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\1 Abstract

A mcthod is proposed fur Jeteemuning the motion of
a body relative to a fixed erv,,onment using the changing
image seen by a vamera atterhied (o the body. The optical
flow in the image plance is the inpnt, while the matantancous
rolation wnd tranxlation of the body are the ontput, If op-
tie 4 How conld be deternnned precizely, it would only have
to be known at a few places 1o compute the parameters of
the motion. In practice, however, the measured optical flow
will be somewhat maccurate. 1t is therefore advantageous
to connder methods which use w3 mnch of the available in-
formnation as poxable, We eiplay a least-aquares approach
which tmnimizes some meusuee of the digerepincy between
the measured flow and that predicted from the computed
iwotion parameters Several different error norms are inves-
tigated. In geueral, our alpanthin feads to a system of non.
linear equations from which the wntion param.ters may he
computed numerically. However, in the special cases where
the motion of the catnera is purely translational or putely
rotational, use of the appropniate notm leads to a system of
cquations from which these parameters can he determined
in closed form,

This report describes rescarch done at the Artificial
“Intelligence Laboratory of the Massachusetts Justitute of
Technology. Support for the laboratory's artificial intels
ligence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Cifice
of Naval Rezearch contract NOQO14-75-C-0643 and in part
by National Science Foundatior Grant MCS77-07569.

1. Introduction

In this paper we investigate the problem of passive
navigation using opticul flow information. Suppose we are
viewing a film. We wish to determine the motion of the
camera from the sequence of images, assuming that the in-
stantaneous velority of the brightness patterns, also calied

204

the optical flow, is known al each point in the image.
Several schemata for computing optical flow have been sug-
gested (e.x. |2, [3), [5]). Other papers (e.g. [9), {11), [12))
have previously addressed the problem of passive naviga-
tion. Three approaches can be taken towards a solution
which we term the discrete, the differentisl and the con-
tinuous npproach,

In the discrete approach, information about the move-
ment of hrightness patierns at only a few points is used to
determine the motion of the camera, In particular, using
such an approach, one attenpls o idemtily and match dis-
crete points in a sequence of images  OF interest in this
case it the photogrammetric problem of determining what
the wminmun number of points ie lrom which the motion
can be caleulated for a given number of inages {10, [11),

112}, 16}, [17). "This approach requires that oue teacks fea.

tures, o identifies corresponding features in images taken
at dilferent times. In their work, “T'sai and Hunag [16) as-
sumed that such corresponding points can be determined in
two imsge. ‘Then they showed that in general seven points
are suflicient to determine the motion umyuely, They prove
furthenmore that such points have to satisly a faitly weak
constraint. Longuet-lHiggins work [10] is faitly similar to
{1G] but he fails to show under which conditions the motion
can be determined uniquely from corresponding points.

In the differential approach, the first aud second spatial
partial derivatives of the optical Bow are used to compute
the motion of a camera [6), [9]. It bas been claimed that it
is suflicient to know the optical flow and Loth its first and
sceond derivatives at a single point 4 uniquely determine
the motion [9). This is incorrect (except for a special case)
[1]. Furthermore, noise in the measured optical flow 1
sccentuated by differentiation.

In the continuous approach, the whole optical flow
fisld is used. A major shoricoming of both the Jocal and
differential approaches is that neither allows for crrors in
the optical low d2ta. This is why we choose the continuous
approach and devise a least-squares technique to determine
the motion of the camera from the measured optical flow.
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"The proposed algonthm takes the abundance of available
data into account and is robust enough to allow nunerical
implementation,

lndependently, Prazday chose in [13] a sinular ap-
proach to ours. He also proposes the use of n least-squares
method to determine the motion parameters but never dis
cusscs how exactly this is to be done. Consequently, he
doex not show whether his scheme can be used to umquely
determine the motion,

2. Technical Prerequisites

In this section we review the cquations deseribing the
relation between the motion of a camera and the optizal
fow geneeated. We use casentinlly the same notation as 9]
A camera 15 assuined to move through a static environinent.
Let a coordinate system X', 1, Z be fixed with rospect to
the tammeea, with the Z-axis pointing along, the optical axis.
It we wish, we can thank of the environment ax imnoving in
relation to tis coordimate system, Any rigid bady motioa
can be resolved info two [actors, a translation and a rota
tion. We will denote by 7 the translational component of
the inotion of the camera and by & its angular velocity (see
also Figure ! which is redeawn from [9}). Let the instan:
tabeous coordinates of a pont P in the environment be
{xX,v,2).

