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CLASS-SPECIFIC ITERATED SUBSPACE CLASSIFIER 

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS 

[0001]    None 

STATEMENT OF GOVERNMENT INTEREST 

[0002]    The invention described herein may be manufactured and 

used by or for the Government of the United States of America 

for governmental purposes without the payment of any royalties 

thereon or therefor. 

BACKGROUND OF THE INVENTION 

(1) Field of the Invention 

[0003]    The present invention generally relates to a class- 

specific signal analysis method using a subspace that maximizes 

class-specific J-functions. 

(2) Description of the Prior Art 

[0004]    Characterizing an input signal using automated data 

processing systems is a common problem in many fields.  In 

sonar, it is often desirable to separate natural sources from 

manmade sources.  This is also true in radar.  In speech 

recognition, it is desirable to recognize phonemes so that 
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speech can be turned into text.  In virtually all state-of-the- 

art methods, the process of characterizing the data is divided 

into two separate stages.  In the first stage, it is necessary 

to extract features (useful information in the form of a compact 

set of parameters) from the input data that is useable by 

automatic recognition algorithms.  In the second stage, an 

algorithm, usually a probabilistic model, decides which type of 

signal is present based on the features. 

[0005]    An example of such a system is automatic speech 

recognition (ASR) system as implemented on a computer.  In the 

first stage of a state-of-the-art ASR system, the speech signal 

is divided into equal-sized segments, from which features are 

extracted.  These features are usually extracted in mel-scale 

cepstral format because this format focuses on the frequency 

response of human hearing. 

[0006]    The mel-scale cepstrum is calculated by taking the 

Fourier transform of a time domain signal to produce a spectrum. 

Powers of the spectrum are mapped onto the mel scale. 

Logarithms are taken of the powers at each of the mel 

frequencies.  A discrete cosine transform is calculated for the 

logarithms of the mel powers.  The mel-scale cepstral 

coefficients are the calculated discrete cosine transform 

coefficients.  In ASR systems, the mel-scale cepstral 
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coefficients are used as the feature set for recognizing 

phonemes. 

[0007]    In mathematical terms, one may write the MEL cepstrum 

features as 

z = DCT{log(A'y)), (1) 

where vector y is the length-iV/2+ 1 spectral vector, the 

magnitude-squared DFT output and the columns of A are the MEL 

band functions, and the "prime" notation indicates the transpose 

of the matrix A. The logarithm and the discrete cosine transform 

(DCT) are invertible functions. There is no dimension reduction 

or information loss so they may be considered a feature 

conditioning step, which results in more Gaussian-like and 

independent features. 

[0008]    Other approaches of feature set development are taught 

in the prior art.  The use of signal-dependent or class- 

dependent features for classification, known as the class- 

specific method or CSM, is covered in patent 6,535,641, "Class- 

Specific Classifier".  The probability density function (PDF) 

projection theorem (PPT) is disclosed in Baggenstoss, "The PDF 

Projection Theorem and the Class-Specific Method", IEEE 

Transactions on Signal Processing, Vol. 51, No. 3 (March 2003) 

which is incorporated by reference.  The probability density 

function projection theorem eliminates the need for sufficient 

statistics and allows the use of class-dependent reference 
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hypotheses, improving the performance of any classification 

system using class-dependent features.  U.S. Patent No. 

6,466,908, entitled "System and Method for Training a Class- 

specific Hidden Markov Model Using a Modified Baum-Welch 

Algorithm" alleviates the need for a common feature set in a 

HMM. 

[0009]    The key operation here is dimension reduction by 

linear projection onto a lower-dimensional space. Now, with the 

introduction of the class-specific method (CSM) and the PDF 

projection theorem (PPT), one is free to explore class dependent 

features within the rigid framework of Bayesian classification. 

Some work has been done in class-dependent features; however, 

existing approaches are only able to use different features by 

using compensation factors to make likelihood comparisons fair. 

