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Summary lent to a simple iteration procedure.

Efficient reanalysis models, which provide high Two conflicting factors should be considered in

quality explicit approximations for the structural choosing an approximate behavior model for a specific
behavior, are introduced. The presented algorithms optimal design problem:

are based on a series expansion which is shown to be (a) The computational effort involved, or the effic-
equivalent to a simple iteration procedure To pre- iency of the method.

serve efficiency, only methods which do t involve (h) The accuracy of the calculations, or the quality
matrix inversion have been considered. -4nly the decom- of the approximation.

posed stiffness matrix, known from exact analysis of lo preserve the efficiency, the presentation is limited

the initial design, is required to obtain the approxi- to methods which do not involve matrix inversion.GOnly
mate expressions. Two approaches of accelerated con- the available decomposed stiffness matrix, known from

vergence are proposed to improve the qualý.ty of the exact analysis of the initial designjis required to

approximations: obtain the explicit expressions. However, since the

a) An approach where a-scalar multiplier, used for proposed models are based on a single exact analysis,

scaling of the initial design, is chosen prior to the accuracy of the approximations might be sufficient

the solution as the a elerating parameter. only for a limited region.

b) An approach where information gathered during Two approaches of accelerated convergence are

calculations of the series coefficients is used proposed, to improve the quality of the approximations:
to improve the convergence rate. (a) An approach where a scalar multiplier, used for

Numerical examples illustrate the efficiency and scaling of the initial design, is chosen prior

the quality of the proposed approximations. A special to the solution as the accelerating parameter.

attention is focused on reanalyses along a line, a Several algorithms for selecting the value of
problem typical to many optimal design procedures. The this multiplier are proposed and their merit is

computational effort in this case is considerably demonstrated.

reduced, since only a single independent variable is (b) An approach where the accelerated parameters are
•nvnlv~d . e nteiato frnn rPqntqlt obt;,ined dulrino the

, i solution process. Information gathered dur'ing

calculation of the series coefficients is used
1. Introduction to improve the convergence rate.

In most optimal design procedures the behavior of Some numerical examples illustrate applications

the structure must be evaluated many times for succes- of the proposed procedures. A special attention is
sive modifications in the design variables. This focused on reanalyses along a given line in the design
operation, which involves much computational effort, space, a problem common to many optimal design pro-

is one of the main obstacles i applying optimization cedux s. The efficiency and the quality of the pro-

methods to large structural items. Reanalysis posed approximations are demcnstrated.
methods, intended to analyze efficiently new designs
using information obtained from previous ones, can
broadly be classified as [1]: 2. Problem Statement

(a) Direct methods, giving exact solutions and appli- The displacement analysis equations for a given design

cable to situations where a relatively small pro- variables vector ft are
portion of the structure is modified (for example,
only a small number of elements are changed). [] } = {R} (1)

(b) Iterative methods [2,31, suitable for cases of
relatively small chaný i in the structure. The where [K] ý stiffness matrix coriespording to the

known solution of a gx.en design is usually used design (! ; (R1 = load vector whose elements are

as an initial value for the iterative process. assumed to be independent of the design variables;

Problems of slow convergence rate or even diver- and (Ol = nodal displacements computed at 0±1. The

gence may arise for ILrge changes in the design. elements of the stiffness matrix 1K] are some

(c) Approximate methods [4-8], usually based on series functions of the design variables {X} Assuming a

expansion and require less computational effort. change (All in the design variables so that the

One problem often encountered is that the accuracy modified design is

of the solution may not be sufficient. Under

certain assumptions, some approximate methods 0 . fail (2)

are shown to be equivalent to iterative procedures. the corresponding stiffness matrix is given by

In this study reanalysis methods for optimum = [ (3)

structural design, based on explicit approximations of K] [K] [AK]

the structural behavior in terms of the independent where [AK] = the matrix of changes in the stiffness
design variables, are oresented, once the explicil matre to the ar f e
model has been introduced, it can be used for multiple

reanalyses of designs obtained by successive changes

in the variables. Te presented algorithms are based The object in this study is to present explicit models

on a series of expansion which is shown to be equiva- for efficient calculation of the displacements }VI
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corresponding to designs {x} , obtained by changing Eq. (13) becomes
the value of the design variables. It is as.;umed that
the displacemen, s G)} are known from analysis of the ir) [B(1J - B+ _[ .12 )- (1)
initial design. Also, [t) is given in the decomposed
form (he coefficients of this series can readily tie cal-

