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SUMMARY

"The two essential ingredients ot any boandiry value problem Pre the field

equations which describe the physics of the problem and a Pet of relations rhich

specify the geometry of the problem domain. Mesh generators ar qr.'d ganeratirs

are preprocessors whlch decompose the prohlem dom.iin into a lerge number of

intertonnected finit3 elements or curvilinear finite difference stencils. A r-2m-

ber of such techniques have been developed over the past doeade to alleviate the

frustration and reduce the time involved in .he tedious manual subdividing of &

complex-shaped region or 3-0 structure into finite elements•. Our purpose here

is" to describe how the techtiques of bivariate and trivariat&~blending functionr-,

interpolation, which were originally developed for &nd applied to geometric pro-

blems of computev-aided design of sculptured surfaces and 3-D solids, can be

adapted and applied to the geometric problems of grid generation. In contrast

to other techniques which require the numerical solution of complcx partial dif-

ferential equations (and, hence, i great deal of computing), the transfinite

methods proposed herein are computationally inexpensive. .

1. INTRODUCTION

Over the past decadm, a number of schemes have boen developed fer autmating

the generation of fin!.te cle=ent ard curvilinear finite difference grids. A.vyng

these, the transfinite mapping technique of Gordon and ((ala.L5] has been snhow to

have a nuwber of edvantagee (cf. 1614.71). Sam of the&e &rat

1. Cact modeling of boundaries

2. Kinimal input effort

3. Automatic node r ~ctivity d4-inition

4, Well-suited to interactive graphics implementation

S. Good correlation bijtween boundary ro-eo and interior fteh

6. computationally efficient

7. Easy extension to three dimensions.

We uva the term 'transfInits" to deocribe this class of techniques Vince,

unlike classical method. of higher da.meneional interyoletion which match the

prli'tive function P at a finite nuzber of points, the trwnwfinit. methods match
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F at a nondenumerable number of points. In fact, as we shall see below, trans-

finite mappings of the plane match F along entire curve segments, while trans-

finite mappings in Euclidean 3-space can match F exactly on the six faces of a

curvilinear parallelpiped.

To begin, we recall the geometric interpretation of the graph of a .ector-

valued function of two independent variables s and t

40 T
(rt" - [X 1 (Vt)X ,2 (e~t) ..... Xn t) I . (1) 2

As the variaLlen a and t range over a dors~n S in the s,t-plane R 2, F(st)
n4t.ra.es out a region R in Euclidean n-space. En. That is, F maps regi-r.s in

'R2 into regions in En

F: k E (2)

For two-dimensional problems, we shall be concerned with continuous transforma-

tions F which map the unit squ,rL S - (o,1lMlo,l] one-to-'-ne onto a Pimply con-

nected, bounded region R in Sor E3. Such map3 can be thought of as topologi-

cal distortions of the planar regqlon S onto the two-di:7ensional manifold R,

which is oither a planar region (R r E2 ) or & surfa': e abeddokI in 3-space

(R c E3). in either case, a one-to-one fun~valent) t&pping S - R is equivalent

to the introduction of a curvi li.iar co-ord~se~e system on R. The curve of con-

stant generalized co-ordinate a - e is the image F(s',t) of the line -s-a in S.

Similarly, the curve t'(e,t*) ia the sat of all points in R with generalized

co-ordinate t - V,. Thus, the 2oint F(es,t*) on R is said to have generalized

co-ordinase ts',t'), and, since the mapping S * R is univalent, any point Pt R

can be uniquely referenced by its qeneralized uo-ordinatee.

If S is the unit cube tO,llx[O,llxtO,l] in the *,tu-paraester space R3 and

Sis a boutded region in Euclidean 3-space, then a one-to-one mapping P of S on-

to R can be anvision*d as a topological distortion of the cube Into R. Such a

iapping of R3 4 E3 generatoO a curvilinear co-ordinatisation of the solid 9 so

Wat each point of R may be referenced by its generalized coordInates (est,u).

For bounded, simply connucted planar dmaina R, owe could of course generate

an orthogonal co-ordinati"uion by neanm of a conformal Ljping of R onto a

canonical region such as a squAre or a circle. Swiver., from a practical stand-

point, the construction of a conforvl mp Is equivalene to the solution of

Laplace's equation and Is thus contrary to the go" of Ceiute4Cone sti•plic-It.

