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ABSTRACT 

^The       assessment       of      nondestructive flaw detection 
reliability is complex in character due to the varied 
engineering and scientific disciplines involved. The evolution 
of nondestructive flaw detection reliability demonstration and 
assessment has involved varied efforts by workers in various 
industries, applications and environments. A significant data 
base has been established and has contributed to a general 
understanding of the elements of inspection reliability. A 
considerable number of analyses have been performed to effect a 
better understanding of the problem and to identify critical 
factors in both the inspection process performance and in 
reliability assessment.   ^ 

This paper reviews principle factors in nondestructive 
flaw detection process performance and suggests an alternative 
approach to the analysis of performance data. The approach 
includes consideration of the conditional probability character 
of flaw detection and consideration for predictive modeling 
based on signal and noise analyses of flaw detection by 
instrumental  techniques and by human operators.^ 
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INTRODUCTION 

Nondestructive inspection has been incorporated as an 
integral part of modern engineering structures design in both 
critical and non-critical applications. The assessment of 
nondestructive flaw detection reliability is complex in 
character due to the number of parameters that must be 
accounted for and to the varied disciplines involved. For 
critical applications, the reliability of inspection processes 
must be assured to provide confidence in the functional 
integrity and performance of critical materials, structures or 
components. Measurement and assessment of nondestructive 
inspection reliability requires multi-parameter assessment and 
documentation under controlled conditions. Indeed, much of the 
reliability data and data analyses that have been generated are 
confusing and appear to be contradictory. The following 
discussion provides an approach to the understanding and 
modeling of nondestructive inspection processes with respect to 
overall process  reliability. 

THE  NATURE  OF   INSPECTION  RELIABILITY ASSESSMENT 

The task of measuring inspection reliability differs from 
that of initial inspection selection by a shift in emphasis 
from the smallest flaw detected to the largest flaw missed. An 
inspection process constitutes an exercise in conditional 
probability as opposed to joint probability due to the 
interdependence of inspection stimuli and inspection responses. 
A schematic presentation of such interdependence is shown in 
the  following: 

RESPONSE 

STIMULI 
POS  a        NEC  n 

P(N,a) 

: M(Nn) 
:       T.N. 
s P(N,n) 
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The outcome of the inspection test may be: 

TRUE POSITIVE (T.P.), 
where M(Aa) is the total number of T.P. calls; 
and P(A#a) is the probability of T.P. calls. 

FALSE POSITIVE (P.P.), 
Where M(An) is the total number of F.P. calls; 
and P(A,n) is the probability of F.P. calls. 

FALSE NEGATIVE (F.N.), 
where M(Na) is the total number of F.N. calls; 
and P(N,a) is the probability of F.N. calls. 

TRUE NEGATIVE (T.N.), 
where M(Nn) is the total number of T.N. calls; 
and P(N,n) is the probability of T.N. calls. 

Interdependence of the matrix quantities is denoted by: 

T.P. + F.N. = Total opportunities for positive calls. 
F.P. + T.N. = Total opportunities for negative calls. 

Therefore,   only  two independent  probabilities  must  be 
considered in alternative inspection / decision tasks. 

The SPECIFICITY of  the  technique or  the PROBABILITY  OF 
DETECTION of flaws may be expressed as: 

T.P. total positive calls 
POD = or  

T.P. + F.N.    opportunities for positive calls 

Likewise,   the  NONSPECIFICITY  of  the   technique  of  the 
PROBABILITY OF FALSE ALARMS may be expressed as: 

F.P. total false alarms 
POFA » or  

T.N.  + F.P. opportunities  for  false alarms 

Confidence limits for the probability of detection value may be 
calculated from standard tables for a given sample size and 
calculated value from experimental sample data. This technique 
establishes an estimate for performance at one flaw size value, 
calibration level and acceptance criteria level. Data of most 
interest to the design engineer, nondestructive inspection 
engineer and systems manager is plotted as a composite of the 
discrete values calculated  for  individual operating points. 
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PROBABILITY OF DETECTION (POD) CURVES

