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SCENE ANALYSIS USING REGION-BASED
CONSTRAINT FILTERING
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\\‘ ABSTRACT computational speed: Constraint-filtering can be

A general-purpose scene-analysis system is
described which uses constraint-filtering tech-
niques to apply domain knowledge in the interpre-
tation of the regions extracted from a segmented
image. An example is given of the configuration
of the system for a particular domain, FLIR
(Forward Looking InfraRed) images, as well as
results of the system's performance on some typi-
cal images from this domain.
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1. Introduction

An image (whether on the human retina, on
photographic film, or in some electronic device)
is formed by a complicated interaction of light
with objects in three-dimensional space (a_scene).
Scene analysis is the process of unravelling this
interaction: inferring from an image the arrange-
ment of lighting and objects that produced it. In
theory, this problem is indeterminate: A given
image may result from many different scenes, all
of which happen to appear identical from the ob-
server's viewpoint. But in practice there are
usually sufficient restrictions on allowable
scenes to permit essentially only one interpreta-
tion of the image. The problem is to find this
interpretation efficiently. Humans are clearly
able to do this. Can computers achieve simils
performance?

In this paper we present a method for scene
analysis based on the application of constraint-
filtering techniques to a network of regions ex-
tracted from an image. Such an approach has two
chief advantages. First, its conceptual simpli-
city: It provides a clean separation between the
general processing algorithm and the knowledge
about a particular domain, which is expressed
declaratively as constraints. Second, its
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decomposed into many almost independent processes
which can all be run in parallel on a suitable
multiprocessor computer.

To try this approach, we have implemented a
prototype system that does scene analysis by con-
straint filtering. A diagram giving an informal
overview of the system is shown in Figure 1. In
the interest of expediency we have made many sim-
plifications. For example, only a few crude
measurements are made on the extracted regions. In
the following sections, we will describe the proto-
type system, taking note of these simplifications.
We will also show how the system is used in a
particular domain -- forward-looking infrared (FLIR)
images of battlefield scenes. This domain was
chosen partly because of its military interest, but
primarily because its moderate complexity is just
about right for fully exercising the prototype
system. Then we will discuss the system's perfor-
mance, taking care to distinguish those failures
that are inherent in the method from those that are
merely the result of simplifications made in this
implementation, and finally, we will suggest direc-
tions for further progress.

2, Segmentation

A digital image is merely an array of light
intensity (or color) values. There seems to be no
way of going directly from these values to a
description of a scene in terms of the objects in
it. As argued by Barrow and Tenenbaum [],2],

Marr [3], and numerous others, several stages of
processing are needed, each with its own intermed-
iate representations of the information contained
in the image. A first step is to organize the
pixels into groupings that correspond more closely
to the objects in the scene.

Typically, this is done by segmenting the image
into regions of fairly homogeneous brightness. For
many scenes, this is a reasonable thing to do. 1In
most cases, the regions will correspond to the ob-
jects themselves, or else to significant pieces of
them. By this means the myriads of pixels in an
image can be reduced to a few score, Qr a few
hundred regions, considerably decreasing the amount
of data that must be processed, but with little loss
of information, Furthermore, since regions more
closely correspond to objects, expectations about
the appearance of objects can be more readily
applied to the regions than to unorganized pixels.
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However, segmentation into regions is not
without problems. An initial process of segmenta-
tion normally applies a single criterion of homo-
geneity over the entire image. Unfortunately, a
difference in brightness that is insignificant in
some contexts (such as a fluctuation in a textured
background) may well be very significant in other
contexts (such as part of the border of an object
with its surroundings). Most segmentation pro-
cesses take little account of this sort of con-
textual information, and so make errors of two
sorts: oversegmentation and undersegmentation.
Oversegmentation breaks into pieces what should
ideally be a single region. Properties of the
region as a whole (such as shape and area) and
relations with other regions (such as adjacency
and surroundedness) cannot be computed directly,
but can only be recovered by attempting to merge
pieces that are likely to belong to the same
region. More serious is undersegmentat ion, by
which szveral regions that should be distinct are
fused together. Again, region properties and
relations are lost, but recovering them is a more
difficult business of attempting to split the
fused region into parts.

