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THE NUMERICAL SOLUTION OF PRESSURE

OSCILLATIONS IN AN OPEN CAVITY

W. L. Hankey and J. S. Shang
Air Force Flight Dynamics Laboratory

Wright-Patterson AFB, Ohio

Open cavities on aircraft exposed to high speed flow, such as bomb

bays can give rise to intense self-induced pressure oscillations. The

amplitude of these oscillations, under certain flight conditions, can

cause structural dwmge. Substantial experLiental and analytical efforts

have investigated these pressure fluctuations, resulting in some under-

standing of the complex interaction of the exteýrnal shear layer wid

cavity acoustical disturbances. However, no numerical computations have

been obtained for the complete governing fluid Pchanical equations. The

purpose of this study is to obtain nwivrical solutions of the Navier-Stokes

equations for an open cavity in order to provide a new tool for the analysis

of this phenaw-non.
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NOMENCLATURE

a =speed of sound

A coefficient in pressure perturbation equation

c complex propagation speed

Cp specific heat at constant pressure

D cavity depth

e specific internal energy

E, F a vector fluxes

f frequency of wave

k c1/Uý propagation velocity ratio

L cavity length

m mode number

M Utach number

U 0 node number

p pressure

heat transfer rote

R gas constant

Re • Reynolds number

t * time

T temperature

u, v = velocity components 'n Cartesian frame

U - vector of dependent variablcs

0y - Cartesian coordinates

a - 24A/) dimensionless wave number

7 ratio of specific heats

S6 * shear layer thickness
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X - wave length

viscosity (molecular and eddy)

p - density

0 = normal stress

viscous shear stress

amplitude of perturvation velocity

63 2fff frequency

Subscr~pts

freestream condition

o - stagnation condition

w wall condition

r - reel part

i a imaginary part

I a forward traveling wave

2 a rearward traveling wave

Superscripts

- instantaneuos perturbation variable

- vector
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I. Background

As early as 1955, Krishnamurty investigated flow induced pressure

oscillations in open cavities. Other investigators2 ' 3 ' 4 ' 5 ' 6 ' 7 ' 8 ' 9 have

conducted extensive research in an attempt to understand the physical

mechanisms. Heller and Bliss 3 used a water table to simulate supersonic

airflow over open cavities. They found that the inherently unstable

shear layer fluctuates, causing periodic mass addition and expulsion from

the cavity (Figure 1). When the rear reattachment point of the shear

layer enters the cavity, a stagnation point is created; thus increasing

the local cavity pressure. This mass addition creates a traveling pres-

sure wave (as in a shock tube), which moves forward in the cavity (at

supersonic speed relative to free stream), trailing an oblique shock in

the free stream. When the traveling shock wave reflects from the forward

bulkhead, a pressure doubling occurs in the cavity while disturbances in

the external flow are not reflected, and thus a pressure jump across the

shear layer deflects the shear layer. The reflected traveling shock wave

in the cavity is now moving at subsonic speed relative to the free stream,

hence, generates no oblique shock wave in the free stream. As tle cavity

traveling shock wave approaches the rear bulkhead, the shear layer bulges

outward, and mass is ejected out of the cavity. The entire process then

repeats itself in a periodic fashion.

Thus, sufficient experience from such extensive measurements exists

so that a qualitative description of the flow process can be obtained.

However, a quantitative prediction method does not exist which is the

motivation for the present investigation.
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To study self-induced pressure oscillations in an open cavity, an

analytic study was first accomplished, followed by a numerical computa-

tion of the Navier-Stokes equations and a comparison with previous experi-

mental investigations.

II. Analytical Study

Consider a system of traveling waves which produce the wave-diagram

(x,t) shown in Figure 2. A resonant situation arises when a forcing

function excites the shear layer in the frequency range where amplifica-

tion is possible. The disturbances will grow until a limit'cycle is

reached due to viscous dissipation. A standing wave exists in the cavity

when both the upstream and downstream traveling waves are synchronized.

This wave pattern of Figure 2 may be approximated by considering forward

and rearward traveling pressure waves of equal intensity but different

propagation velocities and wave numbers.