S 1 ) culated. Defining
K] [U]jl (4)

where [U1 is an upper triangular matrix. {r11 - - ]' i (,)

Approximations aleng a given line in the design space {2} 1 - ({•171

are often required in optimal design procedures. This etc., the series of Eq. (iS) becomes
problem is common to many mathematical programming
methods such as flasible directions or penalty function (.: = i Ir 1 + {r ... 2'8)

A set of lines (or direction vectors) in the design I[or the given triangularization of Lq. (4), the cal-space are determined successively by the optimization culation of the coefficient vectors {r },tr2},...method used, In each of the given directions it is
usually necessary to evaluate the constraint functions, requires only forward and back sub:,titutions. The cal-
or to repeat the analysis, many times. A line in the culation of {U} I for example, is carried out as
design space can be defined in terms of a single folows, Substituting Eq, (12) into Eq. (lo) and re-independent variable Y by arranging gives

where {X} is the given initial design, j1} is a givenix) s intia desgn,{dX)is givn e first solve for (P1 by a torword substitution

direction vector in the design space, and the variable

Y determines the step size. Approxinations along a [0] (P1 =
line require much less computations since only a single (20)
variable is involved, {�1I is then calculated by the backward substitution

In general, the elements of the stiffness matrix are [[}r [ (PI (21)
some functions of Y. One common case is that themodified s;'ffness matrix can be expressed as The coefficient vectors {r2,{r I tccn}ecl

[K] * i* ' f( A (6) cula ted in a similar manner. e

In truss structures where (X) are the cross-sectional It is instructive to note that the series of E'q. (15)
areas or in beam elements where the moments of inertia is equivalent to the simple iteration procedure [7,8]
a.e chosen as dcsign vari hlee. the elements of the .
stiffness matrix are jineaL functions of N ant Lq. o) ('r (Ij - (22)
becomes5

[K] = [K] + 4here k denotes the iteration cycle and

Is the elements of [K] are functions of aZ (Z. being 7>(o) 1 = (23)

the naturally chosen design variables and a,b are given In the case of approximations along the line defined
ccstants) we may use the transformation by Eq. (5), the expression of Eq. (15) will become

Xi = aZ (8) explicit function of irn in terms of Y. Assuming the

and obtain the linear relationship (7).The expiceýsiun of relationship (6), we obtain

Eq.jg)is suitable for example, for standard joists [9]. {r- = (jil2 2 f(Y) fa(YI[I -
Tn cases where such transformations are not possible B ... (24)

(tor example, in frame elements where the stiffness
matrix is a function of both moments of inertia and if theslin d ce7x
cross-sectional areas), still linear approximations
may be used for the nonlinear terms of the stiffness

matrix [10]. (r ll-_ (B_-_ U r_( )

or (see Eq. (18))

3. Exylicit Behavior Modt s. srJ i ( r uI} xrux . (26s

The analysis equations• , at {} are This equation can readily be used for mul iple re-

(K] jr) = [Rj (9) analyses along a line. Also, it can be shown that

Based on Eq. (3), Eq. (26) and taylor series expansion of the displace-
ments are equivalent [7,81. Other approximate methods

([K] + (AK]Jlri = (RI 410) can be used [7,8], however, these usually involve

Premultiplying by K]j-
1 

and substituting matrix inversion.

