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ADVANCED DEVELOPMENT OF INSENSITIVE PBX'S FOR
LESS VULNERABLE MUNITIONS

WHITE OAK, SILVER SPRING, MARYLAND 20910
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Thxee approaches that can be taken to formulate safer
explosives are:

%ﬁ;;;—;;~iow energy explosives;

LZ\ Use of fuel/oxidizer mixtures,

mP000477

PPATRETRIN,

C:meﬂ Use of soft, rubbery exp1031ves.

o —— e e _.._———'v"
B "

C:;‘;;;:Z:on vulnerablllty is strongly affected by the explo-
sive's properties, but is also very dependent on the t-~rhead
physical characteristics. Other things that affect vuinera-
bility include the quality of the explosive charge, ambient
conditions, the presence of other ordnance items, and the way
external energy is deposited into the explosive.

( An insensitive explosive must not react easily to external

- stimuli, or must react mildly under a variety of conditions.
The difference in sensitivity must be large enough in practical
situations to be worthwhile. Test results will be discussed
that show that certain new, high-performance explosives also
have exceptionally good vulnerability behavior.

INTRODUCTION

For over twenty years, the Navy has been developing two
new types of explosives that have demonstrated exceptionally
good vulnerability behavior compared to conventional TNT-based
melt-cast explosives and standard pressed explosives. Pre-
viously, applications requiring good vulnerability have resorted
to using low-energy explosives, such as Explosive D, DATB and
picric acid. The poor performance characteristics of such
explosives restricted their use to situations where there was
no alternative. Aircraft carrier fires, train fires, and other
accidents that have produced violent explosive reactions have
pointed out the need for less vulnerable munitions. 1It has
also been shown that the vulnerability of complex, high-value
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launch platforms, such as tanks and ships, is very dependent

on the vulnerability of on-board munitions. Above-the-waterline
storage of ordnance on ships has caused concern about the impact
of this on ship survivability.

This paper describes fairly recent developments by the
Navy of two types of high-performance, insensitive plastic .
bonded explosives (PBX's). The insensitive PBX's are soft,
rubbery explosives that have energetic, powdered solids

incorporated into polymeric binders.
have been under development for quite
still some concern about their use in

While these explosives
a few years, there is
munitions because they

have unusual properties. They appear to be sensitive when
tested in some standari tests, such as the small-scale drop-
weight impact tester. Furthermore, the new PBX's are similar
to composite propellants, have more complicated compositions,
cannot normally be processed in standard explosives production
facilities, and are expected to ccst more than TNT explosives.

The Navy has taken several actions to emphasize the need
for less vulnerable explosives and to facilitate their intro-
duction into service use. One action was to issue an Operational
Requirement (OR) document defining the need for insensitive
and high performance explosives. The second was to establish
an Explosives Advanced Development (EAD) Program to address
the producibility of and to more fully characterize promising
new explosives, including co-:ducting large-scale tests in
actual or simulated warheads to demonstrate their behavior.

The purposes of these EAD Program efforts are to reduce the
cost of weapons using new explosives and to minimize engineer-
ing development program risks when they are selected for weapon
applications.

INSENSITIVE PBX'S

The first family of PBX's that were found to have good
vulnerability behavior compared to molecular explosives, such
as TNT, RDX, and mixtures of these, were explosives containing
fuel and oxidizer rich ingredients formulated for use as under-
water explosives. Development of these explosives started
in the late 1950's. They are castable materials that cure
to rubbery solids. The compositions of two of these explosives
are shown on Table 1. The separate fuel and oxygen rich ingre-
dients react during the detonation process to achieve the desired
output. Some of the properties of these underwater explosives
are shown on Table 2. They appear sensitive based on the small-
scale, drop-weight impact test (easy to ignite), but are insensi-
tive based on the large-scale gap test (LSGT) and have large
critical diameters.
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Development of a second family of PBX's, with good munition
vulnerability properties and good performance in fragmentation
warheads, started in the mid-1960's. An example of this kind
of PBX is shown on Table 3. These PBX's are high-solids content,
castable explosives that also cure to rubbery solids. They
generally contain the nitramines, RDX or HMX, and sometimes
aluminum (AL) powder. The PBX example shown contains a moderately
energetic plasticizer. Other PBX's in this family have been
formulated with all "inert” binders using commercially available
elastomeric polymers, including polyurethanes and polyesters.
Properties for the PBX shown on Table 3 are given in Table 4.
These PBX's generally have mid-range ¢rop-weight impact test
heights (moderately easy to ignite), have moderate LSGT sensi-
tivities, and critical diameters similar to standard explosives
with comparable chemical energy.

