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» ABSTRACT

- For many materials the frecture strength and fatigue lifetime is con-
t-slled by small cracks that can grow at sizes and applied stress levels which
st¢ below those predicted from data for long cracks., The objective of this
paper is to describe how clastic-plastic fracture mechanics analysis can be
used to interpret small crack behavior. The results of the eclastic—-plastic
analysis indicate that deviations {rom LEFM begin at about 0.7 of the yield
strest and that the trend of the small crack data can be predicted. The
results of 3~D elastic-plastic analysis of & surface crack show a unique vari-
ation of the cerack driving force alnng the crack front. This information is
used t~ predict crack shapes during cyclic crack growth,

INTRODUCTION '

Predictions of fracture strength and fatigue lifetimes of components
fabricated with high stxength materials require accurate representation of the
crack driving force for small cracke. In addition, an understanding of short
crack behavior is necessary for proper interpretation of test specimen
behavior in fatigue and cyclic crack growth rate testing. For short cracks,
crack geometry and material nonlinearity must be considered along with the
three~dimensional nature of the surface crack. The objectives of this paper
are to describe the fracture mechanics analysis procedurc and the results of
two~ and three-dimensional finite element analysis of small surface cracks.
The finite element analysis procedure involves the use of the deformation
theory of plasticity, crack tip elements with blunting, and J-integral calcu-
lations by contour integrals and virtual cxack extension, The results of
elastic and elastic-plastic analysis of small surface cracks provide an indi-
cation of the limitations of linear elastic fracture mechanics (LEFM) and some
techniques to modify the stress intensity factor for elastic-plastic condi-
tions. The results of the analysis are used to interpret the fatigue growth
threshold for small cracks and to predict crack growth shapes for small sur-
face cracks,

Sm:11 crack behavior und the prediction of fatigue life has been reviewed
recently by Hudak [1]. There zre many observations that small cracks bebave
differently than large cracks., Small cracks can grow at sizes and applied
stress levels whick are below those predicted from threshold data for large
cracks, Small cracks grov at faster rates than predicted from crack growth
rate data for large cracks. Interpretation of the crack growth rate data from
specimens with small cracks [2] and the prediction of zrowth of small intrin-
sic defects in specimens and components require proper representations of the
crack tip stress field, The purpose of this paper is to demonstrate how
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elastic-plastic fracture mochanics analysis can heip to interpret the behavior
of small cracks.

ANALYSIS TECHNIQUES

Plastic flow can be described by a total strain theory where the strain
is given as a function of the actual stress state. The deformation theory of
plasticity is a totai strain theory and siance the strains only depend on the
final stresses, the strain state is independent of any particular loading
path, In the uniaxial case the stross-strain law for this theory can be
described by the Ramberg~Osgood law

n
c/ey o/cy + a(a/cy) (1)

where cy is the yield strain, oy the yield stress (qy = E cy). a & material

constant, and n the power hardening exponent, It is generally accepted that
the deformation theory of plasticity does not model the path-dependent
behavior of materials for radical departures from proportional loading (i.e.,
all stress components increase proportionally during loading). In applica-
tions where unloading and strong doviation from proportional loading is res-
tricted to a small region of the structure, deformation theory is valid. For
the analysis of small cracks described in this paper, unloading is not con-
sidexed and thus deformation theoxy is used.

It has been shown that appropriate singularities can be induced in the
isoparametric finite elements if the node points are arranged in an appropri-
ate manner, Several authors have employed the 8-noded 2-D and 20-noded 3-D
isoparametric elements in near tip modeling of 2- and 3-dimensional cracks.
Honshell and Shaw [3] and Barsoum [4] pointed out that when the mid-side nodes
in these slements are placed at the quarter-point position the elements will

have a 1/1 r singularity in the strain fields at the neighboring corner node,
where r is the distance from the crack tip. This kind of element can, there-
fore, effectively be used around the crack tip in an elastic analysis. In the
present investigation an elastic-plastic analysis was employed. The stress
and strain singularity for a perfectly plastic material is 1/r snd it has been
shown by Barsoum [5) that the 8-noded 2-D and the 20-noded 3-D clements have
the 1/r singularity when two corner nodes and a mid-side node are collapsed
such that they initislly are at the same location, but are allowed to separate
~hen the elements deform,