S- RI ( While the methods discussed so far are based on (
} K {R1 (1 single exact analysis at it), it should be recognized

that better approxvmations could be obtaine? if-' • [KlA*] (12'j results of two exact analyses (at (1} and (X were

yields considered. Assuming for example, quadratic and

[r1tiui [byilqbi $ +}(13) cibic internolations, respectively, we find

Premuitip'ý,ing by tl •-land expandning {r} Ir{l + (-L-ly Go{5 r - {•..w ()Z 27)
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r (B-)Y +(31 r) * 3r 2i - fzJ}y)Z t displacements at lXc. is

" \ ar 2r1 r )
+ (2Ar, - 2+r) [-4 (7))Y) (28) 1= r (39)

r({X I) r

he derivatives {-i c:n readily be computed by several This result indicates that the error in the approxima-

methods [11. One possibility is to differentiate Etl at depends only on the ratio r/r (and
withl respect to Y, the result is tions at(• dped myor h ator(l

3r not on a , the distance between (Xf and {xc}). The
• {'(}= - [7trt (29) combination of approximate behavior models and scaling

in which both tr}, and [NK in the decomposed form of can be used to introduce efficient optimal design pro-

Fq. (4), are known from the analysis. Thus, solution cedures 1101. It will be shown in the next section
for how selection of the scaling multiplier C may improve

for i Y involves only calculation of the right hand the approximate behavior models.
side vector of Eq. (29) and forward and backward sub-
stitutions. 5. Improved Approximations by Scaling

The modified design (X} can be expressed as (see
4. Behavior of Scaled Designs Fig. 2)

Scaling of the initial design {X} to obtain a modified = . AX) = } + (La} (40)
design {X is given by K 3) A) = I

Ix } W {}and the corresponding stiffness matrices are (Eq.(31))

where a is a positive scalar multiplier. it the [K I [K] = AK a = [K•l[ta, = oý[K]sAK 1 (4])

elements of the stiffness matrix ;re assumed to be
linear functions of the design variables then SSbstituting Eq. (41) into Eq. (9), premultiplying by

[K]- 1 and rearranging yields

[KL = afM] (3) +1 [)* (42)

and the displacements of the modified design are Substituting JAK I from Eq. (41) into Eq. (42) gives
Ihq. ';.) 0

*r (r (32) ([1] i- [ [[] ) (43) +(

The significance of this relation is that a given Defining

design {f) can easily be scaled by modifying C so [B 1-a -l * = I-a 1
that any desired displacement be equal to a predeter- a [-: [L K [K -, [i [j ] (44[

mined value, an operation called scaling of the design. bitt into Eq. (4') and expanding ([11+(8])1
(The line a(Xi is called a d g l . w_ obtain the following series for Crr in terms of OL

In optimal design problems it is often necessary*;o (see Eq. (15))

find the design {IX} along the design line (l{i) , {'}
with a displacement r equal to its limiting value ( ([1]-]*Ba]( -[Ba 1  

... ){r (45)
ru . That is (see Fig. 1) For a = I we find [Ba, = [,, and the series of Eqs.

1 .. u (45) and (15) become equivale..t. Different direction--r = r (33)
vectors {tXa) may be selected in the plane of (,} and

or r (34) lOP for various a value.. While it is usually
S -difficult to predict which o will irovide improved

4* convergence, some possibilities ; e summarized in
In cases where r is calculated by an approximate Tabl- 1. In cases a,b,c, the value of a is chosen so
behavior model (such as Eq. (IS)), we may evaluate the that the resulting direction (AX ) is perpendicular
accuracy of the displacements of the approximated tX
design (X~j as follows. (] is givrn by to fX.}, (Z , and to the bisector of angle 01,

respectively. The criterion in cases j,e is chosen
{X} (35) such that the elements on the principal diagonal of

[6K C i] or the second term in the series of Eq. (45) be
where ýi is determined from equal zero. . n both cases; the multipliers a. are

chosen separately for each displacement. Results
,- r r (36) obtained for different a v lues will be compared in

or Q, the numerical examples of ection 7.
rU (37 The scaling multiplier a ,ffects both the direction vec-

• ru toT ) and the step size JAX 1, where (see Eqs.
in whicl r is the approximated value of r at the ( AX anste4)i,
point (x• . The approximated displacement of isand

oin i) ru and the ex -t displacemntt at this (AX,} = l*X' - cd{.} (46)
point is (Eq. (37))

r( ) ) -1 r u Thle smallent step size is determined by (case
r( a - (38) Table 11

That is, ,.he rati. between the approximated and the a{.1T{c\x C 0 (47)
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or, after rearranging large k values.

