
CO
o
p
o

THE AUTOMATED ASSEMBLY OF SIMULATION MQDEI5

(This paper is UNCLASSIFIED)

Colons 1 Thomas B. RoeLofs, USA (Ret)
Operations Analysis Division, General Research Corporation
Westgate Research Park, McLean, Va. 22101 (703-893-5900)

NTRQDUCTIQN

Most operations research analysts have, at one time or another,
anted to use a simulation model for the analysis of a problem being
tudied. Research of available models usually reveals that the formu-
ation needed hasn't been developed, or an existing model doesn't match
he problem. Faced with this situation he could modify the problem to
atch the available model, usually an unwise alternative, modify the
vailable model, or develop a model to match the problem. The formula-
ion and implementation of complex simulation models until recently has
equired a lot of talent, a lot of effort and a lot of time. Modifying
xisting models can be as costly as developing one. Many studies that
:ould have benefited from the application of simulation models by-passed
;hat route because of lack of time or resources.

^This paper will describe a system that has recently been developed
oy the General Research Corporation which provides the capability to
automate the assembly of simulation models. The system.was developed for
the US Army Logistics Doctrine, Systems and Readiness Agency, a Class II
Activity of the Department o£ the Army Deputy Chief of Staff for Logis-
tics. It has been tested and proven to operate satisfactorily.

BACKGROUMD
/'

> v

Several years ago the Research Analysis Corporation (RAC—the
predecessor to the Operations Analysis Division, General Research Corpor-
ation) was awarded a contract by the US Army which included the task of
developing a model of the US Army worldwide logistic system. The develop-
ment study was given the acronym "MAWLOGS" (Model of the US Army Worldwide
Logistic System). The task specified that the formulation was to be a
simulation model to be used to "compare proposed systems with each other
and with the current system to determine the relative merits of each
system."

The research thatpreceded developing an approach to the modeling
task revealed that the model had to be flexible in terms of functional
range, system scope, drive, and level of detail and be structured along
the lines of a node network system, which is characteristic of logistic
systems. The logistic problems that would need to be addressed by such
a model ranged froai Studying a single function within a small segment of
the system to those of a worldwide nature, usually multifunctional in
scope, and multi-item in detail. Thus, the model would have to be driven
by demands for various types of logistic support, such as the supply of
materiel and the provision of maintenance, originating at any echelon in
the system, ranging from the troop unit level to the national level.
Most of the problems identified during the course of the research focused

232

on less than the total system, involved two or more interacting functions
(e.g., supply, maintenance and transportation), and usually varied with
respect to the desired level of detail. In addition, there appeared to
be the need to treat one function, say supply, at one level of detail
while treating the other interacting functions, such as maintenance and
transportation, at different levels. A single model of the Army world-
wide logistic system that would include these options appeared inefficient
and indeed infeas^ble, considering available computers. Consequently, a
flexible modeling system seemed a reasonable approach, and the task
became one of designing a system for the rapid assembly of simulation
models of specified scope and level of detail, designed to focus on the
particular problem to be studied. Such a system has been developed and
is currently operational at the General Research Corporation (GRC) facil-
ity in McLean, Virginia. In the near future, the Army is expected to
develop the capability to apply the system at the Logistics Center at
Fort Lee, Virginia.

The total system developed for the Army by GRC, called the MAWLOGS
,.j System, includes two computerized components in addition to those required
| for the rapid assembly of simulation models. These include a small set
', of programs designed to preprocess "raw" data for input to a model,

called the Automated Input Data System, and a set of programs that process
I data output by a model, called the Output Data Postprocessor System.

They basically support the application of a model and neither will be
described in this paper. The complete documentation of the MAWLOGS

• System is expected to be disseminated by the Army near the end of 1973 •

■ (' GENERAL DESCRIPTION

^ AUTASIM is the acronym for the Automated Assembly of Simulation
Models. It is that part of the MAWLOGS System that creates simulation

, models. It represents a significant innovation in modeling methodology
that should be of considerable interest to Army operations research

i analysts. The description of the AUTASIM system is the purpose of this
t paper..^
1
.: ^The AUTASIM system consists of three elements: a Module Library, a
'^ . Model Description Language and a Model Assembler program. The Model

Assembler and the Model Description Language represent the primary inno-
vations in creating simulation mode Is .^Development of a Module Library

•' ' was not a trivial task, because it is broad in scope and actually required
more time and effort to develop than the other two elements. Currently,
it includes modular computer routines, each simulating a specific

^ activity, and service routines that provide the conventional elements
of' a simulation model. Its form was dictated largely by the other two

i elements. Certain of the modules in the library—called verbs—con-
| stitute the vocabulary of the model description language. The Model
| Description Language is a methodology for describing the node network
I structure of a model and the activities that are to be simulated at the

nodes and over the links in the model. The Model Assembler is a computer
^ program which, given the description of the system to be modeled, will

retrieve from the Module Library the required modules, link them together
as prescribed in the model description, and produce a computer program of
the system model.