Several attempts have been made to overcome
this problem., Tenenbaum and Barrow in IGS
(Interpretation Guided Segmentation) [4] used do-
main knowledge to guide the low level segmentation,
Constraints about the relationships betwee: ob-
jects were used to guide the merging of pixels into
regions. Feldman and Yakimovsky [5] also used
semantic constraints to guide segmentation.

Another approach, used by Nagao and Matsuyama [6],
first performs as unguided segmentation and later
corrects the errors in this segmentation by a
semantically controlled process of merging and
splitting regions. We assume that undersegmenta-
tion never occurs, and that oversegmentation is not
serious: that an object is at worst broken into
two or three pieces. We augment our domain model
to cover fragments of objects, but without making
any attempt to integrate them into wholes, For the
simple drmain used as an example, the initial seg-
mentatioa can usual! be fine-tuned by hand to fit
our assumptions above. Even so, failures are no%
uncommon, indicating that a more subtle treatment
of segmentation errors is needed.

First we smooth the image using an edge-
preserving smoothing technique in order to reduce
noise. The particular technique used does not
matter greatly, but usually we have used Narayanan
and Rosenfeld's histogram-guided smoothing tech-
nique (7], which has proved quite effective., Next,
we requantize the image into a small number of
gray levels (typically five), following the peak
structure of the histogram of the smoothed image.

After this, the regions themselves can be ex-
tracted by a connected components analysis. At the
same time, we make a few measurements on each
region; these measurements serve as a description
of the region for all subsequent processing. We
construct the bounding upright rectangle around
each region (see Figure 2) and measure the image
location of its lower left corner, its width and
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height, as well as the area and average brightness
of the region itsei’.

As mentioned above, these measurements provide
only a crude description of each region, but suffi-
cient for this prototype system. A full implemen-
tation would need a more complete description of
shape, perhaps the chain code of the boundary of
each region. Since any region description is
necessarily incomplete, it may ultimately be neces-
sary to refer back to the original image to check
for properties that cannot easily or efficiently be
extracted by preprocessing operations.

3. Constraint filtering

After segmentation, scene analysis becomes
mostly a matter of labelling the regions with their
jdentifications as objects or object parts. (For
now we ignore the problem of organizing the parts
of objects into wholes.) Clearly, only those
labellings are valid that can be derived from an
arrangement of real cbjects in space. Properties
of objects, and relationships between them, imply
corresponding properties and relationships of the
image regions that result from these objects.
These projected properties and relationships con-
strain the possible labelling of regions with
object identifications. Thus scene analysis can
be reduced to a constraint satisfaction problem.
(The early work of Barrow et al. [8,9], used this
approach, with the -onstraints derived from a re-
lational structure which provided a single but
inflexible scene model.)

The traditional technique for solving such
problems is backtracking. However, backtracking is
inherently a sequential technique, which does not
lend itself well to parallel processing. Even if
we restrict our attention to sequential processing,
simple backtracking has a serious defect, espe-
cially on the problems arising in scene analysis:
Tt suffers greatly from "thrashing" behavior [10,
11,12]. When a failure is discovered, only the most
recent labelling is reconsidered. If the true
cause of the failure lies in an earlier labelling,
it will t .ke the program many steps of blind back-
tracking tefore it can undo the incorrect labelling,
To overcome these problems, a nu.ber >f authors
(10,11,14,15,16,17,18,21] have proposed "constraint
filtering", "relational :onsistency", or "discrete
relazation” techniques for constraint satisfaction
problems. Some have emphasized the suitability of
these methods for parallel processing, while others
have stressed the avoidance of thrashing. We feel
that the chief advantage of these methods lies in
their potential parallelism, especially since
Gaschnig [13] has shown that more sophisticated
backtracking methods can outperform sequential
implementations of constraint filtering.

In order to perform constraint filtering, it
is necessary that those nodes (regions) that con-
strain each other be connected in a network. It is
at least theoretically possible for the labeiling
of a region to be influenced by any other region in
the image, so ideally the constraint network should
be a complete graph, connecting each region to every
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other region.
ble, since the number of interconnections grows as

the square of the number of regions -~ far too fast.
Having too many interconnections is undesirable for

But in practice this is not feasi-

two reasons: First, it increases the cost of build-
ing a hardware network for constraint filtering
(though some architectures, such as that of ZMOB
[19], permit arbitrary interconnection at no extra
hardware cost). Second, and more important, it
increases processing time, since the amount of
computation done for each region is roughly pro-
portional to the number of regions it is connected
to.

