discuss examples of the application of adaptive gridding to problems of heat and mass transfer. 

"7,17   We draw these examples from our work in combustion modeling. 
In obtaining numerical solutions to PDEs, the spatial derivatives are often approximated 

by discrete representations on a mesh network. The accuracy of any numerical solution depends 
in an important way on the relationship of the location of the mesh iwints to changes in the 
dependent variables. Our objective is to investigate finite difference methods in which the mesh 

networks adapt themselves dynamically to obtain accurate solutions. Such methods represent 

an important advance in overcoming a major shortcoming of traditional fixed mesh methods 
which are often unable to resolve accurately steep fronts or sharp peaks.  C~ - 

Our research in adaptive meshing follows two avenues. One is to employ a fixed number of 

mesh points and to move their location by coordinate transformations. The other is to add or 

subtract mesh points as needed. In either case the positioning of the mesh depends on one or 
more important characteristic of the solution. We attempt to equidistribute this characteristic 

between each mesh interval. For example, equidist ribution of the arc-length of the solution has 

the effect of concentrating mesh points in steep gradients Taking the coordinate transformation 
approach, the original equations are recast so that the new independent variable becomes the 

arc-length. Then, in addition to solving the original equations in the transformed variables, a set 

of equations is also solved to describe the movement of the original physical coordinates relative 
to the new t ransformed variables. When adding and subtracting grid points (the variable node 

approach) we specify the maximum value of the equidistributed characteristic (say arc-length) 
allowed over any mesh interval, and continue to add points until this criterion is satisfied. The 
latter approach is closer to that used in ODE software where as many timesteps as needed are 
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taken to bring the local truncation error to within prespecifled tolerances. However, while this 

approach may be needed to insure high accuracy for PDEs, it can suffer from limitations of 

computer storage and time. While we are developing two approaches for adaptive meshing, we 

believe that the research will ultimately lead to a combination of the methods. 

Our variable node method stems largely from our development of methods to solve sys- 

tems of stiff and unstable nonlinear boundary value problems. Such systems occur frequently 

in modeling energy systems. Our applications have been principally in combustion chemistry, 

particularly in the investigation of complex chemical kinetics in premised flames. Our coor- 

dinate transformation work was initially used to track moving flame fronts, and more recently 

to investigate droplet combustion. In all our work we are concerned with solving simultaneously 

a relatively large number of PDEs; in the case of the premised flames, 30 coupled PDEs are 

typical. 

Our work draws on earlier work in both the aeronautical and the Ixmndary value problem 

literature. From the former we take the ideas of generalized non-orthogonal coordinate trans- 

formations and boundary-fitted coordinate systems.12 Prom the latter we take the ideas of 

equidistribution of weight functions and error control strategies. Generally speaking, the boun- 

dary value problem literature has more theory on which to base methods, but the problems 

are simpler inasmuch as they are one-dimensional. 

BASIC SYSTEM OF EQUATIONS 

The solutions to the physical problems which are presented in this paper cover a range of 

flow and chemical systems. However, in all of the problems there is the common simplification 

of uncoupling the fluid mechanics from the heat and mass transfer. For some systems, such 

as steady flame propagation, the simplification is natural to the problem, while in others, it is 

more artificial. In either case, it does allow for a clear understanding of the problems caused 

in grid adaptation, when heat and mass transfer as well as chemical reactions are considered. 

The system of reaction-diffusion equations which describe the problems in this paper are: 

liPZm) + A(puZm) + *.(pvZm). ^.Mfe, + *£!>„*£) + ,m        (l) 

where Z is the dependent variable vector (temperature, and species mass fractions), and wm is 

the vector representing the the chemical source terms: 

Z = (T,YuY2 YK)* (2) 

W = (WT,WI,CJ2,--.WK)* (3) 

In these equations the following notation has been employed: p • mass density, u - velocity 

in z-directlon, v - velocity in the y-direction and Dm - the diffusive transport coefficient for 
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the mth equation. The details of the source terms and velocity fields are described when the 

physical examples and results are presented later in the paper. 

