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Atrat the optical now, is known at each point in the image.
Several schemata for computing optical low have been aug.

A method is prolins-d fur M uin thl motion of ges I (e.g. 121., 31 IS]). Other papers (e.g. (91, Jill, 112))
a holly relative to a fixed 1,O,.mimCnt using tile r.hanrlni have previously addressed the problem of passive naviga.
imar seen by a tmna A:L, lied to the ldy. 'The optical tion. Three rpproaches can be taken towards a solution
flnw in the 1111f.( plane is the input, while the InstaalnCous which we term the discrete, the differen(ial and the con
rotation ani transiAtion of tl.. body a e the output. Ir up- tinuos approach.
tie .H how coill he deterotited precitcly, it would only have In the discrete approach, information about the move-
to tKe kHOWU At n [CW IrAe, h o C010 lpoleC the parameters o tlt-fit or hrIghtness p.atterils at oily a few points is used to
the it-otiont. In practic. ho%%ever, the iiasiirca. optical flow deterilline tile motion or the camera. In particular, using
will be soniewhat maccurate. It ii therefore advantaeous such an approach, one aticpts Ul identify and Imiatch dis-
to cousider methods which use .j inuch of the available in.
formation as posNible. We eCimloy1V a least. qiiares approach points in a Seqiltice or ita.es Of interest, in this

wcae ois the phiot ograin metric problem of determining whatwhich tlntlites soltin )tlcsure or the diiscrepancy be¢tween hIlilitUIllLrorittatt rl Wl ieIuin

the ocauredHowand hatproddedfrou th cotpuW the minimumi number or poinits is frnt which (lhe intion
the measure flow aSd tet irediefr tin the computed can he calculated for ,I given numiber of iimagcs ilO, II),
I ttoi parameters Several lilferent eror a ort s are nvs. ,[12), 1161, 117. This approach requires that one tracks fea-
linaled. In guaierns, our al crthl leads to a system o non. titres, or idemtifie corresponding fealures in images taken
linear equations frwm. which the ,,,orion paran.,ters may be tns nterwrIs n lng16 sat different, timtes. In their work, Tlsai and llunag [16] as-
computed umnericAly. llowever, in the ;pecial cases where sullied that such corresponding points can be deterinned in
the motion or the crimcra is purely trairlational or purely two image. Then they showed that in general seven points
rotational, use or the appropriate norm leads to a system or are vulliciet to determine the motion uiniuely. They prove
equations from which these parameters can be determined furthermore that such points have to xatisfy a fairly weak
in clotd form. . constraiut. Longuet.lliggiis work (101 is fairly similar to

This report describes research done at the Artificial IG) hut, li fails to show under which conditions tle motion
'lntelligence Laboratory or the Massachusetts Institute o can be determined uniquely from corresponding points.
Technology. Support For the laboratory's artificial intel. In the differeutial approach, the first and second spatial
ligence research is p,. vided in part by the Advanced Research partial derivatives of the optical low are used to compute
Projects Agency of the Department of Defense under CiHice the motion or a camera 161. 9]. It has been claimed that it
of Naval le-.earch contract N00014-75-C-0643 and in part is sufficient to know the optical flow an- both its first and
by National Science Fouudatior' Grant NICS77.07569. scond derivatives at a single point t uniquely determine

the motion 19). This is incorrect (except for a special case)
I1. Furthermore, noise in the measured optical Bow L

1, Introduction accentuated by differentiation.
In the continuous approach, the whole optical fow

field is used. A major shortcoming of both the local and
In this paper we investigate the problem of pasive differential approaches is that neither allows for errors in

navigation asin optie l flow information. Suppose we are the optical low drta This is why we choose the coutinuous
vicewin a film. We wish to determine the motion o the approach and devise a least-squares technique to determinecamera from the sequence of images, assuming that the in- tbe motion of the camera from the measured optical flow.

stantaneous velority of the brightness patterns, also called
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Thbe proposed alrotithnt takes the abundance or available
data into account andi is robust entough to allow numerical .4- X v 1
hImplemlitatio.

lIndependently, P~razuly chose in [III a sintilar ap W,.- define the components oft1' and ul as:
proach to ours. Ile alit) proposes the use orln leIi squares
methodl to d(ritiic the mnotioin parameters huit nzever ii. _U_,_ ~ (.9 C7 2
Cusses how exactly this is to be done. Consequently, hceU ' ) A.I~Cr 2

udoes not show whether his scheme can be used to uniquely Tu ecnrwie()i cnpnn om

X, -U - a12+ Cl'
2. Tochnlcal Prerequisites Y -- V -CX+ AZ (3)