In contrast, the transf nite mappings described below ar6 relatively simle to

construct and implmnt for a wide variety of regione, and are computa•.Lonally

inexpelwave.
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2. TWO-DIMENSIONAL REGIONS

We first consider the case in which S is the unit square (0,1]x[0,1]. Let us

postulate the existence of a primitive function F which maps S onto R. It should

be remarked that the *unction P is a liction which we introduce only 'or nota-

tional simplicity and convenience. In practice, the only thing we are given is

the geometric description of R in terms of its boundary, and it is the task of

the analyst to cast this iniormation into a form appropriate to the mapping

formulas considered below. This, however, is not difficult to do and can be

implemented by a computer subroutine.
R2 E2

Generically, F: R 2 E should be thought of as a continuous vector-valued

function of the two independent variables a and t such that .: •S* aR.

For example, consider the following mapping:

(6~,t)' (st(l-s) (l-t) + (l+t//i) Cos
~(2,t) - X \ysgt)/ (1+lrt2) si T(3

7his maps the unit square 1O,1]x40,11 onto the quarter annulus R shown in Fig.l.

The perimeter of the unit square maps onto the perimeter of R, and lines of con-

stant s and constant t nAp onto the curvilinear co-ordinate system illustrated.

in other words, each of the curves shown in the figure is a curve ofgeneralized

co-ordinate s - coast. or t - const.

our problem is to construct a univalent (one-to-one) function U: S I R which

ustehe •on the boundary of S, i.e,
U(o1t) -k0,t)' (s,,0) -2,o) (4)

A function U which interpolates to F at a non-denumereble set of points as in

(4) will be termad a tranrafin.te interpolant of F.

To explain the- otion of transfinits mapping, we shall ird it convenient to

rely on the alg1braic theory of approximation developed in (3) and 14). In this

paper, by a projector P we shall mean an idsmpotent linear operator whose do-

main is the linear space F of all continuou functimns defined on S and whos

range is a subapace of F. The above interpolation problem (4) can be viewed as

a search for 4 projector P such that U - Pl!] is a univalent map of S - R which

satisfies the desir*d interpolaoty properties. Z is termed the projection of 'F

or the iamwg of r under P.

suppose now that o,1 wO %0.1 are four univariate tutctioas which satisfy

the carir•inaity oonn1d o~rn
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{, ± (
ii(k) for i,k a 0,1-Sk 0, 1 k (5)

ýJ M - djL for jt - OlJ

and consider the projectors P and Pt defined by

Fl=0 ()s 1t 0 (s)F(s6 ,t) + (6)(M51t
-0 .- ÷ (6)

P tF] -%0(t)F(at 0 ) + ý 1(t)F(s,t1 ) J
Then, the product projection

4 11 4
PsPt[F]- 0 * i(s)t i(t)(si,t) (7)

interpolates to F at the four corners of (0,11x[0,1] and the Boolean sum

projection

(P e P t)(•F] P I + P[I -I P tl] (8)

-6.
interpolates to F on the entire bounJary of (0,lx(O,1]. These properties of

the functions (7) and (8) may be readily verified by evaluating the right-hand

sides for the appropriate values of a and t and recalling the cardinality pro-

perties (5)1 see also (3] or (4].

The functions $ and M J in the above formulae 1ri as yet unspecified except

for their values at the points so a to t 0 and s t, - 1. They are commnly

referred to as 'blending functions' and Vne function U - (P S Pt)[F) Is termed

a blended interpolant. The simplest choice for the blendinag functioms in (5)

is the set of fotir linear functions
)0(5) - I - s. I0Ct) - 1 - t (9)

)- , tr 1(t) - t J

The vector-valued bivariate function U 2 (P0 Pt) (i obtainod by using (8) and

(9) is ter*d the bilinearly blended interpolant of F, Or the trensfnite bi-

liear Interpolene of F. Explicitly. it is given by

U(et) + s t) (l-o)F(sQ) eOs1)o

- s(l-t}t(1,0) - stF(l,()

This function has the properties that U - F on the perimeter of the unit square

(0,11.x,]. This vas first demonstrated by S.A. Coons in (21.

