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Attorney Docket No. 97247 

A METHOD FOR SOLVING COMBINATORAL OPTIMIZATION PROBLEMS 

STATEMENT OF GOVERNMENT INTEREST 

[0001]    The invention described herein may be manufactured and 

used by or for the Government of the United States of America for 

governmental purposes without the payment of any royalties 

thereon or therefor. 

CROSS REFERENCE TO OTHER PATENT APPLICATIONS 

[0002]    None. 

BACKGROUND OF THE INVENTION 

(1) Field of the Invention 

[0003]    The present invention relates to a method for solving 

optimization problems, particularly minimal Hamiltonian cycle 

type problems, and a practical utilization of the solutions for 

these problems, including the application of the solutions to 

routing as employed in naval convoying or other transit point 

scheduling. 

(2) Description of the Prior Art 

[0004]    It is known in the art that a "Traveling Salesman 

Problem" (TSP) involves finding a minimum length Hamiltonian 

Cycle (HC) - the path of visiting each vertex once and returning 

to the starting vertex.  The minimum length HC resolves the 



routing problem of the TSP which can also be applied to naval 

convoying, trucks routes or even transit point scheduling such 

satellite positioning. 

[0005]    The symmetric TSP with N  vertices has (N  - 1)!/2 

permutations, precluding an exhaustive search except for small N. 

Even a relatively small problem (e.g., N -  20) has 1016 distinct 

HCs; N =  40 leads to 1046 distinct HCs.  The Euclidean TSP is 

classified as an NP-hard problem, having no known algorithm for 

the general case whose number of operations is a polynomial 

function of N. 

[0006]    The (N -   1)!/2 permutations assume that any vertex can 

occupy any of N positions.  Isolating vertices into spatial zones 

locks each into a limited range of positions, subject to boundary 

vertex permutations.  This falls into a general area of dynamic 

programming. 

[0007]    Partitioning the vertices into sub-problems has been 

done for the Euclidean TSP.  In particular, a Polynomial Time 

Approximation Scheme (PTAS) generates a tour exceeding the 

optimal length by no more than a factor of 1 + £ in time N  0(1/E) . 

The approach involves a bounding square box dissected into 

squares and shifted randomly, with restrictions on edge crossings 

(to specified portals). 

[0008]    Most prior work on the TSP has focused on heuristics 

that generate tours.  For example: a simple heuristic involves 

going to the nearest point.  More complex heuristics include 

genetic algorithms, simulated annealing, and neural nets.  In 



some cases, these approaches have found optimal tours.  More 

likely, the approaches will come close (often to within two 

percent) of the optimal tour. 

[0009]    Another approach to the TSP makes use of a "DNA 

Computer".  This approach involves DNA strands (with appropriate 

genetic coding to represent each point) mixed together in a test 

tube.  A 7-point problem was solved by chemically eliminating all 

non-solutions.  Although this process avoids exhausting every 

possible permutation creating during the chemical reactions, the 

process may take several days to find a solution. 

[0010]    Practical applications connected with the TSP go beyond 

traditional combinatorial problems involving scheduling and 

routing (e.g., planning of supply convoy routes to support naval 

bases).  In physics, a three-dimensional Ising model used for 

studying phase transitions can be translated into a TSP problem. 

Scattering of X-rays from crystals can potentially involve 

accounting for as many as 30,000 different radiation paths. 

Other applications include VLSI chip fabrication, protein 

structure prediction, and the assignment of frequencies to 

transmitters in a communications network.  Existing patent 

references disclose methods for solving the TSP: 

[0011]    In Marks et al. (United States Patent No. 6,826,549), a 

system is provided that enables an interactively guided heuristic 

search for solving a combinatorial optimization problem.  The 

system initially performs a hill-climbing search of the 

combinatorial optimization problem to obtain a solution using 



initial default parameters.  The current solution and the 

combinatorial optimization problem are visualized on an 

optimization table, a table-top display device.  The parameters 

are altered based on the visualization of the combinatorial 

optimization problem and the current solution.  Then, the 

searching, visualizing, and setting are repeated until the 

solution is selected as an acceptable solution of the 

combinatorial optimization problem.  During the repeating, the 

parameters can be a set of probabilities, and in which case the 

search is a random perturbation-based search.  Alternatively, the 

parameters can be a set of priorities, in which case the search 

is an exhaustive local search. 

