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However, segmentation into regions is not 
without problems.  An initial process of segmenta- 
tion normally applies a single criterion of homo- 
geneity over the entire image.  Unfortunately, a 
difference in brightness that is insignificant in 
some contexts (such as a fluctuation in a textured 
background) may well be very significant in other 
contexts (such as part of the border of an object 
with its surroundings).  Most segmentation pro- 
cesses take little account of this sort of con- 
textual information, and so make errors of two 
sorts:  oversegmentation and undersegmentation. 
Oversegmentation breaks into pieces what should 
ideally be a single region.  Properties of the 
region as a whole (such as shape and area) and 
relations with other regions (such as adjacency 
and surroundedness) cannot be computed directly, 
but can only be recovered by attempting to merge 
pieces that are likely to belong to the same 
region.  More serious is undersegmentation, by 
which several regions that should be distinct are 
fused together.  Again, region properties and 
relations are lost, but recovering them is a more 
difficult business of attempting to split the 
fused region into parts. 

Several attempts have been made to overcome 
this problem. Tenenbaum and Barrow in IGS 
(Interpretation Guided Segmentation) [4] used do- 
main knowledge to guide the low level segmentation, 
Constraints about the relationships betweei ob- 
jects were used to guide the merging of pixels into 
regions.  Feldman and Yaklmovsky [5] also used 
semantic constraints to guide segmentation. 
Another approach, used by Nagao and Matsuyama [6], 
first performs as unguided segmentation and later 
corrects the errors in this segmentation by a 
semantically controlled process of merging and 
splitting regions. We assume that undersegmenta- 
tion never occurs, and that oversegmentation is not 
serious:  that an object is at worst broken into 
two or three pieces. We augment our domain model 
to cover fragments of objects, but without making 
any attempt to integrate them into wholes.  For the 
simple domain used as an example, the initial seg- 
mentatioa can usual^  be fine-tuned by hand to fit 
our assumptions above.  Even so, failures are not 
uncommon, indicating that a more subtle treatment 
of segmentation errors is needed. 

first we smooth the image using an edge- 
preserving smooth:ng technique in order to reduce 
noise.  The particular technique used does not 
matter greatly, but usually we have used Narayanan 
and Rosenfeld's histogram-guided smoothing tech- 
nique [7], which has proved quite effective.  Next, 
we requantize the image into a small number of 
gray levels (typically five), following the peak 
structure of the histogram of the smoothed image. 

After this, the regions themselves can be ex- 
tracted by a connected components analysis. At the 
same time, we make a few measurements on each 
region; these measurements serve as a description 
of the region for all subsequent processing. We 
construct the bounding upright rectangle around 
each region (see Figure 2) and measure the image 
location of its lower left corner, its width and 

height, as well as the area and average brightness 
of the region itse;:. 

As mentioned above, these measurements provide 
only a crude description of each region, but suffi- 
cient for this prototype system.  A full implemen- 
tation would need a more complete description of 
shape, perhaps the chain code of the boundary of 
each region.  Since any region description is 
necessarily incomplete, it may ultimately be neces- 
sary to refer back to the original image to check 
for properties that cannot easily or efficiently be 
extracted by preprocessing operations. 

3.  Constraint filtering 

After segmentation, scene analysis becomes 
mostly a matter of labelling the regions with their 
identifications as objects or object parts.  (For 
now we ignore the problem of organizing the parts 
of objects into wholes.)  Clearly, only those 
labellings are valid that can be derived from an 
arrangement of real cbjects in space.  Properties 
of objects, end  relationships between them, imply 
corresponding properties and relationships of the 
image regions that result from these objects. 
These projected properties and relationships con- 
strain the possible labelling of regions with 
object identifications.  Thus scene analysis can 
be reduced to a constraint satisfaction problem. 
(The early work of Barrow et al. [8,9], used this 
approach, with the constraints derived from a re- 
lational structure which provided a single but 
inflexible scene model.) 