Such approaches work if the class-dependent feature 

transformations are restricted to certain limited sets. Both 

methods fall short of the potential of the PPT, which makes no 

restriction on the type of feature transformations available to 

each phoneme. Under CSM, the "common feature space" is the time- 

series (raw data) itself. Feature PDFs, evaluated on different 

feature spaces are projected back to the raw data space where 

the likelihood comparison is done. Besides its generality, the 

CSM paradigm has many additional advantages as well. For 

example, there is a quantitative class-dependent measure to 
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optimize that allows the design of the class- -depen dent features 

in isolation , without regard to the other classes. 

[0010]    A prior art classifier is shown in FIG. 1.  The 

classifier 2 receives data from a data source 4 . Data source 4 

is joined to a feature transformation module 6 for developing a 

feature set. The feature set is provided to patte rn match 

processors 8 , which correspond to each data class. Pattern 

match processors 8 provide an output measuring the developed 

feature set against trained data.  The pattern match processor 8 

outputs are compared in a comparison 9 and the highest output is 

selected. 

[0011]    FIG. 2 shows a class specific classifier as disclosed 

in United States Patent No. 6,535,641 which is incorporated by 

reference herein.  In this classifier, a data source 10 supplies 

a raw data sample X to the processor 12 at a processor input 14. 

It is assumed that the data source can be type A, B, or C, but 

the identity is not known.  Processor output 16 is a decision 

concerning the identity of the data source, i.e. A, B, or C. 

The processor 12 contains one feature transformation section 18 

for each possible data class.  These sections 18 are joined to 

receive the raw data X at processor input 14.  Each feature 

transformation section 18 produces a feature set for its 

respective class.  The processor 12 further contains pattern 

match processors 20 with each pattern match processor joined to 
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a transformation section 18 for receiving a feature set 

associated with one class.  The pattern match processors 20 

approximate the probability density functions (PDFs) of the 

feature sets for data sampled from the corresponding data class. 

The output of the pattern match processors 20 are highest when 

the input feature set is similar to or "matches" the typical 

values of the training set.  Because the pattern match 

processors 20 are operating on different feature sets, the 

outputs cannot be directly compared to arrive at a decision 

without compensation.  Compensation processors 22 process the 

raw data X together with the feature set, Zj, and provide a 

correction term in accordance with the PPT, which,  when 

multiplied by the output of pattern match processors 20, convert 

the PDFs of feature sets Z:, into PDF of the raw data X.  The 

outputs of the compensation processors 22, called the "J 

function" in the terminology of the class-specific classifier, 

are passed to a multiplier 24 which multiplies this output with 

the output of the pattern match processors 20.  The result of 

the multiplication 24, which is an estimate of the PDF of the 

raw data X for the given class, is processed by a comparison 26 

joined to the processor 12 output 16.  The output 16 is the 

identity of the data class that has the highest output from the 

multiplier 24. 
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SUMMARY OF THE INVENTION 

[0012]    Accordingly, there is provided a method for 

calculating a class-specific iterated subspace for a 

classification system utilized in a computing system.  Training 

data in the specific class for the class-specific iterated 

subspace is collected.  A linear orthogonal transform is applied 

transforming the data into at least one bin.  Magnitude squared 

bins are calculated and used as columns of a matrix. 

Orthonormal vectors of this matrix are selected and a J function 

is calculated.  The J function and orthonormal starting vectors 

are used to obtain the class-specific iterated subspace for each 

class.  The method further applies these class-specific iterated 

subspaces in a classification system for determining the most 

likely class of a data signal of interest. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0013]    The foregoing features of the present invention will 

become more readily apparent and may be understood by referring 

to the following detailed description of an illustrative 

embodiment of the present invention, taken in conjunction with 

the accompanying drawings, in which: 

[0014]    FIG. 1 is a diagram of a prior art classifier using 

conventional technology; 
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[0015]    FIG. 2 is a diagram of a prior art class specific 

classifier; and 

[0016]    FIG. 3 is a diagram of a class specific classifier 

implementing aspects of the current invention. 

