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0 This work contains the results of a study aimed at the

development of two- and three-dimensional numerical proce-

dures for computing the flowfield generated by the inter-
action of a blast wave and a rigid body. A number of numer-

ical procedures were applied to two-dimensional problems
including both implicit and explicit algorithms. Each was

tried on the blast wave-cylinder interaction problem.
MacCormackls method with added fourth-order dissipation
yielded the best results and was then applied to the blast
wave-truck interaction problems in two dimensions.
MacCormack's method was also used in three dimensions to

determine the flowfield that results when a blast wave

strikes a rectangular parallelepiped at an arbitrary
angle. Both the two- and three-dimensional computations
were compared with experiments in a number of ways. Two

dimensional density contours show qualitative agreement

for shock front location and Mach stem forpation with

spark shadowgraphs taken in a shock tube. Pressure-time

histories indicate good quantitative agreemet between

theory and experiment both in two- and three-dimensions.

INTRODUCTION

The accurate prediction of the effects of blast waves encountering vehicles

and structures is essential in the design, survivability, and hence effective-
ness of these configurations. Detailed experimental blast wave interaction

data is both costly and difficult to obtain. Moreover, these experiments

frequently do not provide a complete picture of the blast wave interaction flow-

field. Actual experiments, in fact, only yield pressure data at a few selected

points on the models. As a consequence essential design parameters are often

difficult to define.

Design information for the kind of blast wave-vehicle encounter as pictured

in Fig. 1 may be obtained experimentally in several ways. In one approach a

large explosive charge is detonated near an instrumented vehicle or structure

enabling direct measurements to be taken. This approach, while realistic, is

costly, results in few data points, and frequently provides little understanding

of the important flowfield phenomena. Another approach is to place a model of
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the target inside a shock tube. In this case, better control can be provided
and the experimental cost is less. Nevertheless, the experiments are still
limited in their range of applicability as a result of scaling, shock tube wall
effects, realistic wave shapes and flow duration.

As an alternative to the experimental description of the blast wave inter-
action phenomenon, one can use computational fluid dynamics. This is the
approach adopted here. Accurate finite difference simulations offer the possi-
bility of providing design data at a relatively low cost. Such a simulation
provides a complete flowfield description that is essential to a fundamental
understanding of the fluid mechanics and a necessity for an effective structural
design. The numerically generated fiowfield data can then be integrated to
yield other vital information such as the total loads, center of pressure, and
overturning moments.

I~i the past second-order finite-differe~ice procedures have bee~n uised by
*Kutler, et al. (Ste References I and 2) to rolvc. simple shock-diffraction
problems Involving both regular and Miach reflections of the Incident shock. In
these cases ull discontinuities were fit, i.e., treated as sharp discnntinnities.
Blast wave encour tar problems with two-dimen~sional wedges and three-dim.ýPsional
cones in suipersonic flight have been solved by Mutler, et al. (,"c References 3
and 4) again using second-order finlte-difference procedures. lit those instances
a "shock-capturing" philobophy was employed and resulted in arn accurate descrip-
tion of the so-cadled "shock -on- shock" problem.

IIIi the presetit paper. these "shoek-eapt%.vkng11 flowfield simulation toch- ý
niques havQ been adapted to the blast-wave initeruction problem. Qaly invistid
flow problems have been considered, hut both complex tmw-dimenslonpal aud simple
three-dimensional geometric coofigurutions havi been used as target%,

WVWI~RNG EQUATRIN

Several assumptions are made in the p)resor~t -;tudy of hbust wave encounters
with targets. The first is that the hl.A~t wave is assric~d to be planar relative
to the target and that conditiotns behiNd the wavy cau he adequately and consis-
tontly described. Secondly, vimcous vfffts fAre ignored. Finiall/, tiny effects
which result from. radiative hooting on the taract are aa~swd negligible, and 4 N
perfect &al equiation of state is Qvtplayed.

tinder the above OSStUhptions, the governing p~artial differential equatiolks,-N
art the iunsteady Puler eiriations. To permit the sapping of two- or three- i

d imenstA cotpl icated physical region% into reetangular or cubical computd.
t ios I dvuians respectively, the following Wnependout variable transformation
i% mquloyed:

t.t; ((~ to z, ye f); tM X i~. Y. y,); * t(r, X. y. 1) ()

Oec_-u-ac the above transfornation maps. the body and ooter boundary surfaces onto
constint coordinate lines and planes. application of the boundary condition
procedures to facilitated. The above transforoation also permits the clustering
of grid points in the vicinity of the body.