141(X - ct) 1 0 it2(-x - c 2 t)

p Ae + Ae

The frequency of the pressure pulse can be determined directly from the

wave diagram.

Lz + (2)
f c 1  c 2

where a is the number of waves or mode number.

From observation of cavity oscillations the rearward traveling wave

01) is known to be an acoustical disturbance traveling at the speed of

sound In the cavity.

k2 tO M;
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The progagation speed of the forward traveling wave has been observed to

6be about half of the free stream value

k - 1/2 (4)

U.

The frequency can be evaulated by using these results.

MU.
f -l Rossiter's Formula (Ref 4) (5)

L(Mo + k)

This equation have been used successfully for determining cavity resonant

frequencies but no satisfactory prediction method has been available for

determining the disturbance intensity of the different modes.

The mode shape of these standing waves can also be deduced from the

preceding equations. For a standing wave to occur both waves must possess

the same frequency.

c c1.ft (1c 2 2 2 (6)

Combining this result with equation 2 produces the following relationship:

1Z +2 " L-()

The mode shape may be obtained by utilizing thig information in the pres-

sure equation (equation 1) and computing the rm; value of pressure over a

"complete cycle.

prms A(I + cos (caL + a)W

Tanx (8)
p -AA CosPrms L

These patterns have been documented in Ref 3. tNodes will occur when

t .. n a-odd
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Mode m Nodes n

1 3 5

1 1/2 ---

2 1/4 3/4

3 1/6 3/6 5/6

Table I Node Location for Various Modes

IllI. Stability Analysis

A necessary condition for resonance is that one of the waves must be

unstable for the oscillation to persist, otherwise the disturbance will

dissipate after an initial transient. Mathematically this means that the

wave speed is complex, i.e., c a cr + ici with ci > 0 unstable. The

stability of the shear layer will now be examined.

Rayleigh 0, in 1880, showed for inviscid incompressible flow that

velocity profiles witht inflection points are unstable. Recently, Hichalke1 '

confirmed that a shear layer is unstable but only at low frequencies

(0/6 > 2w or f64'n/UO < 1). It was felt that more information about the

stability of a compressible shear layer was needed, therefore, a linear

stability analysis was undertaken12 . The governing Euler equations were

linearized by assuming small perturbations caused by small amplitude

traveling waves. The resulting stability equation first derived by Lees

13and Lin , reduces to the Rayleigh equation for incompressible flow.

2 •1710 - y - U Oy ]y - a2(U -c€ (9)
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where

v - •(y)e(a(x - ct) (10)

2 2
a - (U - c)0 (1)

The eigenvalues of this Rayleigh equation were then computed12 for

a shear layer with a hyperbolic tangent velocity profile.

U 0.5(1 + tanh ) (12)U..

The propagation velocity (cr) of the disturbances is shown in Figure 3.

C-r k (13)

This is the k value determined experimcntally by Rossiter6 and found to

be in excellent agreement with his results.

.5 < k < .6

The amplification factors (ci > 0) were found to be a function of wave

number (a) and ',Nch number (Figure 4). Instability was observed only fo'r

wave numbers less than unity. This implies short cavities (L < 2ffS) will

not resonate. Note the Rayleigh instability vanishes above H - 2.5. This

result confL-- previous experimental and numerical results that separated

flei• are more stable at supersonic speeds titan at subsonic.

It is possible to predict Lhe relative intensity of tht di•ferent

modes occurring in an open cavity. Consider a cavity of L 91.44 cm and

.- 0.85. U. - 286.5 ups

Hance,

"r
i---k .S2 (fromFig3)

H -,0.79

f - 115 (0t) fioossiter's Equ.
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These different mode frequencies are plotted in Figure 5 using

results of Ref 12, and the second mode is observed to have the greatest

amplification while modes four and above are found to be stable. A

spectral analysis of a wind tunnel test (Ref 14) for an open cavity at

these same conditions is also shown in Figure 5. Observe that only the

first four modes are dominant and the relative amplitudes of these four

modes are consistent with the analytic amplification factors.

