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Summary

“XThe present study deals with optimal design of arrays

of protective structures. 7The structures, intended for
storage of explosive materials, consist of rectanguiar
reinforced concrete (RC) plates, veams, and doors.

The design variables include: a) The elements' cross
sectional diwersions; b) The structural configuration;
c) The glometric location of the structure. The cons-
trains are related to safety distances, functioral
requirements, and structural behavior, The objective
function represents the cost, including cost of mater-
ials, real estate, subgrade, maintenance, etc,

The main difficultic, involved in this problem stem
from the complex analysis and the nature of the design
variables, constraints, and objective function. The
various types of variables are of fundamentally differ-
ent nature, and some cf the variables are discrete.

The objective function is neither differentiable nor
continuous.

" App. ximate behavior medels are employed in order to

simpiify the analysis. Since it is not practical te
optimize all the design variables simultaneously, it

is proposed to use a multilevel optimization procedure.
The variables are optimized in different levels,
according to their type and nature. Considerations for
choosing the levels are discussed and numerical examples
illustrate the approach and its practicality)

1. Introduction

Protective structure: intended to resist the effects
of explosions,are usuully expensive due to the nature
of the loadings and design criteria, Therefore,
improved designs may lead to considerable savings in
the total cost of the structure, While much work has
been done in the last two decades on optimum structural
design [1,2], most applications are limited to cross
sections optimization, Examples of previous work on
optimal design of protective structures include: c¢ross
sections design [31 or optimization of geometry and
cross sections [4] of RC slabs subjected to impulse
loadings; and opti.al (average) strength of magazine
doors [5].

The main difficulties involved in design of protective
structures stem from the complex analysis and the nature
of the design variables, constraints, and objective
function. In general, the nonlineat dynamic analysis
must be repeated many times and the various types of
variables involved are often of fundamentally differ-
ent nature, from both the mathematical and the physical
points of view.

The present study deals with optimal design of arrays
of protective structures, intended for storage of
explosive materials, The structure consists of RC
rectangular plates, and the design variables include:
{a) The elements cross sectional dimensions (plate
thicknesses and amounts of steel);
(h) The structural configuration (length and width);
(c) The geometric location of the structure
(distances between adjacent structures).

Due to functional requirements the configurational
variables are discrete and the objective function,
representing the cost, is neither differentiable nor
contipuous,

To simplify the analysis, approximate behavior models
are employed. These include empirical loading express-
ions, idealized constitutive laws, and simplified
dynamic models. A multilevel optimization proceadure,
in which the different types of variables are treated
separately, is proposed. Several authors, e.g. (6],
proposed separate design spaces for geometry and cross
sections in truss optimal design, In general, such a
solution may be viewed as a multilevel approach [2,7,8].
In the formulation presented in this study, the cross
sectional dimensions are optimized in the first level
for a given configuration and location of the struct-
ure, As a result, the structural elements can be
optimized independently in a simple manner. Dato
banks of optimal elements are introduced, to be used
in the higher levels of the optimization. Im the
second level the structural configuration is cptimized
for a given location of the structure. For each
candidate geometry the optimal cross sectional dimen-
sions are chosen from the data banks. The geometric
location of the structure is selected in the third
level, For cach selected locatiom, both the struc-
tural configuration and the cross-sections are opti-

mized,

The proposed appreach combines efficient suboptimiza-
tion for cross secticnal variables, reduction in the
number of design variables optimized simultanecusly,
and improved convergence.

2. PVroblem Statement

Consider the array of RC rectangular magazines shown
in Fig. 1, The object is to minimize the cost of
storing a unit weight of explosive material. It is
assumed that the number of structures is large and
all the structures are identical; i.e., the optimal
design represents a standard magazine. The pre-
assigned parameters include: materials properties.
unit costs, height of the structure, and spacings
between beams. Uniform cvoss sectional dimensions of
the RC elements and standard steel doors have been
assumed. The cptimal design problem can be stated as
follows: find the vector of design variables

{x} = {p},{L},{7C},{AS} where

{p} = {Dl'DZ} (distance between adjacent structures}
{L} = {L),\,}  (length and width of the structure,
) L, €A, L,EA.)
1 1 2 Tz 1)
{TC} = {Tcl""TCI} (thickness of concrete plates)

