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Summary_ Due to functional requirements the configurational

Svariables are discrete and the objective function,
.- rThe present study deals with optimal design of arrays representing the cost, is neither differentiable nor

of protective structures. The structures, intended for continuous.
storage of explosive materials, consist of rectangular
reinforced concrete (RC) plates, beams, and doors. To simplify the analysis, approximate behavior models

are employed. These include empirical loading express-
The design variables include: a) The elements' cross ions, idealized constitutive laws, and simplified
sectional dimensions; b) The structural configuration; dynamic models. A multilevel optimization pro(adure,
c) The glometric location of the structure. The cons- in which the different types of variables are treated
trains are related to safety distances, functional separately, is proposed. Several authors, e.g. [6],
requirements, and structural behavior. The objective proposed separate design spaces for geometry and cross
function represents the cost, including cost of mater- sections in truss optimal design. In general, such a
ials, real estate, subgrade, maintenance, etc. solution may be viewed as a multilevel approach [2,7,8].

In the formulation presented in this study, the cross
The main difficultic0 involved in this problem stem sectional dimensions are optimized in the first level
from the complex analysis and the nature of the design for a given configuration and location of the struct-
variables, constraints, and objective function. The ure. As a result, the structural elements can be
various types of variables are of fundamentally differ- optimized independently in a simple manner. Data
ent nature, and some of the variables are discrete, banks of optimal elements are introduced, to be used
The objective function is neither differentiable nor in the higher levels of the optimization. Vq the
continuous. second level the structural configuration is optimized
p. xfor a given location of the structure. For each

App. iximate behavior models are employed in order to candidate geometry the optimal cross sectional dimen-
simpiify the analysis. Since it is not practical to sions are chosen from the data banks. The geometric
optimize all the design variables simultaneously, it location of the structure is selected in the third
is proposed to use a multilevel optimization procedure. level. For each selected location, both the struc-
The variables are optimized in different levels, tural configuration and the cross-sections are opti-
according to their type mad lnatur. Considerations for mized.

choosing the levels are discussed and numerical examples
illustrate the approach and its practicality. The proposed approach combines efficient suboptimiza-

tion for cross sectional variables, reduction in the
"number of design variables optimized simultaneously,1. Introduction and improved convergence.

Protective structure! intended to resist the effects
of explosions,are usually expensive due to the nature 2. !'roblem Statement

of the loadings and design criteria, Therefore,
improved designs may lead to considerable savings in Consider the array of RC rectangular magazines shown
the total cost of the structure. While much work has in Fig. 1. The object is to minimize the cost of
been done in the last two decades on optimum structural storing a unit weight of explosive material. It is
design [1,2], most applications are limited to cross assumed that the number of structures is large and
sections optimization. Examples of previous work on all the structures are identical; i.e., the optimal
optimal design of protective structures include: cross design represents a standard magazine. The pre.-
sections design [31 or optimization of geometry and assigned parameters include: materials properties:
cross sections [4] of RC slabs subjected to impulse unit costs, height of the structure, and spacings
loadings; and opti..al (average) strength of magazine between beams. Uniform cross sectional dimensions of
doors [SI. the RC elements and standard steel doors have been

assumed. The optimal design problem can be stated as

The main difficulties involved in design of protective follows: find the vector of design variables
structures stem from the complex analysis and the nature {X) - {D},{L},{TC},{AS} where
of the design variables, constraints, and objective
function. In general, the nonlinear dynamic analysis {D) = DID 2 } (distance between adjacent structures)
must be repeated many times and the various types of
variables involved are often of fundamentally differ- {Li {I, L,} (length and width of the structure,
ent nature, from both the mathematical and the physical L1 CA 1 , L2 EA2 )
points of view. (1){TC} = {TCI,...TCI} (thickness of concrete plates)

The present study deals with optimal design of arrays 1c

of protective structures, intended for storage of {AS} = fASI 1,... AS } (amount of steel in plates)
explosive materials. The structure consists of RC
rectangular plates, and the design variables include: such that
(a) The elements cross sectional dimensions (plate J

thicknesses and amounts of steel); C I C c./W - min. (objective function) (2)
(b) The structural configuration (length and width); j=l j

(c) The geometric location of the structure fuL) < c{UI bud on distances) (3(distances between adjacent structures). {U 1 } _ {DU1 (bounds (3)
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(LL} < 1L0 < {LU) (bounds on structural (4) elements are detemined by the yield line theory, con-
geometry) sidering dynami, values of material constants [11].

