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SUMMARY
~——— " The two essential ingredienta ot ary boindary value problem arve the field

equations which describe the physics of the problem and a ret of relations vhich
specify the geometry of the problem domain. Mesh ganerators or gvid goneratnrs
are preprocesiors which decompose the prohiem domiin intu 2 lsrge number of
inter<onnacted finita elements or curvilinear finite difrerence stencils. A rum-
ber of sucn techniques have been daveloped over the past decale to alleviate the
frustrxation and reducze the time involved in .he tedious manual subdividing of =

complex-shaped region or 3-D structure into finite ele:nex‘ts) Qur purpose hara

interpolation, which were originally daveloped for ard applied to geowmstric pro-
blemg of computev-sided desicn of sculptured surfaces and 3-D solids, can be
adapted and applied to the yeometric problems of grid generation. In contrast
te cthar tochniques which require the numerical solution of complex partial dif-
fsrential equations (and, hence. a great deal of computing), the transfiaite
methods proposed herein are coaputationally inaxpensive. I R
1. IRTRODUCTION

Over the past decadm, a nunber of schemes have heen devecloped fer autoesating
the genaration of finite clenent and curvilinear finite diffsronce grids. Among
thesa, the transfinite mapping technique of Gordon and Hali(3] has been snown to
have a nuober of advantages {cf. {6],{7]). Some cf these are:

1. Exact modeling of boundaries

2. Hinimal input effort

3. Autooutic noda connectivity dedinition

4. Mall-syuited to interactive graphice implezentstion

5. Sood correlation butwasn boundary nodes intsrior tesh

6. Cosputationally efficient

7. Basy extension to three dissensions.

Wo vse the verm “transfinite"” to describe this class of techniques since,
unlike classical methods of higher dimenaional interpelation which match the
primitive function ;’ at a finite nurzber of polnts, the transfinite mathods astch

ia to describz how the techuiques of bivariate and crivariata‘blerdinq function™ e
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F at a nondsnumerable number of points. In fact, as we shall see below, trans-
finite mappings of the plane match -f’ along entire curve segments, while trans-
finite mappings in Euclidean 3-apace can match ; exactly on the six faces of a
curvilinear parallelpiped.

To begin, we racall the geometric interpretation of the graph of a .ector-
valued function of two independent variables s and t

Fle,t) = [x)(8,8) %, (8,¢) ...-,xn(e.t)]T. (1)

As the variailles s and t range cver a doma’n S in the 3,t-plane Rz, Fis,t)
wrazes o1t a region R in Buclidean n-gpace. £ That is, -{‘ maps cegiurns in
.R2 irto regions in e"

L (2)

For two-dimensional problems, we shall ba concerned with continuous transforma-
tions F which map the unit squara S = (0,11¥[0,1] one~to-ons ontc 2 simply con-
nected, bounded region R in 32 or E3. Such mapa can bs thought of as topolegi=
cal distortions of ths planar region S onto the two~dinensional manifold R,
which i3 oitlisr a planar region (R ~ 32) or a surface sabeddoJ in 3-space
(R 2:3). in either case, a ocno-to-one ‘un.vaient) mapping S + R is equivalent
to the introduction of a curvilinear co-ordinate systeo on R. The curve of con-
stant genaralized co-ordinate a = a* is the image -{’(l' +t) of the line s=a*in S,

similarly, the curve 3(!.&') is the wat of all points in R with generalized
co-ordinate t = t*, Thus, the Doint ;(n',t') on R is said to have generalized
co-ordinates (s*,t*), and, since the mapping S + R is univalant, any point P¢ R
can be uniquely referenced by its generalized co-ordinates.

I£ S te the unit cubs [0,1)x(0,1]x[0,1) in the s,t,u-parameter mpace R and
R ia a bounded region in Buclidean 3J-gpace, than a one-to-ane wapping ¥ of S on-
to R can bs eavisioned as 2 topological distortion of the cube into R. Such a
wmapping of 23* 83 gensrated a curvilinear co-ordinatization of the sclid R so
that each point of R may be referenced by its generalized coordinates (s,t,u).