The traditional technique for solving such 
problems is backtracking.  However, backtracking is 
inherently a sequential technique, which does not 
lend itself well to parallel processing.  Even if 
we restrict our attention to sequential processing, 
simple backtracking has a serious defect, espe- 
cially on the problems arising in scene analysis: 
It suffers greatly from "thrashing" behavior [10, 
11,12].  When a failure is discovered, only the most 
recent labelling is reconsidered.  If the true 
cause of the failure lies in an earlier labelling, 
it will t -ke the program many steps of blind back- 
tracking tefore it can undo the incorrect labelling. 
To overcome these problems, a nu...ber if authors 
[10,11,14,15,16,17,18,21] have proposed "constraint 
filtering", "relational consistency", or "discrete 
relazation" techniques for constraint satisfaction 
problems.  Some have emphasized the saitability of 
these methods for parallel processing, while others 
have stressed the avoidance of thrashing. We feel 
that the chief advantage of these methods lies in 
their potential parallelism, especially since 
Gaschnig [13] has shown that more sophisticated 
backtracking methods can outperform sequential 
Implementations of constraint filtering. 

In order to perform constraint filtering, it 
is necessary that those nodes (regions) that con- 
strain each other be connected in a network.  It is 
at least theoretically possible for the labelling 
of a region to be influenced by any other region in 
the image, so ideally the constraint network should 
be a complete graph, connecting each region to every 

231 



esn mmmmm^ 

other region.  But In practice this is not feasi- 
ble, since the number of interconnections grows as 
the square of the number of regions — far too fast. 
Having too many interconnections is undesirable for' 
two reasons:  First, it increases the cost of build- 
ing a hardware network for constraint filtering 
(though some architectures, such as that of ZMOB 
[19], permit arbitrary Interconnection at no extra 
hardware cost).  Second, and more important, it 
increases processing time, since the amount'of 
computation done for each region is roughly pro- 
portional to the number of regions it is connected 
to. 

Therefore, it is desirable to limit the num- 
ber of interconnections.  This must be done care- 
fully, since the correctness and effectiveness of 
the constraint filtering depend on the complete- 
ness of the interconnections, and the lack of a 
necessary connection might prevent or mislead the 
application of an Important constraint. We would 
like to build a network of interconnections that 
is as sparse as possible, but still produces the 
same results as the complete graph.  Obviously, 
this cannot be known ahead of time—the best we 
can do is to connect those regions that have a 
good chance of being relevant to each other. 
This is a matter that requires much further inves- 
tigation, but for now we have implemented a simple 
notion of relevance:  A region is connected to all 
regions that are very close to it (because these 
make up its immediate context), and to all very 
large regions in the image (because these give a 
good basis for judging it in its global context). 
Thus the number of interconnections is roughly 
constant for each node and overall is proportional 
to the number of regions in the -Image.  This inter- 
connection scheme is imperfect, but appears to work 
with few errors, at least for the domain of FUR 
Images used in this report. 

Once the configuration of the network is com- 
plete, the constraint filtering proper can begin: 
We first of all attach to each region a list con- 
taining all the labellings that it might possibly 
bear.  (Currently, these will be all labellings 
possible in the domain, although it should be 
possible to use context and the taxonomy of labels 
to reduce this initial list considerably.)  Each 
label has associated •■■1th it £ special "when- 
proposed" procedure, which is executed for each 
region whenever that label is first proposed for 
the region.  This permits the calculation of cer- 
tain parameters that make sense only if the region 
is interpreted as a particular sort of object.  For 
example, if a region is hypothesized to correspond 
to  an object of a certain intrinsic size, then it 
may be useful to use the region's apparent size, in 
conjunction with the camera geometry, to compute 
the object's range and location in space. Notice, 
however, that this computation makes sense only 
under this hypothesis. 

Next, the label lists are filtered using what 
are called here "unary constraints".  That is 
knowledge about the intrinsic properties of objects 
is used to eliminate incorrect labellings from each 
region s label list.  Regarded as propositions, 
the unary constraints have the form:  "If a region 

is to bear this label, then the region must have 
these properties".  Tne constraint is actually used 
in the contrapositive form:  "If a region does not 
have these properties, then it cannot bear this 
label." These properties may be Immediate proper- 
ties of the region, or they may be those computed 
indirectly by the appropriate when-proposed pro- 
cedure. 

Clearly, these three steps (hypothesizing 
labels, computing parameters, and filtering labels) 
could be done at one swoop, with some improvement 
in computational efficiency.  Here they are done 
separately, for clarity of presertation and ease of 
programming. 