One way the behavior of the insensitive PBX's deviates
from past explosives is that the drop-weight impact test results
do not correlate with field handling hazards. This was also
found to be the situation for composite propellants containing
ammonium perchlorate (AP). Such propellants could not be detonated-
even as large diameter charges, in spite of the fact that they
had drop-weight impact sensitivities comparable to booster
explosives. The good vulnerability behavior of the insensitive
PBX's is apparently due to their soft, rubbery properties,
to the fact that their cured density is close to the theoretical
maximum density (TMD), to the way they fracture when loaded
above their mechanical limits, and to their burning characteristics.

Explosive reaction to external shocks and mechanical energy
sources is generally considered to be caused by hot-spots which
grow, producing gas pressure that can cause structural failure
of the case and explosive charge. Explosive breakup and cther
phenomena can lead to more violent reactions that can result
in deflagration to detonation transition (DDT). It is believed
that the rubbery PBX's distribute external energy sources through-
out a greater volume of the explosive charge to reduce localized
heating. If ignition should occur, the PBX burning characteristics
and fracture mechanice apparently help to minimize reaction
violence.

The composite underwater explosives complicate the ignition
and growth process because of the use of relatively insensitive
ingredients that produce a lot of energy by a diffusion, mass-
transport burning process and because of their large critical
diameters., The mixture of fuel and oxidizer chemicals increases
the potential for explosive reaction (compared to the individual
chemicals); however, the relatively long time that is needed to
allow for gas phase mixing and the large critical diameter favor
the continuation of burning reactions instead of DDT. This
burning can be vigorous if confined and will produce pressure
rupture explosions, but it is relatively slow, is much less
likely to lead to detonation/mass detonation, and is possible
to control by sprinkler systems or other damage control techniques.
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EXPLOSIVES ADVANCED DEVELOPMENT

The assessment of new explosives, such as the PBX's described
above, is difficult when they deviate from "normal®™ behavior.
Weapon developers are reluctant to use new technolcgy when
it is not a simple extension of existing technology. The
absence of historical data and lack of experience increases
their reluctance. Under these circumstances, it is important
to conduct large-scale tests to provide proof of explosive
behavior and to demonst:ate the ability to make correct. pre-
dictions. Many tests are sometimes required to obtain reasonable
estimates of mean values and their statistical variability,
especially if there is a low probability that the event will
occur.

The U.S. Navy has established an Explosives Advanced
Dvelopment (EAD) Program to help move promising new explosive
technology from the laboratory to use in weapons. The EAD
Program supports the work efforts shown on Table 5. The purposes
of these efforts are to reduce manufacturing costs and to reduce
the risks associated with putting new explosives into munitions.
Explosives are put through a five-phase test and evaluation
process, shown on Table 6, that takes about five years to complete.

A compilation of test procedures is being assembled by
the EAD Program to describe the testing that is done. The
test procedures will include a description of generic test
hardware and predictive techniques. The purposes for selecting
special generic hardware are to use low-cost test units, to
have consistency from test to test, and to obtain credible
data on explosives behavior under realistic conditions for
weapon applications. The generic test units are either simple,
readily available items such as 76-mm and 127-mm gun projectiles,
or specially designed items as shown on Figures 1 and 2.

