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SHOCK DIFFRACTION COMPUTATIONS OVER COMPLEX STRUCTURES
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and

Paul Kutler, Chief
Applied Computational Aerodynamics Branch
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\\‘;x Moffett Field, California 94035

This work contains the results of a study aimed at the
development of two- and three-dimensional numerical proce-
dures for computing the flowfield generated by the inter-
action of a blast wave and a rigid body. A number of numer-
ical procedures were applied to two-dimensional problems
including both implicit and explicit algorithms., Each was
tried on the blast wave-cylinder interaction problem.
MacCormack's method with added fourth-order dissipation
yielded the best results and was then applied to the blast
wave-truck interaction problems in two dimensions,
MacCormack's method was also used in three dimensions to
determine the flowfield that results when a blast wave
strikes a rectangular parallelepiped at an arbitrary
angle. Both the two- and three-dimensional computations
were compared with experiments in a number of ways. Two
dimensional density contours show qualitative agreement
for shock front location and Mach stem fotyation with
spark shadowgraphs taken in a shock tube, { Pressure-time
histories indicate good quantitative agreéﬁénx between
theory and experiment both in two- and three-dimensions.
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INTRODUCTION

The accurate prediction of the effects of blast waves encountering vehicles
and structures is essential in the design, survivability, and hence effective-
ness of these configurations. Detailed experimental blast wave interaction
data is both costly and difficult to obtain. Moreover, these experiments
frequently do not provide a complete picture of the blast wave interaction flow-
field. Actual experiments, in fact, only yield pressure data at a few selected
points on the models. As a consequence essentlal design parameters are often
difficult to define.

Design information for the kind of blast wave-vehicle encounter as pictured
in Fig. 1 may be obtained experimentally in several ways. In one approach a
large cxplosive charge is dotonated near an instrumented vehicle or structure
cnabling direct measurcments to bo taken. This approach, while realistic, is
costly, results in few data points, and frequently provides little understanding
of the important flowfield phenomena. Another approach is to place a model of
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the target inside a shock tube. In this case, better control can be provided

, and the experimental cost is less, Nevertheless, the experiments are still
! limited in their range of applicability as a result of scaling, shock tube wall
A effects, realistic wave shapes and flow duration.

As an alternative to the experimental description of the blast wave inter-
action phenomenon, oneé can use computational fluid dynamics. This is the
approach adopted here. Accurate finite difference simulations offer the possi-
bility of providing design data at a relatively low cost. Such a simulation
provides a complete flowfield description that ig essential to a fundamental
understanding of the fluid mechanics and a necessity for an effective structural
design. The numerically generated flowfield data can then be integrated to
yield other vital information such as the total loads, center of pressure, and

overturning moments.

In the past second-order finite-differeace procedures have been used by
Kutler, et al. (See References 1 and 2) to solve simple shock-diffraction
problems involving hoth regular and Mach reflections of the Incident shock. In
these cases ull discontinuities werc £it, i.e., treated as sharp discontinnuities.
Blast wave encourter prablems witk two-dimensional wedges and three-dimensional
cones in supersonic flight have been solved by Kutler, et al. (Yec References 3
and 4) agaln using second-ordey {injte-difference procedures. In these instances
a\“shock-cnpturlug“ philosophy was employed ard rosulted in an accurate doscrip-
tion of the so-cailed "shock-on-shock" problom.

Ir the present papor. these “shock-captuiang” flowfield simulation tech-
niques have boen adapted te the blast.wave interaction problem. Caly inviscid
flow problems have been considered, hut both complex two-dimensiunal and siaple
three-dimensional geomeiric configurations haves beon used as targoets,

GOVERNING BQUATIONS

Several assumptions ave mude in the presart study of blast wave encounters
with targets. The first is that the Hlast wave is assumed to be planar relative
to the target and that conditions behind the wave can bo adequately and consis-
tently described. Secondly, vistous effeets are ignored, Finally, any effects
svhich result from radiative heating on the target are assumed negligible, and a
perfect gas equation of state i omvloyed.

Under the above assumptions, the governing partial differential equations
are the unsteady Fuler eqeations, To permit the mapping of two- or three-
dimensional complicated physical reglons into rectangular or cublcal computa.
tional domalns respectively, the following independsnt variable tvansformation

is smployed:

R

tet, §egly, x, ¥, 2); nwnl(t, x, y, 2); ¢ (e, x, ¥, 2) (1

Because the above transformation maps the body and outer boundary surfaces onto
constant coordinate lines and planes, application of the boundary condition
procedures i facilitated. The above transforsation also permits the clustering
of grid points in the vieinity of the body.