For some of the results presented, the above equation set is transformed into generalized 

non-orthogonal coordinates {r,f and ?/): 

where, 

«-^ 

& =  Zj-Ut + PUt, + pVty) 

F=?f(m + PUVx + pvT,t) 

■Ci_Dm(dZm      ,dZm\ 

J 

The transformation metrics, or areas and volumes, are given by: 

/- 1  
*(* - Wt 

tx = -fyn, t, = -Jzv<       C» ■■-««<« —1*1« 
rix — - JVi, Vy = Jx*, Tit = -XtVx — Vtly 

We readily see that the resulting equations are more complex; however, with some addi- 

tional programming a much more valuable tool is obtained. In the above form it is quite easy 

to implement body-oriented coordinates for arbitrary-shaped bodies, as is often done for flow 

over airfoils. However, the major advantage of these transformations in our work is the ease 

with which coordinate adaptation can be utilized. 

Even though the governing equations are somewhat simplified compared with the Navier- 

Stokes equations, they still encompass a large selection of important problems. Moreover, they 

include a rich and disparate collection of physical time scales. As a result, they are likely 

to have solutions with regions which need adaptive gridding to be resolved accurately. For 

example, the effects of the following time scales will be illustrated in the results presented 

Aft/ = L/U, Velocity convection scale 

Atv m L2/^, Viscous diffusion scale 

Ata = La/o, Heat conduction scale 

AtDm = L2/Dm, Mass diffusion scale 
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At um ~ Reaction rate scale 

As these scales become disparate (depending on the particular problem), steep gradients in 

space and time develop. Without adaptation, the numerical integration method; can be pushed 

to dramatic failure. It is our purpose to present methods which resolve these scales in space 

and time in an efficient and accurate manner. 

ADAPTIVE GRID METHODS 

We consider both steady and transient problems. The steady problems are elliptic boun- 

dary value problems, while the transient problems are parabolic initial-boundary value problems. 

At each time step of a transient problem, however, an elliptic boundary value problem must be 

solved. Therefore, our meshing strategies share the same essential features regardless if the ap- 

plication is steady or time-dependent. 

During the last fifteen years many varied methods have been developed to attempt to 

choose optimal grid spacings on which to solve two-point boundary value problems. When these 

problems are solved using an initial value method (such as shooting), the adaptive meshing 

is done automatically and accurately. Variable-step initial value problem software is used 

to adjust the step size as the integration proceeds in order to control the local truncation 

error. Unfortunately, many problems in combustion are unstable to initial value methods,3 

and therefore global solution methods must be used. 

Kautsky and Nichols4 point out that many of the adaptive mesh selection procedures used 

for global solution methods can be interpreted as equidistributing a positive weight function. 

On the interval (0,L], one attempts to determine a mesh M 

M = (0 = i, < 12 < ... < TM = ^) 

such that the weight function achieves a given constant value over each subinterval. Among 

the various approaches developed. White5 has discussed equidistribution of the arc-length of 

the solution; Pereyra and Sewell8 have equidistributed the local truncation error and Smooke3 

has chosen to equidistribute both the change in the discrete solution and its gradient. Other 

methods for choosing appropriate meshes for two-point boundary value problems have been 

investigated, for example, by Russell and Christiansen,7 Ablow and Schecter,8 de Rivas,9 and 

Denny and Landis.10 

Positive Weight Function Concept 

Following the notation of Kautsky and Nichols, we say that the mesh M is equidistributed 

on [0,L] with respect to the non-negative weight function / and the constant W if 

r fdx = W,    ; = l,2,...,Af-l (5) 
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Similarly X is called sub-equidistributing on [0,L] with respect to /and W if 

/ 
f dx^W,    j = l,2,...,M-l (6) 

•i 

Strategies for determining an optimal mesh for two-point boundary value problems can 

be implemented either implicitly or explicitly. In the implicit approach, the weight function 

depends directly upon the solution. As a result, the original boundary value problem is 

converted into an augmented system in which the dependent variables and the mesh are 

computed simultaneously. In the explicit approach, the weight function does not depend upon 

the current solution. Instead, it depends upon a previously calculated solution. For both 

linear and nonlinear boundary value problems, the implicit approach requires that one solve a 

nonlinear two-point boundary value problem. Thus implicit equidistribution techniques do not 

preserve the linear-nonlinear character of the original problem. Moreover, even for nonlinear 

problems the augmented system is usually more difficult to solve than the original problem. 