Figure 2 illustrates the mAppings induced by the projectors (6)-(8) on a

*T-be reader should verify that both the operators P and Pt are. ". fact, pro-
jectors, i.e., they are lirear and idaspotant. '
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region R with blending functions given by (9). It is readily seen that P s[•

and Pt[FJ each match only two opposing boundary segments, Ps P tF] matches only

the corners of R, but (P sP t)[] does, in fact, interpolate the complete pezi-

meter of R. The mappings Ps(Fl and Pt[F] are sometimes referred to as "linear

lofting", in analogy with the drafting procedure known as lofting. Ps P t[F],

which is linearly ruled in both directions, is termed bilinear, and (Ps 9 P t)E[Fwhit

is properly termed bilinearly blended. The three projectors P., Pt and P * Pt

are all transfinite projectors since they interpolate F at a nondenumerable num-

ber of points.

Other examples of transfinite mappings obtained using equation (10) are shown

in Figures 3,4 and 5.

We can generalize the above notions in two ways: first, we may consider map-

pings of R * E for general ni and secondly, we may interpolate F not only on

the boundary of the region R = ((xX 21-0 xT -n ) (s,t): 0 <. , t <11'~~~~~~ ~ 2I}n 5t:0< ,t<1, but

also along other 'flow lines' or constant generalized co-ordinate lines. To

thia end, let 0 < s 0 < <l < < sM - 1 and 0 - t0 < t1 < ... < t , and

let [(1 (s))- and Mi (t) ) be functions satisfying

Oi (sk) 6 ik# P(t . ) =- (11)

0 < i, k < M, 0 < J, . < N. Now define the projections

Pe• a IF i(S)F(sitt)

i-O

N 
(12)

X tip)t)*(a It.
j-O

The product projection

"itroae i-O 2 .-0)

interpolates to V on th. finite point get (( At .•N N while the Boolean sun

or tzansfinite incerpoisnt

(PS 0 Pt)(F1 u PsiP1 * P,(;) - PsPta (14)

interpolates to F along the MN*.2 lines a - sa, 0 < i <_ and t - tt, 0 < _ !N.

That is, if W(alt) B (P P Pt )F] then

U(sa,t I - F(s,t], 0 0 N

U(8100t F(s2.1t). 0 1M

It H - U0 - I and to f to W O, A, W t" 1. (14) reduces to the transfInit.

blin.Nr hnerposanft (10). If H - N - 2 and aO - to Os - t1 - 1/2, S2
t2 - 1, then using tUhe blending functions
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fo0(a) - 2(s-1/2) (s-l), * 0(t) - 2(t-1/2) (t-1)

fl (a) - 4•l-s), *1 (t) - 4t(l-t) (16)

f2(s) - 25(5-1/2), * 2 (t) - 2t(t-1/2)

in (14) yields the biquadratically blended interpolant of F along the sir lines

s - 0, 1/2, 1 and t - 0, 1/2, 1.

There are cases in which bilinear transfinite mapping techniques will not

produce a satisfactory curvilinear grid. This typically happens on regions R

which are so grossly distorted that there is either too grent a variation in the

size of grid elements or protiens of the generalized co-ordinate curves actually

map outside the region ("overepill*, cf. [5]). An example is shown in Figure 6.

Here, a bilinear transfinite mapping was executed with the result that some

constant generalized co-ordinate lines overspilled the region.

There are basically three ways to deal with such difficulties. First, one

may decompose the overly complex region into two or more simpler subregions

and map each of these separately. Although this approach generally works well,

there may be problems at the interfaces between subregions, since the general-

ized co-ordinate lines will have slope discontinuities there. one way of

handling this difficulty is to eaploy higher degree blending functions, e.g.,

cubic Hermite blending functions.

A second way of attempting to achieve a satisfactory transformation is to

reparsaetrise the boundary segments of R by, for example, introducing monotonic

trenwformations of the independent variables a ed/or t.