The established method of assessing and presenting 
inspection reliability data is by means of a probability of 
detection or POD curve as shown in FIGURE 1. A POD curve is 
generated by passing a series of specimens that contain a large 
number of flaws of varying flaw sizes, through a nondestructive 
inspection process and documenting the success in detecting all 
flaws. Flaws are then ordered from large to small in terms of 
decreasing flaw size and are grouped to provide a statistically 
significant sample size for analysis. Sampling to provide a 95% 
confidence level (MIL Handbook No. 5, B values) is attained by 
grouping samples into lots of 60 observations (REF 1). The 
point estimate of detection for the sample group is calculated 
by dividing the total number of opportunities for the sample 
group into the total number of successes (flaws detected). The 
point estimate (probability of detection) is plotted at the 
largest flaw size in the sample group. The process is repeated 
to generate a curve that denotes the probability of detection 
as a function of flaw size (FIGURE 1). This method of data 
presentation was introduced by Rummel et al (REF 2) in 1971 and 
has been adopted as the standard method for inspection 
reliability data presentation. The method has been used by 
various investigators to plot both controlled experimental data 
sets and uncontrolled experimental data sets. A measure of the 
capability of a specific inspection technique for flaw 
detection can be derived when the method is used to analyze 
controlled experimental data. A measure to the overall baseline 
capability for a facility, organization, etc. can be derived 
when the method is applied to unlike (uncontrolled) inspection 
operations.

Figure 1 Typical Form of a Probability of Detection 
(POD) Curve
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The shape of the POD curve provides a qualitative basis 
for assessment of the degree of control for a given data set 
and by the criteria for grouping of similar data sets. FIGURE 
2, illustrates the POD curves for the data sets generated under 
varying condition of control. Curve A is typical of an 
inspection process that is under control and that is 
discriminatory (specific) to the desired output. Curve B is 
typical of a process that is approaching control. The mode and 
type of variance denote the influence of factors not accounted 
for in the direct correlation of process performance with flaw 
size. Curve C is typical of a process that is out of control 
but whose performance is influenced by flaw size. Curve A is 
worthy of further statistical rigor. Curve B is worthy of 
further analyses to ascertain the nature of secondary 
variances. Curve C is worthy of further analyses to improve the 
process or to provide a measure of inspection discrimination by 
sampling. Flaw size is a secondary variance in Curve C at the 
operating point for the inspection. Identification and control 
of the primary variance will change the nature of the data set, 
the specificity of the technique and the resultant POD curve. 

* 100 

FLAW SIZE 

Figure  2 Typical Probability of Detection   (POD)  Curve 
Under Varying Conditions of Process Control 
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Each POD curve is unique to the specificity of the 
inspection process, the degree of control effected in the 
inspection process and to the nature and distribution of flaws 
being assessed. Rigorc-c use of the data in specific 
applications is limited to the specific process, control and 
flaw distribution conditions used in data generation. The cost 
of generation, precision in data collection and the discipline 
required for specific applications have fostered many attempts 
to generalize and model POD curve prediction. To date, no 
satisfactory model has been developed and some modeling 
attempts have contributed to the confusion in application and 
in data generation. Since many critical inspections are 
currently performed by skilled operators using manual 
techniques, human factors are most frequently cited as the 
source of unreliability. Although human factors are a primary 
contributor to unreliability, nondestructive test engineering 
and engineering management (selection and control of the right 
tool for the job) are proposed by the authors to be greater 
sources of unreliability in general applications. Such errors 
will not be alleviated by the automation of inspection 
processes. An understanding of the nature and character of 
inspection processes is necessary to predict and to effect 
improvements. Automation without understanding will only lead 
to multiplication of errors. 

CONSIDERATIONS FOR MODELING OF INSPECTION PROCESSES 

The POD curve provides a convenient method for comparison 
of inspection process performance. It provides visualization of 
the discrimination capability of a given technique in a form 
that communicates to the designer, the system manager and to 
the nondestructive inspection engineer. The POD curve does not, 
however, provide an indication of the calibration performed to 
establish the baseline process, the acceptance criteria imposed 
on the process or the level of incorrect rejections (false 
calls) inherent to the process / application. 

Selecting an exact operating point from the POD curve is 
difficult and has not proven to be meaningful in many 
applications. Variation in a point on the curve is due to 
variation in response of the system and variation in the 
reproducibility of the inspection process application. For 
example, flaw size measurement by nondestructive inspection 
processes has been shown to be variable within a technique and 
between techniques (REF 3,4). The distribution of response of 
an interrogating energy field accounts for variation in flaw 
sizing by nondestructive inspection processes and to part of 
the variation in POD curve generation. This "third dimension' 
of analysis must be accounted for in an inspection model. 
Variation in response along a POD curve is shown schematically 
in FIGURE 3. 
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Figure 3 Interaction of the Probability of Detection (POD) 
Curve with the Distribution of Flaw Response 

SIGNAL / NOISE VARIATIONS AND THE POD CURVE 

Consider a case where the response (signal) from a flaw is 
"Gaussian" in nature and where process noise is well separated 
from the signal (FIGURE 4). Such ^ inspection has high 
specificity for discrimination of signaxs that are due to flaw 
responses from background or process noise signals that are 
inherent to the process. 