{a j{} (48�) D_-namic accelerationS. (48)
In cases of slow convergence rate dynamic acceleration

and the corresponding step smethods, which make use of previous terms in the series,car, be employed. If the iterative process has a slow
IAx = (JX z2 a1Xj1)½ (49) convergence rate, successive errors will generally

exhibit an exponential decay in the later stages of the
iteration (see Fig. 3). Aitken's 6' process [13]

Another parameter which represents the step size for a is one approach to predict the asymptotic limit to
given direction is the angle (, where which the predictions for each displacement rj is

tending. Assume the extrapolation exp-ession
cos 0 } (50) -bkc

X•I I . a + be (60)
Evidently, for any given direction UX } a better con- where a, b, c are constants and k is the iteration
vergence will be obtained for smaller e values, number (or number of terms in thv series). The final

It is instirctive to note that a scalar multiplier 8 solution (km e is determined from the three successive
can be chosen instead nf a such that (Fig.2) (kt !c

r(k) a + beI(X = r(x) 5l5) r

Defining r(k+l) a + be-(k+l)c (61)

[B] 0 (8-i1)[I] + BRB9 (52) r k+,) a + be-(k÷
2

)c

we may obtain the series The result ij

813- [6'- JB] 53 r(k) (~k-2) r~k~l))2
Br• = (([14 - [Bc]a* [B-]) [B8 a

3 
. (13) r= r r." r (r ) (62)

Comparing Eqs. (S2),(53) with Eqs. (44),(42), it can . h . i 2  
,

be observed that identical results would be obtained
by both series if a = 1/0. In this case the directions or, alternatively
{LX.) and ýUgX are parallel, and the convergence a (k÷2) + (k+2) _ r k63)
rate will be identical for any given e. r. = a - r s. -k. (63)J 3 j 3 3

whero
6. Convergence Considerations r'l _ r- i(

Problems of slow convergence or divergence may be en- i r.T . 2r rl +r+2)
count6red in applying the series of Eq. (15). The 3
series converges if, and only if [111, if Aitken's acceleration is applied at the wrong time

the denominator of Eq. (62) could be zero or very
lim = [0] (54) small. In such circumstances the method will either
k-° fail to yield a prediction or else give a predicted

A sufficient criterion for the convergence of the value which is grossly in error. The "wrong time" may
series is that be interpreted a-- either too soon, before an exponen-

1B11 < 1 (55) tial decay is established, or too late ahen rounding

where 1BI1 is the norm of (B]. It can be shown thet errors affect the predictions.
p[ *< 1 (56) Jennings[12] proposed a modified version of Aitken's
Bacceleration, used by several authors [14,15]. Whiml

h p([B]) S a the prediction of Eq. (62) is calculated for each dis-
which is the spectral radius of matrix [*B, placement r. separately, a common acceleration para-

uefined as the largest eigenvalue Jxl meter is intioduced for all variables ia the nodified

o([B]) = l max Ji) (57) method. The result is
i 6i =!{r(kr )} - ( k+2) -{r(k+l)}) (65)

From Eqs. (55) and (56) we have I r - ) 6
p([B])< 1 (58) in which

It shoyld be noted that the existence of a norm such X ,(r(k)}_{t(k+')})T(fr(k+l) 1{r(k.2)) (66)
that &Il > I doe v not preclude the convergence of the +k..-+-
series. 1 (Ir 1-ir + 7 2 +IT 1)

Some procedures have been proposed to predict the or

eigenvalue A], One possibility, based on the use of (k+2)) rk•l T (k~l) r(k)(6
Rayleigh quotient, is [121 X Il-T_{r l)}) k (67)

4k}T (k} r k I (r*k~l }X I * { -- - -;-- (59) The convergence rate is governid by the magnitude of

{rT (r} I X1. This method is particularly effective when o•i.,
k k kone eigenvalue of matrix [91 has modulus close to

where .r are thn vectors of the series ksee hq. ;umity. it is po! ible to apply the acceleration after
(18)). Akbetter estimation would be obtained for two or more iterations and to repeat the procedurefrequently.
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7. Numerical Examples 8. Concluding Remarks