Another way of &&aling with complex regions is to introduce auxiliary con-

straints into the traneformation problem. Since the paramunt objective is to

obtain a one-to-one (invertible) mapping of S onto R, the analyst is perfectly

froe to enforce whatever a4ttional cons" -&.ilts ha feels will guarantee the in-

vertibility of the mapping. fn our esx*.* _-, -. : have generally !%xd it ade-

quate to specify, as an auxililay constraint, the image (i.e., the appe pOel-

tioe) of a single interior point of S. That is, we identify where limide R we

desire to i-Ap a selected point in the interior of S. For simplicity, suppose

the point in S wtwee image position we want to constrain is the aid-point of

the square, a - t - 1/2. We want to force this point to sap into the point in R

having co-ordinates (••). Let U be the biline•rly blended functiot. of (10).

Then, the following treansfoation map" 3S ato •R aw nwp (1/2,1/2) onto the

point (o,$)r 2 

I o 0
TIo verify thie~aots that along the perimeter of 10.l~s(0.lJ the right-hand side
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reduces to just ý(s,t), which maps 3S exactly onto DR, as desired. For

(s,t) - (1/2,1/2), the right-hand side reduces to just (a,8). More generally,

the point (s,t) - (a,b) can be mapped into (CI) by, the formula:

V(vt) - U(s,t) + -Q)

a (1-a)b (1-b) 0A) U(i~
As an example, Figure 6 shows a region R for which the bilinearly blended

transformation (10) does not give an invertible mapping of S onto R. It is

intuitively clear that the image of the point (s,t) - (1/2,1/2) has mapped too

far to the right. Therefore, we enforce the auxiliary constraint that the point

(1/2,1/2) in S should nap onto the point (.494,.119) in R. Figure 7 illustrates

the result of the transformation obtained using (17).

In (5], Gordon and Hall propose the use of more general auxiliary constraints.

For example, instead of just a single point, they consider mappings for which

lines of constant a or t are forced to map onto preselected generalized

co-ordinate curves in the domain R. Such curves may arise naturally as inter-

faces between subregions of R, or they may be determined by the analyst on geo-

metric grounds. The transformation formulas appropriate to theose constrained

maps are given by equation (14).

If the region R is basically triangular, in contrast to quadrilateral trans-

finite interpolation techniques over triangles may be more appropriate. The

theory for such "trilinearly blended" methods wva developed in [1). The details

of these techniques am applied to grid generation may be found in (6] and (?).

As a practical matter, the curves bounding R may not be easily represented

as closed-form mathematical expressions. Neverthelesa, the above results still

apply if the boundary curves are represented as discrete point sets. i.e.,

piecevise linear curves. For a fuller discussion of d/[crCI•zed transfinite

moppi aga see (6) and (7]. Surfaces in Euclidean 3-space are handled in pre-

cisely thw *am way as 2-0 regions. All that need be done is to add the third

co-ordinate functions Z (s) end Z(t) to the x and y compoeants. A discussion of

surface decompoition techniques is given in (7).

3. THMREE-DI0 RSIOtAL SOLID SR1C¶UM

The purpose of this section is to outline the extension$ to 3-dimenluonS of

the biveriato transfinite mapping techniques discussed above. To begin, ve

c-oasidr the folloving three projectorst

P11) (l-9)(O0t.u) -e(l•t~u)

P (l-)(e.Ou t( u)

Pu[) - (l-u)F(s,t,o) * uF(s.t.1)
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In these expressions, the "primitive function" I is a vector-valued function

of the three independent parameters st and u. As s,t and u range over the unit

cube, F maps out the solid volume R. Depending upon the co-ordinate system used,

the three components of F may correspond to CArtesian, spherical, cylindrical,

toroidal, etc. co-ordinates. As a practical matter, the co-ordinate system

employed should be that which most appropriately fits the geometry and topology

of the problem domain.

Quite clearly, the three projectors in (19) correspond, respectively, to

linear blending (lofting) in s,t and u. Now, however, the geometric entities

on the right-hand side of the expressions are not curves, as in (6), but rather

surfaces. For example, as t and u range over the parameter domain 10,1]x[0,1],

the vector-valued function F(O,t,u) traces out a surface in Euclidean 3-space

corresponding to one of the six faces of the solid volume R.

It is uneful to consider the pairwise products of the above three projectors.