Several similar explosives are often put through advanced
development at the same time to compare them and select the
best one. Methods have been prepared to rate explosives at
different points during the five-phase development process.
This is done using "ranking schemes"™ and is being done during
development on explosives that are very similar, to reduce
the number of explosives in advanced development and the cost
of testing. The ranking schemes are used at the end of certain
development test phases.

These ranking schemes are a collection of explosives
properties (attributes) that are given point values based on
how important the property is felt to be. The explosive being
evaluated is given a rating for each property. Final scores
are sums of the individual property ratings times the point
value for that property. A ranking scheme used to evaluate
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hazards and vulnerability is shown on Table 7. The PBX that
receives the highest score is considered to be the safest!'or
least vulnerable. The ratings determined for explosives evalu-
ated using the safety ranking scheme are determined either

on the basis of the violence of test results (no reaction up

to a detonation), or on the basis of relative performance

compared to some standard (for example, LSGT sensitivity compared

to Comp .B).. The ranking schemes are intended to be fairly
general, but are somewhat configured for classes of explosives,
for example castable main-charge PBX's.

EXPLOSIVES VULNERABILITY TESTING

Some of the energy sources that can affect explosive
hazards and vulnerability behavior of munitions are shown on
Figure 3. Predicting hazards and vulnerability behavior is
difficult. There are many conditions that can start a low
level reaction, or ignition in an explosive; however, in many
situations it is not possible to predict at what level this
will occur. Once a substantial ignition of the explosive does
occur, the problem of predicting the behavior of the munition
is complicated by uncertainties concerning the growth process
and violence of the final event. The two important questions
are:

. What is the probability that an external stimulus will
cause a persistent explosive reaction?

- What are the statistics of the response, that is, the
level of the reaction and its variability?

An analysis of transportation accidents in the U.S. concluded
that fire was the cause of explosive reaction in most, if not
all, cases. Mechanical and hydrodynamic shocks also can be

the cause of unintentional explosive reaction, in the handling
of munitions, during combat, or as a result of violent explosive
reaction of other munitions (sympathetic reaction).

The uncertainties associated with prediction of both
munition performance and vulnerability behavior has placed
emphasis on large-scale testing for assessing these kinds of
behavior. Even for situations where adequate predictions can
be made, large-scale testing is often done to confirm the
predictions and to demonstrate explosive behavior. "Safety"
tests, hazards tests, and vulnerability tests are included
in most weapon development programs. Four tests that are
required for many U.S. Navy weapons are the 1l2-meter é40-foot)
drop, a fuel fire fast couk-off, a slow cook-off (3.3YC per
hour tc reaction), and a 20-mm bullet impact. Special tests
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also are conducted on weapons, depending on the weapon's charac-

teristics and the environments (including extreme environments)

that the ordnance package is expected to see between the time
it is loaded and the time it is used. i

Typical results of the reaction of warheads to the Navy's
WR-50 tests are shown on Table 8. The "pre-1970" ‘results are
representative of the behavior of conventional TNT-based and
pressed explosives. Slow cook-off (heating at 3.3°C/hr until
explosive reaction) produces the most violent reaction. Very
seldom does the 12-meter (40-foot) drop produce any reaction,
and if it does the warhead is redesigned to eliminate the cause.
A compilation of WR-50 test results for PBXN-103 loaded into
a number of different hardware test items containing from 45
to 550 Kg of explosive is shown on Table 9. Even though PBXN-
103 is a very energetic explosive, it has good wvulnerability
characteristics.

A comparison of vulnerability tests conducted on a non-
aluminized PBX (Table 3) loaded into generic 76-mm and 127~
mm projectile test units with a standard projectile explosive,
Composition A-3, is shown on Table 10. The PBX explosive pro-
duces less violent reactions in most of the tests, although
the explosive will start to react at similar input levels.,

The time to ignition in the fast cook~off test is about the
same for the PBX and Composition A-3, but the PBX only burns
leaving the projectile intact. The Composition A-3 produces
a partial detonation with air blast overpressures equivalent
to a detonation of about one-half the explosive.