Por bounded, eimply connucted planar domaine R, one could of courss gensrats
an orthogonal co-ordinatizstion by means of a contormal wuuping of R onto a
canonica) region such aa a sguare or & circle. Yowever, from a practical stand-
point, the construction of a conformal map i{s equivalent to the solution of
Laplace's eguation and is thus contrary ¢o the goal of computational simpliciey.
In contrast, the transfinite sappings described balow are ralatively sizple to
construct and impleamant for a wids variety of regions, and are cumputationslly
insxpansive.
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2. TWO-DIMENSIONAL REGIONS

We first consider the case in which S is the unit square [0,1]x[0,1]. Lat us
postulate the existence of a primitive function F which maps S onto R. It should
be remarked that the “unction ; is a “iction which we introduce only “or nota-
tional simplicity and convenience. In practice, the only thing we are given is
the geometric description of R in terms of its boundary, and it is the task of
the analyst to cast this information into a form appropriate to the mapping
formulas considered below. This, however, is not difficult to do and can be
implemented by a computer subroutine.

Generically, ;: Rz -+ 22 should be thought of as a continuous vector-valued
function of the two independent variables s and t such that ¥: 3S + 3R.
For example, consider the following mapping:

x(s,t) 45t (1-g) (1-t) + (1+t/\/2_) cos %
F(a,t) = sty ) " (Lt /V7) ain'z—" (3)

This maps the unit square (0,1]x{0,1}] onto the quarter annulus R shown in Fig.l.
The perimeter of the unit square maps onto the perimeter of R, and lines of con-
stant s and constant t map onto the curvilinear co-ordinats system illustrated.
In other words, each of the curves shown in the figure is a curve of generalized
co~ordinate s = const. or t = const.

Our problem is to construct a univalent (one-to-ones) function TJ: S * R which
vatches ¥ on the boundary of S, i.e,

B(oet) - g(opt)n 6('»0) - F(.lo) } (4)

Sa.,0 = Fa,e, Sis,1) = $a,1)

A function U which interpolates to i; at a non~denumerable sat of points as in
(4) will be termed a transfinite interpolant of F.

70 explain the wtion of transfinite mapping, we shall £ind it coavenient to
rely on the algedraic theory of approximation daveloped ia (3] end {4]. 1n this
paper, by a profector P we shall wean an {dsspotent linsar operator wvhose do-
main is the linear space F of all continuous functions defined on S and whose
range is a subspace of F. The above intarpolation probles (4) can be viewsd as
a search for a projector P such that :1 - P[F] {s & univalent map of S * R which
satiefiss the desired interpolatory propertiss. U is tersed the projectionof F
or the {mage of ¥ undar P.

Suppose now that 00.61 and "o“’x are four univariate functions vhich satiefy
the car'fnmality conditicns




174

l, i=k
for L,k = 0,1

0, LAk 3 (5)
for 3, = 0,1J

and consider the projectors Pa and Pt defined by

O (k) = 8,y = {

wj(l) -6”’

g - -+
P’[F] EQO(B)F(so,t) + ¢1(3)F(sl,t)

+ -+ & (6)

P:[F] Ewo(c)P(a,to) + wl(t)F(l,tl) .

Then, the product projection
> 1 1 +

PPIF) = 120 jgo 9, (8)Y, (E)F (s, t,) (7)
interpolates to F at the four corners of [0,11x[0Q,1} and the Boolean sum
projection

-»> - ->
”Z‘Q””Eﬂ”’*QWI'%Qﬁl (8)

interpolates to T on the entire boundary of [0,1]x[0,1]. These properties of
the functions (7) and (8) may be readily verified by evaluating the right-hand
sides for the appropriate values of s and t and recalling the cardinality pro-
perties (5); see also [3] or (4].

The functions ¢ ; and ¥ 3 in the above formulas 2va a5 yet unspecified except
for their values at tha points 8, " "0 ~ 0 and :1 = t} = i. They a:c coomonly
referred to &s 'dDlending functions' and the function U = (P.O Pt)[i‘) is termad
a blended interpolant. The simplest choice for the blending functions in (5)
is the set of four linear functions

«l -g, -l -
Go(l) l-3s, Vo(:) l-t *
Sy s = u, vyle) = ¢ ,
The vector-valued biveriate function U I (P.Q Pt) (F) obtained by using (8) and
(9) is termed the Dilinearly dlended interpolant of ;. oz the transfinite bi-
linear interpolant of ; Explicitly, it is given by

Ute,t) = (1-)F(0,8) ¢ 8P{l,0)  (1-t)F(6.,0) + eF(s,1)
- (1-8) (1-t)F(0,0) - {1-g)tF{0,1) 10)
- sti-t)F(1,0) - stF(1,1) .
This function has the propoerties that B - 3 on the perimeter of the unit square
{0,1}x{0,1]. This was first demonstrated by S.A. Coons in [2).
Figure 2 {llustrates ths oappings induced by the projectors (6j-(8) on a

sThe reader shculd verify that both the operators P‘ and P‘ are, in fact, pro-
jactors, i.e., they are linsar and idespotent.