[0012]    In Okano (United States Patent No. 6,510,384), a method 

is provided for increasing the execution speed of a cost- 

minimizing routing algorithm, as employed in trucking or job shop 

scheduling.  Penalty functions for succeeding transit points 

along a route are added and examined for validity during trial 

route evaluation.  A soft time window is set for each transit 

point and proposed routes are evaluated using a total cost 

including all soft time windows along the route and the length of 

the route.  A static soft time window function and a dynamic soft 

time window function are correlated with each transit point.  The 

dynamic soft time window function for each transit point is the 

sum of the static soft time window function for the transit point 

and the dynamic soft time window function for a succeeding 

transit point in the direction of travel. 



[0013]    In Goray et. Al. (United States Patent No. 6,636,840), 

a computer system and associated method is configured to support 

solving NP-complete problems such as minimal Hamiltonian cycle 

type problems.  A primary network represented by the matrix of 

its edges is recorded in the memory space and an equivalent 

representation of the primary network is formed as a set of 

subnetworks.  Nodes of a present path are reordered according to 

a set of reordering rules and edge weights of edges of the set of 

subnetworks are changed according to a set of edge weight 

changing rules. 

SUMMARY OF THE INVENTION 

[0014]    It is therefore a general purpose and primary object of 

the present invention to provide a method for solving a 

combinatorial optimization problem that can include the 

"Traveling Salesman Problem". 

[0015]    It is a further purpose of the present invention to 

provide a method for solving a combinatorial optimization problem 

of naval conveying or other transit point routing/scheduling. 

[0016]    The approach in the present invention dissects a set of 

vertices lengthwise.  A line can dissect vertices contained in a 

plane, while a plane can dissect vertices disturbed in a three- 

dimensional space.  The approach then finds optimal Hamiltonian 

Paths (HPs) - paths by visiting each vertex once - for the 

isolated zones independently of the other zones. 



[0017]    The number of combinations of boundary vertices (i.e., 

vertices that can extend edges from a zone to the adjacent zone) 

determines the number of optimal HPs for each zone.  Sets of 

optimal HPs for each zone (with embedded HPs from previous zones) 

generate an HC for the set of vertices. 

[0018]    The present invention illustrates the procedure for a 

benchmark problem small enough to permit a detailed description 

of the entire solution process.  For example: the ATT48 benchmark 

problem, known to those skilled in the art and to those who would 

try to resolve a combinatorial optimization problem. 

[0019]    The success of the approach depends on limiting the 

number of potential boundary vertices and crossing edges.  In 

practice, sometimes as few as two edges will cross a boundary 

from one zone to another.  The number of crossing edges can be 

increased to improve the solution.  For example, if the optimal 

HC has four crossing edges between zones, the solution will 

improve by increasing the number of crossing edges from two to 

four. 

[0020]    In the present invention, the TSP problem is broken 

down into subproblems that depend on each other through boundary 

interactions.  The boundaries separate zones and have a 

lengthwise nature.  The boundaries form open-ended zones. 

[0021]    A single lengthwise boundary cuts the optimal HC into 

an even number of HPs, the sum of which must have the minimum 

length in each of the two created spatial zones.  For example, if 

two HPs are created, the HP in each created zone (terminated at 



boundary vertices in the other zone) must have the minimum 

length.  If an HP length exceeds the minimum, replacing the 

length with another HP (having the same vertices) will reduce the 

overall HC length.  Stated another way, it is not possible to 

dissect the optimal HC into two HPs and replace one of them with 

a shorter HP having the same vertices.  Each HP from the optimal 

HC will be the shortest length for that set of vertices. 

[0022]    The boundary vertices contained by the optimal HC 

associated with a particular dissection are not generally known; 

therefore, enumeration is required of all possible boundary 

vertices located in the adjacent zone.  Typically, not all 

potential boundary vertices will connect edges to the adjacent 

zone.  For example, as few as two edges (n = 2) could connect two 

zones.  For each value of n,   the binomial coefficient 
\nJ 

provides the number of boundary vertex combinations ("b" is the 

number of potential boundary vertices).  Summing over all values 

of n  leads to 2i)~1-l combinations (when n  = 0 and odd values of n 

are eliminated).  A minimum length HP is then found for each 

particular boundary vertex combination. 

[0023]    The second boundary isolates both zones 1 and 2 from 

the other vertices.  The approach then finds the set of minimum 

length HPs for the combined vertices zones 1 and 2, except that 

the previously determined HPs from zone 1 become embedded in the 

new HPs. 



