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" Efficient reanslysis models, which provide high
quality explicit approximations for the structural
behavior, are introduced. The presented algorithms
are based on a series expansion which is shown to be
equivalent to a simple iteration procedure, To pre-
serve efficiency, only methods which do m6t involve
matrix inversion have been considered. ly the decom-
posed stiffness matrix, known from exact analysis of
the initial design, is required to obtain the approxi-
mate expressions. Two approaches of accelerated con-
vergence are proposed to improve the quality of the
approximations:

a) An approach where a-scalar multiplier, used for
scaling of the initial design, is chosen prior to
the solution as the a. elerating parameter.

b)  An approach where information gathered during
calculations of the series coefficients is used
to improve the couvergence rate.

Numerical examples illustrate the efficiency and
the quality of the proposed approximations. A special
attention is focused on reanalyses along a line, a
problem typical to many optimal design procedures. The
computational effort in this case is considerably
reduced, since only a single independent variable is
invnlved ..
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1. Introduction

In most optimal design procedures the behavior of
the structure must be evaluated many times for succes-
sive modifications in the design variables. This
operation, which involves much computational effort,
is one of the main obstacles 1 applying optimization
methods to large structural items. Reanalysis
methods, intended to analyze efficiently new designs
using information obtained from previous ones, can
broaaly be classified as {1]:

() Direct methods, giving exact solutions and appli-
cable to situations where a relatively small pro-
portion of the structure is modified (for example,
only a small number of elements are changed).

(b) Iterative methods [2,3], suitable for cases of
relatively small chany s in the structure. 7the
known solution of a gi.en design is usually usecd
as an initial value for the iteratvive process.
Problems of slow convergence rate or even diver-
gence may arise for liurge changes in the design.

(c) Approximate methods [4-8], usually based on series
expansion and require less computational effort.
One problem often encountered is that the accurucy
of the solution may not be sufficient. Under
certain assumptions, some approximate methods
are shown to be equivalent to iterative procedures.

In this study reanalysis methods for optimum
structural design, based on explicit approximstions of
the structural behavior in terms of the independent
design variables, are presented, Once the explicit
model has been introducad, it can be used for multiple
reanalyses of designs obtained by successive changes
in the variables. The presented algorithms are based
on a series of expansion which is shown to be equiva-
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lent to a simple iteration procedure.

Two conflicting factors should be considered in
choosing an approximate behavior model for a specific
optimal design proolem:

(a) The computational effort invelved, or the effic-
iency of the method.
(h) The accuracy of the calculations, or the quality
of the dpproximation.
Tu preserve the efficiency, the presentation is limited
to methods which do not involve matrix inversion. Only
the available decomposed stiffness matrix, known from
exact analysis of the initial design,is required to
obtain the explicit expressions. However, since the
proposed models are based on a singie exact analysis,
the accuracy of the approximations might be sufficient
only for a limited region.

Two approaches of accelerated convergence are
proposed, to improve the quality of the approximations:

(a) An approach where a scalar multiplier, used for
scaling of the initial design, is chosen prior
to the solution as the accelerating paraneter.
Several algorithms for selecting the value of
this multiplier are proposed and their merit is
demonstrated.

(z) An approach where the accelerated parameters are
caleulated fron results ohtained during the
solution process. Information gathered duving
calculation of the series coefficients 1s used
to improve the convergence rate.

Some numerical examples illustrate applications
of the proposed procedures, A special attention is
focused on reanalyses aloag a given line in the design
space, a problem common to many cptimal design pro-
cedur s. The efficiency and the quality of the pro-
posed approximations are demcnstrated.

2. Problem Statement

The displacement anulysis equations for a given design
variables vector {X} are

%1 {3 = (R} (1)

®
where [5} = stiffness matrix corresponding to the
design {3}; (R} = load vector whose elements are
assumed to be independent of the design variables;
and {T} = nodal displacements computed at {%}. The
elements of the stiffness matrix {K] are some
functions of the design variables {X}. Assuming a
change 1A%} in the design variables so that the
modified design is

L *
3= )+ (ax (2)
the corresponding stiffness matrix is given by
n K

() = (K] + f8K] (3)

where [Ai] = the matrix of changes in the stiffness
matrix due to the ¢l nge {AX}.