Figure ). Coordinate Systemns

(Note that Z > 0 for points in front. of the imaging sys-
tem.) Let 7 be the vector (X,Y, 2)7, where T denotes the
transpose of a vector, then the velocity of P with respect
to the X, Y, Z coordinate system, is:

V=—T—axr (1)
W define the components of T and O as:

P=(U,v,W)T @ = (A,B,C)7. (2)

Thus we can tewrite (1) in component form:

X'm=U=NZ+4CY
Y em —V' ~CX - AZ (3)
7' =W — AY - BX.

where ! denotes differentiation with respect to time.

The optical How at each point in the image plane is
the instantancous velocity of the brightness patteen at that
pownt. Let (2,y) denote the coordinates of a point in the
image plane (sce Figure 1). Since we assume perspective
pojection between an abject point 2 and the corresponding
image point p, the coo;_linalcs of p are:

1= y=7z (4)

The optical flow, denoted by (u,v), at a point (z,y) is:
u=2z' vy (5)

Differentiating (4) with respeet to time and using (3) we
obtain the following equations for the optical lNlow:
X _x
3 v 21 W
= (—7 — 13- Cy)— z(-—-z- — Ay + Bi)
yr vz
VES o e
Z v 42
= (—7 —Cz-+4A)— y(—-g- — Ay +- Bz).

Y=

We can write these equations in the form:
u=uu, v =4 v, (1)

where (ug, vg) denotes the translational component of the
optical flow and (u,, v,) the rotational component:

uy = :U—j—:lv- u, = Azy — B(z* 4 1) - Cy,
= L;y‘—v-v, = Aly?’+1)—DBzy—Cr.
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So far we have considered » single point P. To dc!i(nz

the optical flow globally we assume that P lies on a surface
defined by a function Z = Z(X,Y) wh® “h is positive for all
values of X and Y. With a~y surface and any motion of
a camera we can therefore associate a certain optical flow
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aud we say that the surface and the motion generale this
optical flow,

Optical flow, therefore, depends upon the six parameters
of motion of the cxmera and upon the sutface whose images
are analyzed. Can 21l these unknowns b2 uniquely recap-
tured solely from optical dlow? The answer is no, To see
this, consider a surface S, which is a dilation by a factor k
of a surface S). Furthee, let two inotions denoted by A,
and Afy have the same rotational component and let their
translationa! componeiits be proportional to each other by
the same factor k (we will say that Afy and Afa are similar).
Then the optical How generated by S and M, is the same
as the optical flow generated by S and A3, This follows
directly from the definition of optical flow (8). It is «till an
open question whether there are uny other pairs of distinct
surfaces and molions which generate the same optical flow.

Determining the motion of a camera from optical flow
is much easier il we arc told that the motion is purely
teanslational or purcly rotational. In the next two scctions
we will deal with these two special cases. Then we shall
analysc the case where no a priori assumptions about the
inotion of the camera are made.

3. Translational Case

In this section we discuss ihe case where the motion
of the camera i* assumed to be purely translational. As
before, let T == (U, V, W) be the velocity of the camera.
Then the following cquautions hold (see (8)):
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3.1. Similar Surfaces and Sinular Motions

It will be shown next that il two fluws geusrate the
same optical flow, and we know that the motions are purely
translational, thea the two surfaces are similar and the two
camera motions are similar. Let Z; and Z;3 be two surfaces
and let 7y == (U, ViuWh)T and Ty == (Ua, V3, Wa)" define
two diflerent motions of a camera, such that Z; and 73 and
Zs and T, gencrate the same optical flow:

_ =U +zW, _ =W+
u = A v= z (10)
—U; 4 aWs ~Va + yWs
TR em e —— $ 22 ee— l
u A A (11)

Eliminating 2y, 23, u and v from these equations we obtain:
U+, —U, + IWa. (12)
-V +yW, —Vat+yW;
We can rewrite this equation as:
(—Ur + zW)(—Va + yW3)
=(=Uy + W)}V +yW1), (13)

or:
Uy Vy — sVaWy — yU W, 4 yWi|W,
= V) —zV| Wy — yUaW, 4 zyi¥aW). (H)

Since we assumed that Z; and 1y and 73 and T generate
the same optical llow, the above equation must hold for all
z and y. Therefore the following equations have to hold:

WVy = Ui
-V = =W, (15)
'—U]WQ == —U:Wl.
These cquations can be rewriticn as:
UriViW, == UptVaW, (16)

from which it follows that 75 is a dilation of Z;. It is clear
that the scaling factor between Z; and Z; (or cynivalently
setween Ty and 73) cannot be recovered from the uptical
flow, regardless of the number of points at which the flow is
known. By uniquely deteriining the motion of the canera,
we will mean thet the motion ig uniquely deterinined up o
a conslant scaling factor.