233

SYSTEM CHARACTERISTICS

The AUTASIM system assembles simulation models of systems that can
be described as noae networks. Nodes are centers of activity and links
are communication and transportation paths between nodes. The models
can vary greatly in size and the scope of activities simulated. A model
may contain one or more system nodes. The activities that can be simu-
lated are represented by the modules in the Module Library. If an
activity is needed in a model that is not represented in the Module
Library, it is relatively simple to develop the required module or
modules and add them to the library.

The activities simulated at each node in the system modeled are
defined as an activity network of nodes and links, when more than one
activity is "simulated at a node. Each activity node can also be defined
as a subactlvity network. Figure 1 shows how a system can be represented
as different levels of module networks. The content of other nodes may
include the same modules but the network can be different. Modularity
in this form provides great flexibility in defining the activities to be
simulated at the desired level of detail. It also facilitates inclusion
in a model of only those features that will accomplish the purpose of the
model, with no extraneous logic and waste of core storage.

The AUTASIM system is fully automated. The Module Library is
written on a tape file. Given the description of a model to be assembled,
the Model Assembler program can assemble a model in a very brief period
of time—five to ten minutes. This rapid model assembly capability also
facilitates rapid changes to the activity content or system structure of
a model, a characteristic often needed when comparing alternative con-
cepts. The computer programs included in the AUTASIM system, the Model
Assembler and the modules in the library, are written to the maximum
extent feasible in USA Standard FORTRAN.

MODEL CHARACTERISTICS

A model produced by the AUTASIM system can be described as a
discrete-event, dynamic simulation model. Most AUTASIM models are also
stochastic; however, all elements of uncertainty in a model may be omitted
by the model designer, which would then yield a deterministic simulation
model.

The model programs generated by the Model Assembler eure written in
USA Standard FORTRAN.

Models assembled by this system have warmup and restart capabilities.
The former shortens model running time before statistics collection is
begun. The latter permits saving the status of a model at any point in
simulation time for future model restart at that point in time. This
permits the analysis of collected statistics at frequent intervals to
determine their adequacy and can conserve computer usage.

Every model Includes a complete statistics collection capability.
The statistics the user wishes to collect and the form in which they are
to be recorded are specified in the input data deck for model execution.
A generalized reporting capability is also included in each model. The

234

■■>#

•r; ̂ i

PS

I
ex

I
s
w

§

i

S
w
EH
03
>-
03

■H ^J
> «
•H O
•P s
O -P
td 0)

03

-P rt
■H O
> 3

•H +J
■P V

oi o

O -P

to
•H

235

1

Q

user is free to specify when the model is assembled the reports he
requires from the model. Statistics may also be collected in detail on
a tape file for postprocessing.

As an aid in verifying the model, a trace capability is included.
Prior to full-scale execution of a model, it Is prudent to ensure that
the.model does, in fact, represent the desired system. This is usually
a tedious and time- consuming job, which is simplified by the built-in
capability to trace events through all or parts of the system modeled.

MODEL DESCRIPTION

A model is described by using a symbolic, language that facilitates
the description of very complex node networks and is accepted by the
Model Assembler program. The language consists of a "vocabulary" of
module names, a set of delimiters, and a set of conventions for com-
bining module names and delimiters to define the content and structure
of a model. Experience has shown that this capability by itself is a
very powerful tool. Multifunctional networks so complex as to be almost
impossible to draw in the form of node network diagrams, can be described
in the Model Description Language.

An illustration of the use of the language in describing a model
will be given following the definition of some terms that have special
meaning in the context of the AUTASIM system. These terms axe listed
below.

■' ;P$P
■ &

System

Node

Verb

Simple verb

Nonsimple verb

Module

a network of nodes connected by links.

a special block of programming logic
which can be referenced in a model. An
activity center.

any block of programming logic which
can be included in a model description.

a block of FORTRAN code,
simulating em activity.