The object in this study is to present explicit Pgdels
for efficient calculation of the displacements {r }




LR
correspending to designs {X} , obtoiued by changing
the value of the design variables. It is assumed that
the dispiacemen.s {r] are known from analysis of the
initial design. Also, [R] is given in the decomposed

form

l’ * l e

{K] = (Ul {u] (4)
where [U] is an upper triangular matrix.

Approximations along a given line in the design space
are often required in optimal design procedures. This
problem is common to many mathematical programming
methods such as flasible directions or penalty function
A set of lines (or direction vectors) in the design
space are determined successively by the optimization
method used, In each of the given directions it is
usually necesSsary to evaluate the constraint functions,
or to repeat the analysis, wmony times. A line in the
design space can be defined in terms of a single
independent variable Y by
* *
{x} = {x} « v{axi (%)

* *
where {X} is the given initial design, {6X} is a given
direction vector in the design space, and the variable
Y determines the step size. Approxinations along a
line require much less computations since only a single
variable is involved,

In general, the elements of the stiffness matrix are
some functions of Y. Jne common case is that the
modified s::ffness matrix can be expressed as
* *
(k] = (KI » £(¥){aK} (6}
In truss structures where {X} are the cross-sectional
areas or in beam 2lements where the moments of inertia
ave chosen ay dészign variahies. the elements of the
stiffness matrix are jinear {unctions of Y anu Eq. (0}
becomes
* L ]
[K] = [K] + Y[AK] (73
. } . b .
It the elements of {K] are functions of aly (Z.1 being

the naturally chosen design variables and a,b are given
ccrstants) we may use the transformation
. 8
i (8)

and obtain the linear relationship (7).The expire<sion of
Eq(8)1s suitable, for example, for stundard joists [9].
Tn cases where such transformations are not possible
ttor example, in frame elements where the stiffness
matrix is a function of both mements of inertia and
cross-sectional areas), still liuear approximations

may be used for the nonlinear terms of the stiffness

matrix {10].

b
X, = aZ.i

3. Explicit Behavior Mode s

R
The analysis ejuations at {x} are

RGIRS (%)
Based on Eq. (3),

(K] + (akpp {3 = fui (10)
Premultiplying by (R]'l and substituting

{r} = {E]'l {r} (11}

18] = K}~ '{ak) (12
yields

(U« B - (B (13)

Premultip’ ring by ({1} +U‘.'$])—1 and expancing

(] » BD7Y = - 18]+ 1B iB)Pe... (i8)

Eg. (13) becomes
06} = ()= (B« (BI2 - ()7 « .00 (1)

The coefficients of this scries can readily be cal-
culated. Defining

e o (0 L)

{rz) z - [B]{rl} (7}
etc., the series of Eq. (15) becomes

(o} = {r} « (rl} + {;2\ + L (18)

tor the given triangularization of Ly, (4); the cal-
culation of the ccefficient vectors {?1},{r2},...
requires only forward and back substitutions. The cal-
culation of {F }, for example, is carried out as
follows, Subs%ituting Eq. (12) into Ey. (luv) and re-
arranging gives

u“q{;l; = [aK){r} = (R} (19,

1

*

ke first solve for {P} by a forward substiturion

_\' 'I * *

fup{p} = {Rl} (20}
Ll
{rli is then calculated by the hachward substitution

* * *

(Ul iry} = (P} (21)
The coefficient vectors ir },{;3} etc,, can be cal~
cutated in a similar mannetr,

It is instructive to note that the series of Eg. (13)
is equivalent to the simple iteration procedure [7,8})

Al B S T A L (22)

Jshere & denotes the iteration cycle and
" .
tr @3 @ (23)

In the case of approximations along the line defined
by tq. (5], the expression of Eq. {15) will become
explicit function of {rl in terms of Y. Assuming the
relationship (6), we obtain

{r} = ([1]- €VB] « £2(O[BI? ~ ...){x}  (24)

If the linear dependence of Ea. (7) holds. this expli-
cit expression bucome s

{r} = ([1]-(B1Y + (B]2Y2-(B] ¥« .. ) (5) (25)

or (see Eq. (18))
{r} = {r}+ (;1“ ECHICIIN (26)

This equation can readily be used for mul iple re-
analyses along a line. Also, it can be shown that

kqy. (26) and Taylor scries expansion of the dispiace-
ments are equivalent {7,8]. Other approximate methods
can be wused [7,8], however, these usually involve

matrix inversion.