3.2. Leasl-Squares Formulation

In general, the direction of the optical flow at two
points in the image plane determine the motion of a camera
in pure translation uniquely. There is a drawback however
to utilizing so Jittle of the available information. The opti-
cal flow we measure is corrupted by noise and it is desirable
1o develop a robust method which takes this into aczount.
‘Thus we suggest using a least-squares method [4], {14] to
determine the movement. parameters and the surface (i.e.,
the best fit with respect to sume norm).

For the following we assumne that the image plane is
the rectangle ze[—w, w] aud yej—h, h). The same method
applics if the image has soine o*her shape. (In fact, it can
be used on sub-images corresponding to individual objects
in the casc that the cuvironment contains objects which
nuy move relative to one another). Furthermore we have to
assume that 1/Z is a bounded fuaction aad that the set of
points where 1/Z is discontinuous is of measure zero. This
condition on 1/Z assures us that all neccssary jntegrations
can be carried out. We wish to minimise the foliowing
cxpression:

rh pw
[N N4 < LT
(1)

—h =

In this case then, we determine the best fit with respect to
the MLz norm which is defined as:

A pw
It [ [ WesPdsdn (9)
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The steps in the least-squarcs method are as follows: First
we determine tial Z which minitizes the integrand of (17)
at every poinc (x,y). Then we determine the values of U,V
and W which minimize the integral (17).

Let us introduce the following abbreviations:

a=-—U 2w f==V+4yW. (19)

Note that the expecled flow, given U,V and W is simpiy.

a A

Then we can rewrite (17) as:

AN pw
,[_h/;,[("—%)'+(”~-g)’]dxdy. (21)

We proceed now with the fiest step of our ininimization
method. Diffcrentiating the inlegrand of (17) with respect
to Z and sctting the resulting expression cqual o vero
yields:

O r- LU N *)
Therefore w2 can write Z as:
4 g
TR X (23)

This equation, by the way, imposes a constraint on U, V
and W, since Z must be positive. We do not make use of
t)is except to help us pick amongst two opposite solutions
for the translational velocity later on. Note that now:

a  uf —va 8 __ uf—va
vzl e VT agm @
and we can therefore rewrite (17) as:
LIy
(u8 — va)?
/_ o TR p‘:) dzdy. (25)

It should he clear, by the way, that uniiormly scaling U,V
and W does not change the value of (25). This is a reflection
of the fact that we can determine the motion parameters
only up to a constant factor.
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Figure 2. Geometrical Intetpretation

Before proceeding with the second step, we give a
geometrical inverpretation in Figure 2 of what we have so
far.  Suppuse that the motion parameters U, V, and W are
given. At any given point, say (zg, yo), optical flow depends
not only upon the motion parameters but also upon the
value of Z at that point, Zg sey. However, the direction
of (u,v) does not depend upon Z. The point (u,v) must
lie along the line L in the uv-plane defined by the equation
ufl —va = 0. Let the measured optical flow at (zo,yp) be
denoted by (uy,, V), and let the closest point on the line
L be (u,,v,). This corresponds to a particular Z, given
by (23). The remaining error is the distance between the
point (Um, Um) and the line L. The square of this distance
ie given by the integrand of (25).

For the sccond step, we differentiate (25) with respect
t3 U, V and W and set the resulting cxpressions equal to
zero:

'/A ¥ B(uf — va)lua 4 vp) dzdy == 0

Aew @A
- /—*“/_*w (el (_,,.:"i)(;,‘;,"' %) 4rdy =0 (26)
f: i —:, (ya— zﬁ)((:,p; ;;;)’(ua +v8) 4y =0.
Let us iniroduce the following abbreviation:
s o (48— vafua + vg) )

@ + 7
Then equations (26) can be rewritten as:
N pw
L v+ wikizzay =o
AN pw
—/__*/_' (U 42W)K|dzdy=0  (28)

[




A pw
[ / [t~ w0 | 2V )] dzdy < 0.
7 N

The sum of U tuncs the fiest megral, 17 tines the second
wotegral, and W tunes the thind integeal 15 wentically 2ero.
"Thus the three equations are lineatly dependent. thisis to
be experted, for if:

JIU KV kW) - f(U VW), (29)
where f is a differentiable function and &k a constant, then:
al af af
Joata ofs 1 mete ode §/ ot \
Vs tVay +Wag =0 (20)

The result is also consistent with the fact that only two
equations are needed, since the translational velocity can
be detetrmined only up to a constant factor, Unfortunately
equations (28) are nonlinear in U, V' and 1V and we are not
able to show that they have a unique (up to a constant
scaling factor) solution.