Consider a second case where the response (signal) from a 
flaw is "Gaussian" in nature with process noise signals 
overlapping the flaw response envelope (FIGURE 5). A threshold 
(signal) discrimination level may be set for this process to 
provide a degree of separation of flaw responses from inherent 
process noise. Some flaws will be missed by such a system and 
some false calls (rejections) will be inherent to the process. 
The lack of specificity will cloud the use of the process as a 
final discriminator. 
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Figure 4 Signal / Noise Response  for Discrimination with a 
High Degree of Specificity 
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Figure 5 Signal  / Noise Response  for Discrimination with 
Overlapping Signal and Noise Stimuli 
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Consider a third case where the response (signal) from a 
flaw Is coincident with the process noise signals (FIGURE 6). 
Such a process provides a random discrimination of flaws and Is 
not considered to be a valid process. Indeed, better separation 
is likely by simple coin flipping.

NOISE

SIGNAL

RESPONSE LEVEL

Figure 6 Signal / Noise Response for Coincident Stimuli



A POD curve typically reflects all of the variations in 
signal / noise response and discrimination levels as shown 
sJhSmatically in FIGURE 7. A continuing variation in signal / 
noise response is reflected by variation in the discrimination 
lete! along the POD curve. The signal / noise response and the 
d!scrimina?ion level appear to be "common denoinina^"r . f°r *£ 
inspection processes and hence all POD curves generated for 
respective processes. 

Figure  7   interaction of Signal  /  Noise Discrimination with 
the Probability of Detection  (POD) 
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CRITERIA DISCRIMINATION  RESPONSE AND  THE  POD   CURVE 

A second factor (common denominator) that may be shown to 
affect the mode and specificity of an inspection process is the 
criteria level selected. Consider an inspection process with a 
measurable separation in noise and flaw signal responses as 
shown in FIGURE 8. If the acceptance (discrimination) criteria 
level for this inspection (indicated by the vertical arrow) is 
set too high, some flaws will be accepted (missed) by 
application of the process and "EVERYBODY WILL BE UNHAPPY". If 
the acceptance criteria is set at a level that provides clear 
separation of noise signal from flaw signal, all flaws will be 
rejected, few false calls (rejections) will occur and 

EVERYBODY WILL BE HAPPY". If the acceptance criteria is set 
too low, all flaws will be rejected, some false calls 
(rejections)   will occur  and   "MANAGEMENT WILL  BE  UNHAPPY". 

EVERYBODY 
UNHAPPY 

EVERYBODY 
HAPPY 

MANAGEMENT 
UNHAPPY 

CRITERIA 
DISCRIMINATION RESPONSE 

Figure 8  Influence of Acceptance Criteria Level   (Vertical 
Arrow)  on Process  Discrimination   (Specificity) 
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The process specificity and hence its POD c"rvep^y _
b| 

affected by changes in the acceptance criteria level. FIGURE 9 
illustrates the effects of varying levels of criteria 
discrimination levels on performance as denoted by the POD 
curve. It is important to note that the criteria discrimination 
level is a function not only of the rejection level imposed on 
an inspection process but also of the calibration reference 
standards and criteria used to set-up and validate inspection 
process performance. 

Figure 9 Interaction of Acceptance Criteria with the 
Probability of Detection (POD) 
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INSPECTION FACTORS AND SIGNAL / NOISE RESPONSE 

Variations in the condition of the flaws to be 
interrogated and variations in inspection conditions will 
affect the signal / noise function of the inspection process 
and its resultant discrimination level. FIGURE 10 illustrates 
some known and projected variations in flaws and process 
applications on the signal / noise response. Experimental data 
on the effects of variation of a single parameter on the 
overall signal response have been documented by various 
investigators. (REF 5,6) It is now clear that documentation of 
the calibration technique and the process noise for the 
inspection is necessary to account for parameter variations in 
a predictive model. 