While the methods discussed so far are based on a
single exact analysis at {X}, it should be recognized
that bettcr approxemations could be obtained if
results of two exact analvses (at {%} and ) were
considered.,  Assuming for example, quadratic and
cubic interpolations, respectively, we find

(x) = {70+ 5y o (7Y - ) - 3yd 27)

2.




b= (1) . {B_}Y + {B{r}—fi{r)—z{ }-{ }) 2
v (2{rr - 20} )+{ })\r3 (28

The derivatives {%%J can readily be computed by several
methods {1]. One possibility is to differentiate Eq. (1)
with respect to Y, The result is

. or, LS

1K] {3?} = - [ayj{rj (29)
in which both {r}, and [K] 1n the decomposed form of
Eq. (4), are known from the aralysis. 7%hus, solution
for {%%} involves only calculation of the right hand

side vector of Eq. (29) and forward and backward sub-
stitutions.

4. Behavior of 3caled besigns

.
Scaling of the initial design {X} to obtain a modified
design {Xa) is givern by

) = alX} £30)

where o is a positive scalar multiplier. 1t the
elements of the stiffness matrix arc assumed to be
linear functions cf the design variables then

(K.} = af] (21)
and the displacements of the modified design are
tEQ. (i))

1 ;

(ru} =5 {x} (32)
The significance of this relation is that a given
design {%} :an easily be scaled by modifying o so
that any desired displacement be equal to a predeter-

mined value, an operation called scaling of the design.

(The line a{X} is called a design line).

In optimal design problems it 1s often necessary, to
find the design {X.} along the design line ofX}
with a displacement T equal te its limiting value
Y . That is (see Fig. 1)

xx
or (—} v .r*u (32)
r .
o = ;—u- {34)

LR
In cases where ¢ is calculated by an approximate
behavior model (such as Eq. (15)), we may evaluate the
accuracy of the displacements of the approximated
design {X ot as follows. {X } is given by

x ) = &) (35}
where G is determined from
Ly (26)
or o I
a=xr (57)
ru

in whic? ﬁ? is the approximated value of T at the
point 3 ‘The approximated dispiacement of {X } is
FOIX 3y = ¥ and the ex ot displacement at this
poin is (Eq. (37))

X

B 3
r({%}) = 1 P T (38)
¢ o =

That is, vhe ratic between the approximated and the

R

t displacements at !i;} is

’;.’( { ‘XC h T

r
—T—c (39)
r({xc}) r

This result indicates that the crror in the approxima-
Wk dw

tions at {x ! depends ¢nly on the ratio r/r (and
not on & the distance between (;j and {Rc}). The

combination of approximate behavior wodels and scaling
can be used to introduce cfficjent optimal design pro-
cedures [10]. It will be shown in the ncxt section
how selection of the scaling multiplier © may improve
the approximate behavior models.

5. Improved Approximations by Scaling

L.
The modified design {X} can be expressed as (sve
Fig. 2)

* b4 *
) = X« {ax) = X, lex ) (40)
and the corrcsponding stifiness matrices are (kq.(31))

(K] = [KI+[8K) = (K 1+[oh ] = ofk]+1aK ) (3D)

Sybstituting Eq. (41) into Eq. (9), premultiplying by
[K]~! and rearranging yields

(1]« 2 (K7 ek DolTh = 5 (42
Substituting [AKQI from Eq. (41) into Eq. (42) gives

(i + 22 )+ Rk o6 - ) (4%
Defining

- l-a 1 %.-1,.% -0 1 %
(8,1 = = (1} +5 (K] "[&K] = — (U +5 [B] ©4)
cubstituting into Eq. (43) and expanding ({L1+(8 ]} 7*,
w. obtain the following series for {y} 1in terms“of o
{see Eg. (15))