3.3, Using a Different Norm

There is a way, however, to devise a least-squares
method which allows us to display a closed form solutjon
for the motion parameters. Instead of minimizing (17), we
will try to minimize the following expression:

Mo —~U 42\ =V -} yW
[ e = - =k
X (a7 -} fY)dedy (31)

obtained by nultiplying the integrand of (17) by a? + 2,
Then we apply the same least-squares method as before
to (31). When the measnred oplical flow is not corrupted
by noise, both (31) and (17) can be made equal to zero by
substituting the correct motion paramelers. We thus obtain
the same solution for the motion parameters whether we
minimize (31) or (17). If the measured optical flow is not
exact, then using expression (31) for our minimization, we
obtain the best fit with respect not. to the M 4 norm, but
to another normn which we call the ML, norm:

A pw
I et o= [ e 4+ 87y, (30)

What we have here is a minimisation in which the error
contributions are weighted, greatcr importance being given
to points where the optical flow velocily is larger. This is
most appropriate when the mezsurenient of Jurger velocities
is more accurate.

Which norm gives the best results depends on the
properties of the noise in the measured optical flow. The
first norm is better suited to the sitation where the noise in
the measurements is independent of the magnitude of the
optical Bow. Note also that if we really want the minimum
with respect to the M L, normi, we can use the results of the
minimization with respect to the ML,s norm as starting
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values wm a sumenical immmization.

We discuss now our least-squarcs mcthod in the case
where the norm 1s chosen to be M L,s. First we determine
Z by differentiating the integrand of (31) with respeet to 2
and setting the result equal to zero. We again get (22):

a o J
=35 ro=Bdh -0 @y

from which it follows that (23):

R i
Z o g (34)

So we want Lo minimize:

AN pw
/ / (uft = va)? dr dy. (35)
—hd
Let us call this integeal g(U2, 17, W), then, since:
ufl = va == (vl ~ uV) — (2v — yu)W¥, (36)

we have:
g(U,V, W)
== a2 4 BV - cW2 o 2dUV o 26V - 2/WU, (37)

A pw
a==/ / vdzdy
<A —w
A f ad )
b=/;hj_wu dzdy
A pw
c=/ / (zv — yu)?dzdy
A -~
AN pw
d::--/ / uvdrdy
—hJ —w
A pw
e=/ / u(zv — yu)dz dy
—~ A ——w

A pw
=-—/k/ v(zv — yu)dz dy.

Now ¢(U,V, W) cannot be negative, and g(U,V,W) = 0
for U=V = W = 0. Thus a minimum can be found
by inspection, but is not what we might have hoped for. In
fact, to determine the translational velocity using our least-
squares method we have to solve the following homogeneous
equation for 7

where:

(38)

Gl'=0 (39)
where G is the matrix:
a I/
G= (d c). (40}
/ c

Clearly (39) has a solution other then zero if and only if
the determinant of G is sero. Then the three cquations
(39) are linearly dependent and 7' can be determined up

d
b
e
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1o a constant factor. In gencral, however, as the data is
corripted by noise, g cannot be made equal to zero for
non-xero Lranslational velocity and so 7 (0,0,0)7 will be
the only solution to (39). 'To see this in another way, note
that ¢ hiax the following form:

(kU KV, kW) - K3g(U, VW) (1)

where k is a constant. Clearly o{U7,V, W) assumes its min-
itnal valus for U/ — V=2 W = 0.

What we are really interested in, is determining the
direction of T which mimmizes g, for a fixed lenpth of P,
Hence we impose the constraint that 7 be a unit vector,
It T is constrained to have unit magnitude, the minimum
value of ¢ is the smablest eigenvalue of the mateix G and
the value of 7° foe which g asaumes its minimum can be
found by deteenimug the tigenvector corresposding to this
cigenvalue [8]. ‘I's lollows from the observation that ¢ is
a guadratic form which can be wrilten as:

dU, VW) m FTGT. (42)

Note that G is a positive semidelinite hermitian matrix
Ma20020c¢>0,ab>dbe>ctundca
J3. (The last three incqualities follow from the Cauchy-
Schwarz inequality [7], [8]). Hence all eigenvalues are real
amd non-negative aml are the solutions ) of the third degree
polynomial:

x!
—(a -} b4 ¢)A?
4 (ab + be - ca = d? — e — fI)\
o+ (ae?® - bf? 4+ cd® — abe = 2def) = 0.