B L RUU.
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region R with blending functions given by (9). It is readily seen that P [;]
and P [F] each match only two opposing boundary segments, P P [P] matchaes only
the corners of R, but (P eP )[F] does, in fact, interpolata the complete peci-
meter of R. The mappings P [F] and P [F] are sometimes referred to as "linear
lofting", in analogy with the drafting procedure known as lofting. P P [P],
which is linearly ruled in both directions, is termed bilinear, and (P P )[F]
is properly termed bilinearly blended. The three projectors Ps' Pt and Ps ¢ Pt
>
are all transfinite projectors since they interpolate F at a nondenumerable num-
ter of points.

Other examples of transfinite mappings obtained using equation (10) are shown
in Pigures 2,4 and 5.

We can generalize the ahove notions in two ways: £irst, we may consider map-
pings of R2 -> En for general n: and secondly, we may interpolate ; not only on
the boundary of the region R = ((xl,xz,...,xn)T - F(s,t)1 0 <8, t <1}, but
algso along other 'flow lines' or constant generalized co-ordinate lines. To
this end, let O < S < 91 < ..o < 8y " land 0= t_< ¢t < ,,. < tN = 1, and

0 1
lat (¢i (5))1., and (w (t)) o be functions satisfying

¢, (8) =8, 'J’j“z’ =8 (11)
0<i, k<N, 02<], L < N, Now define the projections
- M
PRI = ] ¢, (s)?(s .t
8
i=0
. . . (2)
PIF] = | by (0 (a,t)
3=0
The product projection
- ¥ N -
PRIFIE [ [ ¢ (e (e .t (3
: 140 §»0 J 3

interpolates to ¥ on the finite point set ((l‘.t a vhile the Boolean sus

i=g’ 3-0
or transfinite interpolant

(P, ?t)m ¥ g(?] SALE P&(?] (1)

interpolatnc to ; along the Nele2 lipnes z = ’1' 0 5_& <N and ¢t = tj, Q< b] < H.
That xa, if U(o.t) 2 (P ® P )[P} then
U(s,t } - l(s.tji. b s § N

15)
t), 0 1SN ¢

U(.i e} - ?(.i

1If Mewtlw ) and ‘0 = tc -0, gl - tl = 1, {14) reduces to the transfinite

dilinear {nterpolant {10), If HeHedands =2t =0, g = tl - 1/2, s, *
t2 » 1, then using the blerding functions

0 0 1
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4’0"’ = 2(s-1/2) (s-1), wo(t) = 2(t-1/2) (t=-1)
¢, (s) = 4s(1-s), ¥y (e) = 4t(1-t) (16)
02(3) = 28(s-1/2), ¢2 (t) = 2t(t-1/2)

in {14) yields the biquadratically blended interpolant of 'l; along the six lines
$=0,1/2, Land t = 0, 1/2, 1,

There are cases in which bilinear transfinite mapping techniques will not
produce a satisfactory curvilinear grid. This typically happens on regions R
vhich are so grossly distorted that there is either too gres: a variation in the
size of grid elaments or protions of the gensralized co-ordinate curves actually
map outside the region (“overspill®, cf. [5]). An example is shown in Pigure 6.
Here, a bilinear transfinite mapping was exscuted with the result that some
constant generalized co-ordinate lines overspilled the region.

There are basically three ways to deal with such difficulties. First, one
may decompose the overly complex region into two or mors simpler subregions
and map each cf theae separately. Although this approach gensrally works well,
there may be problems at the interfaces bstween subregions, since the general-
ized co-ordinate lines will have slope discontinuities thers. One way of
handling this difficulty is to employ highaer degree blending functions, e.g.,
cubic Hermite blending functions.

A sacond vay of attempting to achiave a satisfactory transformation is to
reparamstrize the boundary segments of R by, for example, introducing manotonic
traniformations of the independent variables s and/or t.