The logic for

a structured assemblage of simple verbs .
into a larger block of logic.

any block of logic which is contained in
the Module Library; the set of modules
includes verbs,, service routines, and
common data structure decks.

Parameter Slot - a point in the logic of a verb at which
control may be transferred to logic out-
side the verb.

The verbs in the Module Library are the vocabulary of the model
description language. The content of a model is the set of simple verbs,
or blocks of prograjmning logic, which are specified in the model descrip-
tion. The structure of a model is the way the content blocks are inter-
connected.

236

t

The general structure of a verb is shown in Figure 2. The header
information includes a reference to the routines called by the verb and
the input data requirements of the verb. The program of a verb, like
most programs, consists of logical steps or parts, with some of the parts
contained in subprograms that are called from within the program. In
the case of a verb, all the parts need not be included in the program or

! even be referenced by name, since a general external reference can be
made. Parameter slots provide the capability of external references that
need not be preapecified. A parameter slot can be Inserted in the verb
program at the point where logic outside the main verb logic may be

I applied to complete the function of the verb. A verb that deals with
| reordering stock, for example, could determine the reorder quantity by

any of several policies. When the reorder verb program is written, the
specific reorder policy need not be known and a parameter slot can be
inserted at the place in the program where such a policy would be imple-

| mented. The person describing the model can therefore specify the policy
(he wants implemented by filling the parameter slot with a reference,

probably another verb, thatt simulates the desired policy. This modular
form of programming provides great flexibility and minimizes the size of
verb programs. The simple multinode system diagram shown in Figure 3

' will be used to demonstrate how the model description language is used
to describe a system. The diagram shows a five-node system. Each node
must be given a name or number of from one to five characters. Recall
that each node is an activity center where one or more activities are
simulated. The block in Node 1 labeled A represents the activities to
be simulated at Node 1, the blocks labeled A, C and D, those to be simu-
lated at Node 2, etc. The precise activities represented by A at Node 1

i _. and their connection with Node 2 are described in the Model Description
; ', Language as shown below.

! NÖDE1. VERBA (l = VERBB $
2 = VEEBC (1 = VERBB)),DEIAY(P=3),*N0DE2 $

This description of Node 1 states that it contains the activity
represented by VERBA; that at the point in the execution of the logic
of VERBA where Parameter Slot 1 is encountered, control is transferred
to VERBB; that after the execution of the entire logic of VERBB, control
is returned to VERBA; that after the execution of some more logic of
VERBA where Parameter Slot 2 is encountered, control is transferred to
VERBC; that at the point in the execution of VERBC where Parameter Slot 1

.-i-.^l .is encountered, control is transferred to VERBB; that after the entire
logic of VERBB is executed, control is returned to VERBC; that after the
remaining logic of VERBC is executed, control is returned to VERBA; that
after the remaining logic of VERBA is executed, control is transferred
to verb DELAY, which has been directed to find a value in probability
distribution number 3 for the delay parameter in that verb; that after
verb DELAY is executed, control is transferred to Node 2. Schematically
this description would appear as shown in Figure k.

The significance of this illustration is that it demonstrates how
one can describe a model including very complex interrelations among
blocks of logic with time interdependencies among system processes in
relatively simple form. It also demonstrates the flexibility in varying
logical procedures available to the person describing a system to be
modeled. Admittedly he must be very familiar with the system to be

237

\

VERB STRUCTUBE

HEADER INFORMATION

PROGRAM LOGIC

(FORTRAN Statements)

PARAMETER SLOT 1

PROGRAM LOGIC

PARAMETER SLOT 2

PROGRAM LOGIC

Fig. 2

."}

238

ILLUSTRATIVE NODE NETWORK SYSTEM

NODE 5 NODE k

1 ,■

^;:€-
Fig. 3

239

SCHEMATIC REPRESENTATION OF FLOW CONTROL

IIQDEI. VERBA.
-Verb Logic

PS1 'VERBB

PS2 VERBC

PSI VERBB

PS3

• NQDE2.

Fig. k

240

modeled, which is essential for any analyst describing a model, and quite
intimate with the contents of the Module Library.

Model descriptions can be simplified by the use of nonsimple verbs.
Commonly used combinations of simple verbs can be formed into nonsimple
verbs and be stored as such in the Module Library. The earlier example
of verb VEKBA In Node 1 can be constructed as nonsimple verb NSVA1 and
be defined as shown below.