Under this transfoemation. the governing partial difforeatial equtions in
strong conservation lau form become 1

V1 . *G .0 (2)

where the flux vectors U, PF, G of U.(2) assume the formI
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pU [pV pW

"puU + ý p puV + nxP puW + Vxp

E pvU + yp F= pvV + ryP G= pvW + 4yp (3)

PwU + tzp pwV + nzp pwW +

(e + p)U- &tP (e + P)V- ntp (e + p)W -tp

where U :t + U&x + VEy + WEz V = nt + unx +,V y + wnz , and

W t +U x U + VCy + wez are the contravariant velocity components without

met•ic normalization.

In the conserved variables of Eq. (2) p represents the pressure, p the
density, u, v. and w the three Cartesian velocity components, and e the total
energy per unit volume. For an ideal gas, the pressure, density, and velocity
components are related to the energy by the following equation-

2 V2 2(4)

The metrics required by Fq. (3) in general are not known analytically and
must be evaluated numerically. Details for this procedure are given in
Reference S,

RNUMERI CAL ALORIUThNS

A The traissfomaed governing eqmations (Eq. (2)) were solved by both explicit
and implicit finito-differeuce procedurts. These schemes included NacCormack's
explicit metho~d with an additional fourth-order dissipatlwit torm, Seam and
Wa•rming's implicit method in the delta-form, and Steger and Warmlng'sO
explicit upwind scheme. MacCormack's schme captured the shock within the
least nutmber of grid points and consumed the least amount of machine time, find
therefore, it is the only procedure presented here. The others cmt be found in
Refereoce, S.

NacCormack' s method is A socond-orJer. noncoeterod predictor-corrector
scheme antl appears as follows:

n'l - at (atgn a)

where ." implies that the flux vector E is evaluated using elements of the
"predicted value q, and A and V are the standard forward1 and backward difference
operators. The quantity I) reprents a fourth-order dissipation term in all
thre- directions whose effect is governed by the dissisation constant c.

(MIbID GENERATION

The generalized coordinate transformation given by IVq. (1) permits the use
of grids based not only on standard coordinate systems such as cylindrical or
spherical but also numerically generated grids such as tho-te obtained by solving
elliptic partial differential equatior~s. In this Study both analytically and
tuomeriý.ally determined grids were used to discretize the physical regions of
interest.
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i.! "For two-dimensional targets consisting of cylinders and rectangles, an

analytically described mesh based on a cylindrical-like coordinate system is
employed (see Figs. 2a and 2b). Points can be clustered near the body for better
resolution by using an exponential function.

in order to discretize an arbitrary two-dimensional shape such as a truck
and its surrounding flowfield, a numerically generated grid was used (see
SFig. 2e). The partial differential equations used for this process are elliptic
and satisfy a maximum principle. The technique for generating these grids was
obtained from R. L. Sorenson at NASA's Ames Research Center and was a result of
a paper by Steger and Sorenson. 0  Details of the mesh generation procedure can
be found in that paper, but suffice it to say that the method can treat arbitrary
bodies and outer boundaries with clustering near the body.

For the three-dimensional problem, the flowfield resulting from the inter-
action of a blast wave and a rectangular parallelepiped was desired. Discroti-
zation of this flowfield was accomplished using a spherical-type grid as shown
in Fig. 3.

BOLINUARY AND INITIAL CONDITI0NS

Two types of computational boundaries were considered; those across which
there is no mass flow (impermeable surfaces) and those across which there is
mass flow (permeable surfaces). Impermeable boundaries include solid walls.
planes of symetry, and slip surfaces whereas permeable boundaries include shock
waves, porous walls, and inflow or outflow boundaries.

In the blast wave interaction problems of interest here, boundary condition
procedures are required at the body, the planes of symmetry, and along the outer
boundar%. For Inviseid flows, the boundary condition at the surface of a body
requires flow to be tangent to the body. 1hts implies that the velocity compo-
nent V of Eq. (3) must be eqtvil to sero at the body. In order to simulate this
nutmerically, the image plane concept is used. By employing this concept. an
image line of nodal points is established which falls one mesh interval inside
of the body (see Fiigs. 2 & X). Flow variables along this line are obtaiined by
use of the flow variables at the body and the adjacent flowfield interior points.
both at the previous time step. The flow variables for the new time step at the
body can now he obtained by the same numerical algorithm that was used for the
interior points, and hence with the use of the implicit procedure, the body
points are also updated implicitly. The details of this procedure for both the
two- antl threte-ditmensional cases are given in Reference S.

to noerically simulate the ground plane (plane of symetry) in both the
two- anti three-dimensional problems, the reflection principle is employed. In
this approach the pressure, density, energy, and tangential velocity components,
are treated as even functions vith respect to the ground plane while the normal
velocity component is treated as an odd function.

