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™= Open cavities on aircraft exposed to high speed flow, such as bomb
bays can give rise to intense self-induced pressure oscillations. The

amplitude of these oscillations, under certain flight conditions, can

cause structural damage. Substantia. experimental and analytical efforts
have investigated these pressure fluctuations, resulting in same under-
standing of the complex interaction Of the external shear layer and

cavity acoustical diéturbances. However, no numerical computations have
been ohbtained tor the conplete governing fluid rechanical equations, The
parpose of this study is to obtain numerical sclutions of the Navier-Stcokes
equations for an open cavity in order to provide a new tool for the analysis
of this phenomenon,
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NOMENCLATURE

a = speed of sound
A = coefficient in pressure perturbation equation
c = complex propagation speed
Cp = specific heat at constant pressure
D = cavity depth
e = specific internal energy
E, F = vector fluxes
f = ' frequency of wave

,gf;i k = clwa propagation velocity ratio

: L = cavity length
o = rode number
M w Hach number
n e node number
p 3 prassure
q ' heat transfer vate

1 R - gas constant

Re ) Re;'t;olds number
t " tine
T - © temperature
U, vV = velocity components in Cartesian f?amu
U - veetor of dependent variables
X, y = Cartesian coordinates
a - 2u§ /A dimensionless wave number
Y = ratio of specific heats
$ - shear layer thickness
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A = wave length

H = viscosity (molecular and eddy)

o] = density

o = normal stress

T = viscous shear stress

¢ = amplitude of perturvation velocity
w = 21f frequency

bl = freestream condition

o = stagnation condition

w = wall condition

r = resl part

i - imaginary part

1 - forwvard traveling wave
2 = rearward traveling wave

Superscripts

-

- instantancuos perturbation variable

- - vector
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I. Background

As early as 1953, Krishnamurtyl investigated flow induced pressure

2,3,4,5,6,7,8,9 |

oscillations in open cavities. Other investigators
conducted extensive research in an attempt to understand the physical
mechanisms. Heller and Bliss3 used a water table to simulate supersonic
airflow over open cavities. They found that the inherently unstable
shear layer fluctuates, causing periodic mass addition and expulsion from
the cavity (Figure 1). When the rear reattachment point of the shear
layer enters the cavity, a stagnation point is created; thus increasing
the local cavity pressure. This mass addition creates a traveling pres-
sure wave (as in a shock tube), which moves forward in the cavity (at
supersonic speed relstive to free stream), trailing an oblique shock in
the free stream. When the traveling shock wave reflects from the forward
bulkhead, a pressure doubling occurs in the cavity while disturbances in
the external flow are not reflected, and thus a pressure jump across the
shear layer deflects the shear layer. The reflected traveling shock wave
in the cavity is now moving at subsonic speed relative to the free stream,
hence, generates no obligue shock wave in the free stream. As the cavity
traveling shock wave approaches the rear bulkhead, the shesr layer bulges
outward, and wass is ejocted out of the cav?ty. The entire process then
repeats itself in a periodic fashion.

Thus, sufficient experience from such extensive measutemonts exists
80 that a qualitative description of the flow process can be obtained.
However, a quantitative prediction method does not exist which {s the

wotivation for the present investigation.
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To study self-induced pressure oscillations in an open cavity, an
analytic study was first accomplished, followed by a numerical computa-
tion of the Navier-Stokes equations and a comparison with previous experi-

mental investigations.

II. Analytical Study

Consider a system of traveling waves which produce the wave-diagram
(x,t) shown in Figure 2. A resonant situation arises when a forcing
function excites the shear layer in the frequency range where amplifica-
tion is possible. The disturbances will grow until a limit’cycle is
reached due to viscous dissipation. A standing wave exists in the cavity
when both the upstream and downstream traveling waves are synchronized.
This wave pattern of Figure 2 may be approximated by considering forward
and rearward traveling pressure waves of equal intensity but different

propagation velocities and wave numbers.

ia, (x - c,t) fa,(-x = c,t)
p* = Ae + Ae ~ (1)

The frequency of the pressure pulse can be determined directly from the

wave diagram.

m L L
Feg +2 (2)
£ c1 cz

wvhere m 48 the number of waves or mode number.
From observation of cavity oscillations the rearward traveling wave

(uz) is known to be an acoustical disturbance traveling at the speed of

sound in the cavity.