‘I'here is an explicit formvla for the least positive root in
tetms of the real and imaginary parts of the roots of the
quadratic resolvent of the cubic. In our case this gives us
the desired smallest root, since the roots cannot be negative,
For the suke of compicteness, however, various pathologi-
cal cases that might come up will be discussed next, even
though they are of little practical interest.

Note that X = 0 is an cigenvalue if and only it G is
singular, that is, il the constant term in the polynomial
(43) equuls 3ero. In fact, il the determinant of G is vero
one can find a velocity 7' which miakes ¢ sero. It follows
from a theorem in calculus that this happens only when the
optical flow is cither not corrupted by noise at all or only
at a few points. ‘The theorem states that if the integra!l of
the square of a bounded and continuous function is sero
theu the function itself is zero. Hence errors can only occur
at points where the oplical llow ix discontinuous, and these
are exactly the points where the surface defined by 7 is
discontinuous. (These arc also the places where existing
methods for computing the optical fow [5] are subject to
large errors).

It is impossible for exactly Lwo eigenvalues to be sero,
» this would imply that the coefficient of X in the poly-

(43)
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nomial (43) cqualied zero, while the cocllicient of A? did
not. “That in turn would imply that ab = d?, be == ¢?, and
ca =+ f2, while o, &, amd ¢ are not all zero. For equalit: %o
hold in the Cauchy-Sclhiwarz mequalities, huwever, u and v
must both be proportional to zv — yu. This can only be
true (for all 2 and y in the inage) if u==v=:0, Bul then all
six integrals become sero and consequently all three cigen-
values are zern, “I's situation is of little interest, since it
occurs only when the optical How duta is sero everywhere,
'hen the velocity is 2evo too, Once the smallest cigen-
value is known, it is straightforward to find the transiational
velocity which best matches the given data. 'To determine
the cigenvector corresponding to an cigenvalue, say Ay, we
have to solve the fullowing set of linear equations:

(a =NV 4-dV 4 fW=0
dU 4 (d~M)V 4 W =0 (44)
JU 4V 4 (c—\)W =0,

Ax Ay is an cigenvalue, cquations (44) are linearly depen-
dent. Let us for a moment assume that all cigenvalues are
distinct, that is, the rank of the matrix (G — \!), where J
is the identity matrix, is two. ‘Then we can use any pair of
them 1o solve for U, V in terms of W say, There are three
ways of doing this. For numerical accurary we may add the
three results to get the symmetrical forms:

U ﬂ(b—kd(c—x‘)—!(b—\‘)
—d(c =~ N\) {-e{f -} d—¢)
V s o= M){a = Ay) = dle = \y)

~-dla =M}t fld-+ e~ )
W oo (d — X;)(b— X]) hind t(d - X;)

= [(b=N) - d(e-}- = d).

Note that Ay will be very small, il the data is good, and
one may wish to just approximate the exact solution by
using the above equations with Xy set to zero, (Then Lhere
is no need to find the cigenvalue). In any case, the result-
ing velocily may now be normalized 30 that its magnitude
equals one, There is oue remaining difticully, arising from
the fact that if 7 is a solution to our minimization peoblem,
s0 is —T. Only one of these solution will correspond to
positive values of Z in equation (34) however, This can be
easily scen by evaluating (31) at some point in the image.
The case where the two smalleat cigenvalues are the same
will be discussed in one of the uext pacagraphs.

There is a simpie gecmetrical interpretation of what
we have done so far, To this end we consider Lhe surface
defined by g(U,V,W) == k where k is a constant, Note
that we can always find a new coordinate system U,V ,W
in which o(l7, V, W) can be wrillen as:

(45)

MU 40P AW =k (46)

where \; for 1 = 1,2,3 are the three cigenvalues of the




yuadratic form. If the cigenvalues are all non-zcro, the
surface g(U, V', W) = k is au cllipsoid with three orthogonal
semi-axes of length \/k/X,. We are particularly interested
in the case where the constant k is the smallest cigenvalue,
Then all three semi-aiics have longths Jess than or equal
to one. lence the cllipsoid lies within the unit sphere. If
the two smailest cigenvalues are distinct, the unit sphere
touches the cllipsoid in two places, corresponding to the
Iargest axis, If the two smaller cigenvalues hanpen to be the
same, however, the unit sphere touches the ellipsoid along
a circle and as a result all the valocity vectors lying in a
plane spanned by two cigenvectors give equally low ercors.
Finally, if all three eigenvalues are equal, no direction for
T is preferred, since the cllipsoid becomes the unit sphere.