III this Section Iwe revi.'w tile cequationl dlrrillnig the Z'-M -IV - AY +- DX.

relation betweent the miotion or a camera alit) thle optizal %here ' denotes differentiation with respect to time.
flow generaltd We liste ssentially the Saine notation as 191. The optical fiow at each poinit in tile image plant is
A camera is assuimed to move throug~h a static environment. the instantaneous velocity of the brightness lia-tcrn at that
Let a coordinate systeum X,)*,Z be fixed with re-spect to point. L-t (:-,y) dlenote the coordinates or a point in the
the camera, with the Z-axis pointing along, the optical axs. image plane (see Figure 1). Since we assume perspective
iI l wish, we exan think of the environmient t "10 moing in p~rojection between an object point )~ anti the corresponding
relation to this coordinate system. Any rigid body motion imuage point p, the coordinates or p ate:
can be resolved into two factors, a translation and a rota. X Y
tion. We will dlenote by T' the translational component of z - Z . (4)
the motion of thle caiera and by tz its angular velocity (see Thopiaflwdetdby(,vta u z,)is
aso Figure 1 -w-hich is redrawn from 191). Let the instan. h pia lw eoe y(~) tain zy s

taueous coordinates of a point P in the environmient be * -y. 5
(X, Y,Z).()

Differentiating (4) with respcct to time and using (3) we

Vt Aiobtain the followitig equationis for the optical flow:

".04U z - -

=(-!.3 - 1) + Cy) - -Ay + 11z)

0Y' YZ (6)

P Cz + ) - Ay - z

I U

I We cmn write these equations in the form:

U = ul+ U, u-vH-v, (7)

Z whcre (ul, vs8) denotes the translational component of the
W optical flow and (u,, vt,) the rotational compilonent:

UzW

Figure 1. Coordinate Systems -V + IVv = Ary' -J z - 4.

So far we have considered a single point P. 'ro define

(Note that Z > 0 for points in frout, or the imaging sys. the optical flow globally we assume that P lies on a surface
tern.) Let ? be the vector (X, 1Y, Z)T, where Tr denotes the deli nied by a functioni Z = Z(X, Y) wh- -h is positive for all
transpose of a vector, then the velocity or P with respect values of X ar'd Y. With any; surface and any motion of
to the X, Y, Z coordinate system, is: a camera we can therefore associate a certain optical flow

205



and we smy that the surface and the motion generate this or
optical Bo.o:

Optical flow, therefore, depends upon the six parameters Us V2 - zVW2' - 11Ui W: + zyWi W3
of motion of the cgmera anti upon the surface whose images8 = U2V,, -z xV 1,-y 1/,,+ zyIV214. (14)
are analyzed. Can zil these unknowns b! uniquely recap.
tured solely front optical ilow? rhe answer is no, To see
this, consider A surface S2 which is a dilation by a factor k Since we assumed that X, and T,~ and 712 anti 7'2 generate
or a surface St. Further, let two motions denoted by Ali the same optKIca HOW, the above equation must hold for all
and M2 have th'e same rotational component aid let their z And Y. 'iTherfore the followi"K equations have to hold:
translational componeats be proportional to each other by UIv 2 =u21vi

the samte factor k (we will say that All and AM* Are similar). w=-'W,(5
Then the optical flow genierated by S, And Aft is the same
As the optical flow generated by S2 and All. This follows -UW U2 Wt.
directly front the definition of optical flow (8). It is still an rhese equations can be rewritten as:
open question whet her there are any other pairs of distinct U 1 ":W - U2:V2:W, 16
surfaces and motions which generate the same optical flow.

Dectermining the ittotion of a camiera fromt optical flow fromt which it folho-ws that 712 is a dilation or Z1. It is clear

is much easier if we are told thiat the inotion is purely that the scaling factor between 21 andi Z2 (or cquivalently
translational or purely rotational. In the next two sections xetwecn T, and 1'2) cannot be recovered front the optical
we will deal with these two special cases. Then we shall flow, regardless or the number of poinits at which the flow is

aaly~e the cast where no a priori msumptions about the known. By uniquely determining the motion of the camnera,

;notion of the camecra are made. we will mean thrt the motion is uniquely determined up to
a conlstaut scaling fActor.