After the region labels hav^ been filtered, we 
can attach to each interconnection (or arc) a list 
of label pairs that is the cross-product of the 
sets of labels on the two regions at either end of 
the arc.  This list represents the joint labellings 
that are simultaneously possible for the two regions 
considered.  Then all these label-pair lists can be 
filtered by binary constraints, that is, those joint 
labellings can be eliminated that violate a con- 
straint on the labelling of pairs of regions.  These 
constraints have the prepositional form:  "If two 
regions (say rj and r2) are to simultaneously bear 
the labels % and ^ respectively, then rj, and 12 
must stand in certain relations to each other." 
Again the constraint is used in its contrapositive 
form:  If the two regions fail to stand in the re- 
quired relations to each other, the appropriate 
pair of labels can be deleted from the arc ioinins 
them. B 

Following all this, three more filtering pro- 
cesses can be applied.  One of them, filtering by 
existential constraints, enforces constraints of 
the following form:  "If a region is to bear a 
certain label then there must exist other regions 
that have certain properties and stand in certain 
relationships with the given region." Thi  is 
very much like a unary constraint, except that the 
properties of the other regions include the require 
ment that they bear certain labels, and that those 
labels are permitted simultaneously with the 
labelling to which the existential constraint is 
being applied.  Thus existential constraints must 
examine the arc labellings.  Unary constraints 
need be applied just once, but since the allowable 
labellings of arcs change during the constraint 
processing, an existential constraint that is 
satisfied early may later be violated because a 
labelling that it depended on has been rejected. 
Hence the filtering by existential constraints 
should be redone every Lime the arc labellings 
change. 

The other two filtering processes, arc-upon- 
node interaction and node-upon-arc interaction, 
attempt to enforce consistency between the node 
labellings and arc labellings.  The first process 
ensures that every node labelling has support from 
every arc that Impinges on it.  By "support" we 
mean that there exists on each arc at least one 
label pair that has the same label as the region 
for its first or second component, as appropriate 
depending on which end of the arc the node lies at. 
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If  a node labelling lacks  support   it   is ^-letej. 
The second  process ensures that  every arc  labelling 
Ss  support  from the nodes at  either  end  o    it 

H^e    S  "support" we -n ^^  -^^fa^bel 

rJ^ne^tr^rL^J  -e node at 
tna.    -s  LCH d  have as  its 
the appropriate end o£  trie arc-,  ^u 
LUC ar'f     i- i „uoi   thit   is renresented  in  tne second  element a  label that   is repi 
labelling    of  the node at  the other  end  of  the arc. 
Mly arc  label that  lacks such support   is deleted. 

These  three  Interdependent  filtering pro- 
cesses provide a  staple but  effective way of  pro- 
parting  inferences about  the  identlf  cation of 
«gions  through the constraint network      They 

provide the  system with a r"dimentar^^r
its con- 

reasoning about   scenes  in ^  s*"5^^ Zl- 
clusions.   if  justified logically.   "°"ld  "f  S^e 
eral  proof  steps from the given axioms  (^ese are 

r.: rpe6ion p^-^ret^ir^^e^s 
ralorf; ^L^^p/ofcU of  P-pagating  the 

^ts of deleting node and arc   l^e 1 ngs    but  it 
can be regarded as a limited  form of   logical d. 

duct ion. 

Notice  that all  the filtering Processes work 
.trictlv by refuting and  eliminating labellings. 
This means'that,  afLr  the  initial  labelling gen- 
eration processing,  all  the filtering  Presses 
cou d  be  run  independently and asynchronously on 
the regions  in any order,  without  the fear of  race 
tne regj-u / results  of   ehe 

^^traint  m"!'^!^^ be the  same,  no matter  in 
X    ord«    Se  individual  filtering  processes are 
allied  to each node,  provided  all  processes are 

nlWed until  the network stabilizes-when no  fur- 
a

t
PhPe      eleti n of  labellings can  be made      However, 

in the  interests of  efficiency and   simplicity and 
in order  to  simulate an actual  parallel  implemen- 
tation    we apply the various processes  synchron- 
usJy  In parallel over  the entire networK      As 

described above,  we first  perform all  the  initial 
f  i.LlUncs    next all the node filtering by 

"nay cons S^s!  then all  the generation of  joint 
Slings on arcs    -Uowed^y arc  filter.ng^^ 

IS ^rthf-eri.erik'onstra^t  filterins use 
the arc  labellings to update the n°de label^n^; 

raL^r^^^ 
L^d^-^r^s^X-hr^rSen. 
epea edly until'the network stabilizes  (when no 

further deletions of  labellings can be made). 

