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ABSTRAC

For many materials the fracture strength and fatigue lifetime is con-
t'-lled by small cracks that can grow at sizes and applied stress levels which

are below those predicted from data for long cracks. The objective of this
paper is to describe how elastic-plastic fracture mechanics analysis can be
used to interpret small crack behavior. The results of the elastic-plastic
analysis Indicate that deviations from LEFM begin at about 0.7 of the yield
stress and that the trend of the amall crack data can be predicted. The
results of 3-D elastic-plastic analysis of a surface crack show a unique vari-
ation of the crack driving force alnng the crack front. This information is
used t^ predict crack shapes during cyclic crack growth.

INTRODUCTION

Predictions of fracturt strength and fatigue lifetimes of components
fabricated with high strength materials require accurate representation of the
crack driving force for small cracks. In addition, an understanding of short
crack behavior is necessary for proper interpretation of test specimen
behavior in fatigue and cyclic crack growth rate testing. For short cracks,
crack geometry and material nonlinearity must be considered along with the
three-dimensional nature of the surface crack. The objectives of this paper
are to describe the fracture mechanics analysis procedure and the results of
two- and three-dimensional finite element analysis of small surface cracks.
The finite element analysis procedure involves the use of the deformation
theory of plasticity, crack tip elements with blunting, and 3-integral calcu-
lations by contour integrals and virtual crack extension. The results of
elastic and elastic-plastic analysis of small surface cracks provide an indi-
cation of the limitations of linear elastic fracture mechanics (LEFM) and some
techniques to modify the stress intensity factor for elastic-plastic condi-
tions. The results of the analysis are used to interpret the fatigue growth
threshold for small cracks and to predict crack growth shapes for small sur-
face cracks.

Smzll crack behavior and the prediction of fatigue life has been reviewed
recently by Hudak [1]. There are many observations that small cracks behave
differently than largr cracks. Small cracks can grow at sizes and applied
stress levels which are below those predicted from threshold data for large
cracks. Small cracks Srf at faster rates than predicted from crack growth
rate data for large cracks. Interpretation of the crack growth rate data from
specimens with small cracks [2] and the prediction of growth of small intrin-
sic defects in specimens and components require proper representations of the
crack tip stress field. The purpose of this paper is to demonstrate how
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elastic-plastic fracture mechanics analysis can help to interpret the behavior

of small cracks.

ANALYSIS TECHNIUES

Plastic flow can be described by a total strain theory where the strain

is given as a function of the actual stress state. The deformation theory of
plasticity is a total strain theory and since the strains only depend on the

final stresses, the strain state is independent of any particular loading
path. In the uniaxial case the stress-strain law for this theory can be
described by the Ramberg-Osgood law

C/C W /ay + (/a )n ()
y y y

where cy is the yield strain, a the yield stress (ay M E c ), a a material

constant, and n the power hardening exponent. It is generally accepted that
the deformation theory of plasticity does not model the path-dependent
behavior of materials for radical departures from proportional loading (i.e.,
all stress components increase proportionally during loading). In applica-
tions where unloading and strong doviation from proportional loading is res-
tricted to a small region of the structure, deformation theory is valid. For
the analysis of small cracks described in this paper, unloading is not con-
sidered and thus deformation theory is used.

It has been shown that appropriate singularities can be induced in the
isoparametric finite elements if the node points are arranged in an appropri-
ate manner. Several authors have employed the 8-noded 2-D and 20-noded 3-D

isoparametric elements in near tip modeling of 2- and 3-dimensional cracks.
Hlnshell and Shaw (3] and Barsoum [4] pointed out that when the mid-side nodes
in these elements are placed at the quarter-point position the elements will

have a 1/ir singularity in the strain fields at tho neighboring corner node,
where r is the distance from the crack tip. This kind of element can, there-
fore, effectively be used around the crack tip in an elastic analysis. In the
present investigation an elastic-plastic analysis was employed. The stress
and strain singularity for a perfectly plastic material is 1/r and it has been
shown by Barsoum [5] that the 8-noded 2-D and the 20-noded 3-D elements have
the 1/r singularity when two corner nodes and a mid-side node are collapsed
such that they initially are at the same location, but are allowed to separate
-hen the elements deform.

