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ABSTRACT 

This paper describes a method of image seg- 
mentation that creates a partition of the image 
into compact, homogeneous regions using a parallel, 
iterative approach that does not require immediate 
forced choices.  The approach makes use of a 
"pyramid" of successively reduced-resolution ' er- 
sions of the image.  It defines link strengths 
between pairs of pixels at successive levels of 
this pyramid, based on proximity and similarity, 
and iteratively recomputes the pixel values and 
adjusts the link strengths.  After a fev itera- 
tions, the link strengths stabilize, and the links 
that remain strong define a set of subtrees of the 
pyramid.  Each such tree represents a compact 
(piece of a) homogeneous region in the image; the 
leaves of the subtree are the pixels in the region, 
and the size of the region depends on how high the 
root of the tree lies in the pyramid. Thus the 
trees define a partition of the image into (pieces 
of) homogeneous regions. 

Introduction K 
Most of the existing methods of image segmen- 

tation [1,2] are based on forced-choice decisions. 
In methods that classify pixels into subpopuln- 
tlons, we must decide to which class each pixel 
belongs.  In methods that partition the image into 
homogeneous regions using splitting and merging 
processes, we must decide, for each current region, 
whether to split it, or whether to merge it with a 
neighboring region (and If so, with which one). 
This forced-choice aspect of segmentation is 
undesirable, since many of the decisions may be 
wrong, particularly when they are made on the basis 
of very little information, and it is difficult 
to undo the effects of wrong decisions. 

In segmentation by pixel classification, a 
"relaxation" approach [3] can be used to defer the 
classification decisions until more information is 
available.  In this approach we compute a degree 
cf membership for each pixel in each class, or a 
"probability" that it belongs to each class; and 
we then Iteratively adjust these membership values. 

The support of the Defense Advanced Research 
Projects Agency and the U.S. Army Night Vision 
Laboratory under Contract DAAG-53-76C-0138 (DARPA 
Order 3206) is gratefully acknowledged, as is the 
help of Clara Robertson in preparing this paper. 

based on the values at neighboring pixels and the 
compatibilities of the various possible combina- 
tions of class memberships of pairs of neighbors. 
After a few iterations, the mombership values 
stabilize, with some values becoming or remaining 
relatively high and others becoming very low, so 
that it becomes easy to make th,^ final classifica- 
tion decisions. 

Segmentation by partitioning into homogeneous 
regions - e.g., regions of approximately constant 
value - is generally more powerful than segmenta- 
tion by pixel classification, becauoe the informa- 
tion on which it is based is computed over regions 
rather than ("myopically") over small neighborhoods 
of pixels.  Thus it would be desirable to develop 
a region-based segmentation scheme in which de- 
cisions are not made immediately.  This paper 
defines such a scheme and gives examples of the 
results obtained when it is applied to various 
types of images.  Section 2 describes the general 
principles of this scheme and compares it with 
some related approaches; Section 3 discusses the 
algorithm; and Section 4 presents experimental 
results. 

2.  Weighted pyramid linking 

Our approach to unforced image partitioning 
makes use of a "pyramid" of successively reduced- 
resolution versions of the given image, say of 
sizes 2n by 2n, 2n-1 by 2n"l,..., 2x2. The bast 
of the pyramid (level 0) is the input image, and 
each successive level is constructed by avera^'ng 
4 by 4 blocks of pixels on the level below, where 
the blocks overlap 50% in x and in y.  (For con- 
venience, each level is regarded as cyclically 

closed, so that its top row is adjacent to its 
bottom row and its left column to its right column.) 
Thus each pixel on a given level has 16 "sons" on 
the level below (if any) that contribute to its 
average, and 4 "fathers" on the level above (if 
any) to whose average it contributes.  This type of 
pyramid has also been used for segmentation pur- 
poses by other investigators; e.g., see the work of 
Hanson and Riseman described in [4]. 

The basic idea in our approach is to define 
link strengths between "neighboring" pixels (i.e., 
father/son pairs) on adjacent levels of the pyramid, 
based on the similarity (in value) and proximity 
(in (x,y) coordinates) of each such pair. We 
then recompute the pixel values (at the levels 
above the base) as weighted averages of their sons' 
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values, where the wel&his depend on the link 

strengths.  These new values define new link 
strengths, and the process is iterated.  (The de- 
tails of the algorithm will be given in the next 
section.)  After a few iterations, the link 

strengths stabilize, and the links that remain 
strong define subtrees of the pyramid.  As it turns 
out, each such tree defines a compact homogeneous 

region in the image, where the leaves of the tree 

are the pixels belonging to the region, and the 
height of the tree corresponds to the region size 
(the  larger the region, the higher the root of its 

tree lies in the pyramid).  Thus the weighted links 
can be used to define a partition of the image into 
compact homogeneous regions.  Note that this par- 

tition is not defined immediately, but only after 

the link weights have stabilized. 