ITcL C {IC) I (TCUJ (bounds on concrete (5) c) Dynamic response of elements
thickness) To compute displacements an-d stresses in the elements

L U the medium is discretized, resulting in systems of
(p I {< l < (pU} (bounds on steel (6) lumped masses and nonlinear springs. A single degree

percentage) of freedom system is assumed for each RC element, with
IV) < IVU} (deflection constraints) (7) the following equation of motion (11]

UF-P = K Lm ma ým a(l)[

101 < t0uI (rotation constraints) (8)e
L : in which F a time dependent external force; P z inter-

{a I < 1 < t} (bending stress (9) nal force (resistance); m = mass of the element;
constraints) a = acceleration; KLm = a factor relating the value

t L} < {-0 < (t U (shear stress (10) of the actual mass m and the equivalent mass me. The
-- -- ( (value of K is determined from the principal mode

constraints) of vibratioh. For example, consider the sector of a

In the above formulation plate shown in Fig. 3. The equation of motion
(rotation about the support) is

A1 ,A 2 = sets of allowable discrete values of L and L, I
respectively Fc - (EMNd + M) = - a (12)

I = iumber of elements in the structure
L,U = superscripts denoting lower and upper bounds, where c = distance of the resultant force from the

respectively support; MN, Mp = negative and positive internal
C a total cost of a magazine per unit stored

explosive material moments, respectively; I = moment of inertic; t =
W = quantity of explosive material in a magazine width of the element. From Eqs. (11),(12) we obtain

C- = the j-th component of the objective function I
JJ = number of components of the objective function K = -M (13)
p =steel percentage Lm cim
V = deflection For an element consisting of a number of sectors
e = rotation at the supports E(I m/C)
o = bending stress K = -T- (14)
T = shear stress im

t L For earth covered elements the corresponding mass of
It should be noted that {D I is a function of W. The the cover is also considered in the equation of motion
behavior constraints (Eqs. (7) to (10)) are implicit [12]. Multi-degree-of-freedom systems may be consider-
functions of the design variables, given by the ed for each element if better approximations are re-
analysis equations. quired. Numerical algorithms (such as Runge-Kutta) or

available results [11] are used to solve the equations
Two types of structures, earth covered and uncovered of motion and to evaluate displacements and stresses.
(Fig. 2) have been considered. The cost function
(Eq. (2)) includes: cost of materials (concrete, steel, d) Computational considerations
doors), real estate, subgrade, maintenance, etc. Due Analysis of as- gle element, including calculation
to functional requirements the variables {L) are dis- of the loadings and solution of the equations of motion,
crete. The behavior constraints restrict the amount of involves much computational effort (up to 10 sec CI on
damage due to possible explsions in adjacent structures. IBM 370/168 were reported for comple.. loading histories).

There are several elements in a structure and the
analysis usually must be repeated many times during

3. The Analysis Model optimization. Therefore, it is proposed to reduce the
number of analyses in the solution proces; by introd-

In the discussion that follows only blast loadings have ucing data banks of preoptimized elements for sequences
been considered. It is assumed that other effects of given loadings and element configurations.
(such as fragments) are secondary and may be checked
after the optimization process. Modifications in the
design can then be made, if necessary. An approximate 4. Multilevel Optimization
analysis model has been employed with the following
features. Design of a large complex system usually involves

decomposition into a number of smaller subsystems,
a) s each with its own goals and constraints [2]. In