Another way of dualing with coaplex ragicns ia to introduce auxiliary con-
straints into the transformation problem. Since the paramcunt objective is to
obtain a one-to-one (invertible) mapping of § onto R, the analyst is perfectly
free to enforce vhatsver aduitional cons -uists he feels will guarantes the in-
vertibility of the mapping. In our expm.a ., .3 have generslly faund it ade-
quata to specify, as an suxilisry constraint, the image (i.e., the mapped posi-
ticn) of a single interior point of S. That is, ve identify vhere inside R we
desire to =ap a salected point ia the interior of S. For simplicity, suppoes
the point {n § whoes image positicn we want to coastrain is the mid-point of
the aquare, 8 = t = 1/2. We wvant to force this point to wap into the point in R
raving co-ordinates (,8). Lat U be the bilinesrly blended function of (10).
Than, the following transformation maps 3S onto 3R and maps (1/2,1/2) onto the
point {(a,8):

o, 0) = Bla,t) ¢ 268 02-2)t(2-t) [[g] -2y - an

To verify thias, note that along the perimeter of {0,1)z(0,1] the right-hant side
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reduces to just 3(0,:), which maps 3§ exactly onto 3R, as desired. Por
(s,t) = (1/2,1/2), the right-hand side reduces to just (a,8). More generally,
the point (s,t) = (a,b) can be mapped into (a,8) by, the formula:

: _2 s{l-s)t(1-t) [(a) _
Vie,t) = Gla,e) + SEEEELH [(B) v(-.t)]. (18)

As an example, Pigure 6 shows a region R for which the Lkilinearly blended
transformation (10) does not give an invertible mapping of S onto R. It is
intuitively clear that the image of the point (s,.t) = (1/2,1/2) has mapved too
far to the right. Therefore, we enforce the auxiliary constraint that the point
(1/2,1/2) in § should map onto the point (.494,.119) in R, Figure 7 illustrates
the result of the transformation cbtained using (17).

In [5), Gordon and Hall propose the use of more general auxiliary constraints.
For example, instead of just a single point, they consider mappings for which
lines of constant s or t are forced to map onto presslected generalized
co-ordinate curves in the domain R. Such curves may arise naturally zs inter-
faces betwsen subregions of R, or they may be determined by the analyst on geo-
metric grounds. The transformation formulas appropriate to these constrainad
maps are given by asquation (14).

1f the region R is basically triangular, in contrast to quadrilateral trans-
finite interpolation technigues over triangles may be more appropriate. The
theory for such "trilinearly blended” methods was developed in [1]. The details
of these techniques aa applied to grid generation may be found in [6] and [7).

As a practical aatter, the curves bounding R may not be easily represented
as clussd-form mathematical expressions. Neverthsless, the above results still
apply if the boundary curves are represented as discrete point sets, i.e.,
plecevize linear curves. For a fuller discussion of “discretized transfinite
meppings® sae (6] and {7]. Surfaces in Euclidean }-spsce are handled in pre-
cirely the sams vay as 2-D regions. All that nead be done is to add the third
co-ordinate functions (s} and Z(t) to the x and y components. A discussion of
surface decomposition techniques is given in {?].

3. THREE-DIMENSIORAL SOLID STRUCTURES
The purpose of this ssction is %o ocutline the extensiocns to l-dimensicns of
the bivariate tranafinits mapping techniquss discusssd above. To begin, wve
consider the foliowing three projectors:
PP = 1-01F(0,t.0) ¢ aP(Lit,u)

- > -
Pt(rl ® {1-t}F(s,0,u) * tP(s,1,u) (19)

PIFI - (1-u)P(s,t,0) & uP(s,t,l) .
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In these expressions, the "primitive function® P iz a vector-valued function
of the three independent parameters s,t and u. As s,t and u range over the unit
cube, ; maps out the solid volume R. Depending upon the co-ordinate system used,
the three components of ; may corregspond to Cartesian, spherical, cylindrical,
toroidal, etc. co-ordinates. As a practical matter, the co-ordinate system
employed should be that which most appropriately fits the geometry and topoloegy
of the problem domain.

Quite clearly, the three projectors in (19) correspond, respectively, to
linear blending (lofting) in s,t and u. Now, however, the gecmetric entities
on the right-hand side of the expressions are not curves, as in (6), but rather
surfaces. Por example, as t and u range over the parameter domain {0,1])x{0,1],
the vector-valued function F(O,t,u) traces out a surface in Euclidean 3-space
corresponding to one of the six faces of the solid volume R.

It is ugeful to consider the pairwise products of the above three projectors.
For instance, the product of the first and the second is

- > -
Ps(Pt[F]) e (1-8) (1-t}7(0,0,u} + (1-s'tF(0,1,u)

- -+ (20
+ s{l-t)F(1,0,u) + stF(l,1,u)

The right-hand side of this expression contains four expressions which refer to
the edges of the object under consideratian. By evaluating the axpression
along the four edges (s,t) = (0,0),(0,1),(1,0) and (1,1), it can be verified
that the trivariate function PsPt[§] does, in fact, match ; along these edges.
(it m, _e easily demonstrated that PoPtIFI - PtPs[F], i.a., the projectors
compute, just as in the bivariate case.)