DESCRIPTION OF THE EMBODIMENTS 

[0017]    When applying the class specific method, one must find 

class-dependent signal processing to produce features that 

characterize each class.  This invention applies specifically to 

class-specific classifiers in which the features are produced by 

these three steps (1) applying a Fourier transform or discrete 

Fourier transform to the input data to obtain a power spectral 

vector y, (2) then the multiplication of a spectral vector y by 

a dimension-reducing matrix A, then (3) optionally applying a 

feature conditioning transformation.  While the Fourier 

transform and discrete Fourier transform are explicitly 

mentioned here, it is understood by those skilled in the art 

that other transforms could be used for this.  These transforms 

include the discrete cosine transform, wavelet transform and the 

like.  We seek an automatic means of optimizing the matrix A for 

a given class. We first review the class specific method. 

[0018]    Let there be M  classes among which we would like to 

classify. The class-specific classifier, based on the PPT, is 

given by 
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arg maxp (x | //„,), (2) 
m 

where p„\x\Hm)   is the projected  PDF (projected from the feature 

space to the raw data space). The projected PDF is given by 

pMH*,)=J*,(X>A»>HoJp(Zn,K\ (3) 

where p(zm\Hm)   is the feature PDF estimate (estimated from 

training data) and the J-function is given by 

I   (r A   H     )      ^K"*) J
m\

X^/lm,n0.mf-       I        \rj       \ (A) 

and Ho,m  are class-dependent reference hypotheses. In the 

remainder of the discussion, we drop the subscript m in the 

interest of simplicity, leaving a common reference hypothesis 

denoted by Ho.      In accordance with the above described 3-step 

method, the class-dependent features zm   are computed from the 

spectral vector ythrough the class-dependent subspace matrices 

Am,   as 

zm=C{A\y\ (5) 

where C is the feature conditioning transformation where the 

"prime" notation indicates the transpose of matrix Am .     Note 

that the J function is a fixed function of x  precisely defined by 

the feature transformation from x to z and the reference 

hypotheses H0m. 
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[0019]    It is the "compensation term" that allows feature PDFs 

from various feature spaces to be compared fairly because the 

resulting log-likelihood function is a PDF on the raw data space 

x. The J function is a generalization of the determinant of the 

Jacobian matrix in the case of a 1:1 transformation. The PPT 

guarantees that pp{x\Hm)     given by (3) is a PDF, so it integrates 

to 1 over xregardless of the reference hypothesis H0m   or the 

feature transformation producing zm  from x.   It is up to the 

designer to choose H0m and Am to make pp\x\Hm)  as good an estimate 

of p\x\Hm)  as possible. The designer is guided by the principle 

that if zm±s   a sufficient statistic for Hm   then pp(x\Hm)  will 

equal p\x\H m) (provided p\zm\Hm)   is a good estimate). We can also 

think of it as a way of imbedding a low-dimensional PDF within a 

high-dimensional PDF. We have good reason, as we shall see, to 

use a common reference hypothesis, H0  which simplifies the 

classifier to 

arg max Jm(x,Am,H0)p{zm\Hm) (6) 

where the J function, •/,„(*), now depends only on Am .   Note that in 

contrast to other class-dependent schemes using pairwise or tree 

tests, the class specific method is a Bayesian classifier and 

has the promise of providing a "drop-in" replacement to the MEL 

cepstrum based feature processors in existing ASR systems.  The 
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J function for this specific feature set is covered in Steven M. 

Kay and Albert H. Nuttall and Paul M. Baggenstoss, 

Multidimensional   Probability Density Function  Approximation   for 

Detection,   Classification  and Model   Order Selection,   IEEE Trans. 

Signal Processing, Oct, 2001, which is incorporated by reference 

herein. 