/. Z -1
c2 U, 71+ 0.2q' N,
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The progagation speed of the forward traveling wave has been observed to

be about half of the free stream value6.

9!
=k~ 1/2 (4)
[+0]

The frequency can be evaulated by using these results.

mU

-]

f= — Rossiter's Formula (Ref 4) (5)
LM +k 7)
o
This equation have been used successfully for determining cavity resonant
frequencies but ne satisfactory prediction method has been available for
determining the disturbance intensity of the different modes.
The mode shape of these standing waves can also be deduced from the
preceding equations. For a standing wave to occur both waves must possess

the same frequency.
@®=a ¢ *a,c, = 2nf (6)

Combining this result with equation 2 produces the following relationship:

2um
o) +o; = @

The wode shape may be obtained by utilizing this information in the pres-
sure equation (equation 1) and computing the rums value of pressurc over a
complete cycle,

b
Prs ™ A(l + cos (u1 + uz)x)

(8)

mirx
CO8 ——

A L

Prows

These patterns have been documented in Ref 3. Nodes will occur when

Lif, "
T ocomgi n-oeu
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Mode m Nodes n
1 3 5
1 1/2 ——— —
2 1/4 3/4 -—-
3 1/6 3/6 5/6

Table I Node Location for Various Modes

III. Stability Analysis

A necessary condition for resonance is that one of the waves must be
unstable for the oscillation to persist, otherwise the disturbance will
dissipate after an initial transient. Mathematically this means that the
vave speed is complex, i.e., ¢ = <, + ici with ¢y > 0 unstable. The
stability of the shear layer will now be examined.

Rayleighlo. in 1880, showed for inviscid incompressible flow that
velocity profiles with inflection points are unstable. Receatly, Nichalkell
confirmed that a shear layer is unstable but only at low frequencies
(A8 > 2n or £84n/U, < 1). It was felt that wore fnformation about the
stability of a compressible shear layer was neceded, therefore, a linear

stability analysis was undertakenlz. The poverning Euler equations woere

linear{zed by assuming swall perturbations caused by small awplitude
traveling waves. The resulting stabiiity equation first derived by Lees

and Linlj, rteduces to the Rayleigh equation for incompressible flow.

g7 w - )0 - gt U o) =t - )8 ()
y Yy 'y
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where
v = ¢(y)elx —ct) (10)

g=al- (U-=-c) (11)

The eigenvalues of this Rayleigh equation were then computed12 for

a shear layer with a hyperbolic tangent velocity profile.

%— = 0.5 (1 + tanh ¥) (12)

(-}

The propagation velocity (cr) of the disturbances is shown in Figure 3.

cl‘
= =k (13)
Um

This is the k value determined experimémtally by Rossiter6 and found to

be in excellent agreement with his results.

S <k<.6

the amplification factors (ci > Q) were found to be a function of wave
number (@) and Mach number (Figure 4). Instability was observed only fur
wove numbers less than unity. This lmplies short cavities (L < 2m8) will
not resonate. Note the Rayleigh instability vanishes above M = 2.5, This
vesult confiims pravious exporimental and numerical results that separated
flous are more stable at supersonic speeds than at subsonic.

It is possible to predict the relative intensity of the different
modes occurring in an open cavity. Consider a cavity of L = 91.44 ¢m and

N, = 0.85, U_ = 286.5 wps
Hence,

¢

r
U =ke=.52 (from Fig 3)
L]

M =0.79

£ = 115 (Bz) Rossiter's Equn.
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These different mode frequencies are plotted in Figure 5 using
results of Ref 12, and the second mode is observed to have the greatest
amplification while modes four and above are found to be stable. A
spectral analysis of a wind tunnel test (Ref 14) for an open cavity at
these same conditions is also shown in Figure 5. Observe that only the
first four modes are dominant and the relative amplitudes of these four
modes are consistent with the analytic amplification factors.

The intensity of the pressure fluctuation will be proportional to
the following:

ac

Prms @0 ~ ale o (14)

ac
Sclecting the peak value of e 1 for each Mach number and multiplying by

q/Po(M) the relative intensity as a function of Mach number may be deduced
(Fig 6). The peak pressure value occurving in a series of wind tunnel
tests at different Mach numbers can be expected to occur near Mach oune.