The ease where exactly one cigenvalue is zero also has
asimple geometrical interpretation, The sutface defined by
U, VW) == 0 ix a steaight line, which can be scen easily
~om the following equation:

MD: - Xz‘-’: =0 (17)

written for the case when )y is zero. (Remember that A,
and Xz are both positive.) Clearly the unit sphere intersects
this line in exactly two points, one of them corresponding
to positive values for 2 in equation (34).

The method which we just. described can be easily
implemented, ‘To this end, the problem can be discretized,
An expression similar to (31) can be derived where the
integeals are approximated by sums. Our minimization
method cau then be applied to these sums. The result
ing cquations are similar to ones described i this scction,
with summition replacing mtegration,  We implemented
the resulting algorithm and tested it using synthetic data
including additive noise. ‘The resuits agreed with our ex-
pectations,

One can us: the ratio of the hizgest to the small.
est cigenvalue, the 30 called condition number [15), as a
measure of covlidence in the computed velocity. The result
is very sensitive to errors in the measureincats unless this
ratio is much bigger than one.

Curiously, the same error integral as (35) is obtained
in the case where the ALz, norm is used:

A pw
I ez [ [ U ate s 4 7)o
(48)
We can arrive at a similar solution by multiplying the in-
tegrand in (17) by %2 instead of by a? - 52, In that case
the minimization is carried out with respect o the MLy
norm defined by:

L
I fslle= [, [ e zte it azds. o

Here optical flow ve'ocities for points which are further
away are weighted more beavily. This is most appropriate
when the measurement of larger velocities is Jess accurate.
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We enid up with a quadratic fonn similar to ¢, cnly the
integrals for the six constants corresponding to a, b, ¢, d,
¢, and [ are a bit more complicated, Curiously they only
depend on the dizection of the oplical flow at each point,
not its magnitude,

Also, other constraints could be used. If we inxist
on U? -} V? = 1, for example, we obtain a quadratic
ingtead of a cubic equation, and if we use W =2 1, a lincar
cquation only need to be solved, The disndvantage of these
approaches 13 that the result is sensitive lo the orientation of
the covtdinale axes, Clearly, in the case of exact data, we
get the right solution using any of the constraints mentioned
above,

3.4. Using a Different Constraint

The minimization scheime discussed in the previous sec.
tion gives us u unique xolution in most cases for the velocity
vector 7. llere we propose a slightly different approach
which always gives us a unique solution. Note that apply-
ing the fiest step w our misinization method gives us a

;m}imiul between the values of Z, the velocity vector and
e Eptical flow at every poinl, We can in addition assume
that & = Zy is known at a parhicular point, say (2o, Yo).
Using the ML zy, norm in our scheme, we want Lo mini
mise:

N pw
/ A/:_w[u?. = (=U FaW)? 4 [vZ = (=V 4 yW)P
X (u? 4 v?)dxdy. (50)

Differentiating (50) with respect to Z, and setting the resulw
ing expression equal to 2ero, we obtaiu:

2= “;‘%:’7‘,-’- (51)

Thus we propose to solve the minimisation scheme under
the following constraint:

Zo{uj + vg) — (voao + voBo) =0 (52)

where up and vg denoie the components of the optical
flow measured at (x,¥0) and ag and fo denote a and 2

evaluated at (zg,y0). The error integral (50) becomes after
substituting (51):

f_: /: . (uf — va)*dzdy (53)

which is the same as (35) and is denoted by g(U, V, W) (37).
Thus we want to ininimize:

9(U, VW) -+ \[Zo(ug 4 v3) — (wocva -+ voBo)]  (54)

where ) denotes a Lagrangian multiplier. To determine
U,V aud W the following lincar equations obfained by

i in— —
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differentiating (54) with respect to U, V, 1V and ) have to
be solved:

aU - dV =} fW - \ug = 0
dU 4 8V 4 W -} Mg == 0

JU -tV -f- eW = \zoup -} yove) == 0 (55)
U + vV — (zaup + yoro)W = —Zo(uj -+ v3).
These cquations can be writlen in the form:
&K = P (56)

where B = (U,V,W,\)T and P = {0,0,0, —Zo(u} +
v3))7. Let the determinant of Gy, be Ag:

Dom=  {d —ab)xgup + yovo)
(e — be)ug + (f* —ac)v;
+4-2|(de — bf)uo(zouc +- yovo)
~+(df — ae)vo(zoug -+ yovo)

+(cd — ¢/ )Juove}.