For a power hardening material which is loaded into the plastic range,

neither the 1/* r aor the 1/r singularity is theoretically the proper singu~—
larity to use. However, when collapsed elements are used at the crack tip in
an elastic analysis, even the elastic stress intensity factors are determined
very accurately, Since these elements lead to accurate results in the elastic
and perfectly plastic limits, it is also believed that they will model the
crack tip behavior accurately for a power hardening material in the entire

elastic-plastic regime. These elements were therefore chosen for the crack
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tip modeling in the finite clement models, When the collapsed elements are
used several nodes share the same lccation in the undeformed configuration,
When the model is loaded, the crack tip elements will start to deform and the
node points at the crack tip will start to secparatz. This will cause the
crack tip to blunt and give a realistic modeling o° the real crack tip
bohavior,

During the last few years, the J~integral has been used increasingly to
characterize crack initistion and crack growth in the elastic-plsstic regime.
In the context of linear elasticity znd deformation theory of plasticity, the
J~integral simply denotes the energy released by a unit increase in crack
area, The J-integral can be calculated by different techniques, In the 2~D
analyses the J~integral was calculated from the path independent integral [6])

BUx dJl BUx U
J = J'C (N = a2 = 0, DMy + (o, 5=+ 0y, =Dhax 1 ds  (2)

where W is the strain enorgy density, « the stress tensor, and U the displace~
ment vector, It has been shown [6] that when this integration is performed
along s path around the crack tip, the integral is independent of the particu-
lar path both for elastic materials and for materianls following the deforma-
tion theory of plasticity.

In the 3~D analyses the J-integral was calculated by the virtual crack
-xtension method. With this technique the J-integral at a certzin point on
crack front is found from the local energy release rate at this point.
J~integral can now be calculated by advancing the crack front a small
sunt at the point of intescest as schematically shown in Figure 1la, This
will insrease the cracked urea by the amount A, The J-integral is then
defined as the total energy released by this crack advance divided by the area
A. In a finite element model the local crack advance can be introduced by
shifting the nodes nosr the cvvack tip as shown in Figure 1b, This lcads to a
virtual crack extensjon at that particular point and the change in snergy in
the surrounding elements can then be calculated. A detailed description of
this method of calculating the J-integral is pgiveo in reference ([7].

RESULTS AND DISCUSSION

Two-Dimensional Analysis

The 2-D analysis was pezformed to evaluate the effect of elastic-plastic
material behavior on the stress intensity factor for a short crack. The
Ramberg-0sgood representation of the stress—strain curve was used with a power
hardening exponert (n) of 10, The finite element analysis of a tension-loaded
double—-edge crack plate was performed by using the mesh shown in Figure 2,
This model, consisting of 8-noded isoparametric elements, ropresents one-
quarter of the plate (Figure %) and a crack length to plate width ratio (a/W)
of 0.1. An a/¥ of 0.01 was also analyzed by adding 40 elements to the top and
right side of the model. The results for these two cases were essentially the
same indicating no significant effect of the plate width, Therefore, the
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Figure 1. J-integral calculation by virtusl crack exteasion,
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Figure 2. Finite element mesh for double-edge crack plate with a/W of 0.1.
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crack behaves as a small crack in an infinite medium, The elastic-plastic
analysis (deformation theory) was performed in 4 steps. The plastic zones
(effcctive stress yield stress) for the last three steps of a plane strain
analysis are shown in Figure 3. The davelopment of the plastic zone follows
the expected pattern for planc strain and does not secem to be affected by the
free surface in this small displacement analysis,

The J-integral for &« plane stress finite olement analysis is computed by
contour integrals and the stress intensity factor iz computed as

K=\ ET (3)

where E is the elastic modulus. These results are plotted in Figure 4 by nor-
malizing the elastic stress intensity factor by

K =1.,12 o m (4)

for an edge crack where o is the applied stress and s is the crack length,
Significant deviations from LEFM occur as claY increases with about a 5% devi-

ation for olcY = 0.7.