This is confirmed in Referemce 3 and 14.

IV. Summary of Analytic Results

The analytic results based primarily upon stability theory provide
us with the following conclusions. )

a. Shear layors (with inflection points fn the velocity profile)
are unstable but only for low frequemcies; €6/U < 1/4w.

b. Short cavities (L < 2u§) will not resonate.

¢. Ko Rayleigh instability occurs above Mach number 2.5.

d. Peak amplification occurs at about half the cut-off frequency

creating a situation where modes other than the fundamental can doainate.
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e. Maximum pressure intensity of a shear layer oscillation will
occur near Mach 1 (in a wind tunnel with constant po).

Linear stability theory is therefore useful in explaining the cause
of the resonance and in estimating the relative intensity of the various
modes including the influence of Mach number. However, the full non-
linear equations are required to determine the absolute level of the pres-
sure intensity. For that reason the numerical solution of the uunsteady

Navier-Stokes equations will be considered next.

V. Numerical Computation

With the completion of the simplified analytic approach (ie, inviscid,
linear stability theory) a numerical solution of the exact equations was
attempted to further improve the prediction capability. The analysis
served to identify the primary mechanism involved in the oscillation and
greatly assisted in the determination of the grid point discributien and
step sizes requited to resolve the flow features.

A case to compute was selected for which experiwental data were
available. The test conditions of Heller and Bli933 were Salected to

compare the numerical computations (Figure 7).

N =15 L = 91.44 co
L/D = 2,25 P = 40.64 cm
Re = 1.28 x 1050 5, = 2.5 ca

The width of the cavity was 22.86 cm and found not to be a major
factor in the overall phenomenon. For this reason, a two-dimensional

computation appeared to be justified for the initial studies.
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Vi. Governing Equations

The time dependent explicit finite difference method originated by
R. HacCormack15 was selected to perform the numerical calculations, The

two-dimensional Navier-Stokes equations follow:

-a-E+~a—x-+-a-y-“0 (15)

(=4
fl
°
[
.
e
(]
©
[
'
§¢2
L 2 J

(16)
pv
F=ipu -1
pve ~ @
love - vo - ur, . - q,|

s

vhere

O ® P 2/3V > u+ 2u v,

T‘y - u(uy + vx)

Oy = =P = UNT - ﬁ+2uuy

The turbuleat closure of the present problem was achieved by implement-
ing the Ceboci-Suith eddy viscosity wodel with relaxation modiiicatioalﬁ.
The relaxation turbulence model was used in an attempt to describe the
adjustoent of the turbulence structure from an attached boundary layer to

en oscillatory free shear layer. The relaxation length scale was assigned

8 value of 55 boundary layer thickacsses. Since there is no guidance to
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assess the accuracy of the turbulence model relative to low frequency

fluctuations, a parametric study seemed to be necessary. In the present

analysis, several consecutive calculations with suppressed eddy viscosity

were performed and the numerical results exhibited only a minor departure

from the basic solution. Hence, the present eddy viscosity model was felt

16,17
was

to be adequate. The computer program previously used by Shang

modified to include the appropriatc boundary conditions for this problem.

VII. Boundary Conditions

Four faces require attention in the specification of boundary con-

ditions (Figure 7).

Wall and Cavity Surfaces:

On solid surfaces, the velocity components vaaish, and the wall
tomperature must be prescribed. In addition, the pressure iy devived
from the respective conpatibilicy counditions of the wmomentum equations,

u=0 ve( T w7
) 0

g-g-néaz.:. % N i TH o-‘ v ‘_?A._._)u
el {=2/0 ¢ u + Zﬂus; 5y {u(uy + v;)] s

[ =)

ap 2 ..
3‘;-- 5 -2/

Upstrean Condition:

N _
+ zuuyl - 3; lu(uy + vx)l

A supersonic free stream with a known boundary layer profile is givea.
‘ 2
ueu(y) TeT - M
2
?
19
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Downstream Condition:

A mild boundary condition is prescribed to avoid major reflections

of disturbances.

Ju 0T
-5-;=0 ™ 0
(20)
EAA 3 .
3x = 0 ax - 0
Upper Boundary:
A similar no-reflection condition is adopted.
du oT _
'a"i‘ 0 '52""0
(21)
oy 1
LA = ¢

Where I is the outgoing characteristics on the upper boundary of the

computational domain.