Therefore, it is desirable to limit the num-
ber of interconnections. This must be done care-
fully, since the correctness and effectiveness of
the constraint filtering depend on the complete-
ness of the interconnections, and the lack of a
necessary connection might prevent or mislead the
application of an important constraint. We would
like to build a network of interconnections that
is as sparse as possible, but still produces the
same results as the complete graph, Obviously,
this cannot be known ahead of time-the best we
can do is to connect those regions that have a
good chance of being relevant to each other,

This is a matter that requires much further inves-
tigation, but for now we have implemented a simple
notion of relevance: A region is connected to all
regions that are very close to it (because these
make up its immediate context), and to all very
large regions in the image (because these give a
good basis for judging it in its global context),
Thus the number of interconnections is roughly
constant for each node and overall is proportional
to the number of regions in the image. This inter-—
connection scheme is imperfect, but appears to work
with few errors, at least for the domain of FLIR
images used in this report,

Once the configuration of the network is com-
plete, the constraint filtering proper can begin:
We first of all attach te each region a list con-
taining all the labellings that it migiit possibly
bear. (Currently, these will be all labellings
possible in the domain, although it should be
possible to use context and the taxonomy of labels
to reduce this initial list considerably,) Each
label has associated '-ith it & special '"when-
proposed" procedure, which is executed for each
region whenever that label is first proposed for
the region. This permits the calculation of cer-
tain parameters that make sense only if the region
is interpreted as a particular sort of object. For
example, if a region is hypothesized to correspond
tn an object of a certain intrinsic size, then it
may be useful to use the region's apparent size, in
conjunction with the camera geometry, to compute
the object's range and location in space. Notice,
however, that this computation makes sense only
under this hypothesis.,

Next, the label lists are filtered using what
are called here "unary constraints''. That is,
knowledge about the intrinsic properties of objects
is used to eliminate incorrect labellings from each
region's label 1list, Regarded as propositions,
the unary constraints have the form: "If a region
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is to bear this label, then the region must have
these properties". Tne constraint is actually used
in the contrapositive form: "If a region does not
have these properties, then it cannot bear this
label." These properties may be immediate proper-
ties of the region, or they may be those computed
indirectly by the appropriate when-proposed pro-
cedure.

Clearly, these three steps (hypothesizing
labels, computing parameters, and filtering labels)
could be done at one swoop, with some improvement
in computational efficiency. Here they are done
separately, for clarity of presertation and ease of
programming.

After the region labels hav: been filtered, we
can attach to each interconnection (or arc) a list
of label pairs that is the cross-product of the
sets of labels on the two regions at either end of
the arc. This list represents the joint labellings
that are simultaneously possible for the two regions
considered. Then all these label-pair lists can be
filtered by binary constraints_ that is, those joint
labellings can be eliminated that violate a con-
straint on the labelling of pairs of regions., These
constraints have the propositional form: "If two
regions (say r] and ry) are to simultaneously bear
the labels £ and f; respectively, then r] and ry
must stand in certain relations to each other,"
Again the constraint is used in its contrapositive
form: If the two regions fail to stand in the re-
quired relations to each other, the appropriate
pair of labels can be deleted from the arc joining
them.

Following all this, three more filtering pro-
cesses can be applied. One of them, filtering by
existential constraints, enforces constraints of
the following form: "If a region is to bear a
certain label then there must exist other regions
that have certain properties and stand in certain
relationships with the given region." Thi is
very much like a unary constraint, except that the
properties of the other regions include the require-
ment that they bear certain labels, and that those
labels are permitted simultaneously with the
labelling to which the existential constraint is
being applied. Thus existential constraints must
examine the arc labellings. Unary constraints
need be applied just once, but since the allowaole
labellings of arcs change during the constraint
processing, an existential constraint that is
satisfied early may later be violu:ed because a
labelling that it depended on has been rejected,
Hence the filtering by existential constraints
should be redone every time the arc labellings
change.