3. Translational Case 3.2. Least-Squares Formulation

In this section we discuss die case where the motion In general, the direction of the optical (low at two
or the caiiera ;- assumed to be purely translational. As points in tlic image plane dctermmine, the miotion of a camera
before, let P = (U, V, W1) be thme velocity or the camera. in pure translation uniiquely. There is a dlrawback however
Then the following equations hold (see (8)): to utilizing so little or the aivailnlhle information. T1he opti.

=-U+ZW -v +YW cal flow we ineasure is corrupted by noise and it is desirable
_______(_) to develop a robust mtethiod which takes this into account.

T hus we suggest using a least-sqmarcs fi'thod (11, (141 to
determine the movemnict. parammieers arid the surface (i.e.,

al1. Similar Surfaces and Similar Motions the best lit with respect. to sonie norm).

It Will be Shown neXt, that if twoV flows gCn121ate the For the following we assnune that the image plane is

same optical flow, and we know that the motions are purely the rectangle zrj-w, tel and prl-h, hm). The same method
tranislationmal, theu the two surfaces are sinmilar and the two applies if the imiage has soie ,,her shape. (In fact, it can
camtera motions -ire simtilar. Let Z, and Z2 be two surfaces b sdo u-nae orsodn oidvda bet

aud let 1,1 - (U1, V1, W,)T' and 2 = (U12. V2,1412)" Ac t in the case that the cmmvironmemit contains objects which
two different. motions of a camera, such that Z, and I'l and may move relative to one another). Furthermore we have to

Z2 and P'2 generate the same optical flow: assume that, 11Z is a bounided functiona sad that the set of
points where 11Z is discontinuous is of measure zero. This

U -U, + ZW, -Vi + AW (10) condition on 11Z assures us that all neccssary integrations
= Z1  ZA can be carried out. We wish to minimise the foliowing

___2_+__- -V2 + YW, 1 expression:
Z 3k-W -U A- W.. - i .

Erinaing Z1, 7q, u and v from these equations we obtain: I ((U - Y) + (V - -V)+jd.)21 d'

-U, + Zlm -U2 + XW, 1)(
-V, +-YW, -V2 T R2

We can rewrite this equation as: In this case then, we determine the best fit with respect to

(-U, + z14m)(-V2 + 11W,) the fL2 jiorin which is defined as:

( -1 2 + xlV X -V + ylV) 13)11fl f(Z, Y) 11= ] J f (z y)J' dx d. (18)
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The steps in the leat.squares method are as foll s: First
we determine ' iat X which minitnises the integrAi d of (17) 1- u -1 0,o
at every pol,& (x, y). Then we determine the value4 or U, V
nti IV which minimite the integral (17).

Let us introduce the following abbreviations: glumre m)=-U + W p - -V + Y. (19)%

Note that the expkcdd low, given U, V and W is simpi. (u1,ve)

Then we can rewrite (17) a:

f II I(u - )2 + (v - )21 dz dy. (21) Figure 2. Geometrical Interpretation

We proceed now with the first step or our minimisation
method. DilTerentLiatinK the intkgrand of (17) with respect gefore proceediug with the Fiuecond step, we give o
to Z and setting the resulting expression equal to ern eonetrical inerpretation in Figure 2 of what we have so
yields: far. Suppuse, th at the motion parameters U, V, and W arm

- , __ given. At any gives point, say (xo, yo), optical flow depends(- ~~-~-+ (v ) 0. (22) not only upon the motion parameters but also upon the
value of Z at that point, Zo Sly. However, the direction

Therefore we can write Z as- of (u, v) does not depend upon X0. The point (14, V) must

(3 + 2lie along the line L in the uv.plane defined by the equation
Z = (23) uP -- va 0. Let the measured optical flow at (to, yo) be

denoted by (u,,,v), and let the closest point on the line
L be (u.,v.). This correaponds to a particular Z. given

This equation, by the way, imposes a constraint on U, V by (23). The remaining error is the distance between the
and W, since Z must be positive. We do not make use of point (uMn, vo) and the line L. The square of this distance
0 is except to help us pick amongst two opposite solutions it given by the integrand of (25).
for the translational velocity later on. Note that now: For the second step, we diferentiate (25) with respect

! pP= - tj UI, V and II and set the reiulting expressions equal to
z 02 +P2 P2- (24) zero:

J- J+ O(up - VXlUU + V0
mind we can therefore rewrite (17) as: ,, (a2 + #2)2

LLf O(up -VoXua +tP) d-d 0 (26)
(u a2dz dy. (25) -W (2+ 2)

fj: 02~ ~ +JP2 (yet - PXj)UP - uaXUO + uP)

It should be clear, by the way, that uniformly sealing U, V T f - " (Q2 + 2)2 dzdy= 0.

and W does not change the value of (25). This is a reflection Let us introduce the following abbreviation:
of the fact that we can determine the motion parameters
only up to a constant factor. . p (uP- VXua + Vp) (27)(C" + ,) MYs?