The explosive materials are represented by an equi- general, an integrated problem cannot be decomposed
valent TNT charge at the center of gravity of the into subproblems which can be independently optimized.
charge [9,10]. "[he blast loadings due to a possible There may be many different ways of transforming an
explosion are computed by the methods described in optimization problem into a multilevel problem. In
TM 5-1300 [11]. Thm model is based on experimental the model coordination approach [2,7,8] used in this
results and idealized (such as piecewise-linear) study, we choose certain variables called coordinating
pressure-time relations. or interaction variables to control the lower level

systems. For fixed values of the coordinating vari-
b) Constitutive equaZions and resistanct.deflection ables the lower level problems often become independ.-

functions ent and simple to optimize. The task in the higher
Ydealize• elaso-plastic behavior models have been levels is to choose the coordinating variables in such

employed. Also, it is assumed that cracking (but not a way that the independent lower level solutions are
apalling) may occur in the concrete. The piecewise optimal. The term "model coordination" derives from
linear resistance-deflection functions fer the various the circumstance that a constraint is added to the
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problem in the form of certain fixed interaction vari- Ai additional constraint on {R°} is that the first-
ables, level problem has a solution, i.e., that H({ROI)

exists,
Define the vector of cross sectional design variables
{Q} as The two-level problem is solved iteratively as follows:

1. Choose an initial value for the coordinating
{Q) = {TC),{AS} (15) variables {R01.

2. For a given {R°} solve the I independent first-
and the vector of configurrtional and geometric vari- level problems.
ables (RI by 3. Modify the value of (R°} so that H({R°)) is

reduced.
{R} = {D},{L} (16) 4. Repeat steps 2 and 3 until min H({k°}) is achieved.

It has been noted earlier in section 2 that the vector If all intermediate values for {R},{Q} are feasible,
of design variables {X} can be partitioned (Eq. (1)) the iteration can be terminated always with a feasible-

even though nonoptimal-solution, whatever the number of
{X} = {R),{Q} (17) cycles. This is advantageous from an engineering point

of view and may considerably reduce the computational
In this formulation {R! is the subvector of coordina- effort, particularly ii the object is to achieve a
ting variables between the subsystems and (Q1 is the practical optimum rather than the theoretical one.
vector of subsystem variables, in turn partitioned as
follows Since the second level variables ({D} and ILI, see

Eq. (16)) are of fundamentally different nature, it is
IQ) =....... .. ... (18) proposed to decompose the second-level problem into

two-levels, such that only the configurational varia-
The subvector {QiI represents the cross sectional bles {L) are optimized in the second level, while the
variables associated with .he i-th element (subsystem) geometric location variables tD} are treated in a new
and I is the number of elements. With these defini- third-level problem. The three problems are solved
tions, the objective function of Eq. (2) and the iteratively until the optimum is achieved. Note that
constraints of Eqs. (3) to (10) can be expressed in the I first-level subproblems remain unchanged
the general form (Eqs. (22) to (24)). The modified second and third-

I level problems are formulated as follows (Fig. 4).
C = F({XIj = • F.({R},{Q.}) (19) Second-level problem. For a given geometric locationi=1

{DJ = (DO} (28)
g.k({X}) = gk({RI) < 0 (20)

find {L°1 such that
h_({XI)j = hj({RI,{Q.i) _< 0 (21)

C((DO},{L°),{Q}) - min 
(29)

in which gk are constraints on the {RI variables
(i.e., Eqs. (3),(4)) and hi are constraints assoc- g((D°},{L°}) < 0 (30)
iated with the i-th element (Eqs. (5) to (10)). That k
is, the variables {R) may appear in all expressions, Third-level problem. Find (DOI such that
while the variables {Qi 1 appear only in the constraints
associated with the i-th element, and in the correspond- C({D°1,iLI,{Q}) - rain (31)
ing tern of the objective function. Specifically, it
is assumed that the cross sectional variables of a gk({D°},{L}) c 0 (32)
given element affect only the constraints and object-
ive function component of that element, The proposed solution procedure is possible since the

system by its very nature c •n be decomposed. The
Tne general optimization problem can now ba formulated loadings depend only on the MR} variables, therefore
as the following two level problem. the first level problems can be solved for fixed

loadings. The main advantage is that I independent
First-level problem. Determine a fixed value for {RI simple suhproblems are obtained in this level. It has
through the constraints been noted that {DL} is a function of W , which in

turn is a function of 1L). Thus, Eqs. (3) are the
{Rft {t°} (22) only explicit constraints which are functions of both

fD} and WLI. The main reason for choosing (LI as the
Then the integrated problem can be decomposed into the second-level variabies is their discrete nature. For
following I independent first-level subproblems: any given (DO) only a limited number of (L} values
find {Q.1 (i=l. I) such that must be considered.TThe solution process iS shown in