{as} = {Asl""ASI} (amount of steel in plates)

such that

J
c= cj/w+m.in. (objective function} €3]
i=1

{ok} < {o} j_(DU} (bounds on distances) (3)
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(ly <AL} f_{LU} (bounds on structural (1)
gecmetry)
{rch < {1C} 2 {12} (bounds on concrete (5)
thickness)
{oh) < {p} j_(pd} (bounds on steel (6)
percentage)
{v} i.{VU} (deflection constraints) (7)
{6} < {GU} (rotation constraints) (8)
(o} < {o} j.{su} (bending stress 9)
constraints)
M < {1} §>{tu} (shear stress (10)
constraints)

In the above formulation

AI'AZ = sets of allowable discrete values of L1 and L.,
respectively “

I = vumber of elements in the structure
L,U = superscripts denoting lower and upper bounds,
respectively
C = total cost of a magazine pev unit stored
eiplosive material
W = quantity of cxplosive material in a magazine
Cj = the j-th component of the objective function
J” = nuaber of components of the objective function
p = steel percentage
V = deflection
€ = rotation ar the supports
o = bending stress
T = shear stress

1t should be notea that {DL} is a function of W. The
behavior constraints (Eqs. (7) to (10)}) arc implicit
functions of the design variables, given by the
analysis equations,

Two types of structures, earth covered and uncoversd
(Fig. 2) have been considered. The cost function

(Eq. (2)) includes: cost of materials {concrete, steel,
doors), real estate, subgrade, maintenance, etc. Due
to functional requirements the variables {L} are dis-
crete. The behavior censtraints restrict the amount of
damage due to possible explsions in adjacent structures.

3, The Analy:sis Model

In the discussion that follows only blast loadings have
been considered. It is assumed that other effects
(such as fragments) are secondary and may pe checked
after the optimization process. Modifications in the
design can then be wade, if necessary. An approximate
analysis model has been employed with the following
features.

a) Loddings

The explosive materials are represented by an equi-
valent TNT charge at the center of gravity of the
charge [9,10]. ‘The blast loadings due to a possible
explosion are computed by the methods described in
TM 5-1300 [11]. Ths model is based on experimental
results and idealized (such as piecewise-linear)
pressure-time relations.

b) Constiturive equaiions and resistance-deflection
functions
ideaiized elaso-plastic behavior models have been
employed. Also, it is assumed that cracking (but not
spalling) may occur in the concrete. The piecewise
linear resistance-deflection functions fer the various

elements are detemined by the yield line theory, con-
sidering dynami. values of material constants [11].

c) Dynamic response cf elements

To compute displacements and stresses in the elements
the medium is discretized, resulting in systems of
lumpes masses and nonlinear springs. A single degree
of freedom system is assumed for each RC element, with
the following equation of motion [11]

F-P = KLm ma = na (11)
in which F = time dependent eaternal force; P = inter-
nal force (resistance); m = mass of thec element;

a = acceleration; KLm = a factor relating ths value

of the actual mass m and the equivalen: mass mg. The
value of X is determined from the principal mode
of vibratiok? For example, conszider the sector of a
plate shown in Fig. 3. The equation of motion
(rotation about the support) is

i

Fc - (IMy + IMy) = T’" a (12)

where ¢ = distance of the resultant force from the
support; MN’ MP = negative and positive internal
moments, respectively; Im = moment of inerti:; % =

width of the element. From Eqs. {11),(12) we obtain

I
_m =
KLm T cm (43)
For an element consisting of a number of sectors
Z(Im/cl)
K = —Tp a4

For earth covered elements the corresponding mass of
the cover is also considered in the equation of motion
[12). Multi-degree-of-freedom systems may be consider-
ed for each element if better approximations are re-
quired. Numerical algorithms (such as Runge-Kutta) or
available results [11] are used to solve the equations
of motion and to evaluate displacements and stresses.

d) Computational considerations

Analysis of a single element, including calculation
of the loadings and solution of the equations of moticn,
involves much computational effort (up to 10 sec CI  on
IBM 370/168 were reported for comple.. loading histories).
There are several elements in a structure and the
analysis usually must be repeated many times during
optimization, Therefore, it is proposed to reduce the
number of analyses in the solution process by introd-
ucing data banks of preoptimized elements for sequences
of given loadings and element configurations,

4. Multilevel Optimization

Design of a large complex system usually involves
decomposition into a number of smaller subsystems,
each with its own goals and constraints [2]. In
general, an integrsted problem cannot be decomposed
into subproblems which can be independently optimized.
There may be meny different ways of transforming an
optimization problem into a multilevel problem, In
the model coordination approach [2,7,8] used in this
study, we choose certain variables called coordinating
or interaction variables to coatrol the lower level
systems. For fixed values of the coordinating vari-
ables the luwer level problems often become independ-
ent and simple to optimize. The task in the higher
levels is to choose the coordinating variables in such
a way that the independent lower level solutions are
optimal. The term ‘model coordination" derives from
the circumstance that a constraint is added to the
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problem in the form of certain fixed interaction vari-
ables.