Initial Condition:

The upstream condition is imposed as the initial condition for the
flew outside the cavity. Inside the cavity initially the flow is assumed

to be static.

u=0 ve( T= To P= P (22)

VI1I. Numerical Procedure

) r
MacCormack'el‘

alternating-direction~explicit numerical scheme was
- adopted for the present analysis. For this case pressure damping was

required due to the transient multi-wave structure occurring ia the flow
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field. The current philosophy in computailoncl fiuid dynamics is to
employ a body oriented coordinate system which turns out to be Cartesian
in this case with non-uniform step size. TFor cases presented here, a
grid of 78 x 52 was used to represent a field size of 182.9 cm x 91.44 cm
enclosing a 91.44 cm x 40.64 cm cavity (see Figure 7). 1In order to

achieve the desired temporal resolution, a time step corresponding to a

Courant number of 0.2 was used. All calculations were performed on a CDC
6600 computer. The duta processing rate was 0.0017 sec per grid point
per time step. The central core memory required for the present problem
is 205K octal.

Although dispersion, dissipation and phase errors are not negligible
with the step sizes employed, previous numerical investigations of viscous

1
interaction pmblems"'S’l6

using comparable step sizes have shown good
agrecment (+5° wich experimental data for the most significant featurces

of the flow. 1In particular, periodic motions around a transonic airfoil
have been studied by Levy18 with a basic MacCormack's scheme, His results
exhibited good agrecument with experimental data not ovnly in the pattern of
a simple wave train but also in the predicted reduced frequency. Therefore,
no additional modification other than a simple controlled spatial averaping

was used to correct the possible dispersion error for the compound wave

problem investigated.

IX. Discussion of Results

Time dependent nuwerical computations of supersonic flow over an
open cavity were accompaisihed utilizing MacCotrmack's (inite difforeunce

axplicit method. The entire velocity £icld over the cavity is shown in
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Figure 8. Since the problem is strictly a time dependent phenomenon, only
a typical velocity distribution is presented here (t = 0.0062 scc) to
reveal the basic features. The most obvious feature is that the flow
field within the confined cavity is subsonic, except perhaps the region
adjacent to the cavity opening. The experimental investigation3 also
recorded the identical cbservation. The orderly development of the shear
layer above the cavity is also clearly exhibited. An attached turbulent
boundary layer upstream of the cavity separates at the forward bulkhead

to form a free shear layer over the cavity and finally reattaches down-
stream of the cavity. Due to the smaller magnitude of the velocity com-
ponents within the cavity, the velocity distribution could not be shown
with the same scale as that of the outer shear layer. A magnified
velocity profile in the cavity is presented in Figure 9. All velocity
distributions were drawn at a scale ten times greater than that in Figure
8. A recirculation flow configuration is demonstrated with the center of
the recirculation located near the upper corner of the rear bulkhead. For
clarity only every fourth velocity point in the strecamwise direction was
preseanted in both figures (Fig 8 and 9).

A quantitative compurison of the calculated mean velocity distribution
with experiment is presented in Figure 10, The calculated velocity pro-
file fmmediately upstream and downstream of the cavity compares very well
with the experimental measurements. The upstream velocity profile is
essentially independent of time as expected, and nearly duplicates the
data. The downstream velocity profile indicates that the reattached shear
layor thickens significantly over the cavity. The differcnce between data
and calculation {s a mere seven percent. The computed velocity profile
dowmstrecam of the cavity exhibits an oscillatory behavios in the inner por-

tion of the boundary layer which is confirmed by the experimontal observation.
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A comparison of the time-average surface pressure distribution in the
cavity was performed. In Figure 11, one observes that the computed mean
vressure, normalized by the free stagnation pressure, uniformly under pre-
dicts the experimental data3 by about 10 percent. The maximum deviation
between data and calculation occurs near the rear bulkhead were the pres-
sure difference accross the cavity opening and cavity floor also reaches
a maximum. Nevertheless, the calculated results indicate the identical
trend to that of the experimentB.