The intensity of the pressure fluctuation will be proportional to

the following:

Prms (M) - q(e - 1) (14)

Selecting the peak value of e for each Mach number and multiplying by

q/P (H) the reldtivo intensity as a function of Mach number may be deduced

(Fig 6). The peak pressure value occurring in a series of wind tunnel

tests at different 'ach numbers can be expected to occur near ýach one.

This is confirmed in Reference 3 and 14.

IV. Sum.miry of Analytic Remnults

The analytic results based primarily upon stability theory provide

us with the following conclusions.

"a. Shear layers (with inflection points in the velocity profile)

are tnstable but only for low frequencies; f6/U. < 1/04.

b. Short cavities (L < 2u6) will not resonate.

c. No Rayleigh instability occurs above Mach number 2.5.

d. Peak amplification occurs at about half the cut-off frequency

creating a situation where modes other than the fundamental caut dominate.
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e. Maximum pressure intensity of a shear layer oscillation will

occur near Mach 1 (in a wind tunnel with constant po).

Linear stability theory is therefore useful in explaining the cause

of the resonance and in estimating the relative intensity of the various

modes including the influence of Mach number. However, the full non-

linear equations are required to determine the absolute level of the pres-

sure intensity. For that reason the numerical solution of the unsteady

Navier-Stokes equations will be considered next.

V. Numerical Computation

With the completion of the simplified analytic approach (ic, inviscid,

linear stability theory) a numerical solution of the exact equations was

attempted to further improve the prediction capability. The analysis

served to identify the primary mechanism involved in the oscillation and

greatly assisted in the determination of the grid point distribution and

step sizes required to resolve the flow features.

A case to compute was selected for which euperimental data were

available. The test conditions of leller and Bliss3 were selected to

compare the numerical coqputations (Figure 7).

H - 1.5 L -91.44 cm

L/D - 2.25 D - 40.64 cmS06 5 i2.34 cm
Re - 1.28 x 10/M

The width of the cavity was 22.86 cm and found not to be a major

"factor in the overall phenomenon. For this reason, a two-dimensional

computation appeared to be justified for the initial studies.
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VI. Governing E.uations

The time dependent explicit finite difference method originated by

R. MacCormack1 5 was selected to perform the numerical calculations. The

two-dimensional Navier-Stokes equations follow;

U Pu P 2
U - ;u E P a2 -xx

PV uv -xy

P~lue - aXY u -*•rxy - XL

(16)

PV
F - OUV - 'I

D2 'oyy

I yy xy

yyyy

where.

O -- p- 2!3uiV • + 2pu
Xx K

r yi(luy +vx)

' o -- p - 2/3•zV • + 2Ijuy

The turbulent closure of the present problem was achieved by implement-

16Ing the Cebeci-Suith eddy viscosity model with relaxation modification

The relaxation turbulence model was used in an attempt to describe the

adjustment of the turbulence structure from an attached boundary layer to

an oscillatory free shear layer. The relaxation length scale vas assigned

"a value of 55 bouwdary layer thicknesses. Since there to no guidance to

2tee1s8 gianet



assess the accuracy of the turbulence model relative to low frequency

fluctuations, a parametric study seemed to be necessary. In the present

analysis, several consecutive calculations with suppressed eddy viscosity

were performed and the numerical results exhibited only a minor departure

from the basic solution. Hence, the present eddy viscosity model was felt

to be adequate. The computer program previously used by Shang16,17 was

modified to include the appropriate boundary conditions for this problem.

VII. Boundary Conditions

Four faces require attention in the specification of boundary con-

ditions (Figure 7).

Wall and Cavity Surfaces:

Ott solid surfaces, the velocity components varnish, and the wall

temperature must bo prescribed. In addition, the pressur- is derived

from the respective c aitibility condition4 of the moment-,= equaLiont;.

u-nO v-Q T -T
W o

""/ + 2U ) NOY + vx)

.- •t-2I3uV u + Zixu] - - LU(uy + v)A

qpstream Condition:

A supersonic free stream with a knouit boundary layer profile is givea.

2
u-u (y) T -T t-.