We have seen that the projectors Ps'Pt and P“ each interpolate the two oppos-
ing faces of the solid voluze described by Fis,t,u), and that moducts of pairs
of these ~roijsctors interpolate to the edges of the solid. If we take the pro-
duct of all zhree of the projectors in (19), we obtain the expressian:

pspzpuz§x « (3+8) {1-t} (1-u)F(0.0,0) + (i-8) {1-t)uF(0,0,1)

e {1-8)t(1-u)F(0,1,0) + {l-s)tuF(0,1,1)
20
e 8(1-t) (1-u)F(3,0,0) ¢ s(>-t)uF{i,0,1)

+ st(-uF(1.1,9) & stuFil,.l.l}.

The right-hand side of this expressiun contains values of ; which fefer to the
eight voraers of the region R. it does, in fact, interpolate to these eight
corrers. Since {21) is linear in each of the three paramaters s,t and u, it is
terned ¢ trilirear {nterpolant. The 7rapk of tha trilinestr interpolant is a six-

sided polyhedron which passes through the vertices of R it is sisply the )-D
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generalization of a quadrilateral in Euclidean 2-space.

In the 2~dimensional case, one starts with the two projecrors Ps and Pt of
(6) and, by combination, generates & total of four; namely, Ps. Pc’ PsPt and
Ps. Pc‘ In three dimensions, the situation is much more complex and the variety
of possible projectors much richer. In {3] and {4], it is shown that under the
two binarary operations of operator multiplication and Boolean (®) addition, any
collection of commutative projectors forms a distributive lattice. Space does
not permit going into the details of this theory, but we can illustrate some of
the results in the trivariate case. Without proof, we state that there ars 21
distinct projectors which can be formed by multiplication and ® addition of the
three projectoxrs Ps, Pt and Pu. In addition to those displayed above, the
following are examples:

Ps . Pt = Ps + Pt - P

spt

Poe PP =P s PP -PPP
PP eP «PP oP -PPP
PS . Pt * Ptp“ " PS * Pt B pSPQ

(22)

oo - -~
PJPt * ‘tu M p“Ps Pspt ! Ptpu * Pups 2P‘PtPu
Ps ® Pt ™ P“ . Ps . Pt + P“ - PsPt ~ PtP“ - P“Ps + PsPtPu

One should note that, because of the idempotency and linearity of the projectors,
nuch cancellation occurs. mxmnmu.weMsﬂoPjtnﬁvat-ﬂ%K
- P., which means that nothing is achieved by taking the ¢ su» of Pg and PaPt.
This is because the interpolation properties of P.P‘ are a subset of those of
the projector P'.

An aspect of the theory developed in {3) and {4] is that thare is an fscmor-
phisa batweer the distributive lattice of projectors and the associated distri-
butive lattice of their precisicn sets. In other words, if wo know the oxpres-
sion for a certaln projector, than wa can determine the point set on which e
interpolates by replacing operatnr mgltiplication by sot intersection and @
addicion by set unich. For exaxzple, the precision get {(sot of polints on which
it interpolates) of P. conaists of the two faces of R defined by s = 0 and
s = 1; and sinilarly for Pg and Pu‘ Thus, it follows fron the isceorphisn that
the precision sste of the projectors in (22) are, respectively, given by the
following expressions in which Sq¢ S¢ and 5, are the precision sets of P’. ?t
and P“z

-~
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Ss ] (St n Su)
n
(ss sc) u Su

(23)
S.u Stu (St n 5“)

(s' n S:) v ‘st n su) v (su n bs)
s‘u s

4]
L Su

If one thinks of the precision sets, it is obvicus that tha weakest (“algebrai-
cally minimal®) of all prujectors is the triple product P.PtPu and the“algebrai-
cally maximal® projector is the Boolean sum of all three: P. () Pt ] Pu' All
other possible projectors ars algebraically in-betwuen these two.

which of this miriad of 3-D projectors one uses in practice iz a matter of
vhat data is given; or, more precisely, where the data is given. In other words,
one is given the precision set and must use the icomorphism "backward" ¢to infer
the appropriate projector {i.e., interpolation formula). For instance, if one
does, in fact, Xnow the exact siapas of all aix of the bounding surfaces of R,
then the appropriate mapping equation is the full-blown expression
(PP oF) {¥], which explicitly involves all faces, all edcas and all
corners. At the other extreme, one may only know the co-ordirates of the eight
cornars of R, In this case, ohe would uss the transformation equation (21).