Define the vector of cross sectional design variables

{Q} as
{Q} = {tC),{As} (15)

and the vector of configurrtional and geometric-vari-
ables {R} by

{R} = {D},{L} (16)

It has been noted earlier in sectjon 2 that the vector
of design variables {X} can be partitioned (Eq. (1))

{x} = {rR},{Q} an

In this formularion {R}; is the subvector of coordina-
ting variables between the subsystems and {Q} is the
vector of subsystem variables, in turn partitioned as
follows

Q= (Q b (Q)he .80y (18)

The subvector {Qi} represents the cross sectional
variables associated with .he i-th element (subsystem)
and 1 is the number of elements. With these defini-
tions, the objective function of Eq. (2) and the
constraints of Eqs. (3) to (10) can be expressed in
the general form

I

C=Fx} = 5 F ({RL{Q.D (19)
i=1 * *

g, ({x}) = g (R}) <0 (20}

ho(dx}y = b (RL{Q;1 < 0 (21)

in which gy are constraints on the {R} variables
(i.e., Egs. (3),{4)) and hj are constraints assoc-
iated with the i-th element (Eqs. (5) to (10)). That
is, the variables {K} may appear in all expressions,
while the variables {Q;} appear cnly in the constraints
associated with the i-th element, and in the correspond-
ing term of the objective function. Specifically, it
is assumed that the cross sectional! variables of a
given element affect only the constraints and object-
ive function component of that element,

The general optimization problem can now b2 formulated
as the following two level problem.

First-level problem. Determine a fixed value for {R}
‘through the constraints

{R} = (&% (22)
Then the integrated problem can be decomposed into the
following I independent first-level subproblems:
find {Qi} (i=1,...,1) such that
(¢ .
Ci = Fi({R },{Qi}) + min, (23)
hy (R}, {QD) < 0 (24)

Second-level problem, The task in the second level
problem is to f£ind {RP} such that

I
HUR'Y = T (1R%h) + min. (25)
i=1

g, (K%} < o (26)

where Hi({Ro}) is defined by

A

Hi({n°}) = min C; (27)

An additional constraint on {R"} is that the first-
level problem has a solution, i.e., that H({RO})
exists,

The two-level problem is solved iteratively ss follows:

1. Choose an initial value for the coordinating
variables {R®}.

2. For a given {R%} solve the 1 independent first-
level problems.

3. Modify the value of {R°} so that H({R®)) is
reduced.

4. Repeat steps 2 and 3 until min H({R®}) is achieved,

If all intermediate values for {k},{Q} are feasible,
the iteration can be terminated always with a feasible-
even though nonoptimal-solution, whatever the number of
cycles. This is advantageous from an engineering point
of view and may considerably reduce the computational
effort, particularly if the ohject is to achieve a
practical optimum rather than the theoretical one.

Since the second level variables ({D} and {L}, see
Eq. (16)) are of fundamentally different nature, it is
proposed to decompose the second-level problem into
two-levels, such that only the configuraticnal varia-
bles {L} are optimized in the second level, while the
geometric location variables {D} are treated in a new
third-level problem. The three problems are solved
iteratively until the optimum is achieved. Note that
the I first-level subproblems remain unchanged
(Eqs. (27) to (24)). The modified second and third-
level problems are formulated as follows (Fig. 4),
Second-level problem, For a given gecmetric location

{n} = {p° (28)
find {L°} such that
c({0”},{L%},1q}) + min (29)
gk((o°},{L°}) <0 (30)
Third-level problem. Find {D°} such that
c({0°},iL},{Q}) + min (31)
gk({Do},{L}) <0 (32)

The proposed solution procedure is possible since the
system by its very nature c¢.n be decomposed. The
loadings depend only on the {R} variables, therefore
the first level problems can be solved for fixed
loadings. The main advantage is that I independent
simple suhproblems are obtained ir this level. It has
been noted that {D“} is a functior of W , which in
turn is a function of {L}. Thus, Eqs. (3) are the
only explicit constraints which are functions of both
{D} and {L}. The main reason for choosing {L} as the
second-level variabies is their discrete nature. For
any given {D°} only a limited number of {L} values
must be considered,The solution process i§ ghown in
Fig. 5.