[0024]    Boundary vertices can comprise all the vertices in the 

adjacent zone, or (more likely) a smaller subset.  Boundary 

vertices are usually those vertices closest to the boundary. 

Vertices close to the boundary often have the effect of 

eliminating other potential boundary vertices because the latter 

often lead to non-optimal HCs.  Table 1 lists the zones and 

boundary vertices that will be depicted in FIG. 1 thru FIG. 10. 

Vertices 5, 33, 18, 7, 19, 37 are not boundary vertices as they 

are shielded by other vertices closer to the boundary, which is 

why they are not considered. 

[0025] Table 1.  Zones and Boundary Vertices 

Zone Vertices Boundary Vertices 

1 4,35,45 26,10,24 

2 26,10,24 2,29,42,48,39,32 

3 2,29,42,5,48,39,32 41,34,14,25,13,21 

4 41,34,14,25,13,21 16,22,3,23,11,47 

5 16,22,3,23,11,47 8,1,9,40,15,12,20 

6 8,1,9,40,15,12,33,20 38,31,46,44,36 

7 38,31,46,44,18,7,36 28,6,30 

8 28,6,30,37,19 27,43 

9 27,43 17 

10 17   



[0026]    The set of minimum length HPs found for each zone 

(combined with all previously considered zones) includes embedded 

HPs from the previous zones.  Embedded HPS are those in which the 

solution has already been determined.  However, as the approach 

determines HPs for later zones, the approach filters out non- 

optimal embedded HPs from previous zones, until at the last zone, 

n  =  b =  2, and no extraneous HPs remain. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0027]    A more complete understanding of the invention and many 

of the attendant advantages thereto will be readily appreciated 

as the same becomes better understood by reference to the 

following detailed description when considered in conjunction 

with the accompanying drawings wherein like reference numerals 

and symbols designate identical and corresponding parts 

throughout the views: 

[0028]    FIG. 1 depicts a separation of the vertices of a 

typical transit point in which the vertices listed in Table 1 are 

separated into the open-ended and numbered zones with nine 

lengthwise boundaries and ten zones with no Hamiltonian paths 

depicted; 

[0029]    FIG. 2 depicts a Hamiltonian path between Zone 1 and 

Zone 2; 

[0030]    FIG. 3 depicts a Hamiltonian path extending from Zone 1 

through Zone 2 and onto Zone 3; 



[0031] FIG. 4 depicts a Hamiltonian path extending from Zone 1 

through Zone 2, 3 and onto Zone 4; 

[0032] FIG. 5 depicts a Hamiltonian path extending from Zone 1 

through Zone 2, 3, 4 and onto Zone 5; 

[0033]    FIG. 6 depicts a Hamiltonian path extending from Zone 1 

through Zone 2, 3, 4 onto Zone 5 back to Zone 4 through Zone 5 

and onto Zone 6 - routing back to vertices 13, 25 and 14 being 

necessary because of the increase to four crossing edges between 

zones 4 and 5; 

[0034] FIG. 7 depicts a Hamiltonian path extending from Zone 1 

through Zone 2, 3, 4 onto Zone 5 back to Zone 4 through Zone 5, 6 

and onto Zone 7; 

[0035]    FIG. 8 depicts a Hamiltonian path extending from Zone 1 

through Zone 2, 3, 4 onto Zone 5 back to Zone 4 through Zone 5, 

6, 7 and onto Zone 8; 

[0036]    FIG. 9 depicts a Hamiltonian path extending from Zone 1 

through Zone 2, 3, 4 onto Zone 5 back to Zone 4 through Zone 5, 

6, 7,8 and onto Zone 9; and 

[0037]    FIG. 10 depicts a Hamiltonian path extending from Zone 

1 through Zone 2, 3, 4 onto Zone 5 back to Zone 4 through Zone 5, 

6, 7, 8, 9 and onto Zone 10. 

DETAILED DESCRIPTION OF THE INVENTION 

[0038]    The method of the present invention discloses that when 

the introduced boundaries create zones with boundary vertices 

confined to the adjacent zones, the sets of candidate HPs are 

10 



found by advancing one zone at a time (whether on a two- 

dimensional plane or across a three-dimensional space), 

considering only the vertices in the zone in question (with 

embedded HPs from previous zones) and an adjacent zone "to the 

right" or in the direction of progression. 

[0039]    In FIG. 1, the vertices of a typical transit point 

scheduling separate ten zones by means of nine introduced 

boundaries, each dissecting as a lengthwise illustration.  As 

shown in succeeding figures (FIG. 2 thru FIG. 10), each zone is 

connectable to adjacent zones via a limited number of edges.  An 

edge is a straight line connecting two vertices. 