To see intuitively why this approach should 
work, consider the case of a homogeneous compact 

region on a homogeneous background.  Pixels in the 
interior of the region (or background) will link 

strongly to all their fathers, since these fathers' 

values are averages of image blocks that lie in 
the same regionl A pixel near the region border, 

however, will liik more strongly to a father that 
lies inside the region than to one that lies partly 
outside, since it is more similar in value to the 

former.  Thus when we recompute the fathers' 
values, a father whose iraagp block lies mostly in- 

side the region will get closer in value to the 
average of the region, since it is more strongly 

linked to its sons that lie in the region than to 
those that lie in the background; and conversely. 
This makes its links to the former sons even strong- 

er, and to the latter even weaker, so that the link 

strengths and values should converge.  Now consider 

a pixel whose block lies mostly inside the region, 
but whose fathers' blocks all lie mostly outside, 

because they are bigger than the region.  By the 
argument just given, the pixel's value should tend 

toward the region average, while its fathers' 
values should tend toward the background average, so 

that the pixel does not remain strongly linked to 

any '  its fathers, and becomes the root of a tree 
representing (a compact portion of) the region. 

It is of interest to compare this approach to 

some earlier segmentation schemes based on pyramid 

linking or on link strengths.   In [5-6] link 

strengths are computed between each father/son pair, 
but we keep only the strongest of the four links 

between a pixel and its fathers. We then recompute 

the pixel values allowing only those sons that are 
linked to a pixel to contribute to its value; re- 

compute the link strengths based on these new 

values; and iterate the process.  Note that in this 

scheme every pixel must link to one of its fathers; 

thus the links define precisely four trees, rooted 
at the top (2x2) level, so that the image is seg- 
mented into precisely four sets of pixels.  These 

sets do not correspond to compact regions, but do 

tend to correspond to homogeneous subpopulatlons of 

pixels.  Thus the segmentation scheme of [1-2] is 

more like a pixel clustering and classification 
scheme than an image partitioning scheme; and it 
also makes fo-ced choices immediately, since it 

keeps only the strongest upward link from each 

pixel.  Extensions of this scheme to segmentation 

based on color or texture, and to waveform or con- 
tour segraemtation, are described in [7-10]. 

A pyramid linking method which does make use 

of all the link strengths, rather than discarding 

all but the strongest upward lin1«., is described in 
[11].  However, in this method the link strengths 

are normalized so that they sum to 1; thus here 
too the links are forced to extend upward from 

every pixel (divided among its fathers appropri- 

ately) all the way to the top level.  In fact, 

the link strengths tend to converge to 0 or 1 
where the process is iterated, so that this method 
too defines a segmentation of the image into four 
subpopulatlons of pixels, rather than a partition 

into regions. 

A weighted pixel linking scheme not involving 

a pyramid is described in [12] .  Here a link 
strength is computed for each pair of neighboring 
pixels based on their closeness in value.  The 
image is then smoothed by replacing each pixel with 
the average of its neighbors, weighted by their 

link strengths.  Using these new values, the link 

strengths are recomputed, and the process is 
iterated.  This tends to produce a very high- 

quality smoothing, and the links that remain 
strong could be used to define a segmentation of 

the ir.age into homogeneous regions; but this 

method would not always be reliable, since it is 

based on small neighborhoods.  The method defined 

In this paper is analogous to the scheme in [12] , 
but using "vertical" links (between fathers and 
sons) in a pyramid, rather than "horizontal" links 

(between brothers) in an image at a single resolu- 
tion.  Our method could be generalized to make use 

of horizontal as well as vertical link strengths, 
but we shall not pursue this possibility here. 

3.  The algorithm 

The algorithm is initialized, as mentioned 

earlier, by building the pyramid using unweighted 
averaging of 4x4 blocks that overlap 50% horizon- 

tally and vertically.  Alternatively, we could use 

nonoverlapping 2x2 blocks (for the initialization 
only; a pixel still has 16 sons in the subsequent 

steps), or we could use the median instead of the 
mean; but these variatitns were found to make 

little difference in the results. 