In practice, the situation is usually scmevhere in-between, {.e., the da%s is
saldom as complete as raquired by the warimal projector ?. ® Pt ° P‘3 or as scant
as only the eight vertices needed in P‘P‘Pul;). The exanples given below sasume
that the function F Le known (i.e., data is given) on tha 12 edges of R. 1In
this case, the revelant transformaticn equatiaon or sapping forwla {s:

(PP o PP oFF)F
o {1-8) (1-0)F{0,0,u) + (1-8)eP(0.1.4)
o s(1-00F01,6,00 + sefll, 1,0
+ (1-2) (1-0)F{8,0,0) 0 (1-2)uF(s,0,1)
+ t0-uF(e,2,00 » wiie,1,1)
¢ {1-3) (1-w)F(0,€,0) + (d-2)uF(0,t,1) Qe
* o(1-0)F(1,5,0) ~ suF(l,t,1}
- 2{ (-8} {1-2) (1-01$10,0,0) + (1-8) (1-2}uF10,0,1)
o {1-altfl-uIF0,1,0) + (l-s)tuFt0,1,1)
+ 8-t 1-mF0),0,0) s s{l-e)uFil1,0,1
+ st (1-03F{1,1.0) ¢ sruFid, 2,10 ].




Flogxe 1
The curvilirear co-ordingte systam Induced by the following
wrolng:

- (x(s.t) ast(1-s){1-t)x hmw%g A\
S,t) = - _
’ y‘S:t) (l’wg-)s‘n%’
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Figure 3

The curvilinear cc-ordinate system generated by the following

pararetrization:

L [2.5t+.5] 0 o 0.5t +2
B 0,0 = { J , FLD =
- 2
. [1.25 - .75 ¢os (7S)
F(s,0) = o
L"2 + c7b Stn \«S)
-2, 0.0<s<.33
ﬂ’605+ 13|SSI 0335_3 < 0&3
B 2,5, B0 <s <]
FsD= |
-2+6sl 0.0;‘_8“.33
0.0, 33 <5<.,66
4 - 6s, B s <l
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Flaure 4
The transfinite mp of a region with a crock via the follawing
cgraetrization:
— l - st - 11(5 + loqst
F(O)t) = 4 F(l‘t) =
3 -
[ 1+ .05
Bs,0 = |[3+3s, 00<5<05
-3s, 0.5<s =<1 ’
[{-2, 0.0<s< .33
{127 + s - 2,92, B<s< 6
» 2.5, Bbesel
Fis,1) =
-3+ 65 0.0<s<.B
3 0.0 I3 <5< .66
6-9 B6<s<]
L. o
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Flgure S
The curvilinear co-ordtnate systen \ =~ j

inducad using the bilinear blended transfing te
mpolng.  The bandary segmnts gre:

- 4 “ 4
F(O,¢) = . FLY = ] ,
4t bt

r “‘11-58*7-5520 040i8< »33
1-% +3%2, Bmge g
‘3.% + 745324 '%i Sf_ l

F(s,0) = ,
L2 + 1152, 0.0<5< ;3

"‘|7l; "‘I.SS .3313‘.%

L1255 - 1, 12562 .GBiSf_ij
. 4 205*2052]
Fis,1) =

~d + g .
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Fiare 6
Bilinecr blending here yields a non-inivalent map, The

pargretrization of the bamdury {s:

F(O,L) =

F(s,0) =

0 g ')} =

t

(s

- 3s e 3¢

2t -2t2]

)

]




Fiqure 7
A curvilinear co~ordinate system with no “overspill” is achleved
via (17), Here, the point (1/2,1/2) in the s,t-plane is mavped
onto the point (.494, ,119) in the x,y-Dlae.
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Fioure 8

This mpping was generated vig (18) by mmoing the
polnt (21/14,1/2) 1n the s,t-plne onto the potnt
(.326,.334) in the Xy-plane. The baundary segrents gre:

- [-3 J _ {=3+6 cos (wt/2)
FO,t = | 21, FLb) = ~3+6 sin ext/2)
. [ 65 -3 | 1
Fs,00 = |y 5 VB Gs-452, s g
- otherwise 4
b -
r{~3+ VB - (s - 452, & <5< .83
Fs,) = |13, Otherwlse
[ 65 -3 ]
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