Under this transformation, the governing partial differential equations in
strong conservation law form bocome

q'ougq»t»noccno (2)

shere the flux vectors &, ¥, G of ig. (2) assume the form
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pul + t:xp puv + np pul + Cxp
E= jpvU + gyp F = |pvVW + P G= |pviW + cyp (3)
pwlU + gzp pwV + np pwi + l;zp
| (e pU - ) i (e + PV - P I (e + PIW - |

where U = £, YUE, + vt:y +wE, V= N +un bevny 4 wn, , and
W= .r,t + ucx + vcy + w).;z are the contravariant velocity components without
meteic normalization,

In the conserved variables of Bq. (2) p represents the pressure, p the
density, u, v, and w the three Cartesian velocity components, and e the total
energy per unit volume. For an ideal gas, the pressure, density, and velocity
components are related to the enorgy by the following equation:

o= o ’:’ T+ 3 4
The metrics required by Eq. (3) in general are not known analytically and

must be evaluated numerically. Details for this procedure are given in
Reference S, '

NUMERICAL ALGORITHMS

The transformed governing equations (Eq. (2)) were solved by beth explieit
and tmplicit finite-difference procedures. These schemes included NacCormack's®
explicit method with an additional fourth-order dissipation terw, Beam and
warming's?+® {mplicit method in the delta-form, and Steger and Warming'e?
explicit upwind seheme. MacCormack's scheme captured the shock within the
least nusher of grid points and consumed the least ampunt of machine time, and
therofore, it is the only procedure presented here, The others can be found in
Referonce 5.

MacCormack's method i3 a second-order, noncentersd predictor-corrector
scheme and appears as follows:

qeq- 6&(5{:{2" . Aﬂ:»'“ . atc“)
(5)

Pl Q- BV E o vF e D) o oh)

where F implies that the flux vector £ is evaluated using ¢loements of the
predicted value q, and 4 and ¥ are the standard forsard and backward di€ference
operators. The quantity D represents a fourth-order dissipation tera in all
thres directions whose effect is governed by the dissigation constant «.

CRID GENERATION

The generalized coondinate transformation given by tiq. (1) permits the use
of grids bascd not only on standard coordinate systems such as ¢ylindrical or
spherical tut also numerically gencrated grids such as those obtained by solving
elliptic partial differential cquations. I this study both analytically and
smerically determined grids were used to discrotize the physical regions of
inteorest,
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For two-dimensional targets consisting of cylinders and rectangles, an
analytically described mesh based on a cylindrical-like coordinate system is
employed (see Figs. 2a and 2b). Points can be clustered near the body for better
resolution by using an exponential function.

In order to discretize an arbitrary two-dimensional shape such as a truck
and its surrounding flowfield, a numerically generated grid was used (see
Fig. 2c). The partial differential equations used for this process are elliptic
and satisfy a maximum principle. The technique for generating these grids was
obtained from R. L. Sorenson at NASA's Ames Research Center and was a result of
a paper by Steger and Sorenson.!® Details of the mesh generation procedure can
be found in that paper, but suffice it to say that the method can treat arbitrary
bodies and outer boundavies with c¢lustering near the body.

For the three-dimensional problem, the flowfield resulting from the inter-
action of a blast wave and a rectangular parallelepiped was desired. Discreti-
zation of this flowfield was accomplished using a spherical-type grid as shown
in Fig. 3. '

BOUNDARY AND INITIAL CONDITIONS

Two types of computational boundaries were considered; those across which
there is no mass flow (impermeable surfaces) and those across which there is
wass flow (permeable surfaces). Impermeable boundaries include solid walls,
planes of symmetry, and slip surfaces whereas permeable boundaries include shock
waves, porous walls, and inflow or outflow boundaries.

In the blast wave interaction problems of interest here, houndary condition
procedures are required at the body, the planes of symmetry, and along the outer
boundary. Por tnviseid flows, the houndary condition at the surface of a body
requires flow to be tangent to the body. This implies that the velocity compo-
aent ¥ of Hg. (3) must be equal to zerv at the bhody. In order to simulate this
nwmerically, the {mage plane concept is used. By eaploying this concept, an
tmape line of nodal points is established which €alls one mesh interval inside
of the body (see Pigs. 2 § ¥). Flow variables along this line axe obrtained by
use of the flox variables at the body and the adjacent €lowfield interior points,
both at the previous time step. The flow variables for the nex time step at the
hody ¢an now he obtained by the same numerical algorithm that wax used for the
interior points, and hence with the use of the tmplicit procedure, the body
points are also-upmiated ieplicitly. ‘the Jdetalls of this procedure for both the
tvo- and three-discisional cases arv given in Reference S,

To nusmerically simulate the ground plune (plane of sysaetry) in both the
tyo- and three-dimensional problems, the reflection principle is esployed, In
this approach the pressure, density, energy, and tangential velocity components,
are treated as even functions with respect to the gyound plane while the normal
velocity component is treated as ain odd function.