Then equations (26) can be rewritten as:

f 
WLL/ ,j(-V + yW)KJ dz dy = 0

(-U+zWV)Kdd= (28)
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A values itn a numerical nmmnlization.
[-. y F I- :V)Wjdxdy 0. We discuss now our least.squtres method in the case

where the norm is chosen to ie Afo,,O. First we determine
'rho sumn or it times thie fir.t it1 t ,d , V" tim|es the second Z, ljy differentiating the isiterrand or (31) wi~th resp~ect to Z,gterjral, and I1' tilles she third a~interal is it,'iitt|ally zero. and setting the result equal to zero. We again get (22):

Thus the three eqUations are hlaenrl, depelidctit. , his is to ,
be expeted, for if: (u - A) . (u 0, (33)

f(k',kV,kilt) 1(1 , It,), (29)

where f is a diferentiable fsnction and k a constant, then: from which it tullows that (23):

i,-I V01  . ,,,, ( 2, + P (34)=2!o ff +i, 0 (30) u p

The result is also consistent with the ract that only two So we wait to niiiiiisiige:
equations are needed, since the translational velocity can
be determined only up to a constant factor. Unfortunately J (u# vo), 41Z dy. (35)
equations (28) are nonlinear in U, V And It' and we are not
able to show that they have a unique (us to a onstant Let us call this integral Y(U. 1 , It), then, since:
scaling factor) solution. uP - va -- (vU - uV) - (zv - yu)li', (36)

M. Using a Dillarent Norm we have:

There is a way, however, to devise a least.squires 9(U, V, 1i')

methold which allows us to display a closed form solution =' au  + by2 + cit' + 2dUV + 2cVV + 2fWVI, (37)
for the m'otion paramieters. Instead or niii:|iizing (17), we where:
will try to liniinize the rollowiiig expression: h =

V 
=) a = Af u2 dz dy

f ".[(U - -U + Zw)2 -( - t2Z )' b= 41.1' zd

X PF dxdy (31) f

obtained by multiplying the integrand of (17) by a7 + P2. Jf (XV - Yu) dz dy
Thel we apply the saine least-Pquares method as before (38)
to (31). When the measuired optical flow is iot corrupted uvdd
by oaise, both (31) and (17) can be made eqt:al to zero by f W,
substituting the correct iotioii parameters. We thus obtain [u [d
the same solution for the notion parameters whether we C f-_ j_ u(zu- u)dzdv
minimize (31) or (17). If the measured optical low is not [AW
exact, then using expression (31) for our nimtnization, we f = -JJ v(zv - yu) dx dy.
obtain the best fit with respect not, to the A! I norm, but ,
to another norm which we call the MLp norm: Now 9(U, V, W) cannot be negative, and 9(U, V, W) = 0

for U = V = W = 0. Thus a minimum can be found
ffw by inspection, but is not what we might have hoped for. In

II I(, y. I1"0= -j [(f-W j )](a' +P'2 ) dx dv. (32) fact, to determine the translational velocity using our least-
e squares method we have to solve the following homogeneousWhat we have here is a minimization in which the error equation for T':

contributions are weighted, greatcr importance being given GT - 0 (39)
to points where the optical flow velocity is larger. This is
most appropriate when the me.-sren,ent of larger velocities where G is the matrix:
is more accurate. ( d f

Which norm gives the best results depends on the G--d I . (40)
properties of the noise in the measured optical flow. The f
first norm is better suited to the sitation where the noise in
the measurements is independent of the magnitude of the
optical flow. Note also that if we really want the minimum Clearly (39) has a solution other then zero if and only if
with respect to the ML2 norm, we can use the results of the the determinant of G is zero. Then the three equations
minimization with respect to the ML.# norm as starting (39) are linearly dependent and P can be determined up
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to a contant tactor. Inl general, however, its tile data is noti.atl (i-M) equalled %tro. while the coellicient or X,2 did
corrittted by noise. I cmnit be made equal to zero for toot. 'That in turn would imp~ly that ab = d2, be _ C2, and

no~eotranslational velocity and so 'P (0, 0,0O)r will be ca r- A while it, b, and c are not all zero. For equalil:- W~
the only solution to4 (39). 'Io set this in another way, note hold in the CauchyScawarA inequalities, however, u And v
that 9 has the tollowing Form: must both be taroportional to xv - yu. This can only be