Assuming that &g » 0 we can casily determine T\ from
(s5):

(87)

A= Gy 3 8
Iotroducing the following abbreviation:

Zo{u +v3)
- ——Ao '

(s8)

X (59)

we can give these formulae for 1\

U = K|ug(bc — €2) 4 vo(ef - ¢d)
+ (zouo -} Yovo )b/ — de)]
V = K|uolef — cd) + vo(ac — /?)
+ (zouo + tiovo)ae — df)]
W == K [ug(de — bf) -+ vo(df — ac)
+ (oua -+ yovo)d* — ab)]
A= Klu’-{-cd’ + bf — abc — 2de/f).

The disadvantage of this approach is that the result depends
upon th~ values of the optical flow at a single point. To
circuravent this problem we propos: to determine average
values for U,V and W in the following manner. First nole
that we are only interested in the ratios of U/W and V /W
which obviously do not depend upon the (unknown) value
for Zo. Equivalently we could determine thi value for X
from the condition that 7 should have unit length. Hence
we can determine values for U, V and W which depend oaly
upon the values of the optical flow at a single point and the
coefficient in the matrix G. If wc want to remove the de-
pendence of the result on the data at a single point, we can
simply average the values obtained for all image points.
In the cuse where the data is exact, i.e, where the

(60)

211

determinant of G, denoted by det G, vanishes, the solution
for T is the same onc as chtained using no constraint in
our tiinimizations scheme. To sce this just observe that
in that case A\ == 0 as A = -=Kdet G). In the case where
Ay == 0, equations (55) have a solution only when det G =
0. We do not have o be concerned with the case where
Ag = 0 but detG »% 0 as we can argue that cquations
(55) always have to have a solution. Note that our method
iz bascd on the condition that  is a certain function (51)
of U,V,W. Hence (52) cannot impose a constraint which
would be impossible to satisfy.

The methods discussed in this section have been ap-
plied o noisy synthetic data with the expected results.

4. Rotational Case

Sup;rosc now that the motion of the camera is purely
rotstional. In order to determine the motion from optical
flow we again use a least-squares algorithm with the ML,y
norin described in the previous section. Recall that in this
case the optical flow is (sce (8)):

U, = Azy — B(z* 4-1) + Cy (61)
Ve = A(y? -} 1) — Bzy —C1.

We will show now in an analogous fashion to sectin 3.1
that two dillerent rotations, say @, =2 (A;, 5,,C,)7 and
Q2 = (As, B2, €3}, cannol generate the same optical flow.
Assuming the converse, the following equations huve to hold
for all valnes of x and y:

Aizy— By(z* 4+ 1)+ Ciy

= Ayzy — By(z? + 1)+ Cay
Ay 4 1) —Bizy--Ciz

= As(y? 4- 1) ~ a2y — Cazx

(62)

from which we can immediately deduce that @, = ;.

In general, the dircction of the optical flow at two
points and its inagnitude at oue point deterinine the motion
of a camnera in pure rotation uniquely. We choose instead
to minimize the following expression:

A pw
./_u[.. (v —u) + (v — )] dzdy.  (63)

As the motion is purely rotational, the optical flow does
pot depend upon the distance to the surface and therefore
we may omit the first step in our method. Thus we im-
mediately differentiate (63) with respect to A, B and C and
set the resulting expressions cqual to sero:

A pw
/-J_.. [(w —ur)zy + (v ~ v Yy* -+ 1) dzdy = 0




:

¥y

A rw
/—A/.‘.., [(4 — ue)z? + 1) 4 (v — v )zy)drdy =0 (64)
A pw
L sy iey o

Rewriting the above cquations we obiain:
A rw
o 2 s L3
[_A[...(:’”'* v(y -t 1)) dzdy
= / . / uray b vy + 1) dzdy
A pw
‘/;“/ w[u(z’»{- 1) -} vzy)dz dy

AN pw
-.-:/k/“[u,(z’ of- 1) - vozy) dz dy

| Y™
/-«h/—-w [uy — vz]dzdy
AN pw
m/ / {upy ~ w,2) dz dy
mhd g

and expanding these equations yields:
A4AD 4 JO =k
dA+D 4 EC =1 (66)
JA+ B4 2C = m,

(65)

where:
2= [ ) [_ :[:’y'-}-(y’-}-l)’]dzdy
b= [_“ ,. [ ':((x* 1) 4 2y ds dy
z5"=[_“,‘/:”wlx’+v’l'b=dv
3"—/:“/_:[2v(2’+v’+2)ldzdv
!-—/:“/:wydxdy
7-—['./_::4:#.