For a power hardening material which is loaded into the plastic range,

neither the 1/1 r nor the 1/r singularity is theoretically the proper singu-
larity to use. However, when collapsed elements are used at the crack tip in
an elastic analysis, even the elastic stress intensity factors are determined
very accurately. Since these elements lead to accurate results in the elastic
and perfectly plastic limits, it is also believed that they will model the
crack tip behavior accurately for a power hardening material in the entire

elastic-plastic regime. These elements were therefore chosen for the crack
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tip modeling in the finite element models. When the collapsed elements are
used several nodes share the same location in the undeformed configuration.
When the model is loaded, the crack tip elements will start to deform and the
node points at the crack tip will start to separatc. This will cause the
crack tip to blunt and give a realistic modeling o' the real crack tip
behavior.

During the last few years, the 3-integral has been used increasingly to
characterize crack initiation and crack growth in the elastic-plastic regime.
In the context of linear elasticity and deformation theory of plasticity, the
3-integral simply denotes the energy released by a unit increase in crack
area. The 1-integral can be calculated by different techniques. In the 2-D
analyses the 3-integral was calculated from the path independent integral [6]

( ( a a++)dx I d s  (2)

11  )dy+ (12 ax +22 a

where W is the strain energy density,.q the stress tensor, and U the displace-
ment vector. It has been shown (6] that when this integration is performed
along a path around the crack tip, the integral is independent of the particu-

lar path both for elastic materials and for materials following the deforma-
tion theory of plasticity.

In the 3-D analyses the 3-integral was calculated by the virtual crack
-xtension method. With this technique the 3-integral at a certain point on

crack front is found from the local energy release rate at this point.
-integral can now be calculated by advancing the crack front a small

junt at the point of interest as schematically shown in Figure la. This
will iz'rease the cracked area by the amount A. The 3-integral is then
defined as the total energy released by this crack advance divided by the area
A. In a finite element model the local crack advance can be introduced by
shifting the nodes near the cack tip as shown in Figure lb. This leads to a
virtual crack extension at that particular point and the change in .norgy in
the surrounding elements can then be calculated. A detailed description of
this method of calculating the 3-integral ib even in reference [7].

RESULTS AND DISCUSSION

Two-Dimensional Analysis

T1he 2-D analysis was peformed to evaluate the effect of elastic-plastic
material behavior on the stress intensity factor for a short crack. The
Ramberg-Osgtod representation of the stress-strain curve was used with a power
hardening 3xponer.t (n) of 10. The finite element analysis of a tension-loaded
double-edge crack plate was performed by using the mesh shown in Figure 2.
This model, consisting of 8-noded isoparametric elements, represents one-
quarter of the plate (Figure S) and a crack length to plate width ratio (a/W)
of 0.1. An a/W of 0.01 was also analyzed by adding 40 elements to the top and
right side of the model. The results for these two cases were essentially the
same indicating no significant effect of the plate width. Therefore, the
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Figure 1. T-integral calculation by virtual crack extension.

Figure 2. Finite element mesh for double-edge crack plate with aIW of 0.1.
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crack behaves as a small crack in an infinite medium. The elastic-plastic
analysis (deformation theory) vas performed in 4 steps. The plastic zones
(effective stress yield stress) for the last three steps of a plane strain
analysis are shown in Figure 3. The divelopment of the plastic zone follows
the expected pattern for plane strain and does not seem to be affected by the
free surface in this small displacement analysis.

The 3-intcgral for a plane stTess finite element analysis is computed by
contour integrals and the stress intensity factor is computed as

K-jE (3)

where E is the elastic modulus. These results are plotted in Figure 4 by nor-
malizing the elastic stress intensity factor by

K n 1.12 d na (4)

for an edge crack where a is the applied stress and a is the crack length,
Significant deviations from LEFN occur as /ay increases with about a 5% devi-

ation for a/y a 0.7.