Thn-bar truss. The truss sho i in Fig. 4 is subjected Approximate behavior models for efficient reanalysis
to a single loading c,,ndition (all dimension§ are in have been presented. The algorithms are based on a
kips and inches) and the initial design is (XI - {6.01. series expansion which is equivalent to a simple itera-
The following three cases of changes in the design were tion procedure. A single exact 2-..ysis is sufficient
solved: to introduce the ser.es coefficients and matrix inver-
Case 1: {AXIT = {4.0,4.0,4.0,4.0,6.O,6.0, sion is not required throughout. The proposed appruxi-

1.2,1.2,1.2,1.2) rations might be sufficient only for a limited region,
in the neighborhood of the initial design.

Case 2: {&.8 = {-3.0,-3.0,-3.0,-3.0,9.0,9.0,9.0, Two approaches have been proposed to improve the quality
9.0,9.0,9.01 of the approximations:

Case 3: {AXIT = 118.0,18.0,18.0,18.0,18.0,18.0, a) An approach wh're a scalar multiplier, used for
36.0,36.0,36.0,36.0} scaling of the initial design, is chosen prior to

the solution as the accelerating parameter.
The angles 0 for the three cases (Eq. (50))are 11.3°, Several algorithms for selecting the value of
30o, and 11.50, respectively, this multiplier are proposed and their potential

Results obtained for cases 1,2, by Aitken's 6' method for improving the series convergence is demonst-
(Eq. (62)) and the modified acceleration method (Eq. rated. It is shown how the scaling multiplier
(65)), assuming k = 2,3,4, are given in Table 2. affects both the direction vector in the design
While the approximations for case 1 are excellent, some space and the step size.
errors can be observed in case 2. The iteration his-
tory for the latter case, with Aitken's 62 method b) An approach where the accelerated parameters are
applied after iterations 4 and 6, is shown in Fig.5 determined from results obtained during the solu-

and 6. It can be seen that no convergence of the tion process. Information gathered during cal-

vertical displacements could be achieved without culations of the series coefficients is used to
introduce extrapolation expressions. The twuoAitken's method. Applying scaling by the five methods methodsco enp t 62 pressiand a modified

of Table I combined with Aitken's process (k=2,3,4) methods of Aitken's processr nd r a modified.

for case 2 may improve the convergence, as shown in method of Aitken's acceleration are presented.

Table 3. The best resu s have been obtained by It is shown how these methods provide high quality

methods b and d. The ei ect of a on the spectral results in cases of poor convergence rate or diver-

radius (Eq. (59)) is illustrated in Fig. 7. The diver- gence of the series.

1nce for a=1 is explained by the relatively large of reanalyses along a given linel value (iAl(=l.S). Assuming a=[.96, the value of In the typical problem o enlssaogagvnln
in the design space, the methods discussed in this

L¼1 is reduced to ,.75, stu;d'y i....•.,c m,,ch less computational effort. Multiple
reanalyses along a line can efficiently be introdmutd

The effect of scaling on the convergence is demonstra- in terms of a single independent variable.
ted in case 3 (Table 4). Applying the modified
acceleration method (k=2,3,4), no convergence could
be obtained for a=l. Assusing a=4.94 (method c, Acknowledgement
Table 1), the convergence is fast; a solution very
close to the exact one is obtained for three terms in The authors are indebted to he "Fund i or the pro-

the series. Similar results could be reached with the motion of research kt the Technion" for supportingk
criterions of methods a,b in Table 1. this work.

Forty-seven-bar truss. The truss shown in F.g. 8 was
sole• or the ollowing data (all dimensions are in
kips and inches):.0irs ,
Initial design {X1 = {0.s}. (i) Kirsch, U., Optimum Structural Design - Conept,

0e 
d A pnlcations, McGrMw-hills New COrN , 98l .

AX. = 0 (i=9,10,27-30,37-40,45-4:1 j2) Kirsch, U. and Ruhinstein, M.F., Structural Re-
,i analysis by Iteration, Computers and Structures,

AX. = 0.2 (i=11-20,41-44) 2, 497-510, 1972.=X 0.4 (i=21-26)
,X (3) Fhansalkar. S.R. Matrix Iterative Methods for

6X. = -0.15 (i=31-36) Structural Reanalysis, Computer; and Structures.