NSVA1: VERBA (l = VEEBB $ 2 = VERBC (l = VERBB)), ** 1

The key point is that NSVA1 has been defined as a particular pattern
of simple verbs VERBA, VERBB and VERBC and can be used in model descrip-
tions. The description of Node 1 shown earlier can now be written as
follows:

N0DE1. NSVA1 (1 = DELAY(P=3), * NQDE2) $

The reference to nonsimple verb NSVA1 in the model description would
cause the Model Assembler to include its structure in the model. One or
more verbs used to define a nonsimple verb may themselves be nonsimple,
to any depth. Every nonsimple verb however must ultimately be expandable
into only simple verbs, since, among verbs only simple verbs may contain
program statements that are executed.

MODEL ASSEMBLER

'ifö&k

The Model Assembler is a computer program that, given the descrip-
tion of a model written in the Model Description Language and access to
the Module Library, will retrieve from the library the required modules,
generate linkage routines interconnecting them according to the model
description, and output a complete computer program of the model. An
additional input for a model being assembled is a set of dimension values
that are used to set the dimensions of the data storage arrays in the
model program.

The model assembly process is shown in Figure 5- The assembler
scans the model description one node at a time, building a list of the
designated verbs. Any nonsimple verbs are then expanded. Modules
referenced by the verbs on the list are then added to the list. At the
end of a node scan, linkage routines are created which connect the verbs
in the specified manner. This process is repeated for each node in the
model description.

After all nodes are scanned, the modules required in the model are
retrieved from the Module Library and the module and linkage source code
are combined. Then a list of all common data structure decks required
by these modules is made, the decks are retrieved from the Module Library,
and their dimension values are set.

The Model Assembler outputs include the complete model program
written on a tape file, a listing of the model program, an expanded model
description, a list of the modules in the model, and a list of the model
input data requirements. The expanded model description includes the

241

o
h—« 1

.-1 t-l

t—t

_1 o W- I 1"'! o
o
w

J
00

•H

« S3
o o
w t-H v.
o w fd
— o Ö

M
Ö

>

o

»a < \
vA i <~ < rA w ^ \ y o s H ^ \
-^ n; -n -N-

e M (1, Q
<A

 i

242

description as input plus the expansion of all nonslmple verbs to show
their structure. The list of input data requirements is an important
and valuable output of the Model Assembler, because the inputs for a
model depend on the verbs included in the model. Each model therefore
requires a unique set of inputs. This listing is a great help to the
model use-.- in preparing the inputs for model execution.

Figure 6 shows how the model input requirements are described. The
inputs are listed by node and within node by module in the order in which
the cards are to be assembled for input. The input requirements for a
module include a description of each data element, the card columns in
which the data are punched, and the format for the data.

The Model Assembler program is written in FORTRAN, occupies about
32,000 words of core storage on the Control Data 6400 computer and
requires nine files. Model generation times have ranged from five to
ten minutes of central processor time on a Control Data 6U00 computer.
Small models of six to eight nodes could require the lower bound of the
time, while large models of about twenty nodes could require the upper
bound of time.

It should be noted that since the Model Assembler scans one node at
a time, there is no practical limit on the size of the models that can
be generated. Thus the assembler could produce models that would exceed
the core capacity of generally available computers.

MCDUIE LIBRARY

A brief overview of the Module Library is needed to complete the
description of the AUTASIM system. The general structure of the library
is shown in Figure 7. As stated earlier it consists of verbs, service
routines and common data structure decks. The verbs currently in the
library are those required to assemble models of logistic systems. This
part of the library is expected to grow as new verbs are developed and
added to simulate activities foreign to those simulated by the current
verb library. The service routines represent a complete package required
for almost any model that could be assembled by this system. Common data
structure decks might be expanded as new verbs are added. A point to be
made is that the addition of new verbs required by models that can not
be assembled from existing verbs is a trivial cask compared to building
a complete model in the conventional manner.

The figure does not represent the true proportion of verbs, service
routines and common decks. There are about k-OO modules currently in the
library. Approximately 220 are verbs, l60 are service routines and 20
are common data decks.

It was decided by the Army that the initial set of verbs to be devel-
oped would be those necessary to simulate the Army material support
system with supporting transportation and communications. The materiel
support system can be defined as that part of Army logistics by which
fleets of end items are supplied to and maintained in using units. The
content of the verb section of the module library reflects that decision.
Figure 8 shows the four families of verbs currently in the library.