9(k[1,ktP,kI) -- k2 9(U, VIV) () titue (for all x good y in tile image) it u~vA-.O. But then all
I *ix integral% become zero and consequently all three cigen.

where k is a constant. Clearly 9(tl, tf, It') asmes its mm.n valucs are lero. Tlhis situation is of little interest, since it
itnal value far t? V -%It' -. 0. occurs only when the optical Hlow dlata is zero everywhere.

What we are really interested in, is determining, the 'Then the velocity is zero too. Onice lte smallest cigen.-
direction of TI which mninimizes 9, for a fixed leng~th of T. value is known, it is straight forward to Hold the translational
Hence we impose the constraint that T' be a unit vector. velocity which best, inatches the given data. Toa determine
It T' is constrained to have unit marnitude, the minimum the eogenvector corresp)onding to an cigenvalue, say X1, we
value of 9 is the siualkest clAgvalur of the miatrix 0 and have to solve the following set or linear equations:
the value of ' roe which 9 amuines its minimuom can be ( IU+d,
found by deterinining the rien~ivoctor corresponding to this ( 1 U+d'+1
titeuvAlu (I). 'This follows fraon the observation that,gI is dU + (b..- X,)l + eW =0 (44)
at quadratic forin which cait be written as: fu J CV + (C - X)W M0.

g(Uf . IV ) - It i. (42) As X, is an eigenvalue, equations (44) are linearly depen.

Note that 0 is a positive seanidefllithrinitian matrix dent. Let us for a moment alsunie that all cigenvalues are
asa>0, b 0, C , 0, 41b > 411, be ! C1 and en > distinct, that is, the rank or the matrix (G - MJ), where I

fl. (The last three inequalities follow trom the Cauchy* is the identity matrix, is two. 'Then we can use any pair of
Schwart inequality 171, jIs)). Hence all cigeiavalues awe real thetil to solve for U, 11 in terms of IV may. There are three
and non-negative and are the solutions X~ at thle third degree ways at doing this. For numerical accurac~y we may add the
polynomial: three results to get the symmectrical forms:

X(a +6 anX (b - Xa)(c -X0) - f (b - X
+ (a + b + ca 2  - -1) (43) - d(c - X) + (14+d - c)
"+ (4b + b1 + -be + CS -12 -C2 dc2)X V ru(c - X )(n-4 ) - d( - ) (

'There is an explicit rfrmvla for the least positive root in IV ad (a - >.axb - X,) -- c(a - l
termns of the real and imaginary parts at the roots of the-f(b-X)+d +f-d.
quadratic resolvent ot the cubic. In our case this gives us-1( ,)+dcI. .d.

the desired smallest root, since the roots cannot be negative. Note that X, will be very situall, if the data is good, and
For the sake ot comp~eteness, however, various pathologi. one iay wish to just approxiate the exact solution by
cal cases that might caone up will be discussed next, even using the above equations with X, set to zero. ('Then thre
though they are of little practical interest, is ito nteed to finld the eiicuivalue). In any case, the result-

Note that X .- 0 is an cigenivalue if and only it G is ing velocity may now be normalized so that its magnitude
singular, that is, It the constant term in the polynoniial equals asic. 'There is one remaining dilliculty, arising troma
(.43) equals zero. in tact, it the determinant or G' is vero the fact that it 7' is a solution to our minimization problem,
one can find a velocity TP which ma~kes g zero. It follows so is -7'. only one ot these solution will correspond to
fromt a tlacoren in calculus that this happens only when the positive values at 7, in equation (3I-1) however. This can be
optical flow is either not corrupted by noise at all or only easily seen by evaluating (31) at some point in the image-.
at a few points. Thel~ theorem states that it tile integra! of 'rhe case where the two stualleat, cigenvalues are the same
the square ot a bounded and continuous function is zero will be discussed in one of the next paragraphs.
then the tunction itselt is zero. I lence errors can only occur There is a simple gecmnetrcat interpretation or what
at points where the optical Dlow is discontinuous, and these we have done so far. To this end we consider thie surtace
are exactly the points where the surtace defined by X is defianed by 9(.*, V, 111) =k whicre k is a constant. Note
discontinuous. (These are also the places where existing that we can always find a new coordinate sylitem U1, V , W
methods for computing the optical flow [Si are subject to in which 9(11, V, W) can be written as:
large errors). 