After  the constraint  filtering has stabilized 
and  terminated,  we can turn our attention to  the 
interp^tation of  its results.     Unfortunately 
these results will not ne-.essarily be correct  in 
£ sense of  being a valid  solution to the given 
constraint satisfaction problem.    M^'Je 

lould like to  see every region correctly and 
Tiquely labelled with its  Identification as an 
object or object part.    However,  ^en the way we 
have decomposed the problem so as to make  it 
tenable to parallel processing,   such an outcome 
cannot be guaranteed.    Before discussing these 
erroneous Results in detail,  we should  stress that 

hnrh in the example domain used here, and in other 
T „in* ri7 201 we have not found these errors to domains   U/,/UJ,   we   nav h       authors 
be a  serious problem  in practice. 
[21],  report   similar  findings. 

One sort  of  error  is  that  after  the filtering 

a region may retain  several  labels,   -t  lust on   . 
Thi-  situation can arise  from two causes.     First 
it Ly well  be  that  there  is more than one valid 
option  to  the constraint  satisfaction P"^ em 

so ,       . „Anitv nf   several  distinct   inter- *-u„»-   ^c     thp   imace  admits  or   bevt?!.«*  ^ 
TL'lonT  Z I  given region -V have more  than 

.o^rort   identification ascribed  to  it,   eitner 
0onf   itself    or   in conjunction with multiple  identi- 

cSs'of neighboring regions  (neighboring in 
c  unir.,,   rHrectlv  connected   in  tne net 

^ ^r^FroI olnt  of ^iew,   this can hardly be 
Tonslderld  an  err'r:     a region can    -e scvera 
different   interpretations,  and all of  these arc 
retained.     But   if  a number of  regions a 1  have 
multiole    labels, it may be of   interest  to dis- 
Toier thich unique labellings of  all of  them are 
Sltlneously 'possible,  and  this  -rt of - - 
elling cannot  be done by mere constraint  fllterinS- 
Related  to  this  is  the  ^ond  cause om.lt^l^ 

exist   in  the network an am- 
labelling:     There may  ^^ orinci, le,  but 
higuity that "" f «^^1 c^nstra'int'filter- 
cannot be resolved by P"!"^the sImultaneous ex- 
ing__its ^solution re uire^h ^ ^^ ^^^ 

amination of   ^^^f ^^serlous.   since they 
Errors such as these ^" "0 most domainS  it 
tend  to occur   ^f/^^/^    8  sufficient  for 
seems that  pa.rwise  intera"^nrGtation.     Even when 
essentially unambiguous interpretation ^ 

they occur  they can easi^ .^"^    'or  in combi- 
sort of backtracking  technique alone ^^ 
nation with father  cons raintflter    g. 

bv Bavrow -d J^"^ ^^^ Jst cases,   the 
Sk'fthrdSbiguISflm  have been done  b 

is  in the filtering  itself. 

It   is worth remarking that   if  only ^ry and 
binary constraint  filtering are used,  or existent- 
ial constraints are used but  the network is  suffi- 
cientircomplete,   extra labelling  (as discussed 
CaSe 'is the only sort of  error  ^^^^ 
Under  these circumstances constraint gering wii 
be safe  in  that   it will never reject a correct 
labelling,   even though it may retain "ome Incorrect 
labelliSs.     This means that  if  every region bears 
isinfele label,   then we can be  sure that al  these 
I    flings comprise the unique,  correct  so ution 
to the constraint  satisfaction problem.     If  any 
egions bear multiple labels,   then we ^^t 

unique  interpretations could be found,   if neces 
sary    by a later  backtracking process.    Unfor 
tunately     if  existential constraints are used     then 
the required  completeness of  the network cannot  be 
guaranteed unless  it  is a complete graph,  which  is 
seldom feasible  in practice. 