243

T.

CO
fe PS la

H O

w o

s

i

i
m

s

M

o
pC4

^ H •

Ol l.

CM

J

rH

n

244

MQDUIE LIBRARY STRUCTURE

■i ¥ vV1 i
'$ä ̂ m ™

[3JEW_VERBS_

SERVICE ROUTINES

Executive Routines

Program Control Routines

Time Flow

Logic Flow Stacks

Data Accessing Routines

Temporary Data

Permanent Data

Random Variables

Statistics Collection

COMMON DATA STRUCTURE DECKS

m
Fig. 7

245

:•. EXPANDED VIEW OF VERB SECTION

OF MQDUIE LXBRARY

I

I

FIELD MAINTENANCE AND SUPPLY FAMILIES

Supply

Direct Exchange

Maintenance

Rebuild

Float

WHOIESAIE SUPPLY AND MAINTENANCE FAMILIES

National Inventory Control Points

Supply Depots

Maintenance Facilities

TRANSPORTATION FAMILIES

Aggregate Transportation

Detailed Transportation

COMMUNICATION FAMILY

•' • I

Fig. 8

246

The field maintenance and supply families simulate the material
support system below the wholesale level. These verbs simulate the key
supply and maintenance activities associated with the support of troop
units and fleets of equipment at the troop unit level. They include the
generation of maintenance demands, the repair, rebuild and salvage of
end items and reparable components, and the supply of end items, com-
ponents and repair parts. The level of detail is that of individual
transactions, such as maintenance demands, supply reiulsltlons and
individual shipments. Statistics are collected on fleet availability,
supply response, workloads, resource levels, resource utilization and
time delays.

The field supply and DX activities simulated Include demand processing,
replenishment ordering, receipt processing, demand forecasting and re-
vision of Inventory policy parameters. The major maintenance activities
simulated include diagnosis, skill assignment, parts assignment and
repair. Related activities include generation of demands, ordering of
parts, and Issues from maintenance floats. The main difference between
field maintenance and field rebuild is that in field maintenance unservice-
able items are repaired one at a time, while In field rebuild they are
repaired in batches.

In wholesale supply and maintenance the available ^evels of detail
are similar to those for the field. That is, activities are simulated
at the level of individual transactions, such as single requisitions,
procurement orders, and supply control studies for individual items.
The wholesale system is viewed as consisting of NICPs, supply depots and
maintenance facilities.

E
^

Both of the transportation families simulate the movement of indi-
vidual shipments over links that connect transportation terminals. Up
to six different modes of transportation can be simulated in the. same
model. These are air, sea, rail, highway, Inland waterway and trans-
shipment from one mode to another. In the aggregate family only the
movement of Items with a combination of delay times for terminal oper-
ations is simulated. The detailef" family simulates the consolidation
of shipments into vehicle or carrier loads and the movement of the
carriers through the network, assigning docks at terminals, maintaining
arrival and departure queues, and diverting carriers from overloaded
terminals.

The communications family is designed to simulate delays encountered
in processing ani forwarding individual messages through communication
terminals. Various forms of message scheduling are available.

In summary, the Model Description Language has been described. It
facilitates the description of very complex node network systems, multi-
functional and multiechelon in nature. It is a very powerful modeling
tool. The Model Assembler applies this language in assembling discrete-
event dynamic simulation models. Given the required modules, it can
assemble models in five to ten minutes of CP time on a Control Data 6U00
computer. The combined capabilities of the Model Description Language
and the Model Assembler represent significant technological achievements
that should lead to greater use of simulation models in operations research
studies. The content of the current Module Library provides the capability

247

r

to model a wide range of logistic systems at several levels of detail.
It can easily be expanded to embrace additional functions or different
levels of detail for functions currently represented. The operations
research analyst looking for a model to fit his problem should consider
the AUTASIM system. It is not a model in itself, but a system for the
rapid creation of a wide range of simple or complex simulation models.

i

In closing it is appropriate that contributions to this paper by
two colleagues at GRC be acknowledged. They are Dr. Robert T. Burger
and Mr. Howard A. Markham. They and Mr. Thomas M. Lisi, inventor of
the model assembly.language and developer of the initial formulation of
the model assembler program, axe largely responsible for the develop-
ment of AUTASIM.

248