Explicit equidistribution techniques, on the other hand, preserve the linear-nonlinear character 

of the original two-point boundary value problem. 

Our experience has led us to consider explicit equidistribution methods. We have found 

that as the number of dependent variables increases, or the problem becomes more nonlinear, 

the selection of a mesh by equidistributing an implicit weight function is less practical than by 

equidistributing a weight function based on the solution from a previous grid. The approach we 

have chosen to determine an adaptive grid for premixed flame problems is similar to the method 

used by Pearson11 in solving scalar boundary layer problems. We attempt to equidistribute the 

difference in the components of the discrete solution and the difference in the gradient of the 

components of the discrete solution between adjacent mesh points. That is we seek to obtain 

a mesh M such that 

Jtj   Ux* - V"**^   /  « = i,2)...,^-f-r *' 

and 

/ —rrfa;<7(   max |-T"M I    '        ' '     ' (g) 

where Z is the dependent variable vector, 6 and 7 are small numbers less than one and the 

values of max|Z,| and ma,x\dZi/dx\ are obtained from a converged numerical solution on a 

previously determined mesh. 

A potential disadvantage of the method described so far is that the mesh may not be 

smoothly varying. For example, the ratio of consecutive mesh intervals may differ by several 

orders of magnitude. This can adversly affect the accuracy of the solution as well as the 

convergence properties of the method. As a result, we impose the added constraint that the 

mesh be locally bounded, i.e., the ratio of adjacent mesh intervals must be bounded above and 
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-1;<-^<C,     ; = 2)3)...IAf (9) 

where hj = Xj— Xj—i and C is a constant less than one. Such a "buffering" of the mesh tends 

to smooth out rapid changes in the si7.e of the mesh intervals. 

We note here an analogy to the approach followed for time step selection in predictor- 

corrector ODE software. In these codes some estimate of the local truncation error is made. 

One way to measure the error is by comparing the difference between a certain order predictor 

and the same order corrector. Their difference is related to the local truncation error incurred 

in taking a time step. The time step is then adjusted such that this error is below a prespecifled 

level. Possible ways to measure truncation error are to use different differencing formulas, or 

to use the same difference formulas but on different meshes. 

Certainly the equidistribution and cont.ol of local truncation error is the most conservative 

and accurate approach to mesh adaptation. However, in many cases it may be more costly 

than necessary. For instance, if only integrated properties of the solution are of interest (e.g. 

flame speed or surface drag) then perhaps less attention need be paid to truncation error 

everywhere in the flow field. For problems with strong nonlinearities it may even be preferable 

to equidistribute something related to the local truncation error rather than the error itself. 

In particular, we have seen that weight functions based on higher derivatives (to more closely 

match truncation error) have led to instabilities. Moreover, if the differencing scheme is first 

order then the local truncation error is proportional to second derivatives of the solution. Thus, 

the weight function in Eq. (8) is proportional to the local truncation error. As a result we 

believe that weight functions similar to those in Eqs. (7), (8) and (10), are perfectly adäquate 

for many problems. 

Steady-State Problems, Variable Node Method 

After discretization, the governing equations form a nonlinear system of algebraic equa- 

. tions. We solve this system by a damped modified Newton method.12 First the equations 

are solved on a uniformly spaced coarse mesh (3-5 subintervals). The values of max|Z,| and 

max|rfZ,/rfx| are then evaluated. We next test the inequalities in Eq. (7) and Eq. (8) for each 

of the A' -|- 1 components of Z at each node of the coarse mesh. If either of the inequalities is 

not satisfied, a grid poini is inserted at the midpoint of the interval in question. Once a new 

mesh has been obtained, we check to see whether it is locally bounded. If it is not, a grid point 

is inserted at the midpoint of the intervals in which the inequality in Eq. (9) is not satisfied. 

The previously converged numerical solution is interpolated onto this new mesh and the result 

serves as an initial solution estimate for Newton's method on this finer grid. The governing 

equations are solved on the new mesh and the process continues until the inequalities in Eqs. 
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(7), (8) and (9) are satisfied. Note that if we had refined the mesh by using only the inequality 

in Eq. (7), we would resolve high gradient regions but would have difficulty resolving regions 

of high curvature (for example the loral maxima of sharp peaks in the solution). 