The 3-integral can be estimated [8] from 3 - 3 + I where 3 is the
• p e

elastic part and 3 is the plastic part. The elastic Y is computed by combin-p
ing Eqs. (3) and (4) and adding a plastic zone size correction where

I - (1.12)2 (2/E) n(a + ry) (5)

and the plastic zone size correction for plane strain [9] is

(.X(/Y)2 (6)

The plastic I solution is given by

3 = (1.12)2 f(n) e as (7)

where e is the applied plabtic strain andP

f(n) = 3.85 In (1 - 1/n) + n/n (8)

where f(n) - 11.3 for n = 10. With this estimation scbeze the 3-integral can
be calculated and converted to K (Eq. (3)) to compare with the elastic solu-
tion and the finite element results (Figure 4). The estimated K's are very
close to the values computed from the finite element results.
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Figure 3. Plastic zone size as a function of applied strain.
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Pigure 4. Effective stress intensity factors for double-edge crack plate.

208



Computing the stress intensity factor in terms of the applied ;train
rather than stress is a simple means of incorporating nonlinear effects in the
crack tip parameter. This "strain intensity factor" is expressed us

K w 1.12 E c Ir(a + ry) (9)

where c is thn applied strain. The results with this simple method agree well
with the finite element results as illustrated in Figure 4.

There has been an extensive amount of experimental data published con-
cerning the cyclic crack growth rate behavior of small cracks. These experi-
ments all indicate a deviation from LEF behavior for small cracks. The data
usually involves a plot of the cyclic streys (Aa) required to propagate a
crack versus the crack size. For large cracks the data follows the line

predicted by LEFM (Aal a - constant) while for short cracks Aa is less than
predicted by LEFX. By normalizing the crack length by the plastic zone size
(Eq. (6)), LEM and the elastic-plastic fracture mechanics (EPFM) results in
Figure 4 can be displayed as in Figure 5. The LEFM line is dependent only on
the crack geometry (1.12) while the EPEN liue is dependent on the power har-
dening exponent (n). Deviations between LEFN and EPFN begin when the applied
stress is about 70% of the yield strength and the plastic zone size is about
10% of the crack length (Figure 5). This suggests that experimental data for
the threshold of cyclic crack growth of small cracks should be treated with
EPFN. A compilation of much of this data [10] is used here to demonstrate the
use of EPFN to interpret the small crack behavior. The threshold value of the
stress is normalized by the fatigue limit of a smooth specimen and plotted as
a function of the crack length divided by the intrinsic crack lrigth for the
smooth specimen (Figure 6). The intrinsic crack length is defined by the LEFM
relationship (Eq. (4)) where K is the threshold stress intensity factor and a
is the fatigue limit. The LEFN prediction fits the long crack data while for
short cracks the threshold stress is considerably less than predicted (Figure
6). The EPFN prediction produced by using the results in Figure 4 and the
assumption that the fatigue limit is 1.2 times the yield stress, fits the gen-
eral trend of the data for long and short cracks. The data in Figure 6
represents a wide variety of steels, copper, and aluminum [10]. A power har-
dening exponent of 10, which is typical of many metals, was used for the EPFI
prediction. However, a more precise prediction of the individual data points
could probably be obtained by using the specific power hardening exponents for
each of the materials.

Three-Dimensional Analysis

Many small surface cracks in test bars, crack growth rate specimens, and
components are of a semicircular or semielliptical shape. These two-
dimensional crack surfaces require a three-dimensional stress analysis. A 3-D
finite element analysis of a small semicircular surface crack in a semi-
irfinite body has been performed. The actual 3-D mesh consists of a crack
with a length equal to 0.1 of the radius of a half-cylinder which represents
the semi-infinite body. The mesh has 340 20-noded isoparametric elements and
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Figure 5. Difference in elast~c-plastic and linear elastic fracture mechanics
for small cracks.
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Figure 6. *Areshe1d stress for cyclic crack growth data for various steals,
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1864 nodes. The known stress intensity factor for a semicircular surface
crack is given by (U1]