The other sort of error that can occur is that 
„ rorrect labelling is mistakenly rejected. As im- 
plied above    this can only happen when existential 
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coordinates x.v.z,  with the origin on  the ground 
vertically bei w the camera's pinhple.     The x axis 
runs along the ground  to the right  from this origin, 
the y axis directly forward,  and  the z  axis verti- 
cally.     In the  image we use coordinates E.   (horizon- 
tal)   and  n  (vertical)   relative to an origin at  the 
.,enter of  the field  of view.    These coordinates are 
related  by 

f ycos1-' - (z-h)sin<i> 

_n _ ysinf +  (z-h)cos'r 
f ~ ycos» - (z-h)8in<P 

where h is the height of  the pinhole above the 
ground,   f   is the distance from the pinhole to the 
film plane,  and <f  is the dip angle below the hori- 
zontal of  t.he optical  axis of  the camera.     These 
equations give an adequate approximation  for any 
camera,  provided  the field of view is not  too wide. 
In prai-.tice,   these parameters  should  be  known.     For 
the  images used  here they were not  known,   but were 
estimated  by  taking measurements on  the  images of 
objecti: whose  size was approximately known. 

Si. for  the labels TANK and TREE,   we have a 
when-pi oposed  function  that  computes  spatial loca- 
tion oc. the ground und approximate vertical and 
horizontal extent.     For  th° corresponding  fragments 
the when-proposed  function can compute only bounds 
on these values,   but  these bounds are nontheless 
useful. 

There are  62 constraints used   in the current 
model.    The unary constraints are used  to  enforce 
the size restrictions on TANKS,  TREES  and  their 
fragments,  limits on the height  to width ratio for 
TANKS and TREES,  and restrictions on the Pos"ion 
of  SKY and  GROUND relative to  the horizon.     The bin- 
ary constraints are used  in two ways:    First,  to ex- 
press that  the region for a compact object  such as 
TANK    TREE,  SMOKE cannot  surround  the region tor 
™ other  sort of  object  (except  that TANKS and 
TREES can surround  their respective fragments). 
Second,   to enforce restrictions on the relative 
brightness of objects,   that  SMOKE is brighter    han 
anything else,  TANK is not brighter  than anything 
else    and that objects of the same class have 
roughly the same brightness,   except  for  GROUND which 
has considerable variation.     (Notice  that  the sys- 
tem  is given no  knowledge of  the absolute bright- 
nesses of objects-only relative brightness is used. 
This was done deliberately  in order  to demonstrate 
the ability of  the constraint  filtering.)    Finally, 
the existential constraints capture the requirement 
that TREES and TANKS must rest upon a piece of 
GROUND,  and  thac r  fragment of an object must have 
next to  it another fragment of  the  same  sort  such 
.hat the two taken together do not exceed the size 
restrictions for the Corresponding whole object. 

In tigure 5,  we show some typical  subimages 
from this domain.     Figure 6 shows  these  Images after 
segmentation with boxes drawn around the «glops. 
Because of memory limitations of  the present Aple- 
mentation,  regions below a certain size were ignored, 
and  interconnections were made only between regions 

whose boxes were  immediately adjacent or over- 
lapping.  and  to  the one or  two largest regions  In 
each ^ge.     The constraint-filtering  system was run 
on the1e8examples.  and  the results are presented  in 
Figures 7  and 8.     (For  each label,  unambiguously 
labelled regions are  shown  in white;   a...oiguously 
labelled regions,  which bear other  labels as well, 
are  shown  in gray.)     In all cases the constraint 
TatTZ stabilized after only a  few iterations of 
the propagation processes. 

As can be  seen,   the results are quite g°°d ■ 
especially considering  the noisiness of  the original 
i^age.  and  the blind  simplification done by tne 
Station and  the region extraction.     A number 
of  problems with the results are worth discussing 
since they  Illustrate limitations of  this approach. 