Let v(P) denote the 'alue of pixel P in the 
pyramid, say on level i.     Initially, If 1=0  this 
is the gray level of an Input pixel, and if 

il>0 it is the mean of the values of P's 16 sons. 
Let o(P) be the standard deviation of these sons' 

values (or if i=0,  we take o to be a constant; we 
used 5 in our experiments). 

Let P* be one of the fathers of P.  The link 
strength between P and P* is defined by 

w(P,P*) 5 (l+d(P,P*)) 
exp 

/ , rv(P)-v(r*) .2 

o(P) 

/2? a(P) 
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In this expression, the first factor depends on the 
distance between (the centers of) P and P*; d is 
taken to be 3 for the closest father, 1 for the 
farthest, and v5   for the other two.  (It can be 
verified that these are proportional to the Eucli- 
dean distances between the centers.)  This facfor 
makes the sets of pixels that belong to a given 
tree more compact; if it is omitted, these sets 
become more irregular in shape.  The factors 1 
reflect the (non) variability of the sons of a^p) 
P; if they are highly variable, P does not link 
strongly to any of its fathers.  Finally, the exp 
factor depends on the similarly in value of P and 
P*; If they are very dissimilar, the link is weak. 

We now want to recompute the pixel values at 
levels ^0 as weighted averages of their sons' 
values, where the weights depend on the link 
strengths.  Note first that the weight given to a 
son must also depend on the (weighted) "area" of 
the image represented by that son; for example, 
if one son had unit strength links (down through 
successive levels) to a single image pixel, and 
zero strengths to all its other descendants, we 
would not want to give it as much weight as a son 
that had high-strength links to many image pixels. 
Let a(P) be the "area" of pixel P; initially, for 
a pixel at level £, we have a(P) =2  , since P 
represents a 2* by 2^ image block.  Sucsequently, 
let a(P') be the area of a son P' of P, and let 
w(P',P) be the link strength between them.  Then 
a(P)=£ w(P',P)a(P,)/W(P') (where the sum is over 
the Psons of P' of P); here M"£ w(P,,P*) (the sum 

P'* 
being over the fathers P'* of Pi).  Note that in 
computing a(P) we are actually using normaliz^d 
weights, i.e., I  w(P',P'*)/W=l.  This is because 
it seems reasonable that the "area" of a pix^-l 
should be distributed among its fathers in a 
normalized fashion, in order to Insure that the 
total "area" of all pixels at a given level 
remains equal to the area of the Image. 

Finally, the new value of pixel P is given in 
terras of its sons' values by 

v(P) = 

I  v(P')a(P,)w(P',P) 
J^  

I a(P')w(P,,P) 
P' 

where the  sums are over  the sons P'  of  P.    Sim- 
ilarly,   the new standard deviation  is given by 

S(v(P)   -v(P'))2a(P,)w(P',P) 

o(P) = 

/ 
I a(P')w(P',P) 

The process is iterated; in our experiments, only 
two or three Iterations were necessary. 

After the desired number of iterations, we 
call a pixel a "root" if it is on the top level 
(2x2), or if the sum of its link strengths to all 
its fathers is negligible (in our experiments: 
<10_51.  The nonroot pixels are then assigned to 

trees by using only their most strongly linked 
fathers, 

4. Experiments 

The algorithm just described  was applied  to  the 
three  images  shown   in  Figure I:     photomicrographs 
of  some chromosomes   (right)  and  blood  cells  (left), 
and an  infrared   image of a tank.     Each  image  is 
64x64  pixels;   thus  the  top  (2x2)   level  of  the 
pyramid   is  level   5.      Vt  each  iteration,   the gray 
level displayed   for    ach pixel  is  the value at  the 
root of   its tree.     W?  see that  even after a  single 
iteration,   the  trees define a decomposition of  the 
image  into regions  having a  small  set of values; 
and  in one or  two more  iterations  the  set  of values 
is reduced  even further. 

Table  1   lists  the root  nodes at  each level, 
and  their values,   for  each image for  as many  iter- 
ations as were needed until  there was no further 
change  in  the  set  of  roots.    We  see  that  the more 
complex  the  ■''nage,   the more  iterations are required 
for the set  oi  roots  to  stabilize;   but  that  even 
for  the most  complex   image,   the changes after  the 
first  two or  three  iterations have  little effect 
on  the  segmentation  of   the   Image. 