2CP

2(19)
v.0 pup,



Downstream Condition:

A mild boundary condition is prescribed to avoid major reflections

of disturbances.

au •T
T 0 L.-- 0

(20)

ax ax

Upper Boundary:

A similar no-reflection condition is adopted.

au 0 0

(21)
ýv 0 ap

Where & is the outgoing characteristics on the upper boundary of the

computational domain.

Initial Condition:

The upstream condition is imposed as the initial condition for the

flow outside the cavity. Inside the cavity initially the flow is assumed

to be static.

u0 v0 -iT p ( (22)

VIII. Numerical Procedure

MacCormack•1• alternating-direction-explicit numerical scheme was

adopted for the pcesent analysis. For this case pressure damping was

required due to the transient multi-i.ave structure occurring in the flow

220



field. The current philosophy in computa.lonl fwuid fynaa~ics ii to

employ a body oriented coordinate system which turns out Lo be Cartesian

in this case with non-uniform step size. For cases presented here, a

grid of 78 x 52 was used to represent a field size of 182.9 cm x 91.44 cm

enclosing a 91.44 cm x 40.64 um cavity (see Fig".re 7). In order to

achieve the desired temporal resolution, a time step corresponding to a

Courant number of 0.2 was used. All calculations were performed on n CDC

6600 computer. The dita processing rate was 0.0017 sec per grid point

per time step. The central core memory rcquired for the present problem

is 205K octal.

Although dispersion, dissipation and phase errors are not negligible

with the step sizes employed, previons numerical investigations of viscous

interaction problems]5.16 using comparable step sizes have shown good

agreement (+5: wiih experimental data for the most significant features

of the flow. In particular, periodic motions around a transonic airfoil

have been studied by Levy1i with a basic MacCormack's schemQ., His results

exhibited good agreement with experimental data not only in the pattern of

a simple wave train but also in the predicted reduced frequency. Thereforc',

no additional modification other titan a simple controlled spatial averaging

was used to correct the possible dispersion error for the compound wave

problem investigated.

IX. Discussion of Results

Time dependent numerical computations of supersonic flow over an

open cavity were accomp Lihed utilizing MacCormack's finite diffoerence

-explicit method. The entire velocity field over the cavity is shown in
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Figure 8. Since the problem is strictly a time dependent phenomenon, only

a typical velocity distribution is presented here (t = 0.0062 sec) to

reveal the basic features. The most obvious feature is that the flow

field within the confined cavity is subsonic, except perhaps the region

3adjacent to the cavity opening. The experimental investigation also

recorded the identical obsecvation. The orderly development of the shear

layer above the cavity is also clearly exhibited. An attached turbulent

boundary layer upstream of the cavity .eparates at the forward bulkhead

to form a free shear layer over the cavity and finally reattaches down-

stream of the cavity. Due to the smaller magnitude of the velocity com-

ponents within the cavity, the velocity distribution could not be shown

with the same scale as that of the outer shear layer. A magnified

velocity profile in the cavity is presented in Figure 9. All velocity

distributions were drawn at a scale con times greater than that in Figure

8. A recirculation flow configuration is demonstrated with the center of

the tecirculation located near the upper corner of the rear bulkhead. For

clarity only every fourth velocity point in the streamwise direction was

preseated in both figures (Fig 8 and 9).

A quantitative comparison of the calculated mean velocity distribution

with experiment is presented in Figure 10. The calculated velocity pro-

file immediately upstream and downstream of the cavity compares very well

with the experimental measurements. Tihe upstream velocity profile is

essentially indepeqdent of time as expected, and nearly duplicates the

data. The downstream velocity profile indicates that the reottached shear

layer thickens significantly over the cavity. The difference between data

and calculation is a mere seven percent. The computed velocity profile

domistream of the cavity exhibits an nuci.latory behavior in the inner por-

tion of the boundary layer which is confitmed by the experimental observation.
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A comparison of the time-average surface pressure distribution in the