() = 5 (L (BB (B0 ) (45)

*
For @ = 1 we find ([B,, = [F' and the series of kqs.
(45) and (15) become equivale.t Different dixection
vectors {AXy] may be selected in the plane of {%} and
for various o value,. While it is usually
2ifficult to predict which o wil' srovide improved
convergence, some possibilities i ¢ summarized in
Tabic 1. In cases a,b,c, the value of @ is chosen so

that the resulting direction {AX } is perpendicular

to {X} fﬁ and to the blbector of angle (,
respectively. The criterion in cases d,e is chosen
such that the elements on the principal diagonal of
{6K | or the second term in the series of Eq. (45) be
equal zero. In both cases the multipliers a., are
chosen separataly for each displacement. Results
obtained for different o v lues will be compared in
the numericel examples of .ection 7.

The scaling multiplier a nffects both the direction vecw
tor {AX )} and the step size |AX) |, where (see Zgs.
{30} dnd (40))
&
tax ) = ) - i} (46)

The smallest step size is determined by (case
Takle 1)

o 13THax ) = 0 7
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or, after rearranging

- ’1"
o= {x}T{g} (a)
{x} {x}
and the corresponding step size is
fax ) = (¥)? - 02]X]H)% (49)

Another parameter which represents the step size for a
given direction is the angle 0, where

=0T
‘Lé.}—[:)'(;}' (50)
{xi x|
Evidently, for any given direction {AX } a better con-
vergence will be obtained for smaller ~ © values.

cos § =

It is instructive to note that a scalar multiplier 8
can be chosen instead of a such that (Fig.2)

ix} = 8%} 51)

8

Defining

[}

L 3
[BB] 2 (B-1)[1] + 8(B] (52)
we may obtain the series
w

{r} = BCI1) - [Bg) + [Bg)? - [Bg)* +...) (1) (53)
Comparing Eqs. (52),(53) with Eqs. (44),(4S), it can
be observed that identical results would be obtained
by both series if o = 1/B. In this case the directions

{aXy} end {8Xg} are parallel, and the convergence
rate will be iSentical for any given 0.

6. Convergence Considerations

Problems of slow convergence or divergence may be &n-
countered in applying the series of Eq. (15). The
series converges if, and only if [11},

1im (8%} = {0] (54)
ko
A sufficient criterion for the convergence of the
series is that
NBI < 1 (35)
where u&n is the norm of [ﬁ]. It can be shown thet

o({B]) < MBI (56)

*
"1 which p([ﬁ]) is the spsctral radius of matrix [B),
uefined as the lurgest eigenvalue lxll

oC[B]) = A} = max |1 | (573
i

From Egs. (55) and (56) we have
*
priB) <1 (58)
It shoyld be noted that the existence of a norm such
that 1Bl > 1 does not preclude the convergence of the
series,

Some procedures have bheen proposed to predict the
eigenvalue \;, One possibility, based on the use of
Rayleigh quotient, is [12]
ﬁT't h'r-
{3 1B}{r,} {r,} (1, ,}
. ok | S S 52 (59)

ot 5, )

where fr.] are the vectors of the series {see kn.
(18})). Akbetter estimation would be obtained for

large k values.

Dymamic acceleration

In cases of sliow convergence rate dynamic acceleration
methods, which make use of previous terms in the series,
car be employed. If the iterative process has a slow
convergence rate, successive errors will generally
exhibit an exponential decay in the later stages of the
iteration (see Fig. 3). Aitken's &° process [13]

is one approach to predict the asymptotic limit to
which the predictions for each displacement r; is
tending. Assume the extrapolation expression