A sympathetic detonation test set-up is shown on Figure 4.
The center, or donor projectile, is detonated. The distance
between the two projectiles on either side, the acceptor pro-
jectiles, and the donor are varied to f£ind the 50-percent
probability standoff distance for sympathetic detonation.
The PBX did not sympathetically detonate in either the 76-mm
or the 127-mm configurations even when the acceptor projectiles
were placed in contact with the donor. Figure 5 shows the
acceptor projectile fragments for a 127-mm sympathetic detona-
tion test at zero standoff. The 50-percent standoff distance
for Composition A-3 was 18 to 25 cm.

The setback shock test is a drop test that subjects the
explosive to a pressure pulse similar to the set-back pulse
seen during gun firing. The setback shock test can be con-
ducted at different pressure levels, up to six to eight times
the pressure experienced during gur. launch. The PBX and
Composition A-3 start to react at similar pressure levels:;
however, the PBX produces very mild reactions while Composition
A-3 produces violent explosions.
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The safety and vulnerability attributes listed on Table
7 have been determined for new, insensitive, aluminized PBX's.
Results of vulnerability tests for one are shown on Table 11.
The fast ccok-~off test result for PBX loaded into the Heavy

Wall Penetrator (HWP) generic test unit is shown
6. Pressure from the burning explosive caused a
rupture. The explosive proceeded to burn mildly
all consumed. Composition B detonated under the
conditions.

on Figure
loading port
until it was
same test

Figure 7 shows a Naturally Fragmenting (NF) generic test
unit with added end confinement that was loaded with a PBX,
after a multiple bullet impact test (five 20-mm rounds at 1120
m/sec and 50 msec intervals). The case split open in the back,
but the explosive only burned. The Composition B reaction was
just a little more violent under the same conditions, producing
a deflagration. Under the heavier confinement of a 127-mm
projectile, Composition B detonated while the PBX still pro-
duced only a burning reaction. The same test conducted on
the PBX in a generic bomb case caused mild explosive burning,
as shown in Figure 8 (bullet exit side). H~6 produced an
explosion reaction in this configuration, Figure 9.

Some of the tests discussed above are new, so there is
not much of a data base on results for a variety of explosives.
However, the test results so far indicate that in some situations
it takes more input energy to cause an explosive reaction for
insensitive PBX's, compared to conventional TNT-based or pressed
explosives. The PBX's also often appear to react less violently
when explosive reactions are started under test hardware confinement.

CONCLUSIONS

Two new families of rubbery PBX's developed by the U.S.
Navy are high-performance explosives with good vulnerability
characteristics. Work is being done to define better methods
for predicting ordnance performance and vulnerability, but
this still cannot be done for many conditions. It is necessary
to dc large-scale hardware tests to cobtain data and to demonstrate
that predictions are valid.

The long t/me and high costs associated with large-scale
testing has caused the Navy to undertake a new Explosives
Advanced Develcpment Program. Work is being done under this
program on pilot plant scale-up and large-scale vulnerability
and performanr.e testing of new explosives.

Recent ‘.arge-scale testing of several new rubbery PBX's
show that tltey have better vulnerability behavior than counter-
part, conveational TNT-based or pressed explosives. The improved
vualnerabil .ty behavior of these new PBX's is thought tc be due
primarily to their rubbery physical properties.
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TABLES, EADPROGRAMWORK EFFORTS }

IMPROVE EXPLOSIVES PRODUCIBILITY AND CONDUCT PILOT PLANT SCALE-UP.