2 2
It is impossible for exactly two cigenvalues to be zero, >XU + X2V + X3W = k (46)

this would imply that the coefficient of X in the poly. where X, for i =1,2,3 are the three igenvalues or the
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quadratic torm, If the cigenvalues are all non-zero, the We end up with a quadratic formn himilar to 9. only the
surface 9(U, 1', IV) k is anl ellipsoid with three orthogonal integrals ror thc six constants corresponding to a. b, c, d,
semi-axes of length VEX We are particularly interested e, and f are a bit more complicated. Curiously they only
iii the came where the constant k is thc smallest eigenvalue. dlepeiid on the direction of the optical flow at each poirit,
Then all three serai-iies Imee kengths less than or equal not its magneitude.
to one. Hence the ellipsoid lies within the unit sphere. If Also, other constraints could be used. It we insist
the two smailest eigenvalues are distinct, the unit sphere on 11" +I V2 =-1 for examnple, we obtain a quadratic
touches the ellipsoid in two places, corresponding to the instead of a cubic equation, anti it we use IV'-1 1. a linear
largest axis. It the tvto smialler eineuevaluci happen to be the equiatioui only nieed to be solivea. rhew disndvantace or these
same, however, the unit sphere touches the ellipsoid along alultuaches is that thie result is seinsitive to the orientation of
a circle and as a result all tile "w locity vectors lying in a the couruliniat axes. Cleurly, in lte case of exact data, we
plane spanned by two cigenvectors give equally low errors. get lte tight solution using any or lte constraints muentioned
Finally, if all three tigenvAlues are equial, no direction tor Above.

7is preferred, since the ellipsoid becomes the unit sphere.
The case where exactly one cigenvaliie is %ero ;else has 3.4. Using a Difforot Constraint

a simple geometrical interpretation. The surfice definete by The minimizatiotn scheme discussed in the previous see.
y(l, V', IV') e0 is a straig~ht line, which call be seen easily tiomi gives us a unique soluttion in most cases For lte velocity
,. out the following equation: vector 1'. Hlere we liolse a slightly different approach

2 2 which -Ilys gives uts a umlqu.. solution. Note that apply-
+ >:+X,0 -0 (47) ing lte first stell in our iiimiifon method gives us a

Tl ~raint between time values of Z, the velocity vector vzd
written for the case when ).3 IS Zero. (Rememuber that X, the S. tical nlow at eveiy point. We Canl in addition assume
and X2 arc both positive.) Clearly the unit sphere intersects that J,=Zo is known atl A particular point, smy (2040.).
this line in exactly two points, one of thiem corresponding Using -thue nI~b~iornm in our scheme, we want to minio
to Imsitive values tor Z im i equation (34). misc: '

The method which we just described can be easily h,~
implemented. To'l this end. the problemt can be discretized. f [uZ - (-U *;rV)J U Z - (- "l)2
An expression similar to (31) can be derived where the J.. W- .. 1 +I" -
integrals are approximated by sums. Our mininizsation X (U 2 + V 2) dzdy. (50)
mcthod call then be appdlied to these sums. The result,
ing equations are similar to ones described in this betion, Differentiating (50) with respect to Z, and setting the result-
with summnation replacing integration. We implemiented ing expression equal to zero, we obtain:
the resultinig alrorithm and tested it uising synthetic data
including additive noliee. The results agreed with our ex. 7 un + (sP
pectations. &=U? + V2

One can us-.- the ratio of the IMuest to the small-. hsw rps oSlete ilti1101Ktu neest eigenvalue, the so called condition number 1151, as a hsw rps osleth iiiainshm ne
measure or coLhidence in the computed velocity. The result the following constraint:
is very sensitive to errors in the measurements unless this Z~4+s)-(o.+ ~ 0 (2
ratio is much bigger than one. ZN,+ (00+V0)-0 (2

Curiously, the same error integral as (35) is obtained weeu n odnt h opnnso h pia
in the case where the AILzh,, norm is used:

Blow measured at (zo,yo) and clo and Po denote a and
(A(Wevaluated at (zo, yo). The error integral (50) bec-omes after

11 fAZ,0y) Izif (z y,~f;) Z(x.y)J(u' + v2) dzdy. substituting (51):
(48)

We can arrive at a similar solution by multiplying the in. (p v)zy(3tegrand in (17) by Z2 instead of by a' + P2. In that casetJ (j a t d y(3
the minimization is carried oat with respect to the MLx
norm delined by: which is the same as (35) and is denoted by g(17, V, W) (37).