The other two filtering processes, arc-upon-
node interaction and node-upon-arc interaction,
attempt to enforce consistency between the node
labellings and arc iabellings. The first process
ensures that every node labelling has support from
every arc that impinges on it. By "support' we
mean that there exists on each arc at least one
label pair that has the same label as the region
for its first or second component, as appropriate,
depending on which end of the arc the node lies at,
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1f a node labelling lacks support it is deleted.
The second process ensures that every arc labelling
has support from the nodes at either end of it.
Here, by "sypport" we mean that every label pair

on an arc should have as its first element a label
that .s represented in the labelling of the node at
the appropriate end of the arc, and have as its
second element a label that is represented in the
jabelling of the node at the other end of the arc.
Any arc label that lacks such support is deleted.

These three interdependent filtering pro-
cesses provide a simple but effective way of pro-
pagating inferences about the jdentification of
regions through the constraint network. They
provide the system with a rudimentary form of
reasoning about scenes in the sense that its con-
clusions, if justified logically, would take sev-
eral proof steps from the given axioms (these are
the region properties and relations, and the do-
main constraints). 0f course, 211 this reasoning
is done by a mechanical process of propagating the
effects of deleting node and arc labellings, but it
can be rega:zded as a limited form of logical de-

duction.

Notice that all the filtering processes work
strictly by refuting and eliminating labellings.
This means that, after the initial labelling gen-=
eration processing, all the filtering processes
could be run independently and asynchronously on
the regions in any order, without the fear of race
conditions occurring. That is, the results of the
constraint filtering will be the same, no matter in
what order the individual filtering processes are
applied to each node, provided all processes are
applied until the network stabilizes--when 1o fur-
ther deletion of labellings can be made. However,
in the interests of efficiency and simplicity and
in order to simulate an actual parallel implemen-
tation, we apply the various processes synchron-
ously in parallel over the entire network. As
described above, we first perform all the initial
node labellings, next all the node filtering by
unary constraints, then all the generation of joint
labellings on arcs, followed by arc filtering by
binary constraints. Now, the arr-upon-node inter-
action and the existential constraint filtering use
the arc labellings to update the node labellings;
and the node-upon-arc interaction updates the arc
labellings using the node labellings. Therefore it
is appropriate to apply these three propagation
processes in a cycle of three (in the order given)
repeatedly until the network stabilizes (when no
further deletions of labellings can be made) .

After the constraint filtering has stabilized
and terminated, we can turn our attention to the
interpretation of its results. Unfortunately,
these results will not ne-essarily be correct in
the sense of being a valid solution to the given
constraint satisfaction problem. Ideally, we
would like to see every region correctly and
uniquely labelled with its identification as an
object or object part. However, given the way we
have decomposed the problem so as to make it
amenable to parallel processing, such an outcome
cannot be guaranteed. Before discussing these
erroneous results in detail, we should stress that
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both in the example domain used here, and in other
domains [17,20], we have not found these errors to
be a serious problem in practice. Other authors
{21], report similar findings.

One soct of error is that after the filtering
a region may retain several labels, not just one.
This situation can arise from two causes. First,
it may well be that there is more than one valid
solution to the constraint satisfaction problem,
that is, the image admits of several distinct inter-
pretations. So a given region may have more than
one correct idertification ascribed to it, either
of itself, or in conjunction with multiple identi-
fications of neighboring regions (neighboring in
the sense of being directly connected in the net-
work). From one point of view, this can hardly be
considered an error: a region can have several
different jinterpretations, and all of these are
retained. But if a number of regions all have
multiple labels, it may be of interest to dis-
cover which unique labellings of all of them are
simultaneously possible, and this sort of unrav-=
elling cannot be done by mere constraint filtering.
Related to this 1is the second cause of multiple
labelling: There may exist in the network an am-
biguity that can be resolved in princiyle, but
cannot be resolved by pairwise constraint filter-
ing--its resolution requires the simultaneous €xX-—
amination of the 1abellings of three of more nodes.
Errors such as these are not serious, since they
tend to occur infrequently-—for most domains it
seems that pairwise interaction 1is sufficient for
essentially unambiguous interpretation. Even when
they occur they can easily be resolved, by some
sort of backtracking technique alone, or in combi-
nation with further constraint filtering, as used
by Barrow and Tenenbaum in Msys [21), and by
Haralick and Shapiro [15,16]. In most cases, the
bulk of the disambiguation will have been done by
the constraint filtering, leaving very little work
to be done by the final backtracking. However, we
have not implemented such a post—processing phase
for the current system because our main interest
is in the filtering itself.