For instance, the product of the first and the second is

P S(P t]) - (l-s) (M-t)F(O,O,u) + (l-s'tF(Ol,u)

+ s(l-t)F(l,O,u) + st(illu)

The right-hand side of this expression contains four expressions which refer to

the edges of the object under consideration. By evaluating the expression

along the four edges (s,t) - (0,O),(0,l),(l,O) and (1,1), it can be verified

that the trivariate function PS P t] does, in fact, match I along these edges.

(it m.,, e easily demonstrated that P P tF P - P Ps ', i..e., the projectors

commute, just as in the bivariate case.)

We have seen that the projectors PsPt and P reach interpolate the two oppos-u

ing faces of the solid volume deacribed by F(eotu), and that pioducts of pairs

of these 2rojectors interpolate to tha edges of the solid. If we take the pro-

duct of all three of the projectors in (19). we obtain the expressiont

P P PuI - (1-.)(l-t)(l-u)E(OOO) * (P.) (l-t)uF(O.Ol)

sttu1lJ

* (l-s)t~l-g)W(O,1,O) * (l-e~tuF(O~l,l)

* * (21)
4 s(l-t1(1-u)P(•.O.O) * s('-t)uF(1.0.1)

* ut(1-uW)(l,1.•) * stv.(l.2,l).

The right-hand side of thie expression contains values of F which refer to tho

eight wor4ors of the region R. it does, in fact, interpolate to the"e eight

corners. Since (21) 1i linear in each of the three pamaters st and u. it in

torned a erIlnr,*ar Inetrpolan.-. M'e . t,*kh of the trilinear interpolant is a six-

si~dd polyhedroa which passes through the vertices of Rt it is simply the 3-D
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generalization of a quadrilateral in Euclidean 2-space.

In the 2-dimensional case, one starts with the two projectors P and Pt of

(6) and, by combination, generates a total of four; namely, P., Pt PsPt and

P a*Pt. In three dimensions, the situation is much more complex and the variety
of possible projectors much richer. In (31 and (4), it is shown that under the

two binarary operations of operator multiplication and Boolean (0) addition, any

collection of commutative projectors forms a distributive lattice. Space does

not permit going into the details of this theory, but we can illustrate some of

the results in the trivariate case. Without proof, we state that there art 21

distinct projectors which can be formed by multiplication and.O addition of the

three projectors P., Pt and P . It. addition to those displayed above, the

following are examples.

P s Pt .P s +P t" P•5P t

P * P - sP - PsP P
s t u tu st u

P PtP P - P -PPP
s tu s tu stu

P Ft t u P 5u - P a + Pt P s P u t (P2

P *PeP -P VP .P -PP PP -PP P .PPP
I t 5 t u Ut tu us stu

One should note that, because of the idempotancy and linearity of the projectors,

much cancellation occurs. For instance, one has P * PaPt - P +* Pa t - P PsP

a P., which eans that nothing is achieved by takinq the. sum of P and P Pt

This is because the interpolatioc propert4ies of PPt are a subset of thoso of

the projector P.
An aspect of the theory developed in t3) and (4] is that there is an isaawt-

phisa between the distributive lattice of projectors and the associated distri-

butive lattice of their precilson sets. In other words, if we knov the expres-

sion for a certain projector, then we can dattrMine the point set on which it

interpolates by replacing operator multiplication by s*t intersection and C

a•dition by Set union. For example, the precision Set (stt of pointo oC vhich

it interpolates) of Pa con3isss of thes two faces of R defined b-y a - 0 and

s - It and similarly for Pt nd PU Thus. it follows from the isamorphisa t.Nat

the precision sets of the projectors in (22) are. raspsctivoly, qivan by thhe

following Oxpr••siOns in which so, St and S U are e precision Of Pa Ft

and P Z

=•U
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S u St

So U (St M S U

(s* t US(S A uS

S su S t u (S n S u) (23)

(S ri S t u (St n S u) u (Su n S a

Sa U S u U S
Sa ut u S

If one thinks of the precision sets, it is obvious that the weakest (*algebrai-

cally s1n1l*) of all projectors is the triple product P P tPu and the"Algebral-

cally malrla" projector is the Boolean sum of a11 three: P a Pt Pu . All

other possible projectors are algebraically ia-betvien these too.