K - F(2/n) a (10)

where c 3 the stress applied perpendicular to the crack, a is the crack
length, and F is P geometry factor. For a small surface crack the average
value of F from other solutions (11] is 1.19 at the surface and 1.03 at the
maximum depth point (900 from the surface). By using the virtual crack exten-
sion technique, the 3-integral was calculated at 11 positions along the crack
front. Thc J values were converted to K values by the relationships K a

' JEI(1 - \)2) (Figure 7). These computed values at the surface and the max-
imum depth point were almost exactly the same as the average of the other
solutions. This provides confidence in the finite elecnt mesh and the compu-
tation of the 3-integral for small 3-D surface cracks. These results for the
elastic analysis show a smooth variation of F along the crack front. The
small oscillations in the computed values (Figure 7) rdsult from a piecewise
linear model of the curved crack front.

An elastic-plastic analysis of the small, semicircular, surface crack was
performed using the deformation theory of plasticity. One step to an applied
stress of 0.7 of the yield stress was taken. The virtual crack extension
techuique was used to compute I and K as in the elastic analysis. The results
show a unique variation of F along the crack front (Figure 7). For 0 > 150
the stress intensity is beginning to increase due to olastic-plastic effects.
This is consistent with the 2-D analysis. However, where the crack intersects
the free surface (0 - 0), the stress intensity has decreased. This effect is
due to increased yielding at the free surface due to a lack of ccnstraint.
The region below the free surface, where there is plane strain constraint,
carries a larger portion of the load. This variation in constraint aiong the
crack front produces a plastic zone which is smaller in the interior than on
the free surface.

Ar. example of the use of this 3-D analysis in predicting crauk shapes for
cyclic crack growth is shown in Figure 8. The computed variation of K along
the crack front is incorporated into a cyclic crack growth rate computation by
using the power law crack growth rate relation. This expression can be
integrated to compute the crack length as a function of cycles. One-half of
four surface cracks is shown in Figure 8. In Figur-is 8a and 8b the initial
surface crack is semicircular while in Figures 8c and 8d the depth-to-length
ratio is 2.0 and 0.5, respectively. The crack shape is plotted when the crae'k
has grown in the depth direction by an increment equal to 10% of the original
depth (10% of the original surface length for Figure 8d). Figure 8a shows the
growth of a crack for LEFM conditions while Figures 8b, c, and d include EPFM

considerations as illustrated in Figure 7. The decreased amount of crack
growth on the surface for the elastic-plastic conditions is a result of the
decrease in the crack driving force on the surface ard the increase in the
crack driving force below the surface with increased plasticity (Figure 7).
This prediction is consistent with experimental observations ind empirical
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Figure B. Crack shape predictions for cyclic crack growth.
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adjustments t. LE?,) calculations (12]. In Figures 8c and d stress intensity
factors for elliptical surface cracks [11] are combined with corrections for
elastic-plastic conditions to show how deep and shallow cracks propagate to
crack shapes that are nearly the same.

CONCLUSIONS

Predictions of fatigue lifetimes of components and test specimens and the
interpretation of cyclic crack growth rate data require accurate representa-
tion of the crack driving force for small cracks. Results of two-dimensional
analysis of an edge crack indicate that variations from LE[FN begin at an
applied stress of about 0.7 of the yield strength where the plastic zone size
is about 0.1 of the crack length. Above this level an effective K can be cal-
culated with the 3-integral rom finite element analysis or the 3-integrai
estimation scheme or with a strain intensity factor. The trend of the small
crack data for the threshold stress for cyclic crack growth can be predicted
by EP!TM techniques. The results of 3-D elastic-plastic analysis of a small
surface crack show a unique variation of the crack driving force along the
crack front with a decrease in the crack driving force at the surface and an
increase in the creek driving force below the surfcce with increasing plasti-
city. This information was used to predict crack shapes for cyclic growth
that are in general agreement with the observed trend of reduced crack growth
on the surface.
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