The J~integral can be estimsted [8] from J = Ie + Ip where Je is the
clastic part and Jp is the plastic part. The elustic J is computed by combin~

ing Eqs. (3) and (4) and adding a plastic zone size correction where
2 2
I - (1.12)° (6"/E) n(a + rY) (5)

and the plastic zone sixe correction for plane strain [9] is

1 2
Ty = g;-(llcy) (6)
The plastic J solution is given by
2
J =(1.12)" f(n) ¢, o a (7
P P
where ep is the applied plastic strain and
f(n) =3.85 Y n (1 = 1/n) + x/n (8)

where f(n) = 11,3 for n = 10, With this estimation schzae the J-integral can
be calculated and converted to K (Eq. (3)) to compare with the elastic solu-
tion and the finite element results (Figure 4), The estimated K's are very
close to the values computed from the finite element results.
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Figure 3. Plastic zone size as a function of applied strain.
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Computing the siress intensity factor in terms of the applied =ztrain
rather thean stress is & simple means of incorporating nonlinear offects in the
crack tip parameter., This "strain intensity factor” is expressed as

Kwi1,12Ec¢ ‘ gla + rY) (9)

where ¢ is tha applied strain. The results with this simple method agree well
with the finite olement results as illustrated in Figure 4.

There has been an extensive amount of experimental data published con-
cerning the cyclic crack growth rate behavior of small cracks, These experi-
ments all indicate a deviation from LEFN behavior for small cracks. The data
usually involves a plot of the cyclic stress (Ao) required to propagate &
crack versus the crack size. For large cracks the data follows the line

predicted by LEFM (Aa‘ a = constant) while for short cracks Ac is less than
predicted by LEFMN. By normalizing the crack length by the plastic zone size
(Eq. (6)), LEFN and the elastic-plastic fracture mechanics (EPFM) results in
Figure 4 can be displayed as in Figure 5. The LEFM line is dependent only on
the crack gecmetry (1.12) while the EPFM liune is dependent on the power har-
dening exponent (n). Deviations between LEFM and EPFN begin when the appliad
stress is about 70% of the yield strength and the plastic zone size is about
10% of the crack length (Figure 5). This suggests that experimental data for
the threshold of cyclic crack growth of small cracks should be treated with
EPFM. A compilation of much of this data [10] is used here to demonstrate the
use of EPFM to interpret the small crack behavior. The threshold value of the
stress is normalized by the fatigue limit of a smooth specimen and plotted as
s functioa of the crack length divided by the intrinsic crack lsngth for the
smooth specimen (Figure 6). The intrinsic crack length is defined by the LEFM
relationship (Eq. (4)) where K is the threshold stress intensity factor and ¢
is the fatigue limit, The LEFN prediction fits the long crack data while for
short cracks the threchold stress is considerably less than predicted (Figure
6). The EPFM prediction produced by using the results in Figure 4 and the
assumption that the fatigue limit is 1.2 times the yield stress, fits the gen-
eral trend of the data for long and short cracks. The data in Figure 6
represents & wide variety of steels, copper, and aluminum (10}, A power har-
doning exponent of 10, which is typical of many metals, was used for the EPFM
prediction, However, a more precise prediction of the individual data points
could probably be obtained by using the specific power hardening expoments for
each of the meaterials.