Most of the ideas discussed above can be extended to the solution of multi-dimensional 

elliptic boundary value problems. We are just beginning to explore methods to obtain optimal 

grids for two-dimensional nonlinear elliptic boundary value problems. In our initial attempts 

we hare made the logical extension of the one-dimensional ideas. That is, we start on a coarse 

two-dimensional grid, and add grid pionts according to Eqs. (7), (8) and (9) in both the x and y 

directions. Ir, two-dimensions the Jacobian of the system is block penta-diagonal and we solve 

the system by block line SOR iteration. If front? in the solution align reasonably well with one 

of the coordinates then the method is efficient. Of course if a front crosses the mesh on a bias 

then a fine mesh results everywhere and the direct extension of the one-dimensional method is 

not really useful. In these cases either a coordinate rotation or a local mesh refinement13 must 

be employed. 

Time-Dependent Problems 

The ideas used in solving one-dimensional steady-state problems are readily adapted for 

time-dependent mixed initial-boundary value problems. In particular, by considering the solu- 

tion of a time dependent problem as the solution of an inhomogeneous two-point boundary 

value problem at each time level, the methods developed in the realm of steady-state problems 

can be applied in a time-dependent setting. Both the implicit and the explicit equidistribu- 

tion techniques have natural time-dependent analogues. In the case of the implicit methods, 

the original equations are recast so that in addition to solving the original equations in the 

transformed variable» a set of equations is also solved to describe the movement of the original 

physical coordinates relative to the new transformed variables. In general, one can expect the 

difficulty with specifying an initial solution estimate for the dependent solution components 

and the grid points to be less severe in the time-dependent setting than in the steady-state 

one since the previous time level solution is often an excellent starting estimate. The explicit 

equidistribution techniques can be used in a time-dependent setting by explicitly moving the 

grid based upon solutions at previous time levels. 

Coordinate Transformation Methods 

Our coordinate transformation technique has been tested extensively by Dwyer, et. al. 

for one-dimensional problems, and more recently, it has also performed quite well in two 

dimensions.14 We note, however, that so far we have not implemented a general two-dimensional 

adaptation procedure. Instead, we take advantage of some a priori physical knowledge of the 
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solution to extend the one-dimensional method. Although the method is not yet fully adaptive 

in two-dimensions, we believe that the solution to many important problems can benefit from 

its use. Moreover, we believe that generalization of the method will follow from current work. 
The solution technique in the two-dimensional problems is a non-iterative block-tridiagonal 

ADI method15'ls in which the Jacobians are evaluated analytically. 
In this method the lines of constant ?? are fixed (forming arcs in space), and the adaptation 

is done along these arcs. In effect, the method is quasi-one-dimensional, and it relies on the 

modeler having sufficient qualitative knowledge about the solution to be able to fix a set of 

coordinates which are roughly normal to any steep fronts in the solution. We typically take 

the weight function (or transformation) for adaptation along the fixed arcs to be given by: 

ttx,y,t) = 
!o{\+b\dT/dS\)dS 

!om"(l + h\dT/dS\)dS 
(10) 

where S is the length along the fixed arc, and 6 is an adjustable constant used for "optimization" 
of the grid distribution. For the case t = 0 a uniform distribution of points along the fixed arc 

results. For large values of 6, the mesh intervals are determined so that the same change in the 
dependent variable T occurs between mesh points. A typical value of ö is 1/3. The coefficient 
b can be thought of in terms of the "buffering" concept introduced earlier. That is, 6 is chosen 
so that not all the mesh points are concentrated in the front region. Some are in regions of 

relatively uniform T, and there is a smooth progression of mesh interval sizes in moving away 

from a front. 
The weight function is evaluated explicitly, and the mesh transformation is held fixed 

throughout the lime step. In some cases, however, we have used a prediction of the solution 
aX t-{- At instead of (he solution at t to form the basis of the transformation. In all cases the 

integrals in Eq. (10) are evaluated using the trapezoidal rule. If At is large enough for the front 

to move out of the flne-mesh region, then implicit or iterative coordinate generation schemes 
would have to be considered. However, this was never the case in our problems, since the fast 
chemical reactions prohibit the taking of large time steps. Also, the buffering effect of the b 

parameter causes there to be adäquate resolution even if the front does move away from its 

optimal location. 