Since there 
many other sorts 
In a sense, this 
tiese images the 
t ink from a pate 
anJ coloration a 
Interpretation 1 
filtering has no 
ence between two 

are  so  few constraints on GROUND, 
of  objects will  retain  this label, 
is perfectly unobjectionable.     In 

re  is no way of  distinguishing a 
h of  ground with the  same shape 
s a  tank.     In this domain the TANK 
s more likely,   but  the constraint 
mechanism for  expressing prefer- 
logically  Irrefutable labelllngs. 

Another  problem  is  that  because  there  is often 
little contrast between  sky and ground,   q"ite a 

number of  regions  straddle the horizon,  and  thus 
admit both the labels SKY and GROUND      It  is c  ear 
that  the  segmentation  is wrong,   but  the current 
system can only accept Mncritically the «gions it 
receives from the segmentation.     A more  sophist! 
cated  system could attempt  to modify the segmenta- 
tion when  such a contradiction was detected.     In a 
few cases,  an object clear  to  the eye  is merged 
with another object because of a short  segment of 
low contrast  boundary between them  and  is thus   .ost 
altogether.     Detecting and repairing  such a mistake 
in the segmentation  is really quite difficult. 

The limited  context provided by the limited 
interconnection of regions causes some difficulties. 
There are a few regions that retain the label SMOKE, 
not because they are the brightest regions in the 
image,  but merely because they are brighter  than 
anvthing  they are connected  to.     In  some other 
images  it happens that a cluster of TREE-FRAGMENTS 
support each other,  even though altogether they are 
too large or  too  small  to comprise an entire TREE, 
The system takes  into account only the pairwise 
interactions of  the fragments,  without trying to 
organize them into a coherent whole. 

There are some other misidentif ications that 
can be blamed on the simplified shape description 
used here. A number of odd-shaped regions are 
labelled as TREES just because the regions happen 
to fix boxes of about the right size and shape, 
even though it is apparent that they look nothing 
like TREES  in  their actual  shape. 

Despite these problems,   it  is clear that the 
constraint filtering can accomplish almost all the 
task of analyzing these scenes.    In the next sec- 
tion,  we will discuss some of the issues raised by 
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interactions between nodes at different levels of 
specialization. 

The current system also suffers from a one- 
level treatment of network nodes.  It is possible 
for a cluster of regions to retain the label TREE- 
FRAGMENT, even though the cluster, considered as a 
unit, looks nothing like a TREE. What is needed is 
a mechanism for creating new nodes having existing 
nodes as parts.  This becomes more acutely neces- 
sary in more complex domains whose objects may be 
built up from distinct parts.  Even in TANKSWORLD, 
at slightly better resolution, a TREE would be seen 
to consist of a trunk, branches and foliage; and a 
TANK would show wheels, turret, gun-barrel and 
other details.  Such techniques for hierarchical 
constraint filtering have been studied in simpler 
domains [24,25], but require further development 
for more complex domains, especially if they are 
to be applied in an efficient manner. 

Recently, Davis [26] has shown that constraint 
filtering, expressed formally in logic, can be re- 
garded as a limited form of inferencing.  This 
raises the possibility that more powerful forms of 
constraint filtering could be devised.  Currently, 
thess techniques work by falsifying simple hypo- 
theses about the individual and joint identifica- 
tion» of nodes in network.  More powerful tech- 
niques could conceivably reason about other proper- 
ties and relations between nodes, for example, 
occlusion relations between objects.  Formal logic 
and theorem-proving would also provide a convenient 
means of treating some of the other extensions of 
constraint filtering described above. 

In conclusion, we have shown that constraint 
filtering is an effective means of scene analysis 
in a domain more complex than has previously been 

used with such techniques.  The deficiencies of the 
approach, as revealed by the results we have ob- 
tained, have suggested a number of improvements 
and extensions to constraint filtering.  The devel- 
opment of these extensions is the object of current 
research. 
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Figure 3.  Three typical FLIR images. 
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Figure 4, 

Camera geometry, projected on 
plane YOZ.  x and E,   axes not 
shown 
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(b) 

Figure   5.      Two   PLIR   subimaqos    (boxed   in   Fig.    3c) 

(a) (b) 

Figure 6.  The subimaqos in Figure 5 after segmentation, with 
boxes around regions. 
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Figure   7.      Results  of   constraint   filtering   for  Fig.   5a, 
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Fiqure 8.  Results of constraint filtering for Fig. 5b. 
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