* -
}j * a + be ke

(60)
where a, b, c are constants and &k is the iteration
number (or number of terms in the series). The final
solution (k+~) is determined from the three successive
estinates

r;k) = a+ be ke
r§k+l) = a + pe” (k*D)ec (61)
r§k+2) = a2+ pe (Kr2)c
The result ir
o r!k) r§k‘2) - (rék’l))2
Ll e 1 I 75y R (5 (©2)
i - 2r; + T,
] J J
or, alternatively
;; = as r§k+2) *sj(r§k+2) -t§k’1)) (63)

where
r(k+1) _ r(k+g)

Sj ) rt ) - Zr.‘*lj + r![*zj )
] J 2

If Aitken's acceleration is applied at the wrong time
the denominator of Eq. (62) could be zero or very
small, In such circumstunces the method will either
fail to yield a prediction or else give a predicted
value which is grossly in error. The ''wrong time' may
be intexpreted a. either too soon, before an exponen-
tial decay is established, or too late when rounding
errors affect the predictioms,

Jennings{12] proposed a modified version of Aitken's
acceleration, used by several authors [14,15), Whils
the prediction of Eq. (62) is calculated for each dis-
placemont r. separately, a common accelerarion para-
meter is intfoduced for all variables in the wodified
method, The result is

A
B =y . l_*iT Dy gy (g

in whick
R - (66)
21 @M e D T iy (D))
B ey T T TRy (TR ey
or
. "L{r(hz)}_(r(kq)})r Dy 00y o
1

({rtkéx)}-{r(k)})’

The convergence rate is govern:d by the magnitude of
Aj. This method is particularly effective when onl,
one eigenvalue of matrix [B] has modulus clese to
wnity. It ig por ible to apply the acceleration after
tvo or more iterations and to repeat the procedure
frequently.
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7. Numerical Examples

Ten-bar truss. The truss shon in Fig., 4 is subjected
to a single loading crndition (all dimensiong are in
kips and inches) and the initjal design is (X} = {6.0}
The following three cases of changes in the design were
solved:

=T
Case 1: {ax}

= {4.0,4.0,4.0,4.0,6,0,6.0,
1,2,1.2,1.2,1.2}
*
Case 2: {6X}7 = {-3.0,-3.0,-3.0,-3.0,9.0,9.0,9.0,
9.0,9.0,9.0}
Case 3: {Ax}T = {18.0,18.0,18.0,18,0,18,0,18.¢C,
36.0,36,0,36.0,36.0}

The angles § for the three cases (Eq. (50))are 11.30,
30%, and 11.5°, respectively,
Results obtained for cases 1,2, by Aitken's &% method
(Eq. (62)) and the modified acceleration method (Eq.
(65)), assuming k=2,3,4, are given in Table 2.
While the approximations for case 1 are excellent, some
errors can be observed in case 2. The iteration his-
tory for the latter case, with Aitken's §* method
applied after iterations 4 and 6, is shown in Figs. 5
and 6. It can be seen that no convergence of the
vertical displacements could be achieved without
Aitken's method. Applying scaling by the five methods
of Table 1 combined with Aitken's process (k=2,3,4)
for case 2 may improve the convergence, as shown in
Table 3. The best resu s have been obtained by
methods b and d. 2 e1 ect of a on the spectral
radius {Eq. (59)) is illustrated in Fig. 7. The diver-
ence for a=1 is explained by the relatively large
TAII value ({A,{=1.5). Assuming a=1.96, the value of

A1 is reduced to u,75.

The effect of scaling on the convergence is demonstra-
ted in case 3 (Table 4). Applying the modified
acceleration method (k=2,3,4), no convergence could

be obtained for a=1. Assuaing a=4.94 (method c,

Table 1), the convergence is fast; a solution very
close to the exact one is obtained for three terms in
the series. Similar results could be reached with the
criterions of methods a,b in Table 1.

Forty-seven-bar truss. The truss shown in Fig. 8 was
solved for the following data (all dimensions are in
kips and inches):,

Initial design {X} = {0.5}.