Which of this miriad of 3-0 projectors one uses in practice is a matter of

ifat data is given: or, more precisely, where the data is given. In other words,

one is given the precision set and must use the iemorphim *backward* to infer

the appropriate projector 'i.e., interpolation formula). For instance, if one

does, in fact, know the exact sa-apes of all six of the bounding surfaces of R,

then the appropriate mapping equation is the full-blowm expression

(Pa * Pt 0 Pu )t]. Qhich explicitly involves all faces, all edi#as and all

corners. At the other extrem, one may only know the co-ordinates of the eiqht

corners of R. In this case, one would use the transformation equation (21).

In practice, the situation is usually somewhere in-between, i.e., the data is

seldom as complete as required by the maxýsal projector P 9 Pt 0 P or as scant

as only the *iqht vertices needed in P P t P( . The examples given belmw assume

that the function T I*e knui (i.e., data is given) oan the 12 edges of R. in

this case, the revlent transformation equation or mapping forvila lsi

(Pet0P t P U*PFUP')(1]

* l-sI (l-t)F(O.Ou) * (l-s)U'(O.l~u)

* -t)(-)(0,u• * st(1,l.u)

* (l-s) (l-u)(00,) *l-.)J(eOt~l) )
* e(1-u}f(i,t,0) sul(1,t,l)

- 2{ (l-s) (l-t) (1-u)(O00.O) * (1-u) tl-t)u•i0,0,1)

* (1-e)t•l-u)•(O.lO) * (l-.)t•f(Ol.ll)

* e(1-t)fl--u)0(,O,O) ' sfl-t.)u•lO,l'

* st(1-u,•(l~l.O) * .tJ~l,l~l)1.



181

ite mmutvlr0Z co-ýiontJte systam Mud~t bv fti fo1I@'ing

Rst)WI



182

PýFl p]

sPSPy3

(P,,N 4PP\F

Florp2



183

Figure 3
The curvilinear cc-ordlnate systemi .cnerated by the follcwing

poircuetrizajtim:

F(OA) = I ,FUX5t + .5 F1 ,t L5t + 2J

F ~ s , ) = [ 1 .2 5 - .7 5 c os O rs ) 1

F(sO,•) = , tI

L-2 + .75 sin ISJ

-2, 0,0 < s < .33
-6,5 + 13,5s, .33 < s < .66

{2|.51 2 5, :66 < s < I

.-F•~S,) =

+ 6S, 0.0 s < .33

0.0# .33 < s < 66

4 - 6s, ,66 _sLI.



184

Flqure 4
V~ trmnsflnlte nma of a region with a crack via the following
parcretrlzat1on:

F(s,O) -3 + 3s, 0.0 < s _ 0.5
q-3s, 0.5-•S 1 ,

-2, 0.0 < S < .33

-12.7 + 41.4S - 27.gs2, .33 Is < 66

2.5, .6 _ s < I

F(s, -3 + s 0.0 < S <.3
010 s 33

I 6 - 9s .66 s I I



TecufvillrWr- Co-orrdtnate system
tnUWc~ Us1ng the b1ilnear blmdxed trasflnltenIMPlng. TIE bwiý~~ segm~s ame:

4 -115s+ .5, .0o S ,33

-3. 5s +_.S2 6 s< I6

1.2s- 1.125s2  .661 S< -

-F(sjl)
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FI~ure 6
Bill~n&. blending here yields a non-LniI'alent nw,. The
Daroia-tr:zatotn of tle barri~ry is:

(0, t) Fj[1 .(1,t) r I1 t

F(s,0) 1 s], NsA)
r. J 3s+
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Figure 7
A curvilinear co-ordinote system with no "oerspill" Is ochieved
via (17). Here, the point (1/2,1/2) in the s,t-olcre Is mmoW
onto the point (.494, .119) In the x,y-oline,
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Flwmr 8
This nM~plng was Wlertjte via (18) by mmnqtr thePoint (I/IA4,112) In the s,t-Ocm~ cnto the Dinlt(-M6,-334) In the x~y-plmne. Nh bawrkiry sewlts a~re:

. (6 t 6 s- 3J + 6~t s in t/ )

F~ss -3
-3 2 -(6s -4.5)2 .4 67 1s i.83

-31 otherwise
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