[0020]    We are interested in adapting the matrix A to an 

individual class. We propose the strategy of selecting Am to 

maximize the total log-likelihood of the training data using the 

projected PDF. Let 

L(x\x\..xk;Am)=f\ogpp(x'\Hm) (7) 

where K  is the number of training vectors. If we expand pp[x\Hm\ 

we obtain: 

,(+o- P(*\HOY 

p{zJf*o) 
K*,X)i (8) 

where H0   is the independent Gaussian noise hypothesis, we see 

that the term p(x|//0) is independent of Am .     Thus, to maximize L, 

we need to maximize the average value of 

log/3(zm|//J-log/;(zm|//0) (9) 

[0021]    It is difficult to determine how the first term 

p[zm\Hm)   is affected by changing Am.     To determine the effect of 

changing A ,   new feature vectors zm   need to be calculated for 
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each training sample, then the PDF needs to be re-estimated and 

p[z m\H m)   needs to be evaluated for each training sample. On the 

other hand, given the simplicity of the reference hypothesis H0, 

the second term p{zm\HQ)   can be known, either in analytic form or 

in an accurate analytic approximation.  This is taught by Kay et 

al., "Multidimensional Probability Density Function 

Approximations for Detection Classification, and Model Order 

Selection," IEEE Transactions on Signal Processing, Vol. 49, No. 

10, pp. 2240-2252, (October 2001), which is incorporated by 

reference herein.  Furthermore, the first term can be made 

nearly independent of Am,   by requiring Am,   to be orthonormal.  We 

proceed, then by ignoring the term p(zm\ Hm)and  maximizing the 

function 

Q(x\x2...xK-Am)=-j^\ogp(z'm\Hn) (10) 
/ i 

[0022]    The change in p{zm\Hm)   can be minimized as Am   is 

changed by insisting on an orthonormal form for Am .      Thus, by 

maximizing L (7) under the restriction that Am   is orthonormal, 

we approximately maximize L.  Constraining Am   such that the 

columns of Am   are an orthonormal set of vectors. We use a 

orthonormality under the inner product: 

Nit 
<x,y>=^deixly„ (11) 

;=o 
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where s,   has the value of the number of degrees of freedom in 

spectral bin i. For a discrete Fourier transform, et   has the 

value 2 except for the end bins (0 and A//2) where it has value 

1. Ortho-normality under this inner product means that the 

spectral vectors will be orthonormal if extended to the full N 

bins. Use of orthonormality helps to stabilize the term as Am   is 

varied. 

[0023]    Am   is further constrained with respect to energy 

sufficiency. The energy sufficiency constraint means that the 

total energy in x, 

N 

£ = 1>,2 (12) 
1=1 

can be derived from the features. Energy sufficiency is 

important in the context of floating reference hypotheses. In 

order that the classifier result is scale invariant, we need 

energy sufficiency. With energy sufficiency, the term 

f#0 ,13) 

will be independent of the variance used on the H0 reference 

hypothesis. Note that E = e^ylN,   where e, =[1,2,2,2...,2,1]', which is 

composed of the number of degrees of freedom in each frequency 

bin. Thus, energy sufficiency means that the column space of 

Amneeds to contain the vector ev 
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[0024]    Since we would like the feature set created by 

projecting onto the columns of A to characterize the statistical 

variations within the class, a natural first step is to use 

principal component analysis (PCA). To do this, we arrange the 

spectral vectors from the training set into a matrix 

Y=[yly2...yK], (14) 

where K  is the number of training vectors. To meet the energy 

sufficiency constraint, we fix the first column of A to be the 

normalized et   identified as e, : 

e, = fl\ (15) 

To find the best linear subspace orthogonal to e, , we first 

orthogonalize the columns of Y  to et Yn=Y-(e]'Y).   Let U be the 

largest P singular vectors of Yn , or equivalently the largest P 

eigenvectors of YnY\.    P  is chosen to maximize the resulting 

performance. P  is usually between 3 and 10 as determined 

experimentally.  We then set A =[etU].    We then proceed to maximize 

(10) using steepest ascent, or any of a number of standard 

optimization techniques.  That is to say, the value of equation 

(10) is determined, and then matrix A is modified in some manner 

according to the optimization technique, then equation (10) is 

re-calculated to determine the effect of the modification. 

Convergence is determined when no further significant increase 
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in (10) is possible.  We use the term class-specific iterated 

subspace (CSIS) to refer to the columns of /^obtained in this 

way. 