BETTER CHARACTERIZE EXPLOSIVES AND CONDUCT LARGE-SCALE TESTS.

o DEVELOP PREDICTIVE METHODS TO IMPROVE WARHEAD DESIGN AND USE. \

® PROVIDE A PRINTED DOCUMENT AND A COMPUTERIZED STORAGE-RETRIEVAL
DATA BASE ON EXPLOSIVES PROPERTIES.

e COORDINATE EXPLOSIVES DEVELOPMENT WITH WEAPON DEVELOPERS, ( .’
SPONSORS, PRODUCTION GROUPS, AND OTHERS DOING EXPLOSIVES DEVELOPMENT.
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TABLE7. SAFETY RANKING SCHEME : ’j
WEIGHTING PBX EXAMPLE £
‘ ATTRIBUTES FACTOR * RATING °* SCORE 3
; COOK-OFF 2
z FAST COOK-OFF 20 10 200
£ SLOW COOK-OFF 15 4 60 H
¢ SUBTOTAL 35 260 Z
1 VULNERABILITY
SYMPATHETIC DETONATION 8 10 80 3
1 MULTIPLE BULLET 8 3 24 H
- SINGLE FRAGMENT 5 3 15 \ g
MULTIPLE FRAGMENT 8 7 56 3
SHAPED CHARGE 5 1 5 i
SUBTOTAL 7 180 i
i SENSITIVITY ib :
LARGE-SCALE GAP 3 2 6 3
SUSAN 8 10 80 :
. WEDGE 2 5 10
CRITICAL DIAMETER 2 7 14 ] ;
AQUARIUM 3 8 24 S
FRICTION 1 10 10 .
i DROP-WEIGHT 1 5 5 (\ .
) SUBTOTAL 20 149 1 ;
E
, PROPERTIES ]
ISOTHERMAL COOK-OFF 5 2 10 ]
GROWTH & EXUDATION 3 9 27 3
GLASS TRANSITION 2 10 20
4 DENSITY VARIATION A 10 10 :
3 SUBTOATL 11 67 ;
3 H
TOTAL 100 656
H
* TOTAL OF 100 POINTS {
** RANGE FROM 0 TO 10. VALUE IS OBTAINED FROM EQUATIONS THAT EVALUATE
VIOLENCE OF REACTION FOR COOK-OFF AND VULNERABILITY (EXCEPT :
g SYMPATHETIC DETONATION) AND RELATIVE PERFORMANCE COMPARED TO
g OTHER STANDARD EXPLOSIVES FOR SYMPATHETIC DETONATION, SENSITIVITY i
; AND PROPERTIES,
;
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TABLE 9. SUMMARY OF PBXN-103 WR-50 TEST RESULTS* g@)

TYPE SLOW FAST BULLET 12-METER y
REACTION COOK-OFF COOK-OFF IMPACT DROP**

NO ACTION
BURNING
DEFLAGRATION

0 32

It aaitad s ctholu il i Aottt g

5

EXPLOSION

10

Mo W W O, o

1
8 0

6 4 0

7 0

DETONATION 0 0
TOTAL 17 31 20 32

% VIOLENT
REACTION 53 2 x

** INCLUDES DROPS ONTG STUDS, AND MULTIPLE DROPS ONTO STUDS.
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* 45 KG to 550 KG EXPLOSIVE CHARGES IN ALUMINUM AND STEEL CASES. (; )
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HAZARDS
VULNERABILITY

THERMAL INPUTS HYDRODYNAMIC SHOCK MECHANICAL SHOCK

FUEL FIRE WEAK/STRONG) ® CRUSHING IMPACT

SLOW TEMP, INCREASE ® SYMPATHETIC DETO. ® ROUGH HANDLING
HIGH ISOTHERMAL TEMP. ® SHAPE CHARGE JET ® TRANSPORTATION
ELECTRICAL SPARK o FRAGMENTS ACCIDENT

LASER SINGLE ® VIBRATION

. MULTIPLE ® HIGH ACCELERATION
® PLATE IMPACT

CE e P

8

(_,, ' EXPLOSIVE IGNITION

H
k3
é REACTION GROWTH

DEFLAGRATION —
£ EXPLOSION —
DETONATION —

Fa E‘ FIGURE 3. HAZARDS-VULNERABILITY BEHAVIOR
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SYMPATHETIC DETONATION PBX RESULTS (NO SEPARATION FROM

DONOR)

FIGURE 5.
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