Notation of the displacements is as follows: r,r,4, 779-00, 74.

are the horizontal displacements and r 2 ,r 4 ,.., are the (4) Noor, A.K, and Lowder, H E., Approximate Techniques

vertical ones. Results obtained by Aitken's method of Structural Reanalysis, Computers and Structures,

and the modified acceleration method (jn both cases 4, 801-812, 19 1.

k=2,3,4) are given in Table S. It can be noted that (5) Noor, A.K. and Lowder, H.E., Structural Reanalysis
despite the different order of magnitude of the Via a Mixed Method, Comuters ano Structures, S.
various displacements, relatively small errors have 91,97
been obtained. To illustrate the effect 3f the step 9-12, 1975.
size Y, the displacements r 3 9 -r 4 have been (6) Noor, A.K. and Lowder. |I.E. Approximate Re-

calculated alorg the line {X} = (X}+Y(AiI for analysis Techniques with Substructing, Journai
Y-.0125, 0.50, 0.75, 1.0, Results .btained after our of the Structural Division, A;SCE, 101, STh,
iterations (kr4) are bhuwn in Fig. 9. The effest vP-
Aitken's 62 method on the iteration history for Y=1.0
is illustrated in :ýig. 10 and tne evaluatioun of k (7) Kirsch, U., Approximate Structural Roanalvsis

is demonstrated ia Fig. 11. The final vw'uo XI1l= 099 Based on Series Expansion, to be published,
explains the slow convergence rate of the series. Cuter Methods in Applied Mechanics and
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(8) Kirsch, U., Approximate Structural Reanalysis for
Optimization along a Line, to be published,
International J. for Numeý-ical Methods in Engrg.
1981.

(9) Clarkson, J., The Elastic Analysis of Flat
Grillae, Camb-ridg Universi tyl ress---- TFS.

(10) Kirsch, U., Optimal Design based on Approximate
Scal. ng, to be published, J. of the Structural
Division, ASCE, 1981.

(11) Wilkinson, W., The Algebraiz Eigenvalte ProbleMr,,
Oxford University Press,- 1565.

(12) Jennings, A., Matrix Computation for Engineers and
Scientists, John W ley 8 So-ofis 77.

(13) Aitken, A.C., On the Iterative Solution of a
System of Linear Equations. Proc. Roy. Soc.,
Edinburgh, 63, 52-60, 1950.

(14) Lawther, R., Modification of Item-ative Processes
for Improved Convergence Characteristics,
International J. for Numerical Methods in I arg.,
1S, 1149-1159, 1980.

(15) Atrek, E., Note on the Modified Aitken Accelerator
for use in the Residual Force Method," International
J. for Numerical Methods in Engrg., 15,-15-1872,
1980.



Table 1: Various Possibilities for tht Selection of a

Case Criterion for Determining a Condition a

ta} perpendicular to cd• * -

**X oj* J 0AX

b fAXA } perpendicul.,c to {X ) Ox 0 1 0 7T
T *

C {AX perpendicular to the Icýi = -I

"bisector of 0 {x} {x}

S*K..0 AK.i ~0 AK. X.. -ct.I( = 0 a.
d AK..a 0 6. .

* T 
TB. } r i

e second term ii the series = 0 (1-a1) ri + {Bi} {r}= 0 Ui +

Table 2: Results (xlOO), Ten-Bar Truss.

Case Method I rl ,r 2  -r 3  -r r -r -r 7  -r-

Eq. (62)jt 0.086 0.440 0.094 0.453 0.071 0.207 0.073 0.219
I Fq, (6S)" 0.086 0.439 0.094 0.453 0.071 0.207 0.073 0.220

Exact 0.086 0.440 0.094 0.45o 0.0/1 0.207 0.073 0.219

IEq. (62)4 0.290 0.813 I0.310 0.824 0.27 0.284 0,243 0.294
2 Eq. (65)- 0.275 0.818 0.295 0.827 0.225 .0278 0.231 0.287

Exact 0.290( 0.876 0 0.310 0.887 0.237• 0303 0.243 0.313

t k = 2,3,4.