E:/:‘/;:[u:y-i-v(y’-{-l)]d:dy
T —/:“/:"[u(:’-{-l)-{-vzy]dzdy (68)
m-/_i/_:(uy—vz]dzdy.

(67)

and:

It we call the coefficicnt matrix in (66) M and the column
vector on the right-hand side #, then we have:

M3 =~ (69)
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Thus, provided the matrix M is non-singular, we can com-
putc the ratation as follows:

= MTUA (70)

It is easy o sce that the matrix M is nonssingular in the
spucial ease of a reclangular image plane since then:

h | 2n? Awih?
3 e dwh(5e b = 1) 4

wh | 2! JwInd
b= -Iwh(-g- -} -3—- 1) -} 9 (-“)
LA f-'-;f‘-(w’ } h?)

d=tma] =0,

So in the case of » rectangular image pfane, the matrix is
dingonal, which makes it particularly easy to compute its
inverse. In fact, the matrix is diagonal if the image planz
it symmetrical about the r-axis und the y-axis. As the
extent of the image plane decreases, however, the mateix M
becomes ill conditioned. ‘That is inaccuracies in the three
integrals (K, T, and ) conputed from the observed Bow
are greatly magnified, This makes sense since we cannot
expect to accurately determine the component of rotation
about the optical axis when observations are confined o a
sinall cone of directions about the optical axis.

Again, in our numerizal implementation of tne algo-
rithm the integrals in (67) can be approximated by sums.
‘The methods discussed in this section have been applied to
noisy synthetic data with the expected results.

5. General Motion

We would like now to apply a least-squares algorithm
to determine the motion of a camera {rom optical Bow
given no a priori assumptions about the motion. It is
plain that a least-squares method i easiest to use when the
resulting cquations are linear in all the mction prrameters.
Unfortunately, there exists no noem which will allow us
to achieve this goal. We did find a norm, however, which
resulled in equations that are linear in some of the ua-
knowns and quadratic in the others. We again attack the
minimization problem using the ML,s norm under the
constraint that U? 4 V2 4 W? = 1, The ensucing equa-
tious are polynomials in the unknowes U,V, W, A, B and
C and can be solved by a standard ileration method like
Newton's metkod or Bairstow's method [14] or by an ister
polation scheme like regula falsi [14]. The cxpression we
wish to minimise is:

A pw
NI _uu-(§+u,n'+[~—t’;’+~.)1’xu’+p')a(«)-
72
The first step is to difficrentiate the integrand of (72) with
respect to Z and sct the resulting expression equal to sero:

.
14




o

7 a? ‘}'/’: —
T i~ uJa k(v —v,)f’

@y

We introduce the Langrangian multiplier X as before and
attempt 1o minimise:

A ow
L“/.w (v — u)f = (v~ v,)a] dz dy
FMUE VLW ) (1)

The equations we have to solve to determine the motion
parameters are obtained by differentiation:

N pw
[ i = (o= v
X [--2y8 & (¥ 4 V)n)dedy ~ 0

[l./.:((" = U}~ (v=va]

X (£ 4 ) ~ zya)drdy =0
A v
/_“/_‘J(“ =) = (v = v}
X |v8 | 2oidzedy 0
A pw
[ =l = v
X (v=u,)dedy }- \U =0
L
/‘A/;w((“ ) (v~ vl
X(n=u,)dcdy—~\V a0
A pw
[ ) tn=udp == v
¥ (= we)y b (v—ry)a)dzdy p AW =0
? 4 V! 4 ‘v! e,
(75)

Note that the first three of these equations are linear in
A1 and € from which thexe parameters can be deleemined
uniquely in teems of U,V miad W, ‘Then we can deternine
U,V and W from the Jast four equations by a numerical
method, ‘To this end, the problem can be discretized and
cquations analogous to (75) derived, where summation of
the appropriate expressions is wsed instead of integration.

6. Summary

Our ohjective was to devise a method for determin-
ing the motion of a camera from optical low which allovsa
for noise in the measured data. The least-squares method
which we proposed in thix paper mects our goal aad is
also suitable for numerical implementation. An important
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application of our results 15 in passive navigation. Here
the path and instantaucous altitude of a vehicle is to be
determined from information gleaned about the environ.
ment without the emission of sampling radiation from the
vehisle.
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