It is worth remarking that if only unary and
binary constraint filtering are used, or existent-
jal constraints are used but the network is suffi-
ciently complete, extra labelling (as discussed
above) is the only sort of error that can OCCur.
Under these circumstances constraint filtering will
be safe in that it will never reject a correct
labelling, even though it may retain some incorrect
labellings. This means that if every region bears
a single label, then we can be sure that all these
1. vellings comprise the unique, correct solution
to the constraint satisfaction problem. 1f any
regions bear multiple labels, then we know that
unique interpretations could be found, if neces-
sary, by a later backtracking process. Unfor-
tunately, if existential constraints are used, then
the required completeness of the network cannot be
guaranteed unless it is a complete graph, which is
seldom feasible in practice.

The other sort of error that can occur is that
a correct labelling is mistakenly rejected. As im-
plied above, this can only happen when existential
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constraints are applied to a network that lacks
some necessary interconnections. Since the com-
pleteness of the interconnections cannot always be
determined. ahead of time, it cannot be foreseen
whether such errors will occur, If they do occur,
they they are irreparable, since a label once lost
cannot conveniently be reinstated. But once again,
these errors, while theoretically possible, have
not occurred in our examples because our simple
configuration rule mentioned earlier ensures suffi-
cient interconnection in the network--at least for
the existential constraints used in the example
domain.

Related to this is a problem that occurs if a
region loses all of its labellings, that is, all
possible identifications of it can be refuted,

This means that the region is unrecognizable as
anything from the assumed domain. But once any
node in the network is unrecognizable, its effect
will be propagated until all nodes lose all their
labels. Strictly speaking, this is perfectly cor-
rect: If a scene contains objects that cannot be
recognized, then the scene could not possibly be
from our chosen domain, and therefore the whole
scene is essentially unrecognizable. The problem
is that the constraint filtering implicitly assumes
that the set of labels and constraints correctly
account for everything that might possibly appear.
If this assumption is violated, then the entire
image must be rejected, even though the image could
be successfully interpreted if the alien object
were not there. While theoretically justifiable,
this behavior is undesirable in practice. If such
a vision system were turned loose on the world, we
would not want it to effectively go blind every
time an unexpected object chanced into its field of
view. One solution to this problem is to postulate
a catch-all label for which there are no constraints
whatsoever. Any region in the image can therefore
bear this label, even those that are otherwise un-
recognizable. Of course, all recognizable regions
will also bear this label in addition, and there
will be numerous additional label pairs attached to
the arcs. This will cause no problem with the in-
terpretation, but it does introduce a certain com-
putational overhead which may not be negligible.
Another solution, which does not suffer from these
problems, is this: When a node loses all its labels,
it should be marked as unrecognizable, and then re-
moved from the network, with its connecting arcs as
well, so that the undesirable effects cannot spread
further. Both of these solutions have ramifications
that we shall not go into here. Because of this,
and because the problem only arises when the model
embodied in the constraints is inadequate, we have
not made any special provision for handling it in
the prototype system. If any region is found to be
unrecognizable, we go back and revise the model to
account for the misrecognition.

This brings us to one final matter: How are
the constraint models for a particular domain con-
structed in the first place? Winston [22] has pro-
posed an automatic system for building scene models,
that uses inductive inference over a set of training
examples. Such an approach is certainly possible
here, but the problem of separating relevant from
irrelevant features can be expected to be very dif-
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ficult for all but the simplest scenes. For now,
we expect that models will be built by hand. A user
of the system relies on his own introspection and
knowledge of the domain to construct an initial
model, applies it to some well-chosen examples,
diagnoses any errors, and then corrects the model
accordingly. For many applications, this is a quite
acceptable way of building models.

In order to illustrate the matters presented
above, we now give examples of the operation of our
prototype system in a particular domain.

4. An example domain -- TANKSWORLD

In order to test out the ideas described in the
previous sections, we have implemented a prototype
system for scene analysis using constraint filter-
ing, and applied it to a domain of forward-looking
infra-red (FLIR) images of tanks and other military
vehicles on fairly open ground. The image segmen-
tation and region extraction programs were written
in the programming language C. The constraint fil-
tering system was written in LISP. This includes
the constraint filtering procedures themselves, and
also a number of auxiliary procedures, including
those that provide the relational primitives out of
which the constraints were constructed. The con-
straints were written as logical expressions in
these primitives, using special conventions to mark
the variables for the regions.