It
Table 3: Results (xI00), Ten-Bar Truss Case 2 Eq. (62),for Various a Values.

SCase% a r r [ r 2  _r 3  -r 4  , 5  r 6  -r 7  r8

a 1.70 0.291 3.041 0.309 19.000 0.237 0.194 0.243 0.214
b 2.26 0.292 0.878 0.309 0.889 0.237 0.304 0.243 0.314
C 1.96 0.291 0.915 0.309 0.929 0.237 0.335 0.243 0.350
d separate 0.290 0.877 0.310 0.887 0.237 0.303 0.243 0.313
e separate 0.290 0.756 0.310 0.757 0.237 0,222 0.243 0.217

Exact - 0.290 0.876 0.310 0.887 0.237 0.303 0.243 0.313

t k - 2,3,4

t See Table 1.

I
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Table 4: Effect of Scaling, Ten--Bar Truss, Case 3 (xl00)

S.. .. . . . _ _l . . . . . . • . .. . • 4 " 9 . . . . . x ac t

" "14) Eq. ( 6 5 ) Ir Eq. (6) tion, 1 ( 6 . .1 -( 5 S o u t o

1 9.928 -0.762 0.035 0.035 0.035
2 -155.200 -0.150 -0.137 -0.137 -0.137
3 -8.372 0.859 0.040 0.040 0.040
4 -157.600 -0.019 -0.143 -0.143 -0.143
S 7.561 -0.632 0.029 0.029 0.029
6 -94.430 -0.870 -0.056 -0.056 -0.056
7 -7.079 0.665 -0.031 -0A031 -0.0,1
8 -97.040 -0.756 -0.061 -0.061 -0.061

'k- 2,3,4

Table 5: Results 47-Bar Truss (xl00)

r. r.

Eq. (62) Eq. (65) Exact r Eq. (2) Eq. (65) Exact

5 1.34 1.31 1.31 .31 25 3.63 4.07 4.04 4.04
6 0.32 0.24 0,24 u.24 26 -4.51 -3.82 -3.84 -3.84
7 1.56 1.49 1.49 1.49 27 3.17 3.61 3.S7 3.57
8 -1.21 -1.19 -1.19 -1.19 28 -0.02 -0.78 --0.78 -0.78
9 3.87 3.50 3.50 3.50 29 0,99 2.20 2.16 2.16

10 0.14 0.08 0.08 0.08 30 -12.94 -9.84 -9.83 -9.85
11 4.04 3.73 3.72 3.73 31 0.19 1.62. 1.59 1.58

[12 -1.96 -1.92 -1.92 -i.92 32 55.994 _In, 3.19 32

13 6.33 5.79 5.79 5.79 33 -4.78 -1.64 -1.63 -1.67
14 -0.56 -0.85 -0.85 -0.86 34 -27.64 .19.78 -19.64 -19.78
i15 6.74 6.39 6.38 6.39 35 -3.89 -1.15 -1.16 -1.18
16 -2.25 -2.28 -2.28 -2.28 36 12.N4 -9.84 -9.83 -9.8S
17 7.76 7.48 7.47 7.48 37 -3.01 -0.65 -0.68 -0.69
18 -2.26 -2.71 -2.71 -2.71 38 -4.95 -4.14 -4.15 -4.15
19 7.73 7.43 7.42 7.43 39 -2.56 -0.20 -0.24 -0.24i 20 -1.48 -1.SO -1.50 -1.50 40 0.42 -0.46 -0.46 -0.46
21 6.42 6.00 5.98 5.98 41 -2.56 -0.20 -0.24 -0.24
22 -Z.29 -3.21 -3.22 -3.22 42 5.94 3.19 3.19 3.20
23 I 6.58 6.08 6.06 6.06 43 -2.56 -0.20 -0.24 -0.24
24 -0.90 -1.21 -1.21 -1.21 44 11.45 6.84 6.84 6.85

Sk -=2,3,4.
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