[0025]    This method has been used with known experimental data 

(the TIMIT data set) as a source of phonemes.  The data consists 

of sampled time-series (in 16 kHz .wav files) of scripted 

sentences read by a wide variety of speakers and includes index 

tables that point to start and stop samples of each spoken 

phoneme in the text. In TIMIT, each speaker is identified by the 

dialect region speaker, and phoneme. Dialect region takes values 

from 1-8. The speaker is identified by a 5 character code such 

as FDAWO or MGRLO. The initial letter F or M indicates the sex 

of the speaker.  There are 61 phonemes in the database, having a 

1 to 4 character code. We use the term dataclass  to represent 

the collection of all the phonemes of a given type from a given 

speaker. The average number of utterances of a given 

speaker/phoneme combination is about 10 and ranges from 1 up to 

about 30 for some of the most common phonemes.  Speaker/phoneme 

combinations with no fewer than 10 samples were used. 

[0026]    In all of our classification experiments, the 

utterances of a given speaker/phoneme were divided into two 

sets, even (samples 2,4,6 ...) and odd (samples 1,3,5...). We 

conducted two sub-experiments, training on even, testing on odd, 
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then training on odd, testing on even. We reported the sum of 

the classification counts from the two experiments. 

[0027]    We now describe the processing for the features of the 

MEL cepstrum classifier (MCC) and CSIS. In order to concentrate 

on the basic dimension reduction step (equation 2), the simplest 

possible processing and PDF modeling was used. Each step in the 

processing is described below, in the order in which it is 

processed. 

[0028]    The phoneme data was pre processed by resampling from 

16 kHz down to 12 kHz. Phoneme endpoints were correspondingly 

converted and used to select data from the 12 kHz time-series. 

The phoneme data was also truncated to a multiple of 384 samples 

by truncating the end. Those phoneme events that were below 384 

samples at 12 kHz were not used.  Doing this allowed us to use 

fast Fourier transform (FFT) sizes of 48, 64, 96, 128, or 192 

samples, which are all factors of 384. 

[0029]    We computed non-overlapped unshaded (rectangular 

window function) FFTs resulting in a sequence of magnitude- 

squared FFT spectral vectors of length A//2+1, where N  is the FFT 

size. The number of FFTs in the sequence depended on how many 

non-overlapped FFTs fit within the truncated phoneme utterance. 

[0030]    Spectral vectors were normalized after FFT processing. 

For non-speaker-dependent (MEL cepstrum) features, the spectral 

vectors were normalized by the average spectrum of all available 
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data. For class specific iterated subspace (CSIS) (speaker- 

dependent) features, the spectral values for each 

speaker/phoneme combination were normalized by the average 

spectrum for that speaker/phoneme. In classification 

experiments, the average spectrum was computed from the training 

data to avoid issues of data separation. 

[0031]    Next, the spectral vectors, denoted by y, were 

projected onto a lower dimensional subspace by a matrix as in 

(2) resulting in feature vectors, denoted by w.  For the mel 

cepstrum classifier, the columns of A were mel frequency band 

functions. The number of columns in matrix A was Nc +2   including 

the zero and Nyquist half-bands, (see figure 1) .  For CSIS, A was 

an orthonormal matrix determined from the optimization 

algorithm. For CSIS, the number of columns of A was P+l where P 

is the number of basis functions in addition to the first column 

ev 

[0032]    From a statistical point of view, feature conditioning 

has effect on the information content of the features. It does, 

however, make probability density function (PDF) estimation 

easier if the resulting features are approximately independent 

and Gaussian. For MCC, the features were conditioned by taking 

the logarithm and discrete cosine transform as in (1). For CSIS, 

features were conditioned first by dividing features 2 through 
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P+l by the first feature. This effectively normalizes the 

features since the first feature, being a projection onto ei, is 

a power estimate for the segment. Lastly, the logarithm of the 

first feature is taken. Mathematically, we have for CSIS 

w = A'y, (16) 

z,=log(w,), (17) 

z, =w,./w,,i = 2,3,...P + l. (18) 

[0033]    J-function contributions must be included for FFT 

magnitude-squared, spectral normalization, matrix 

multiplication, and feature conditioning. 