cavity was performed. In Figure 11, one observes that the computed mean

pressure, normalized by the free stagnation pressure, uniformly under pre-

3
dicts the experimental data by about 10 percent. The maximum deviation

between data and calculation occurs near the rear bulkhead were the pres-

sure differencc accross the cavity opening and cavity floor also reaches

a maximum. Nevertheless, the calculated results indicate the identical

3
trend to that of the experiment

In Figure 12, a history of the static pressure at x/L = 0.66 and

y/L - 0.960 is monitored (y/L = 0.960, x/L = 0.33, 0.50 and 0.66). Per-

sistent oscillatory static pressures appeared within one characteristic

time, t1 . The :harscteristic time is defined as the period of time

required for a fluid particle to traverse the length of the cavity at

freestream speed. -or the present problem tch has a value of 1.987 x 10-3

seconds. Since the press-ire oscillatica over the cavity is composed of

severdl frequencies of diffeient amplitude, a compound wave system

develops. The present calculation was carried out only over a time span

of about nine Lharacteristic 'imes (t * 1.82 x 10 2 secs). This result is

compared with oscillogram data for the test results of Ref. 18 in rigure

12. In order to permit a qualitUIve comparison, computed results ato

repeated for several cycles. One catn detect certain s 4,mlarity between

the data and the present result. In prit.,ple, the solfd surface con-

straint and wave interference phenomenon r* che present problem are

inherantly nonlinear. Therefore, raut..on must be exercised in discerning

the discrete frequencies between the fundamental &ýdes of oscillation.

Other basic information such as the relutive phase angle and tie amplitude

of each distiactive vave requires further spectral atalysis.
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A spectral analysis of this compound wave probably is the only

reliable means for accurately obtaining mode frequency. However, this

is impractical due to the large amount of computer time required to

obtain solutions for a sufficiently long duration. Hence, an analysis

was accomplished by assuming the waves to be commensurable. The spectral

analysis reveals four distinctive discrete frequencies of 154 Hz, 308 Hz,

462 Hz, and 616 Hz recognized as the first, second, third and fourth mode

respectively of the oscillatory pressure disturbance. The higher modes

of oscillation decay rapidly as one may observe in Figure 13. Good

agreement between the experimental measurement and present result is

observed. Both exhibit a dominate second mode of the pressure oscillation.

The level of pressure oscillation in db can be evaluated as

Prms
p(db) - 20 log - + 189

where S is the dynamic pressure (54 K pascal). The detected frequency

for the second mode (308) compares well with the experimental data (300 Hz)

and Rossiter's prediction6 (328 14z). The fluctuating pressure level

between the data and present result is within about ton percent.

The compound wave pattern is best illustrated in Figure 14. The

propagation of the wave train from the forward bulkhead is presented for

a fixed time interval of 0.64 x 10-3 seconds. One observes the rearward

traveling propagation wave has an unmodulated amplitude until interacting

with reflected waves from the rear bulkhead. No repeatable wave front can

be identified downstream of x/L 0.75. Two pieces of important informa-

tion have been determined from this graph, namely the rearward wave pro-

pagation speed and the amplitude of the pressure oscillation. The pre-

dicted wave speed has a value of 244.4 mps (or k = .53) and is in agreement
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with the predicted value from Figure 3. The amplitude of the oscillating

pressure also agrees well with data, (+ 6.464 K pascal vs 7.182 K pascal;

or 170 db) with the discrepancy about 10%.

In Figure 15 the sequence of density contours from the numerical com-

putation is shown for a complete cycle of the periodic motion. The for-

ward and rearward moving wave system originated from the instability of the

free shear layer and the reflection at the rear bulkhead can be easily

recognized in the cavity. The generation and movement of the external

shock wave system also can be recognized. These compare favorably with

the wave pattern shown in Figure 1 for the water table experiment.

X. Conclusions

The pressure oscillation for supersonic flow over an open cavity has

been predicted by numerically solving the unsteady Navier-Stokes equations.

Both the predicted frequency and magnitude of the unsteady pressure

fluctuations were qualitatively confirmed through experiment. However, a

spectral analysis of a numerical solution of longer duration is required

for complete verification. This is the first time a complete viscous

solution of the pressure oscillating cavity has been obtained and displays

the outstanding capability inherent in the numerical methods of today.
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