Thus we want to minimize:

IIf )11z 4 J f(x y)Z(x, y)] 'I: 4 (49) 9(U, V, W) + ([0 + v02) - (uloo + ".Po)J (54)

Here optical low Weocities for points which are further where X denotes a Lagrangian uiltiplier. To determiine
Away are weighted more heavily. This is most appropriate 17,1V and W the following linear equations obtaned by
when the measurement of larger velocities is lesn accurate.
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dilrerentiating (5-) with respect to U, V, IV and X have to determinant of G, denoted by del 0, vanishes, the solution
be solved: for ' is the same one as obhtained using no constraint in

our minimizations scheme. To see this just observe thatdu +- dV +I f 11'4-t XUo - 0 in that cane X =- 0 as X r- - KdetG). In the case where
dU +- bV +t cli +" X0' = 0 (55) ,60 =- 0, equations (55) have a solution only when det G -

fl "U +cV "+" cI - (eUs +t yet-s)- 0 0. We do not have to be concerned with the case where
1oU -+ V -V- (zeus + Yeot,*)W in-?,o(u 2 +D. 6° = 0 but detG o 0 a we can argue that equations

(55) always have to have a solution. Note that our method

rhese equations can be written in the form: i based on the condition that is a certain function (51)
or U. V,W. Ilence (52) cannot impose a constraint which

Gx1'. "- P (56) would be impossible to satisfy.
Tbe methods discussed in this section have been p-

where t), a (U, V, W, X)T and P = (0, 0, ,-Zo(u + plied to noisy synthetic data with the expected results.
v2))T . Let the determinant of Cx be Ao:0 4. Rotational Case

A (W - bXuoO + YOO) I Sup; ose now that the motion of the camera is purely

+ -C' k)Wu + (W' -11 arotational. In order to determine the motion froat optical
--21(d - bf)uo(,UoU + VoWO) (57) flow we again use a least-squares algorithm with the ML2

+(df - ae)Vo(ZoUo + YoV) norm described in the previous section. Recall that in this

+(cd - eI)UOVl. cue the optical flow is (see (8)):

Assuming that 4s 7 0 we can easily determine ?', from u, = Azy - M21 + 1) + Cy
(55): - G'FP. (58) , = A(V2 + 1) - izy - C.(

Introducing the following abbreviation: We will show now in an analogous fashion to sectkhn 3.1
that two different rotations, say at =2 (A1, i,C,) " and

S - - (59) 02 = (A2, , C2 )
", cannot generate the same optical flow.

4 o  'Assuming the converse, the following equations have to hold
for all vales of : and y:

we can give these formulae for t2x: A1zy - B1(x + 1) - Cly

U 3= Kluo(bc - e') " vo(e - cd) = A2xy -B 2(x2 + I) + C2Y (62)
Ax~+ 1) - flJxY -- (62)+ (oUo + ovoXW - -) A2(y" ( + 1) _ 1- 22y _ C

V - Ktuo(ef - cd) + vo(ac - f )
+ (:OuO + yovoXee - df)] (60) from which we can immediately deduce that a, = 02.

W - Kiu(de - b ) + v,(df - at) In general, the direction of the optical flow at two
+ (ZeUs + YovoXd' - 6b)j points and its magnitude at one point determine the motion

X )KJe c W +bifi - abc -2defj. of a camera in puie rotation uniquely. We choose insteadto minimize the following expression:

The disadvantage of this approach is that the result depends

upon th- values of the optical flow at a single point. Tor4r,
circumvent this problem we propose to determine average f 1(u - u,)2 + (v - %,)'] dz dy. (63)
values for U, V and W in the following manner. First noel
that we are only interested in the ratios of U/W and V/W
which obviously do not depend upon the (unknown) value As the motion is purely rotational, the optical Bow does
for Zo. E~quivalently we could determine W value for K not depend upon the distance to the surface and therefore
from the condition that t should have unit length. Hence we may omit the first step in our method. Thus we in-
we can determine values for U, V and W which depend only mediately differentiate (63) with respect to A, B and C and
upon the values of the optical flow at a single point and the set the resulting expressions equal to sero:
coefficient in the matrix G. If wc want to remove the de-
pendence of the result on the data at a single point, we can
simply average the values obtained for all image points. IJ_ AT u - u,)z + (v - vX1y "+ 1)) dx dy = 0