Example images from this chosen domain (dubbed
"TANKSWORLD") can be seen in Figure 3. We admit
five principal region labels in TANKSWORLD:

GROUND (corresponding to the ground or any
patch of ground)

SKY (the sky or any patch of sky)

SMOKE (a puff of smoke or similar bright
compact object)

TANK (a tank, or any vehicle)

TREE (a tree or shrub)

Only TREE and TANK have any real size restriction,
so only for these is oversegmentation a problem.
Therefore we provide two additional labels, TANK-
FRAGMENT and TREE-FRAGMENT, to cover pieces of
these objects.

In general, the spatial position of an object
cannot be determined from a single image. All that
can be said is that the object must lie along a
certain line of sight. However, we know that TANKS
and TREES (we use the labels here informally to
stand for the classes of objects they represent)
must stand on the ground, and if we assume that the
ground is an approximately level plane, we can use
projective geometry and a simple camera model in
order to fix their actual spatial locations, and
from this determine their ranges, and their actual
sizes from their apparent sizes in the image. The
simple camera model used for these computations is
shown in Figure 4. It assumes that the image is
formed by a simple pin-hole camera, with known
parameters. For objects in space we use Cartesian



coordinates x,v,z, with the origin on the ground
vertically bel 'w the camera's pinhple, The x axis
runs along the ground to the right from this origin,
the y axis directly forward, and the z axis verti-
cally. In the image we use coordinates £ (horizon-
tal) and n (vertical) relative to an origin at the
.enter of the field of view. These coordinates are
related by

[ x
f  ycos. - (z-h)sin®

n._ ysin® + (z-h)cos®
f  ycos® - (z=h)sin?

where h is the height of the pinhole above the
ground, f is the distance from the pinhole to the
film plane, and ¢ is the dip angle below the hori-
zontal of the optical axis of the camera. These
equations give an adequate approximation for any
camera, provided the field of view is not too wide.
In practice, these parameters should be known. For
the images used here they were not known, but were
estimated by taking measurements on the images of
object:: whose size was approximately known.

Su for the labels TANK and TREE, we have a
when-ptoposed function that computes spatial loca-
tion on the ground &nd approximate vertical and
horizontal extent. For the corresponding fragments
the when-proposed function can compute orily bounds
on these values, but these bounds are nontheless
useful.

There are 62 constraints used in the current
model. The unary constraints are used to enforce
the size restrictions on TANKS, TREES and their
fragments, limits on the height to width ratio for
TANKS and TREES, and restrictions on the position
of SKY and GROUND relative to the horizon. The bin-
ary constraints are used in two ways: First, to ex-
press that the region for a compact object such as
TANK, TREE, SMOKE cannot surround the region for
any other sort of object (except that TANKS and
TREES can surround their respective fragments) .
Second, to enforce restrictions on the relative
brightness of objects, that SMOKE is brighter than
anything else, TANK is not brighter than anything
else, and that objects of the same class have
roughly the same brightness, except for GROUND which
has considerable variation. (Notice that the sys-
tem is given no knowledge of the absolute bright-
nesses of objects--only relative brightness is used.
This was done deliberately in order to dcmonstrate
the ability of the constraint filtering.) Finally,
the existential constraints capture the requirement
that TREES and TANKS must rest upon a plece of
GROUND, and thac & fragment of an object must have
next to it another fragment of the same sort such
that the two taken together do not exceed the size
yestrictions for the torresponding whole object.

In kigure 5, we show some typical subimages
from this domain. Figure 6 shows these images after
segmentation with boxes drawn around the regions.
Because of memory limitations of the present inple-
mentation, regions below a certain size were ignored,
znd interconnections were made only between regions

whose boxes were immediately adjacent or over-
lapping, and to the one or two largest regions in
each image. The constraint-filtering system was run

on these examples, and the results are presented in
Figures 7 and 8. (For each label, unambiguously
labelled regions are shown in white; w.oiguously
labelled regions, which bear other labels as well,
are shown in gray.) In all cases the constraint
filtering stabilized after only a few iterations of
the propagation processes.

As can be seen, the results are quite good,
especially considering the noisiness of the original
image, and the blind simplification done by the
segmentation and the region extraction, A number
of problems with the results are worth discussing,
since they illustrate 1imitations of this approach.