Linear Algebra Considerations 
We lake as an assumption that for problems of interest (in combustion) the system of 

equations is stiff—they are characterized by widely disparate time and length scales. This 

fact leads us to consider only implicit solution procedures.17 A salient characteristic of implicit 
methods is that they require the simultaneous solution of nonlinear equations at each time 

step (or iteration).   For multi-dimensional problems or problems involving many dependent 
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variables (e.g. species concentrations), these solutions lead to a need to form and solve systems 

represented by large matrices. Therefore, the way in which this task is accomplished has a 

major bearing on the structure of the computer codes which solve the systems. 

Our approach currently for one-dimensional problems is to employ a modified Newton 

method. The block tri-diagonal Jacobian matrix is formed numerically using finite differences 

and its LU decomposition is computed immediately. The LU decomposition factors occupy the 

same storage locations as the Jacobian did originally. The same decomposed matrix is then 

used for several iterations (or time steps in transient problems). As long as the iterations are 

convergent, a sizable cost savings is realized by not re-evaluating and factoring the Jacobian. 

This approach is commonly used for solving systems of stiff nonlinear ODKs. 

In two-dimensional problems we take two approaches. For the fixed-number-of-grids 

coordinate transformation problems we employ a standard alternating direction implicit (ADD 

method. Here the block tri-diagonal Jacobian is formed and LU decomposed, and the linear 

system is solved along each row and column of the mesh at each time step. No iteration is done. 

Justification for the approach follows the well-known arguments that the error incurred by the 

ADI splitting is of the same order as the truncation error already incurred by the discretization 

of the time derivative.1518 

We take a different approach in solving the nonlinear equations in the variable node 

formulation. Here the full Jacobian, a block five-diagonal matrix, is formed al once. A modified 

Newton method is used to solve the nonlinear system. At each stage of the Newton iteration 

an iterative block-line-SOR method is employed to solve the linear system. The LI' factors 

are stored and re-used for successive iterations. However, after the solution is completed on a 

given mesh and new mesh points are added as needed, a new Jacobian must be.computed on 

the new mesh. 

We expect that significant computational gains will result from research on and develop- 

ment of incomplete Jacobian factorizations or matrix splittings. The objective here is to avoid 

solving the original equations directly, and instead to solve a related, and approximately equiv- 

alent, system that is much easier to solve. The best known example of such splitting is the 

ADI method, which can be thought of as an incomplete factorization of the full Jacobian. Even 

though the factorization is incomplete, the error which it introduces is of the same order as 

that introduced by the time discretization. Therefore, the approximation does not degrade the 

accuracy of the solution but it increases significantly the efficiency of the computation. 

The ADI factorization is only one of a large family of related splittings which can take 

advantage of some particular characteristic of a problem. For example, it is often the case in 

systems of PDEs that some of the equations are weakly coupled to the others. In such cases, 

solving the equations sequentially (instead of fully coupled) is known to result in significant 

savings. Instead of solving systems of block tri-diagonal equations, one is able to solve a 

sequence of scalar tri-diagonal equations with far fewer operations required. Similarly, in some 
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combustion problems, considerable savings are realized through operator splitting algorithms 

in which the chemical rate terms are handled separately from the trüQiport terms. These 

methods are equivalent to matrix • puttings of the system's Jacobian. However, in both cases, 

application of the procedures has been ad-hoc, i.e. with little theory to help determine the rate 

of convergence, or whether the process converges or not. By studying pre-conditionings and 

incomplete factorizations of the Jacobians, rather than ad-hoc splittings of the equations, such 

methods can be put on a firmer theoretical footing and thus more reliable and effective PDE 

methods should result. 

The cost of evaluating the Jacobian is usually very high in our problems (up to 95^0 of the 

computer time in some flame problems). Therefore, it is natural to seek methods which require 

as few Jacobian evaluations as possible. Based on the success of the modified Newton method,18 

where we have applied it, and its success in the ODE software, we expect that similar approaches 

will ultimately find wider application in the solution of PDEs. The dilemma is that in order 

to use a modified Newton method, the full Jacobian must be stored. For multi-dimensional 

problems this storage requirement is usually too large for the memory of any computer in use 

today. Therefore, effective use of a modified Newton method requires development of algorithms 

which quickly move Jacobian information between computer memory and peripheral storage. 