A%i = 0.5 (i=1,...,8)

Aii = 9 (i=9,10,27-30,37-40,45-47)

BX; = 0.2 (i=11-20,41-44)

A}i = 0.4 (1=221-26)

bX; = -0.15 (i=31-36)
Notation of the displacements is as fellows: T)sTgse e
are the horizontal displacements and TysTys--. AY0 the

vertical ones. Results obtained by Aitken's method
and the modified acceleration method (in both cases
k=2,3,4) are given in Table 5. It can be noted that
despite the different order of magnitude of the
various displacements, relatively small errors have
been obtained. To illustrate the effect of the step

size Y, the displacements Tag- Tarr Ty3 have been

calculated alorg the line {X} = {X}-v{ak} for
Y=0,25, 0.50, 0.75, 1.0. Results «btained after .our
iterations (k=4) are shown in Fig. Y. The effect of
Aitken's 6% methcd on the iteration history for VY=1.0
is illustreted in rig. 10 and the evaiuation of ja)|
is demonstrated in Fig. 11. The final ve'ue |X = 099
explains the slow convergence rate of the series,

8. Concluding Remarks

Approximate behavior models for efficient reanalysis
have been presented. The algorithms are based on a
series expansion which is equivalent to a simple itera-
tion procedure. A single exact 2m.lysis is sufficient
to introduce the ser.es coefficients and matrix inver-
sion is not required throughout. The proposed approxi-
mations might be sufficient only for a limited region,
in the neighborhood of the initial design.

Two approaches have been proposed to improve the quality
of the approximations:

a)} An approach wh 're a scalar multiplicr, used for
scaling of the initial design, is chosen prior to
the solution as the accelerating parameter.
Several algorithms for selecting the vaiue of
this multiplier are proposed and their potential
for improving the series convergence is demonst-
rated. 1t is shown how the scaling multiplier
affects both the direction vector in the design
space and the step size,

b) An approach where the accelerated parameters are
Jetermined from results obtained during the solu-
tion process. Information gathered during cal-
culations of the series coefficients is used to
introduce extrapolation expressions. The twe
methods of Aitken's 62 process and a modified
method of Aitken's acceleration are presented.

It is shown how these methods provide high quality
results in cases of poor convergence rate or diver-
gence cf the series.

In the typical problem of reanalyses along a given line
in the dJesign space, the methods discussed in this
study invelve mnch less computatiomal effort. Multiple
reanalyses along a line can sfficiently be introdaced
in terms of a single independent variable.
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; Table 1: Various Possibilities for the Selection of o
Case Criterion for Determining a Condition o
- *Tr
a {AXQ} perpendicular to ofX} a{i}l{AXG} =0 iélTigl
{(x} {x}
* T*
: . * X T T
b {AX } perpendicul.r to {X} xP{ax } =0
o o (XT(x}
T *
*® * !
< {AXa} perpendicular to the jax| = l‘xl (—Q&:rfxr )l:
z bisector of 0 {X}{x}
ww
H " x Kii
3 d AKii =0 AKii = Kii ~aiKi; =0 o =3
5 o (1 K. .
S
i . R {8,} {r}
? e second term in the series = 0 (1-a)) r; + {Bi} {r}= 0 u, = 14—
1 i
Z Table 2: Results (x100), Ten-Bar Truss.
‘ C ok *k - i W e o " *%
i ase Method Ty -1, -rg T, T T -r, Ty
P Eq. (62)1 0.086 | 0,440 | 0,094 ) 0.453 | 0,071 | 0.207 | 0.073 | 0.219
N 1 En. (65) 0.086 0.439 0,094 0.453 0.071 0.207 0,073 0.220
Exact 0.086 0.440 0.094 0,453 0.071 0.207 0.073 0,218

v

Eq. (62)1 0.290 | 0.813 | 0.310 | 0.824 | 0.237 | 0.284 | 0,243 | 0,294

2 Eq. (55) 0.275 0.818 0.295% 0.827 0,225 0.278 0,231 0,287
Exact 0.290 | 0.876 | 0.310 | 0.887 | 0.237 | 0.303 | 0,243 | 0.313
T xa2,3,4.

A T OB IR AT - W T g« % b

*
jable 3: Results (x100), Ten-Bar Truss Case 2 Eq. (62), for Various a Values.