Figure  2   shows  printouts of   the displayed 
images after  the  first   (parts a-c)   and   last 
(parts d-f)   iterations,  where the value printed   in 
each region   identifies the root of   the  tree to 
which  it  belongs;   the digit  is  the  level,  and  the 
letters are used  to distinguish the roots at  that 
level.    We  see  that  after a few  itera.ions,   the 
leaves of  each tree define a  small  set  of  compact 
regions.     As Table  1  Indicates,  regions that are 
compact  pieces of a  single homogeneous region have 
nearly the  same value.     Note that  because of  the 
coordinate wraparound,  reg'3ns on opposite sides 
of  the  image may belong  to the  same  tree. 

5, Concluding  remarks 

We have exhibited a method of   segmenting an 
image  into compact  honogeneous regions  by con- 
structing  links between "neighboring" pixels at 
consecutive  levels of a "pyramid' . 

An  important  feature of  this method   is that 
each region  is  r-,;.resented by a  tree  having  the 
pixels of  the  region as leaves.    The height of  this 
tree  is  proportional  to the log of  the region size. 
Thus,   even for  large regions,  all  the pixels  in the 
region are relatively closely linked  to  the root of 
the tree,  and  hence to each other.     The pyramid 
structure makes  it  possible for  information to 
propagate between different parts of a region 
relatively rapidly.     Moreover,   the root of  the tree 
can be used  as a node  to represent  the region  in 
various region-level  relational  structures.     Thus 
the tree constitutes a transition between the 
pixel-level  representation of  the region and more 
abstract  representations. 

Another   important  feature of  our method   is 
that  the trees are produced by a cooperative pro- 
cess  in which link strengths are  iteratively 
adjusted.     Under  this process,  root  pixels 
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representing  regions become  easy  to recognize,  be- 
cause their  link strengths to  their  fathers all 
become negligible.     They are  harder  to recognize 
in the original  pyramid,  where  the  pixels  (espe- 
cially at  higher  levels)   represent mixtures of 
Image pixels,   so  that  the  link strengths are not 
initially negligible. 

Image processing and   segmentation techniques 
based on "local" operations performed  in a pyramid 
can be  implemented very rapidly   in  parallel on a 
tree-structured cellular  processor   [13].     It  is 
possible that  processes of  this  type also play a 
role  in biological visual  systems,   where the  input 
image  is represented at a  range of  resolutions 
[141. 

REFERENCES 

1. A Rosenfeld and A.  C.  Kak,   Digital  Picture 
Processing,   second  edition.   Academic  Press, 
New York,   1982,   Chapter  10. 

2. T.  Pavildis,   Structural  Pattern Recognition. 
Springe'-,   New York,   1977. 

3. A. Rosenfeld and L. S. Davis, Cooperating 
processes for low-level vision: a survey. 
Artificial  Intelligence 17.   1981,   245-263. 

4. A.  Klinger and  S.  L.  Tanimoto,   Structured 
Computer Vision,  Academic  Press,  New York, 
1980. 

5. P.  J.  Burt,  T.  T.  Hong and  A.   Rosenfeld, 
Image  segmentation and  region  property 
computation by cooperative  hierarchical 
computation,   IEEE Trans.   Systems,  Man, 
Cybernetics 11.   1981,  802-809. 

6. T.  Silberberg,   S.  Peleg,  and  A.   Rosenfeld, 
Multi-resolution pixel  linking  for  Imagi; 
smoothing and  segmentation,   TR-977,   Computer 
Vision Laboratory,  Computer  Science   Cenrer, 
University of Maryland,   College Park,  MD, 
November  1980. 

7. T.  H.  Hong and A.  Rosenfeld,   Multiband  pyramid 
linking,   TR-1025,  Computer  Vision Laboratory, 
Computer  Science Center,   University of Mary- 
land,  College Park,  MD,  March 1981, 

8. M.  Pletikainen and A.   Rosenfeld,   Image 
segmentation by texture using  pyramid node 
linking,   IEEE Trans.  Systems,   Man.   Cyber- 
netics,   11.   1981,  822-825. 

9. M.  Pletikainen,  A.  Rosenfeld,   and  I. Walter, 
Split-and-link algorithms  for  image  segmen- 
tation.  Pattern Recognition 14.   1982,   in 
press. 