S. Optimization Methods for the Various Levels

First-level. For the rclevant ranges of loadings and
clement dimensions, data banks of preoptimized elements
have been prepared. As a first step a scqueance of
loadings, with fixed peak pressure and va-iable dura-
tion, is computed for a given element conii uration.
The cross sectional dimensions are optimi_eu by a
uirect search technique. For each seiect.d concrete
thickness the amount of reinforcing steel is minimized,
and the optimal thickness is evaluated by quadratic
interpolation., The data banks, to be used in the
higher level optimization, are obtain:d by repeating
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this process for several element configurations,
Intermediate solutions may be evaluated by inter-
polation,

Second-level. The optimization method in this level
is based on 2 direct search in the space of the dis-
crete variables {L}. For each assumed Lj value the
optimal Ly is selected. Lj is then modified, with

the current optimal L (or the nearest feasible value)
chosen as the initial design. The Lj values are modi-
fied until the optimum is reached.

Third-level. Powcll's direct search method |[13] is
applied in this level with the convergence criterion

|C((Xq}) - C({qu})l/c({xq}) <€, (33)
vhere €. is a predetermined parameter and ¢ is the

iteratior number in the third level. An additional
¢riterion

:{qu - {XQ+1}| <€ (34)

ensures that the iteration is terminated only if the

condition of Eq. (34) holds for two successive itera-
tions.

6. Numerical Examples

Two types of magazine have been considered {14]:

carth covered structure with a standard cover thickness
and an uncovered structure. Fig. 6 shows some reasi-
ble combinations of the {L} variables (a = standard
spacing, b = required spacing to satisfy functional
requirements, c¢ = required spacing for doors). Fig. 7
shows a typical design space for the cross sectional
variaples, in which Ag and A§ arc the amounts of re-
inforcing steel required for tensile and compressive
forces, respectively. A direct search in the space

of d (the effecrivedepth of the cross sectionj, as
shown in Fig. 8, provides the optimal element for the
given loading and configuration. This procedure is
repeated for all relevant loadings and element confi-
gurations. Typical optimal costs for a sequence of
triangular pulses are shown in Fig. 9, in which p is
the peak pressure and the time axis denotes the
duration.

Since the second level variables are discrete, the
objective function in the third level is nct continuous
(Fig. 10). It can be noted that local optimum points
may exist and the search is terminated only after
checking the objective function in a number of points,
to ensure that the true optimum is achieved. For each
point in the {D} variables space an optimal structure
is selected, For larger values of {D} the feasible
region in the {L} variables space is increased, and
the result might be a change in the discrete optimal
{L} values, The computational effort in the second
level optimization may be reduced comsiderably by
interactive design, Convergence display programs may
be used for this purpose. Fig, 11 demonstrates the
relative cost against the number of calculated {R}
vectors (Eq. (16)). The latter nunber is equal to the
number of accesses to the data banks. Search infpl space
is showm in Fig. 12, Different initial designs or
directions in thiy space provided an identical opti-
mum. Earth covered structures were optimized in a
similar manner, with convergence demonstrated in Fig.
13. This type of structure was found to be cheaper
than the uncovered structure.

The pgssibility of choosing the styuctural configura-
tion {L} as the third-level variables was also checked.
While an identical optimum was obtained, the conver-

gence rate was much slower; the number of iterations
was about 0% larger. This can be explained by the
difficulties ecncountered in searching the optimum in
the discrete variables space. Choosing {L} as the
second-level variables, the numbev of checked points
for a given {D} value is limited by the constraints
of Lq. (3).

7. Concluding Remarks

A multilevel approach for optimal design of protective
structures has been presented. The solution mcthod,
which is based on a simplified analysis model and
decomposition of the integrated problem into a number
of smaller subproblems, is motivated by the following
difficulties:

a. Nonlinear dynamic analysis is needed to describe
the structural rcsponse even when approximate
models are used.

b. The various types of design variables are of
fundamentally different nature from Loth the
physical and the mathematical points of view,

c. The objective functicn is neither differentiable
ner continuous.

d. The problem size (numbers of variables and
constraints) may be large in practical problems.

A sinplie optimization model is proposed for the cross-
sectional variables. Preoptimized elements are
introduced for a set of given element configurations
and loadings. This information is then used for effi-
cient optimization of the higher level variables. The
approach is general and is not restricted to a speci-
fic problem, analysis model, or optimization algorithms,
Rather, other types of structure (such as steel or
composite strucrurcs having non-rectangular shape),
different analysis models (dependong on the type of
approximations and simplifications used) and optimi-
zation methods (such as optimality criteria) can be
employed.

The numerical examples indicate that efficient solu-
tions which do  not involve much computational effort,
can be achieved for complex optimal design problems by
the proposed approach.
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