4o

! ++ * W * % *x * ok Wk *k * %
; Case o rl ,rz -T3 -Ty r5 ~Tg -r7 _rB
; a 1.70 0.291 | 3.041 | 0,309 119.000 | 0,237 | 0.194 { 0,243 | 0.214
¢ b 2.26 0,292 ] 0.878 | 0,309 | 0.889 | 0.237 | 0.304 | 0.243 | 0.314
c 1.96 0.291 | 0.915 1 0.309 { 0.929 | 0,237 | 0,335 | 0.243 | 0,350
d separate | 0,290 | 0,877 | 0.310 | 0.887 | 0,237 | 9.303 | 0,243 } 0.313
B e separate | 0.290 | 0.756 | 0.310 | 8.757 | 0.237 | 0,222 | 0,243 | 0.217
§ Exact - 0.290 | 0.876 | 0.310 | 0.887 | 0,237 | 0,303 | 0.243 | 0.313
; Tke2,3,4
! +

Sea Table 1,




Table 4: Effect of Scaling, Ten-Bar Truss, Case 3 (x100)
..... LU T .
j - . Exact
79| e sy 7Y | ke 65" | selution
1 9.928 -0.762 0.035 0,035 0.035
2 |-155,200 ~0.150 ~0.137 -0.137 -0.137
3 -8,372 0,859 0.040 0.040 0.040
4 |-157.600 -0.019 -0.143 -0.143 -0,14%
5 7.561 -0.632 0,029 0.029 0.029
6 | -94.430 -0.870 -0.056 -0.056 -0,056
7 -7.079 0.665 -0,031 -0.031 -0.0"1
8 -97.040 -0.756 -0.061 -0,.061 -0,061
—
te 2,3,4
Table 5: Results 47-Bar Truss (%100}
wk "k
I‘i ri
S e FITe 8 R N Py S ¥l
i r:i Eq. (62) Eq. (65) Exact j rj Eq. (62) Eq. (65) Exact
S 1,34 1.31 1.31 T3l 25 3.63 4.07 4,04 4.04
6 0.32 0.24 0.24 v.24 26 | -4.51 -3.82 -3.84 -3.84
i 7 1.56 1.49 1.49 1.49 27 3.17 3,61 3.57 3,57
8 i -1.21 -1.19 -1.19 -1.19 28 | -0.02 ~0.78 -0.78 -0.78
: 9 3.87 3.50 3.50 3,50 29 0,99 2.20 2.16 2.16
, 10 0.14 0,08 0,08 0.08 30 |-12,94 -9.84 -9.83 -9.85
' 11 4.04 3.73 3.72 3.73 31 0.19 1.62 1.59 1.58
: 12 -1.96 ~1.92 -1.92 -1,92 32 5.5 3.1% .10 3.20
E 13 6.33 5.79 5.79 5.79 33| -4.78 ~1.64 =1.63 -1.67
: 14 | -0.56 ~0.85 -0.85 -0,86 34 |-27.64 -19.78 ~19.64 -19.78
i 15 6.74 6.39 6.38 6.39 35 | -3.89 ~1,15 -1.16 -1.18
. 16 -2.25 -2.28 -2.28 -2.28 36 12,04 -9.84 ~9.83 -9.85
. 17| 776 | 7.48 7.47 7.48 | 37| -3.01 | -0.65 -0.68 -0.69
13 -2.26 =2.71 -2.71 -2.71 38 -4.95 -4.14 -4.15 -4,15
19 7.73 7.43 7.42 7.43 39 -2,56 -0,20 -0.24 -0.24
1 20 ~1.48 -1.50 -1,50 -1.50 40 0.42 -0.46 -0.46 -0,46
| 21 .42 6.00 5.98 5.88 41 | -2,56 -0.20 -0,24 -0.24
% 22 =2.29 -3.21 -3,22 -3,22 a2 5.94 3.19 3.19 3.20
; 23 6.58 6.08 6.06 6.06 43 -2,56 -0.20 ~0,24 -0.24
i 24 | -0.90 -1.21 -1,21 -1,21 44 | 11,45 6,84 6.84 6.85
t L.
ty =2,3,4,
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