0 Fig. 5.

C .= Fi([R1,{Q.i) min. (23)
S. Optimization Methods for the Various Levels

hi(AR°I,tQi}) O0 (24)
First-level. For the relevant ranges of loadings and

Second-level problem, The task in the second level element dimensions, data banks of preoptimized elements
to finiT"o) such that have been prepared. As a first step a sequence of

I loadings, with fixed peak pressure and vayiable dura-
H4({R°%) = X Oli{ROI) + mill. (25) tion, is computed for a given element con('i uration.

i=l The cross sectional dimensions are optimi-eu by a
g({k°}) < 0 (26) uirect search technique. For each selectc'd concrete
k - thickness the amount of reinforcing steel is minimized,

where H ({R°}) is defined b, and the optimal thickness is evaluated by quadratici interpolation. The data banks, to be used in the

H.({R°)) = min C. (27) higher level optimization, are obtainid by repeating
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this process for several element configurations. gence rate was much slower; the number of iterations
Intermediate solutions ray be evaluated by inter- was about S0% larger. This cml be explained by the
polation. difficulties encountered in searching tile optimum in

the discrete variables space. Choosing i11. as the
Second-level. The optimization method in this level second-level variables, the number of checked points
isbasedon a. direct search in the space of the dis- for a given {D} value is limited by the constraints
crete variables {LI. For each assumed L value the of Eq. (3).
optimal L2 is selected. L1 is then modiled, with
the current optimal L2 (or the nearest feasible value)
chosen as the initial design. The L1 values are modi- 7. Concluding Remarks
fled until the optimum is reached.

A multilevel approach for optimal design of protective
Third-level. PowellI's direct search method [13] is structures has been presented. Tile solution mcthod,
applied in this level with the convergence criterion which is based on a simplified analysis model and

decomposition of the integrated problem into a number
IC({X I) - C(ixq+ I)I/C({X q}) < ac (33) of smaller subproblems, is motivated by the following

difficulties:

where cc is a predetermined parameter and q is the a. Nonlinear dynamic analysis is needed to deacribe
iteration number in the third level. An additional the structural response even when approximate
criterion models are used.

b. The various types of design variables are of
:(X I - 1X1fl < F (34) fundamentally different nature from both the

physical and the mathematical points of view.
ensures that the iteration is terminated only if the c. 1he objective function is neither differentiable
condition of Eq. (34) holds for two successive itera- nor continuous.
tions. d. The problem size (numbers of variables and

constraints) may be large in practical problems.

6. Numerical Examples A simple optimization model is proposed for tile cross-
sectional variables. Preoptimized elements are

Two types of magazine have been considered [14]: introduced for a set of given element configurations
earth covered structure with a standard cover thickness and loadings. This information is then used for effi-

and an uncovered structure. Fig. 6 shows Some reasd- cient optimization of the higher level variables. The
ble corlbinations of the {11 variables (a = standard approach is general and is not restricted to a speci-
spacing, b = required spacing to satisfy functional fic problem, analysis model, or optimization algorithms.
requirements, c = required spacing for doors). Fig. 7 Rather, other types of structure (such as steel or
shows a typical design space for the cross sectional composite structures having non-rectangular shape),
variables, in which As and As arc the amounts of re- different analysis models (dependong on the type of
inforcing steel required for tensile and compressive approximations and simplifications used) and optimi-
forces, respectively. A direct search in the space zation methods (such as optimality criteria) can be
of c (the effective depth of the cross section), as employed.
shown in Fig. 8, provides the optimal element for the
given loading and configuration. This procedure is The numerical examples indicate that efficient solu-
repeated for all relevant loadings and element confi- tionr which do not involve much computational effort,
gurations. Typical optimal costs for a sequence of can be achieved for complex optimal design problems by
triangular pulses are shown in Fig. 9, in which p is the proposed approach.
the peak pressure and the time axis denotes the
duration.
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