RESULTS AND DISCUSSICNS

In this section numerical resukts are presented shich describe the inter-
action of a blast wave with a body. In two=dimensions, a comprohensive set of
results is presented for the blast wave-cylinder interaction while partial
results are presested for the Wlast wave-truck interaction, In three-dimensions
partial results are also prescnted for Lhe biast vave parallelepiped inter-
action problem,

Numerical and experimental results for the blast wave-cylinder interaction
problea ore presented in several ways. In Fig. da computed pressure-time his-
torics are cospared with experlental results obtained by Pearson ct all! at the
Ballistic Rescarch Laboratory. The inset in ecach figure depicts the measuring
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station of the transducer. The blast wave passes over the cylinder from left to
right. In each case, the smooth curve is the computed result while the oscilla-
tory curve is the measurement. The oscillations represent excursions from true
values due to transducer ringing, local unsteadiness due to model oscillations,
general flow anomazlies, etc. A sample of the more interesting cases with signif-
icant wave structure are shown (6 = 45°, 135°, 180°). All the locations (except
for 180°) have a similar structure. A sharp rise in the pressurc signifies the
arrival of the incident blast wave at the measuring station. This is followed by
an exponential-like decay and a second, wore "smeared" jump to a plateau value.
The delays from t = 0 on the abscissa represent the time before the shock arrived
at the sampling station. The results can be more fully explained with the help
of Figs. 4b, computed isepycnics, and 4c, spark shadowgraphs (obtained by
Vandromme'2). Interesting results develop as the shock encounters the cylinder
and passes over it. A triple point and Mach Stem appear partway up the windward
side of the cylinder as is clearly seen in both the computed isopycnics and the
shadowgraphs. The centact surface emanating from the triple point (as seen in
Fig. 4c) is not reproduced in the isopycnic plots of 4b. This is because of in-
adequate reselution of the computational grid. Better results would be obtained
with an increase in the number of grid points or an adaptive gridding scheme.

As the primary shock continues toward the rear of the cylinder, it oventually
reflects and is propagated upstream. As this reflected sheck arrives at a mea-
suring station, it gives rise to the second "smeared" jump in Fig. da. The
smeared nature of the jump is manifest in viscous effect near the surface which
now hegin to make their effects felt. The discrepancy in the pressure amplitude
in the bottom figure of da and the latter half of the top two figures is also
attributable to viscous effects. These effects were neglected in the computa~
tion.

The interaction of a blast wave with a truck for intermediate times is
shown in Fig. & in the form of preossure contours. For this case the grid size
consisted of 32 points in the j-direction (along the budy) and 25 points in the
k-direction (normal to the bedy). The blast wave had a strength of 34.5 kPa
overpressure. Figure Sa shows the reflected blast wave from the front of the
truck while Fig. Sb shows a reflected wave from the windshield. In Fig. S¢ the
blast wave §is beginning to expand over the cab of the truck while the reflected
waves froa the front and windshield move away from the vehicle. This particular
caleulation does demonstrate the versatility of the arbitrary body mesh pener
ator and shock-capturing ability of MacCormack's method for cosputing compli-
catod flowfields.

The three-dimensional interaction of a blast-wave with a rectangular paral-
felepiped was computed using MacCorsuack's method with fourth-order zmoothing.
For thix caleulation the grid consisted of 54 points in the jedirection or
around the body, 24 points in the k-direction, and 16 points in the l-direction,
or between the body and the vuter boundary (see Fig. 3).

Numerical results were obtained for which experimental data was available.
The experimental data was obtained by placing pressure gages at varions posi-
tions on the model and recording the time histories of the pressure as it was
struck by the blast wave (see rig. 3).

The initial conditions for this case consisted of a blast wave Nach number
of 1.14, freestream pressure of 101.33 kpa, and angle of incidence a of $2.5°.
The distance LIV from the origin to the blast wave (see Fig. 3, was 4.91.
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4 ! The results of this first calculation are shown in Fig. 6 where the pressure %
] ~ in kilo-Pascals is plotted as a function of time in milliseconds for three sta- @
3 . tions. The solid dots shown on each of the curves in Fig. 6 is the experimental 3
3 data. The agreement is acceptable and can be made much better with better grid ’
3 resolution. 3
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