RIuSULTS AND DISOCUSSIWMS

In this section numerical results are presented which describe the inter-
action of a blast wave with a body. In tw0o-di11ensions, a comprehensive set of
results is presented for the blast wave-cylinder interaction while partial
results are presented for the blast wave-truck interaction. In three-dimensions
partial results are also presentuo for LQe bIiAs vave Parallelepiped inter-
action problem.

Numerical and esperimental results for the blast wave-cylinder interaction
problem are presented in several ways. In Fig. 4a computed pressure-time his-
tories are compared with experisental results obtained by Pearson et at1t at the

Ballistic Research Laboratory. The inset in each figure depicts the measuritg
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station of the transducer. The blast wave passes over the cylinder from left to
right. In each case, the smooth curve is the computed result while the oscilla-
tory curve is the measurement. The oscillations represent excursions from true
values due to transducer ringing, local unsteadiness due to model oscillations,
"general flow anomalies, etc. A sample of the more interesting cases with signif-
icant wave structure are shown (0 = 45, 135 0 , 1800). All the locations (except
for 180*) have a similar structure. A sharp rise in the pressure signifies the
arrival of the incident blast wave at the measuring station. This is followed by
an exponential-like decay and a second, more "smeared" jump to a plateau value.
The delays from t = 0 on the abscissa represent the time before the shock arrived
at the sampling station. The results can be more fully explained with the help
of Figs. 4b, computed isopycnics, and 4c, spark shadowgraphs (obtained by
Vandromme 1 2). Interesting results develop as the shock encounters the cylinder
and passes over it. A triple point and Mach Stem appear partway up the windward
side of the cylinder as is clearly seen in both the computed isopycnics and the
shadowgraphs. The contact surface emanating from the triple point (as seen in
Fig. 4c) is not reproduced in the isopycnic plots of 4b. This is because of in-
adequate resolution of the computational grid. Better results would be obtained
with an increase in the number of grid points or an adaptive gridding scheme.
As the primary shock continues toward the rear of the cylinder, it eventually
reflects and is propagated upstream. \s this reflected shock arrives at a mea-
suring station, it gives rise to the second "smeared" jump in Fig, 4a. The

smeared nature of the jump Is manifest in viscous effect near the surface which
now begin to make their effects felt. The discrepancy in the pressure amplitude
in the bottom figure of 4a and the latter half of the top two figures is also
attributable to viscous effects. Those effects were neglected in the computa-
tion.

The interaction of a blast wave with a truck for intetoediato times is

shown in Fig. 5 in the form of pressure contours. For this case the grid si:-
consisted of 32 points in the J-direction (along the body) and 25 points in the
k-direction (nor=-l to the body).. The blast wave had a strength of 34.5 kPa
overpressure. Figure S5 shows the reflected blast wave from the front of the
truck while Fig. St, shows a rofle:ted wave from the windshield. In Fig. Sc the
blast wave is beginning to expand over the cob of the truck while the reflected
waves from the front and windshield move away from the vehicle. This purticular
calculation does dewmnstrato the versatility of the arbitrary body mesh genter
ator and shock-capturing ability of RacColmack's method for comuting compli.
cated flowfilcds.

The thrce-dimoensonal interaction of a blast-wave with a rectangular paral-
lelepilped was computed using acCoruactls method with fourth-order "t-oothing.
For this calculation the grid consisted of 54 points in the J-diroction or
around the body. 24 points in the k-direction, and 16 points in the 1-dirtction,
or betumn the body and the outer boundary (see Fig. 3).

Mser~eal results were obtained for which experimental data was available.
The ekperimental data was obtained by placing pressure gages at various posi. -
tions on the model and recording the tine histories of the pressure as it ias
struck by the blast wave (set Fig. 3).

"The Initial conditions for this case consisted of a blast wave Nach number

of 1.14, froestrea pressure of 101.33 kPa, and angle of incidence a of $2.$.
'he distance r,". from the origin to the bluat %tave (see Pip. 3'. as 4.91.
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The results of this first calculation are shown in Fig. 6 where the pressure
in kilo-Pascals is plotted as a function of time in milliseconds for three sta-
tions. The solid dots shown on each of the curves in Fig. 6 is the experimental
data. The agreement is acceptable and can be made much better with better grid
resolution.
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