We note here also that some splitting methods, as discussed above, lead to fewer function 

evaluations to complete a Jacobian evaluation. 

EXAMPLE PROBLEMS 

Steady Premised Flames 

The method we have implemented in the calculation of premixed flame structure equi- 

distributes the difference in the components of the solution and its gradient between consecutive 

grid points. To illustrate the importance of adaptively placing grid points in the flame zone to 

the accuracy and efficiency of the flame calculation, we have performed several calculations for 

an acetylene-oxygen flame using equi-spaced and adaptively placed grids. (For these problems 

a system of 21 species and 72 reactions was used.) Figure 1 shows the molecular hydrogen 

profiles for n series of calculations using 20, 40, 80, and 160 equi-spaced points. We include the 

experimental data for reference. We secure not only a much smoother solution but one which 

agrees better with the experimental data as a finer and finer grid is used. 

Figure 2 shows the molecular hydrogen profile for the same flame but solved using adaptive 

meshing. In this case II adaptively placed points are used to obtain three significant figures 

of accuracy in the solution. As expected, the adaptive calculation secure 2 highly resolved 

species profile with far fewer points than are required using the equi-spaced grid. 

In the adaptive calclation, 19 of the 41 grid points are located in the "flame zone," or 

region of fast chemical reaction. Note that a relatively large region of the computation has 
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Figure 3. Hydrogen mole fraction diitribu- 
tion profllei in an acetylene-oxygen flame, 
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Boxet an experimental data of Eberiui, 
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relatively little chemical reaction. Either the temperature is too lev, or the fuel is almost 
all consumed. The smallest mesh interval is 640 times smaller than the total interval of the 

problem. So to obtain the same resolution over 600 equl-spaced grids would be required. The 
adaptive calculation took 275 seconds of CPU time on a CRAY-IS computer. The equl-spaced 

calculation with 160 subintervals took 585 seconds of CPU time. 
In the next example we compare the effects of adaptive and equi-spaced grids in the 

prediction of flame speeds in a one-atmosphere, stoichiometric, hydrogen-air flame.19 The 
accurate placement of grid points in regions where the solution varies rapidly leads to a 
significant reduction in the number of subintervals needed to obtain accurate flame speeds. 

As a result, the overall cost of a flame speed computation can be substantially reduced. In the 
first set of cah ulatons we determined flame speeds on grids consistng of 20, 40, 80, 160, 320, 

and 6t0 equi-spaced points. The results of the calculatons are listed iu Table I. 
The second set of calculations was performed using the adaptive grid procedure. In this 

case we used grids of 20, 30, 40, 50, and 60 adaptively placed points. The results are listed in 
Table U. 

Several points merit further discussion. First, for both the equi-spaced and adaptively 

placed grids, we see t hat as the number of mesh intervals increases, the flame speeds decrease. 
Second, the sequ .i'v of flame velocities obtained in the adaptive calculations approach a 
limiting value with only 40 to 50 grid points, while flame velocities obtained in the equi-spaced 
calculations are still changing by almost 15 percent as we go from 80 to 160 grid points. In fact, 
it was not until 640 equi-spaced points were used that the flame speed was within 2 percent 

of the result calculated on the 50 point adaptive grid. Like the previous example, the ratio of 
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TABLE I 

HYDROGEN-AIR FLAME SPEEDS, EQUI-SPACED GRIDS (cm/sec) 

No. of Points 20 40 80 160 320 640 

Flame Speed 445 289 244 211 193 184 

TABLE 11. 

HYDROGEN-AIR FLAME SPEEDS, ADAPTIVE GRIDS (cm/sec) 

No. of Points 20 30 40 50 60 

Flame Speed 248 212 185 181 181 

minimum mesh size to the domain of integration was 625. Also, us expected, the adaptive grid 

computation is less expensive. The 50 point adaptive calchtion took 45 seconds of CPU time 

while the e.'O point equi-spaced calculation took 327 seconds. A savings of about a factor of 

seven resulted in going from equi-spaced to adaptive grids. 