11. K.   A.   Narayanan,   S.   Peleg,   A.   Rosenfeld,   and 
T.   Silberberg,   Iterative  image   smoothing  and 
segmentation by weighted  pyramid   linking, 
TR-989,   Computer Vision Laboratory,   Computer 
Science  Center,  University of  Maryland, 
College Park,   MD,  December  1980. 

12. J.  0.   Eklundh and A.  Rosenfeld,   Image  smooth- 
ing  based   on  neighbor  linking,   IEEE Trans. 
Pattern  Analysis Machine Intelligence 3. 
1981,   670-683. 

13. C.   R.   Dyer.   A VLSI  pyramid  machine  for 
hierarchical  parallel  image processing,   Proc. 
PRIP   '81.     August  1981,  381-386. 

14. L.   Uhr,   Psychological motivation and under- 
lying concepts,   in   [4],  1-30. 

10.     K.  A.  Narayanan and A.  Rosenfeld,  Approxima- 
tion of waveforms and contours by one- 
dimensional pyramid  linking.   Pattern 
Recognition 14.  1982,   in press. 

Figure 1.     a)     Input  Images and  their histograms 
b) Results after one iteration 
c) Results after last iteration 
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Table I.     Root nodes and  their values at  each Iteration J« ^ ^  ^^^     The ^  labelS  ^ 
Figure 2)  are given only  for  the first and  last   iterations. 

(a)   Cell  image;   there were no changes  in the  set 
of  root nodes after   the third   iteration. 

(b)   Tank  W.aoe;  no changes after the second   iteration. 
Note that one  of the roots   is a  single pixel. 

Kout 
Coordinates Value 

Iteration Level 
Root 

Label Coordinates Iteration       Level Label Value 

1                     3 A 
B 

(0,3) 
(0,4) 

5.05 
6.87 1 4 A 

B 
(1,2) 
(2,1) 

33.59 
34.40 

C (3,0) 
(4,0) 

5. 68 
6.08 C (2,2) 34.59 

t; (6,1) 5.85 

5.5D 

5.22 

5 A 
B 
C 

(1,0) 
(1,1) 
(0,0) 

23.49 
23.40 
20.92 

4 A 
It 

(3,3) 
(0,0) 

D (0,1) 20.96 

C 
D 

(0,3) 
(1,1) 

5.34 
26.89 2 0 (48,63) 43.00 

t (1,2) ■'8.^7 
4 (1,2) 33.45 

F (2,1) .9.14 
(2,1) 33.81 

G (2,2) .'9.64 
(2,2) 33.64 

S A (1,0) 15.63 
5 (1,0) 23.18 

B (1,1) 23.96 
(1,1) 22.93 

C (0,0) 15.28 
(0,0) 20.37 

D (0,1) ]5.61 
(0,1) 20.41 

2                      3 (0,3) 
(0,4) 

5.34 
5.67 i ü A (48,63) 43.00 

(3,0) 5.63 
5.84 4 A (1,2) 32.96 

(4,0) B (2,1) 33.34 
(6,1) 5.80 

C (2,2) 33.03 

4 (3,3) 5.52 
5 A (1,0) 22.90 

(0,0) 5.23 
B (1,1) 22.3 3 

(0,3) 5.35 c (0,0) 20.25 
(2,2) 28.70 

D (0,1) 20.29 

5 (1,0) 15.27 

(1,1) 25.14 

(0,0) 15.22 

(0,1) ID. 27 

(c)   Chromosome  imag e;  no c nanges after  the 

3                      3 (0,3) 5.32 eight h Iteration. 

(0,4) 
(3,0) 
(4,0) 

5.49 
5.63 
5.80 Iteration Level 

Root 
Label Coordinates Valv.e 

(6,1) 5.78 
1 2 A (15,14) 32.82 

D (2,7) 37.80 

4 (3,3) 5.53 c (4,10) 37.51 

(0,0) 5.23 u (5,2) 48.73 

(0,3) 5.35 (6,2) 
(13,0) 

49.51 
53.54 

5 (1,0) 
(1,1) 

15.18 
26.39 3 A (0,1) 35.84 

(0,0) 15.17 B (0,2) i7.16 

(0,1) 15.17 c 
D 

(0,4) 
(2,0) 