Three-Dimensional Analysis

Many small surface cracks in test burs, crack growth rate specimens, and
components are of a sgemicircular or semielliptical shape, These two-
dimensional crack surfaces require a three-dimensicnal stress analysis. A 3-D
finite element analysis of a small semicircular surface crack in a semi-
irfinite body has been performed. The actual 3-D mesk consists of a crack
with a length equal to 0,1 of the radius of a half-cylinder which represents
the semi-infinite body. The mesh has 340 20-noded isoparametric elements and
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1864 nodes. The known stress intensity factor for a semicircular surface
crack is given by [11])

K = F(2/n) of na (10)

whexre o {3 the stress applied pexpendicular to the crack, a is the crack
length, and F is ¢ geomelry factor. For s small surface crack the average
value of F from other solutions (11) is 1.19 at the surface and 1.03 &t the
maximum depth point (90* from the surface). By using the virtual crack ecxten-
sion technique, the J-integral was calculated st 11 positions along the crack
front. The J values were convertcd to K values by the relationships K =

4 JE/(1 - “2) (Figure 7). These computed valucs at the surface and the max-
imun depth poinl were almost exactly the same as the average of the other
solutions. This provides confidence in the finite clement mesh and the compu-
tation of the J-integral for small 3-D surface cracks. These results for the
clastic analysis show & smooth variation of F along the crack front. The
small oscillations in the computed values (Figure 7) ruesultl from a piecewise
linear model of the curved crack front.

An elastic-plastic analysis of the small, semicircular, surface crack was
performed using the deformation theory of plasticity. One step to an applied
strest of 0.7 of the yield stress was taken. The virtual crack extension
techiiique was used to compute J and X as in the elastic analysis. The results
show a unique variation of F along the crack front (Figure 7). For 0 ) 15°
the stress intensity is beginning to increase due to clastic-plastic effects.
This is consistent with th¢ 2-D analysis. However, where the crack intersccts
the free surface (6 = 0), the stress intensity has decreased. This effect is
duec to increased yielding at the free surface due to a lack of censtraint.
The region below the free surfaco, where there is plane sirain constraint,
carries a larger portion of the load., This variation in constraint asiong the
crack front produces a plastic zone which is smaller in the interior than on
the free surface.

Ar. example of the use of this 3~D analysis in predicting cracvk shapes for
cyclic creck growth is shown in Figure 8. The computed variation of X along
the crack front is incorporated into a cyclic crack growth rate computation by
using the power law crack growth rate relation. This expression can be
integrated to compute the crack length as a function of cycles. One-half of
four surface cracks is shown in Figure 3. In Figurss 8a and 8b the initial
surface crack is ssmicircuiar while in Figures 8c and 8d the depth-to-length
ratio is 2,0 and 0.5, respectively. The crack shape is plotted when the crack
has grown in the dopth direction by an increment equsl to 10% of the original
depth (10% of the original surface length for Figure 8d). Figure 8a shows the
growth of a crack for LEFM conditions while Figures 8b, ¢, and d include EPFM
considerations as illustrated in Figure 7. The decreased amount of crack
growth on the surface for the elastic-plastic conditions is s result of the
decrease in the crack driving force on the surface aud the increase in the
crack driving force below the surface with increased pleasticity (Figure 7).
This prediction is consistent with experimental observations and empirical
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adjustments to LEFN calceulations [12). In Figures 8c and ¢ stress intensxity
factors for cliiptical surface cracks [11] are combined with corrections for
clastic-plastic conditions to show how decp and shallow cracks propagate Lo
crack shapes that are nearly the same.

CONCLUSTONS

Predictions of fatigue lifetimos of components and test spocimens and the
interpretation of cyclic crack growth rate dats require accurate representa-
tion of the crack driving force for small cracks. Rosults of two-dimonsional
analysis of an edge crack indicate that varistions from LEFM begin at an
appljed stress of about 0.7 of the yield strength where the plastic zone size
is about 0.1 of the crack length. Above this level an effective K can be cal-
culated with the J-integral 2rom finite clement analysis or Lhe J-integral
estimation scheme wr with a strain intensity factor. The trend of the smull
crack data for the threshold stress for c¢yclic crack growth can be predicted
by EPFM techniques. The results of 3-D clastic-plastic analysis of a small
surface crack show a unique wvariation of the crack driving force slong the
crack front with & decreanse in the crack driving force at the surface and an
incresse in the crack driving force below the surfoce with increasing plasti-
city. This information was used to predict crack shapes for cyclic growth
that are in general zgrecment with the observed trznd of reduced crack growth
on the surface.
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