In Figure 12, a history of the static pressure at x/L = 0.66 and
y/L = 0.960 is monitored (y/L = 0.960, x/L = 0.33, 0.50 and 0.66). Per-
slstent oscillatory static pressures appeared within one characteristic
time, tch' The <harscteristic time is defined as the period of time
required for a fluid particle to traverse the length of the cavity at
freestream speed. Tor the present problem tch has a value of 1,987 x 10"3
seconds. Since the pressure oscillatjca over the cavity is composed of
several frequencies of diffeient amplitude, a compound wave system
develops., The pvesant calculation was carried out only over a time span
of about nine characteristic times (t = 1,82 x 10‘2 secs). This result is
compared with ogcillogram data for the test results of Ref. 18 in Figure
12. In order to permit a qualitactive comparison, computed results are
repeated for several cycles. One can detect certain similarity between
the data snd the present result. Ia prie, ple, the solfd surface con-
straint and wave interference phenomenon ¢ € che present problem are
inherantly nonlinear. Therefore, raut.on must be exercised in discerning
the discreta frequencies between the fundamental modes of oscillation.
Other basic information such as the relutive phase angle and the amplitude

of each distiactive wave requires furtlier spectral auwalysis.
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A spectral analysis of this compound wave probably is the only
reliable means for accurately obtaining mode frequency. However, this
is impractical due to the large amount of computer time required to
obtain solutions for a sufficiently long duration. Hence, an analysis
was accomplished by assuming the waves to be commensurable. The spectral
analysis reveals four distinctive discrete frequencies of 154 Hz, 308 Hz,
462 Hz, and 616 Hz recognized as the first, second, third and fourth mode
respectively of the oscillatory pressure disturbance. The higher modes
of oscillation decay rapidly as one may observe in Figure 13. Good
agreement between the experimental measurement and present result is
observed. Both exhibit a dominate second mode of the pressure oscillation.

The level of pressure oscillation in db can be evaluated as

Prms
p(db) = 20 log + 189
3o

where % is the dynamic pressure (54 K pascal). The detected frequency
for the second mode (308) compares well with the experimental data (300 Hz)
and Rossiter's prediccion6 (328 Hz). The fluctuating pressure level
between the data and present result is within about ten percent.

The compound wave pattern is best {llustrated in Figure 14. The
propagation of the wave train from the forward bulkhead is presented for
a fixed time interval of 0.64 x 10»3 seconds. One observes the rearward
traveling propagation wave has an unmodulated amplitude until interacting
with reflected waves from the resr bulkhead. No repeatable wave froant can
be identificd downstream of x/L = 0.75. Two pleces of important informa-
tion have been determined from this graph, namely the rearward wave pro-
pagation specd and the amplitude of the pressure oscillation. The pre-

dicted wave specd has a value of 244.4 wps (or k = .53) and is in agrecment
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with the predicted value from Figure 3. The amplitude of the oscillating
pressure also agrees well with data, (+ 6.464 K pascal vs 7.182 K pascal;
or 170 db) with the discrepancy about 10%.

In Figure 15 the sequence of density contours from the numerical com-
putation is shown for a complete cycle of the periodic motion. The for-
ward and rearward moving wave system originated from the instability of the
free shear layer and the reflection at the rear bulkhead can be easily
recognized in the cavity. The generation and movement of the external
shock wave system also can be recognized. These compare favorably with

the wave pattern shown in Figure 1 for the water table experiment.

X. Conclusions

The pressure oscillation for supersonic flow over an open cavity has
been predicted by numerically solving the unsteady Navier-Stokes equatioms.
Both the predicted frequency and magnitude of the unsteady pressure
fluctuations were qualitatively confirmed through experiment. However, a
spectral analysis of a numerical solution of longer duration is required
for complete verification. This ia the first time a complete viscous
solution of the pressure oscillating cavity has been obtained and displays

the outstanding capability inherent in the numerical methods of today.
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Figure 2. Wave Diagram
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Figure 3. Propagation Velocity v.s. Mach Number of Traveling
Waves in a Free Shear Layer (Ref. 12)
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Figure 4, Amplification Factor v.s. Wave Number
for Different Mach Number (Ref. 12)

231




=
(r

M=0.85
L=91.44 cm U= 286.5 mps

i N |

12"] L \*“‘éQQF“‘N“4V“JWVQNH‘

10506200 300 400 500 600 700 800 00
FREQUENCY (H)

Figure 5. Comparison of Amplification for Different
Frequencies with Lxperimental Data
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Figure 10. Comparison of Velocity Profiles
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