14.93 
23.94 

4                     3 
^ (0,3) 5.31 E (2,5) 55.38 

B 
c 

(0,4) 5.48 V (2,6) 47.02 

(3,0) 5.63 G (5,3) 53.99 

D (4,0) 5.79 11 (6,5) 51.50 

E (6,1) 5.78 

4 A (0,3 14.03 

4 A (3,3) 5.53 B (1,L) 36.74 

B 
C 

(0,0) 
(0,3) 

5.23 
5.36 5 A (1,0) 28.92 

B (1,1) 19.19 

5 A 
B 

(1,0) 15.17 C (0,0) 53  83 

(1,1) 26.78 0 (0,1) 19.68 

C (0,0) 15.16 

D (0,1) 15.16 (Coi it'd.  or next page) 
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(15,14) 31.31 
(2,7) 37.86 
(4,10) 36.87 
(5,2) 48.48 
(6,2) 48.82 
(6,6) 32.01 
(13,0) 52.93 

3 (0,1) 35.28 
(0,2) 17.32 
(2,5) 55.32 
(2,6) 47.45 
(5,3) 53.77 
(6,5) 52.25 
(7,1) 21.71 

4 (0,3) 14.05 
(1,0) 37.11 

s (1,0) 28.29 
(1,1) 19.17 
(0,0) 54.19 
(0,1) 19.38 

2 (15,14) 29.23 
(2,7) 38.03 
(4,10) 36.65 
(5,2) 48.34 
(6,2) 48.53 
(6,6) 30.35 
(13,0) 52.67 

3 (0,1) 34.21 
(0,2) 17.46 
(2,5) 55.23 
l2.6) 41.17 
{5,3- 53.62 
(6,5) 52.21 
(7,1) 21.39 

4 (0,3) 14.06 

5 (1,0) 27.65 
(1,1) 19.26 
(0,0) 54.15 
(0,1) 19.23 

2 (15,14) 26.71 
(2,7) 38.13 
(4,10) 36.50 
(13,0) 52.57 

4 

5 

(0,1) 
(0,2) 
(2,5) 
(2,6) 
(5,3) 
(5,4) 
(6,5) 
(7,1) 

(0,3) 

(1 ,0) 
(1 ,1) 
(ü ,0) 
(0 ,l) 

(2 7) 
(4 10) 
(13,0) 

(0 2) 
(2, 5) 
(2, 6) 
(5, 3) 
(5, 4) 
(6, 5) 

32.97 
17.59 
55.16 
49.19 
53.51 
33.21 
52.12 
21.27 

14.07 

27 .28 
19 .36 
54 .09 
19 .12 

38 .12 
36 22 
52 52 

17 70 
55 10 
50 4H 
53. 44 
32. 1/ 
52. 0 3 

4 (0,3) 14.08 

5 (1 ,0) 27.04 
(1,1) 19.45 
(0,0) 54.04 
(0,1) 19.06 

2 (2,7) 38.03 
(4,10) 35.88 
(13,0) 52.50 

3 (2,1) 28.54 
(2,5) 55.04 
(2,6) 52.32 
(5,3) 53.38 
(6,5) 51.97 

4 (0,3) 14.08 
(1,0) 36.96 

5 (1,0) 26.81 
(1,1) 19.49 
(0,0) 54.01 
(0,1) 19.04 

2 (2,7) 37.87 
(4,10) 35.53 
(13,0) 52.49 

3 (2,5) 54.97 
(2,6) 54.00 
(5,3) 53.34 
(6,5) 51.92 

(0,3) 14.09 
(1,0) 36.95 

(1,0) 26.92 

(1,1) 19.51 
(0,0) 53.99 
(0,1) 19.05 

(2,7) 37.65 
(4,10) 35.16 
(13,0) 52.49 

i (2,5) 54.93 
(2,6) 54.69 
(3,1) 48.04 
(5,3) 53.31 
(6,5) 51.89 

2 A 
B 
C 

3 A 
B 
C 
D 
E 

4 A 
B 

5 A 
B 
c 
D 

(0,3) 
(1,0) 

(1,0) 
(1,1) 
(0,0) 
(0,1) 

(2,7) 
(4,10) 
(13,0) 

(2,5) 
(2,6) 
(3,1) 
(5,3) 
(6,5) 

(0,3) 
(1,0) 

(1,0) 
(1,1) 
(0,0) 
(0,1) 

14.10 
36.96 

26.95 
13.51 
53.99 
19.05 

37.36 
34.75 
52.50 

54.90 
54.94 
48.07 
53.29 
51.86 

14.10 
36.96 

26.84 
19.49 
53.99 
19.05 