IDEAL 

SURFACE 
NOISE 

ANGLE OF 
INCIDENCE 

FLAW 
DEPTH 

CLOSURE 

Figure 10 Interaction of Flaw Condition with Signal / Noise 
Discrimination 

PREDICTIVE MODELING OF INSPECTION PROCESS PERFORMANCE 

Generation of POD curves and qualification of inspection 
processes are tedious, time consuming and expensive. At 
present, POD curves are unique to the inspection process and 
process application and cannot be used for a second process or 
process application. For critical applications, experimental 
qualification and validation are required and must be completed 
for each process and process application. 
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Current work is under way to approach predictive modeling 
based on "first principles" to calculate behavior and 
interaction of an energy field in a given application (REF 7). 
The approach and emphasis of this important work will provide a 
prediction of the performance level (POD) for an inspection 
process for calibration and validation at a given signal / 
noise level. Ultrasonic (REF 8) and eddy current (REF 9) models 
have been initiated as first steps in providing the engineering 
tools for future nondestructive process applications. 

Predictive modeling would be of significant advantage in 
both the qualification of additional inspection processes and 
in reconsideration of current processes. Consider the case of 
cracks emanating from a radius area in a slot as shown in 
FIGURE 11. An eddy current inspection had been developed and 
qualified for cracks emanating from the center of the radius. 
The inspection consisted of inserting an eddy current probe, 
with a small f er rite core, into the radius area such that it 
touched the center of the radius in a plane passing through the 
center of curvature of the radius. After qualification and 
validation, crack intiation was discovered at both points of 
tangency of the radius area. Predictive modeling / analysis 
tools could have been used to calculate the size of cracks that 
could be reasonably detected by the center probe technique. 
Actual requalification and validation were necessary to 
establish the performance level with the analysis tools that 
are currently available. 

Figure 11 Variation in Location of Service Cracks in 
Typical Engineering Hardware 
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HUMAN FACTORS VARIATIONS ON INSPECTION RELIABILITY 

The impact of human factors on inspection reliability have 
been discussed by various investigators and have been 
considered to be a primary factor in "unreliability" of a given 
inspection process. It is therefore important to separate and 
measure human factors response and variations in application of 
inspection processes. Recent work by Swets and Pickett (REF 12) 
provide a logical basis for assessment of the human factors 
variable in an inspection process. The technique consists of 
establishing an inspection process with known variation in 
signal response and known discrimination response criteria. By 
repetitive measurement of human response / discrimination to 
the signal stimulus, a performance level may be established and 
used in prediction for a variety of applications. Swets and 
Pickett propose development of a "RELATIVE OPERATING 
CHARACTERISTICS (ROC)" curve (FIGURE 12) as the method of 
displaying and analyzing human factors data. This curve 
visualizes the human factors contribution at an established 
signal / noise level, and various discrimination levels, for a 
single point on the POD curve. The primary advantages of this 
method are the use of signal / noise and discrimination 
criteria as factors in assessment, and in previous use of the 
method in similar inspection / detection processes. 

TRUE NEGATIVE 

Ui 
> 

a) 
O 
a 
UJ 
3 
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I- 

FALSE NEGATIVE 

Figure  12 Typical Relative Operating Characteristic   (ROC) 
Curve   (REF 10) 
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CONCLUSIONS 

Flaw detection reliability assessment is indeed a complex 
process that requires consideration of many factors in both 
application processes and in assessment. Signal / noise 
response at a given discrimination (criteria) level have been 
introduced as "common denominators" to both characteristic 
inspection process performance and human factors performance. 
The combined performance levels may be summarized by plotting a 
probability of detection curve (POD) curve for the inspection 
process and application. The human factors contribution to the 
output must be minimized for "controlled data" that is used for 
assessment of the capability of a process. 

Reliable flaw detection may be effected by knowledge of 
the nature and boundary conditions for signal response in a 
given inspection task. Such analysis is necessary to provide 
the nondestructive inspection engineering that is necessary for 
application to critical inspection processes. Experience by the 
authors has shown that inspection process qualification is 
probable for those applications where a consistent response is 
obtained at a minimum signal to noise response of 3 to 1 for 
flaws one-half the minimum size required by design acceptance 
criteria. 

Progress is being made for predictive inspection modeling 
based on "first principles" of energy interaction and 
scattering. Such techniques will be a primary tool for all 
future nondestructive inspection engineering analyses. Process 
modeling, together with human factors modeling will provide the 
necessary tools for improvement of productivity and for 
automation of inspection processes in future applications. 
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