Two-Dimensional Elliptic Boundary Value Problem 

We demonstrate here our two-dimensional extension of the variable node method.  The 

equation we have chosen is the nonlinear Poisson equation on the unit square: 

d2z    d2z      o 
-3^ + W + Z  =f{X-V) 

Z — g(x% y) on the boundary 

We have chosen f{i,y) and &i,y) so that the solution is Z = exp—30(:r2 + y2). The initial 

equi-spaced grid was 2x2. After five mesh refinements the nonuniform 18 x 18 mesh shown 

in Fig. 3 evolved. Note the high resolution of the solution in the regions of high slope and 

curvature. 

Unsteady Two-Dimensional Flame Propagation, Coordinate Transformation Method 

In this section we demonstrate coordinate transformation adaptive grid techniques by 

disccussing several examples. First we present solutions for unsteady flame propagation about 

spherical particles.  In these examples the time scales for convection and reaction are small 
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Figure 3. Solution to the elliptic teit problem with a two-diaiemiona! variable node adaptive 
grid. 

compared to conductioD and diffusion, or 

A*c/  and ^t^m<Ata.  and AtDm 

A one-step chemical reaction is used and the vector of dependent variables and rate terms are 

*" - (*»Si 

Z„. = {T.pA) 

A,0 exp(-^/T).-M-^2Lexp(-^/r)) 
MUA btuA 

where T, PA and OA, the uondimensional temperature, premixed fuel concentration and activa- 
tion energy, have been normalized by reference values.14 The calculation is simplified so that 
the overall density remains constant and thus the flow field is independent of the combustion 
process. The velocity field Is given as a low Reynolds number Stokes flow. 

The results of an interesting calculation are shown in Figs. 4 through 9. The following 
ratios of time scales are used: 

A( *DA T^. m SKA m P,'. (Peclet Number) m 200 
At, At 

Ata 2.2 X 10» 

Figures 4 and 5 illustrate unsteady iiame propagation after surface ignition, when using a 
uniform grid. (These figures are divided into two parts, the top shows the coordinate system 
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and the bottom plots the isotherms. There are ten normalized isotherms plotted which range 
in values between 0.2 and 1.2) The figures show that the grid is uniform and the isotherm 

distribution exhibits significant oscillation. Note that the oscillation in the isotherms becomes 

larger in amplitude as the flame moves into the large cell regions away from the body. These 
oscillations are a result of the large cell Peclet number and the central difference approximation 

for the spatial derivatives.20 The cell Peclet number is large because of the increasing velocity 
and cell size as the grid moves away from tLe body. If we had used windward differences, 
the numerical viscosity would have increased significantly, and thus introduce significant errors 

such as an the increase in flame thickness. Use of a refined uniform grid is unreasonable because 

of the additional computational requirements of time and storage. 
Now consider the problem using an adaptive grid as shewn in Figs. 6 and 7. These figures 

sk.w the coordinate and isotherm distributions for the same times as shown in Figs. 4 and 5. 
Notice that the flame has a new and more accurate velocity and position and that there are 

no oscillations. By resolving the flame, the cell Peclet number is reduced to values less than 
on«0. This guarantees that the solution will be oscillation free. To illustrate our point further, 

the radial temperature distributions at similar angular positions are shown in Fig. 8 for both 
the uniform and adaptive grid solution. The oscillations in the uniform grid solution are quite 

-3.0    -Z.0     -to 

Figan 4. Coordinate qritem and isotherm Figure 5. Coordinate System and isotherm 
distribatloa about a burning particle with a distribntion about a borning particle with a 
uniform grid, eariy time. uniform grid, later time. 
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Figure 6.  Coordinate lyiiem tad iwthenn Figure 7.   Coordinate lyitem and iiothenn 
diitribntion about a burning particle with diitribution about a burning particle with 
a coordinate traniformation adaptive grid, a coordinate transformation adaptive grid, 
early time. later time. 

apparent. Also, it should be mentioned that the uniform grid solution terminated at the next 

time step because of negative temperatures caused by the oscillations. 
With the same number of grid points we have been able to convert an unusable calculation 

to an efficient and accurate one. However, we have introduced some new, but minor, problems 

with the remedy. One of these problems is caused when the thin flame passes out of the 
boundaries of the system and there are no longer any gradients along some of the fixed arcs. 