In the case where the data is exact, i.e., where the
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W Thus, provided the matrix A is non.singular, we can coM-
f ' I (u - UvXz 2 + 1) + (v- v,)zy dx dy = 0 (64) ptite the ro'ation as follow3:

IAI KU - u,)y - (v - v,)z dzdy 0. M-1 A. (70)

It is easy to see that thi matrix Af is non.singular in the
special case or a rcctangular image pline since then:

Rewriting the above equations we obtain:
k w a' 4 h' 2-h 1 4w~h3l ,uzy + v(y2 + 1)Jdd a ,wh(-w ' + s 3 1)4+L J--- ", 2,52 4w, (7

UzyI T + l) (71)f-'Y W I4wh IW ZW -(W, + h2)
f f (u(z' + 1)4 +vzyj dz dy = = 7,0.

W wh W (65)

_j / [u,(z2 + 1) + urZyj dx dy so in the case or a rectangular i,,age' plane, the ,natrix is
diagonal, which makes it paiticularly easy to compute its

(f uy-uz]dzdy inverse. In fact, the matrix is diagonal ir the image plaet
J-A- is symmetrical about the r.axis and the y.,ixis. As the
f ut, extent or the image plane decreases, however, the matrix M

= - t:z] dz dy becomes ill conditioned. That is inaccuracies in the three
Integrals (k, 7, and fsi) conputed from the observed Iw
are greatly iiagnied. This makes sense since we cannot

aA -+ l) + 7C . I expect to accurately determine the component of rotation
2A "+ SlH + IC -= 7 (66) about the optical axis when observations are conlined to
7A + 1B + EC -- W, small cone otdirections about the optical axis.

where: A\gain, in our umneicel implementation of tat algo-

Sruithm the integrals in (67) can be approximated by sums.

I=Z J 2 Y2 + (y' + 1)2dz dy The methods discussed in this section have been applied to

Snoisy synthetic data with the expected reAults.

L W ((2 + 1) + vxvJ dx dy (. Ge seral Motion
-1 [W z2 + 1 a dy/ We would like now to apply a leastsquares algorithm

A'' (67) to determine the motion or a eineriL from optical low
=- f_.1 Ix(z' + y' + 2)] dz, d iven no a prior assumptions about tic moon. It i

- plain that o leat-squ e s method 1s easiest to use when the

=dfdy resulting equations are linear in all the motion I wrameters.
W Unfortunately. there exists no norm whics: will allow as/: f to achieve this goal. We did Aind a norm, however, which

II zdy, resulted in equations that are linear in some ot the un

ado knowns and qudratic in the others. We again attack the
-' I 6 minimiTation problem using the Mi. norm under theE-- , wury + v(y/: + 1)] dz dly constraint that U2 + V2 + W2 =. 1. T]he ensueing eque.

4, W, tion, are polynomials in the unknowns U, V, W, A, I and
" -- J - u(Zs +! 1)-+ wzy] dz dy (68) C and can be solved by a standard iteration method like

4 WNewton's inethod or Barstow's method 114l or by an later.

'- uy - wz) dr. poletion scheme like regula ra si 14n. The exprelon wef fw wish to minimise is:

If we canl the coefficienL matrix in (66) M and the column .. ,]+v ( ..,])o+z
vector on the right-hand side A1, then we have: _z _

M$2 = ft. (69) The first step is to differentiate the initegrand of (72) with
respect to Z ad set the resulting expression equal to zero:
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pplication of our results is in passive navigation. lere
the path and instantaacous altitude of a vehicle is to be

Zd .J.2  (73i letermined from information gleaned about the enviion.
,- .(U t U40 tIent. without, the emitisslon or samtpling radiation from tht

vehile.

We introduce the Langrtagan multiplier X as before and
attempt to minimile: Acknewledgemeats: The first author wants to thank Stephen

'riliang fur helpful cotamments which improved the style of
this palwr. We also want to thank Judi Jones for making

u 1 - (u - v,)a.l d dy the drawings.

+ M 2 + W + It" - 1). (74)
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