Since there are so few constraints on GROUND,
many other sorts of objects will retain this label.
In a sense, this is perfectly unobjectionable. In
t.ese images there is no way of distinguishing a
tink from a patch of ground with the same shape
and coloration as a tank. In this domain the TANK
interpretation is more likely, but the constraint
filtering has no mechanism for expressing prefer-
ence between two logically irrefutable labellings.

Another problem is that because there is often
1ittle contrast between sky and ground, quite a
number of regions straddle the horizon, and thus
admit both the labels SKY and GROUND. It is clear
that the segmentatirn is wrong, but the current
system can only accept wneritically the regions it
receives from the segmentation. A more sophisti-
cated system could attempt to modify the segmenta-
tion when such a contradiction was detected. Tn a
few cases, an object clear to the eye is merged

with another object because of a short segment of
low contrast boundary between them and is thus lost
altogether. Detecting and repairing such a mistake
in the segmentation is really quite difficult.

The limited context provided by the limited
interconnection of regions causes some difficulties.
There are a few regions that retain the label SMOKE,
not because they are the brightest regions in the
image, but merely because they are brighter than
anything they are connected to. In some other
images it happens that a cluster of TREE-FRAGMENTS
support each other, even though altogether they are
too large or too small to comprise an entire TREE.
The system takes into account only the pairwise
interactions of the fragments, without trying to
organize them into a coherent whole.

There are some other misidentifications that
can be blamed on the simplified shape description
used here. A number of odd~shaped regions are
labelled as TREES just because the regions happen
to fix boxes of about the right size and shape,
even though it is apparent that they look nothing
1ike TREES in their actual shape.

Despite these problems, it is clear that the
constraint filtering can accomplish almost all the
task of analyzing these scenes. In the next sec-
tion, we will discuss some of the issues raised by
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these problems, and consider ways of extending the
constraint filtering process to overcome them.

5. Discussion

We have seen in the previous section that con-
straint filtering is a feasible technique for scene
analysis, even if implemented in a very simple way.
We will discuss here some extensions to this tech-
nique that would overcome most of the shortcomings
of the current approach, and lead to a more powerful
and flexible scene analysis system,

One straightforward improvement would be to
provide a more accurate shape description for re-
glons, which would permit more realistic computation
of region properties and relations. The represen-
tation of regions by boxes is convenient, but hardly
satisfactory. In a few cases, a spurious adjacent
or surround relation will hold between the boxes of
two regions, when in fact it is not true of the
regions themselves. This can lead to errors in
interpretation.

It would be desirable to provide some facility
for indicating preference between several labels for
a region, all logically equally possible, but one
far more likely. The unavoidable labelling of
TANKS also as GROUND, mentioned in the previous
section, illustrates this problem. More generally,
as suggested by numerous authors [14,21,23), it
would be useful to attach probabilities or confi-
dence measures to all the hypotheses, properties
and relations in the system, and provide a calculus
for combining these confidence measures. As an
example, the relation same-brightness just checks
that the difference in brightness between two
regions is below some given threshold. In most
domains this is unsatisfactory. There is no sharp
cut-off between "same" and "not the same". All we
can say is that the greater the difference in
brightnesses between two regions, the less reason-
able it is to regard them as having the same
brightness.

Related to this is the need for a more subtle
combination of evidence., A certain label may have
a number of constraints applicable to it. If a
certain region passes all but one of these con-
straints it would lose that label. But in some
circumstances it may be more reasonable to suspect
that the labelling is correct but that some error
has been made in the evaluation of the failed con-
straint. Perhaps an important piece of evidence
was obliterated by noise, occlusion, or poor seg-
mentation, Ideally a scene analysis system should
be able to tolerate such lost evidence, and even
attempt to recover it by a closer re-examination
of the original image.

This brings us to the matter of the inter-
action between the scene analysis system and the
image data. In the current system there is a
strictly one-way flow: segmentation, then analysis
of the segmentation. It would be preferable to
have a mechanism whereby the higher-level analysis
could, under certain conditions, call for a re-
examination of parts of the original image in
order to search for features that may have been
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lost in the initial processing. The scene analysis
system should also be provided with an arsenal of
assorted image processing routines, in addition to
segmentation, in order to capture lines, spots,

and other features that are likely to be lost dur-
ing segmentation,

The current scheme for interconnecting regions
into a network, while effective, is fairly ad hoc.
It should be possible, by an analysis of the con-
straints, to make a more rational decision about
the connection of regions. A region may need only
to be connected to regions that stand in certain
relations to it and that retain certain labels
after the unary constraint filtering, for these are
the only regions that could possibly falsify the
applicable constraints. More generally, it may be
advantageous to permit the reconfiguration of the
network during processing, although this would have
to be done with great care in order to retain the
desirable properties of constraint filtering.