The grid then reverts back to a uniform grid over one time step. In the present calculation 
this does not cause a problem because the dependent variable is uniform and the rapid change 

in metrics is unimportant because the solution isn't changing. However, if another variable 
such as velocity was being calculated in this region it would be extremely difficult to obtain an 
accurate solution for that variable. In this case the other variables (besides temperature) should 

be considered in the formation of the «eight function and the grid transformation. A possible 

solution to this problem is shown in Fig. 9 where the grid distribution has been frozen at the 
value it had when the flame left the computational region. With this strategy the metrics are 
smooth but the mesh is wastefully fine near the outer boundary. 

Another potential problem exists when different regions of high gradient exist within 
the same problem.   This is particularly troublesome when the regions have incompatible 
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rifar« 8. Typk»! ««iipvmtiin dtatribntlon Figure 9.  Coordlnmt« ijritem ud iwthwm 
with uniform and adaptiTe grids. Daihedline diitrlbutlon «boat • burning particle with 
it on uniform grid, and ihowi oiclIUtioni due a coordinate traniformation adaptive grid, 
to high cell Peclet number. Coordinate lyitem ftoien at outer boundary. 

geometries for grid stretching, as is the case in our next example. Here a flame surrounds 

a burning spherical particle over which the flow (Reynolds number of 100) has separated. In 

this calculation both the flow field in separation region and the temperature gradients in the 

flame must be resolved, and the boundary conditions must be applied far from the body. The 

coordinate system used for the flame is not well suited for the flow, and we have taken the 

approach of using two different coordinate systems and interpolating between them. Figure 

10 shows the vorticity pattern together with the grid used to compute the flow field. The 

temperature distribution and its grid are shown in Fig. 11. Certainly the use of two coordinate 

systems increases storage and computation time, but the one order of magnitude improvement 

of grid resolution achieved by the adaptive gridding method, more than makes up for the 

additional effort. However, it is easily seen that this approach to grid adaptation introduces 

many new problems, which should prove fertile ground for new solution procedures. 

CONCLUSIONS 

We believe that we have achieved considerable success in applying adaptive grid methods 

to solve a variety of problems, but it is also true that the results are not complete. We have 
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Figon 10. Coordiaat« qritem and tootherm 
dittribntloB about » burning pwtiek with 
Mptntod flow, uiing • COOMIBMU truifor- 
mation adapthrt grid. 

Figure 11. Coordinate qritem and Tortieltjr 
dlitribntlon about a burning particle with 
separated flow, using a coordinate tranifor- 
mation adaptive grid. 

seen clearly that adaptive gridding is necessary for a wide range of heat and mass transfer 

applications. Our examples demonstrated a strong dependence of flame shape, flame speed, 

and numerical stability on the mesh spacing. In regions such as flame fronts, the grid has to be 

so fine that uniform meshing is completely impractical. However, using the adaptive approach, 

we have kept cell Reynolds and Feclet numbers less than one with relatively few grid points! 

We discussed the concept of equidistribution of a positive weight function and we regard 

it as a useful framework from which to develop adaptive grid methods. The variable node 

approach is analogous to ODE initial value problem software, and, because it attempts to bring 

the weight function within pre-specifled bounds, it is potentially the most accurate approach to 

adaptive meshing. However, due to the number of grid points which may be needed, it is often 

inefficient in computer time and storage. On the other hand, using generalized coordinates 

and adaptive gridding through coordinate transformations allows for good resolution of body 

shapes and flame structure in separated flows at moderate Reynolds Number. In this case, 

however, the weight function is equidistributed, but not driven below a prespecifled bound. We 

have successfully applied both the coordinate transformation approach and the variable node 

approach in one- and two-dimensions. Full two-dimensional generalisations are yet to come. 

Although adaptive gridding is required for accurate resolution in many problems its use 
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can introduce new problems. For example, we see problems caused when high gradient regions 

intersect boundaries or leave the computational zone by convective processes. Also, when more 

than one physical variable causes scaling problems, such as in flame propagation and flow 

separation, it may be difflcult to use one grid system for the entire problem. Instead, it may 

be avantageous to use more than one adaptive coordinate system simultaneously. So far the 

"fix" to many of these problems has been problem dependent. Generalizations are needed. 
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