[0034]    We used a simple multivariate Gaussian PDF model, or 

equivalently a Gaussian mixture model (GMM) with a single 

mixture component. We assume independence between the members of 

the sequence within a given utterance, thus disregarding the 

time ordering. The log-likelihood value of a sample was obtained 

by evaluating the total log-likelihood of the feature sequence 

from the phoneme utterance. The reason we used such simplified 

processing and PDF models was to concentrate our discussion on 

the features themselves. 

[0035]    Classification was accomplished by maximization of 

log-likelihood across class models. For CSS and CSIS, we added 

the log J-function value to the log-likelihood value of the 

Gaussian mixture model, implementing (6) in the logarithm 

domain. 
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[0036]    FIG. 3 shows the class specific iterative subspace 

classifier 30 used in operation.  A spectral vector 32 provides 

classifier 30 with input y. Input is provided to class specific 

processing sections 34 which are each associated with and 

specific to a certain class of input.  Each processing section 

34 includes a class specific (CS) feature transform section 36, 

a CS J function section 38, a CS probability function section 

40, and a multiplier 42.  CS band functions, J functions and 

probability functions are computed for each class using 

iterative optimization before implementation of the classifier 

30 according to the method taught above.  Iterative optimization 

adjusts the CS band function 46 for each class to maximize 

output from multiplier 42 for that class.  Since it is 

impractical to predict the output of probability function 40, 

the method assumes that function 40 does not change when the CS 

band function is adjusted.  The method, thus, concentrates on 

maximizing only output from J-function 38.  By keeping band 

functions 46 normalized (orthonormal), the method minimizes the 

changes in function 40 during the optimization. 

[0037]    The CS feature transform section 36 includes a 

multiplier 44 receiving output (y) from spectral vector 32 and 

multiplying it by the CS band functions 46 for the associated 

class (Am) producing a CS modified spectral vector.  The CS band 

functions are class specific versions of the MEL band functions 
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A used in conventional MEL cepstrum analysis.  The CS band 

functions 46 are computed as disclosed above.  The CS modified 

spectral vector is provided to normalization and conditioning 

section 48.  Normalization and conditioning can be by 

conventionally known methods such as discrete cosine transforms, 

discrete Fourier transforms and the like.  It is preferred that 

this section provide valid results for negative inputs, so 

logarithmic processing is not desired.  Normalization and 

conditioning section 48 produces CS transformed data (Zm) .  The 

CS transformed data is provided as input to the CS probability 

function section 40.  CS probability function section 40 

provides an output indicating how well the CS transformed data 

matches the associated class.  CS J function section 38 receives 

input from spectral vector 32 and calculates a CS correction 

vector.  Multiplier 42 receives the CS probability function 

section 40 output and the CS correction vector from the CS J 

function section 38.  As an output, multiplier 42 provides a 

measure of how well the CS transformed data matches the 

associated class that is comparable among all of the classes. 

Comparator 52 receives the comparable matching data and provides 

an output signal indicating the class that is most likely to 

match that of the incoming spectral data. 
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CLASS-SPECIFIC ITERATED SUBSPACE CLASSIFIER 

ABSTRACT OF THE DISCLOSURE 

A method is provided for calculating a class-specific iterated 

subspace for a classification system utilized in a computing 

system.  Training data in the specific class for the class- 

specific iterated subspace is collected.  A linear orthogonal 

transform is applied transforming the data into at least one 

bin.  Magnitude squared bins are calculated and used as columns 

of a matrix.  Orthonormal vectors of this matrix are selected 

and a J function is calculated.  The J function and orthonormal 

starting vectors are used to obtain the class-specific iterated 

subspace for each class.  The method further applies these 

class-specific iterated subspaces in a classification system for 

determining the most likely class of a data signal of interest. 
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