One deficiency of the current system is its
clumsy notation for expressing constraints that
apply to a number of labels. As mentioned earlier,
to express the notion that SMOKE is the brightest
object in the domain we must provide a separate
brighter-than constraint for every other label in
the domain. This could be overcome, at some cost
in efficiency, by permitting some sort of quanti-
fication over labels, allowing constraints like
"For all labels £, not equal to SMOKE, SMOKE is
brighter than £." But this is only a cosmetic
change, which does not address the underlying
problem. The current system regards all the labels
as being quite independent of each other. This
becomes quite a serious computational inefficiency
as the number of labels becomes large (as it will
for any realistic domain), especially as the amount
of calculation on each arc is roughly proportional
to the square of the number of labels in the domain,
But in reality, the labels in a particular domain
will usually show certain similarities among them-
selves and share many constraints. It is wasteful
to independently re-evaluate for each label these
shared constraints. This inefficiency can be
naturally and effectively overcome by organizing
the labels of a domain into a taxonomy based on
similarity and shared constraints. The system
could initially propose generic labels, which
stand for whole classes of objects, and test these
labels by applying only those constraints common
to whole classes of objects. Later, when no fur-
ther progress could be made by such general rea-
soning, the generic labels could be replaced by
more specialized labels, and more specialized con-
straints could be applied. For example in TANKS-
WORLD, we could group all objects that must lie
below the horizon into a single class, and elimi-
nate this class label from all regions that lie
above the horizon. Once this had been done we
could specialize objects below the horizon into
classes of compact and extended objects. Later,
the compact objects could be subdivided into TANKS
and TREES. If necessary, TANKS and TREES could be
further classified into their different models and
varieties. While this scheme is intuitively clear,
some work still remains to be done in order to pro-
perly formalize it, especially in regard to the




interactions between nodes at different levels of
specialization.

The current system also suffers from a one-

level treatment of network nodes. It is possible
for a cluster of regions to retain the label TREE-
FRAGMENT, even though the cluster. ccnsidered as a
unit, looks nothing like a TREE. What is needed is
a mechanism for creating new nodes having existing
nodes as parts. This becomes more acutelv neces-
sary in more complex domains whose objects may be
built up from distinct parts. Even in TANKSWORLD,
at slightly better resolution, a TREE would be seen
to consist of a trunk, branches and foliage; and a
TANK would show wheels, turret, gun-barrel and
other details. Such techniques for hierarchical
constraint filtering have been studied in simpler
domains (24,25], but require further development
for more complex domains, especially if they are

to be applied in an efficient manner.

Recently, Davis [26] has shown that constraint

filtering, expressed formally in logic, can be re-
garded as a limited form of inferencing. This
raises the possibility that more powerful forms of
constraint filtering could be devised. Currently,
thes2 techniques work by falsifying simple hypo-
theses about the individual and joint identifica-
tions of nodes in network, More powerful tech-
niques could conceivably reason about other proper-
ties and relations between nodes, for example,
occlusion relations between objects. Formal logic
and theorem-proving would also provide a convenient
means of treating some of the other extensions of
constraint filtering described above.

In conclusion, we have shown that constraint

filtering is an effective means of scene analysis
in a domain more complex than has previously been
used with such techniques. The deficiencies of the
approach, as revealed by the results we have ob-
tained, have suggested a number of improvements

and extensions to constraint filtering. The devel-
opment of these extensions is the object of current
research.
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Figure 2. cCircumscribing upright rec-

tangle (”box") used to de-
scribe a region
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Figure 3. Three typical FLIR images.

Figure 4.

camera geometry, projected on
plane YO0Z. X and £ axes not

shown

239

T ——




(a) (b)

Figure =, 'vo T'LIR s

ibimages (boxed in Fig. 3c¢)

(a) (b)

Fiaure 6. The subimages in Figure 5 after segmnentation, with
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