[0040]    The Zone 1 vertices (4, 35, and 45) can connect to two 

of the three boundary vertices in Zone 2 via inter-zone edges 

according to one of three combinations: 10 and 26, 26 and 24, or 

10 and 24.  Determination of minimum-length HPs involves 

evaluating all interior vertex permutations for each of the three 

boundary vertex combinations.  Table 2 shows the results. 

[0041] Table 2.  Candidate HPs for Zone 1 

26 4 35 45 10 

26 4 35 45 24 

10 4 35 45 24 

11 



[0042]    FIG. 2 depicts an optimal vertex permutation (i.e., the 

permutation having the shortest length) as 26-4-35-45-10.  The 

crossing edges are 4-26 and 45-10. 

[0043]    As shown in FIG. 3, introduction of the second boundary 

(between Zone 2 and Zone 3) leads to the determination of HPs for 

the combined vertices in Zone 1 and Zone 2 (vertices 26, 10, and 

24).  Each HP could terminate to two (or more) of the boundary 

vertices 2, 29, 42, 48, 39, and 32 in Zone 3.  Vertex 5 is not 

considered a boundary vertex because vertex 2 is directly in 

front of vertex 5; thereby, making it unlikely that vertex 5 

would extend into zone 2. 

[0044]    When n  =  2, the six boundary vertices in Zone 3 have 

fifteen possible combinations.  Although n  = 4 is possible, it 

would require two edges from vertex 10 to cross the boundary. 

Including extra crossing edges would lead to the evaluation of 

more boundary vertex combinations and would involve determining 

optimal HPs on the basis of the sum of their lengths (with 

embedded HPs from Zone 1).  Minimizing n   (when possible) reduces 

computation time. 

[0045]    Table 3 shows the possibilities searched in Zone 2 for 

the candidate HPs when n = 2 .  Vertices Vx and V2 are two of the 

boundary vertices 2, 29, 42, 48, 39, and 32.  Embedded HPs 10-24, 

10-26, and 24-26 are shown in bold typeface, both in the text and 

the tables that follow. 

12 



[0046]    Table 3.  Zone 2 Possibilities Searched Embedded HPs 

from Zone 2 

v2 VX Vi Vi Vl Vi Vi Vi Vi Vi Vx V! 

10 24 26 26 26 24 10 10 10 26 24 24 

24 10 10 24 24 26 26 24 26 10 10 26 

26 26 24 10 10 10 24 26 24 24 26 10 

V2 v2 v2 V2 v2 v2 V2 V2 V2 v2 v2 v2 

[0047]    Each of the twelve possibilities in Table 3 are 

searched for the fifteen V1/V2  combinations to obtain fifteen 

minimum-length HPs for Zone 2 (Table 4), with embedded HPs in 

bold typeface.  The Zone 2 solution contains only embedded HPs 

26-10 and 26-24, eliminating HP 10-24 (See FIG.2). 

[0048] Table  4.     Candidate  HPs   for  Zone  2 

2 26 10 24 29 

2 26 10 24 42 

2 26 10 24 48 

2 26 10 24 39 

2 26 10 24 32 

29 26 10 24 42 

29 26 10 24 48 

29 26 10 24 39 

13 



29 26 10 24 32 

42 26 10 24 48 

42 26 10 24 39 

42 26 10 24 32 

48 10 26 24 39 

48 10 26 24 32 

39 10 26 24 32 

[0049]    The Zone 3 solution (Table 5) has only two distinct 

embedded HPs: 2-42 and 32-42.  HP 32-42 is not the minimum length 

HP, but HP 32-42 will not be eliminated until later.  All other 

HPs were eliminated in the Zone 3 solution.  Embedded HPs in 

Table 5 are indicated in bold.  Table 4 shows that both HP 2-42 

and HP 32-42 contain the embedded HP 26-10 from Zone 2. 

[0050] Table 5.  Candidate HPs for Zone 3 

41 29 2 42 32 39 48 5 34 

41 29 2 42 5 48 32 39 14 

41 29 2 42 5 48 32 39 25 

41 29 2 42 5 48 39 32 13 

41 29 2 42 5 48 39 32 21 

34 29 2 42 5 48 32 39 14 

34 29 2 42 5 48 32 39 25 

34 29 2 42 5 48 39 32 13 

34 29 2 42 5 48 39 32 21 

14 



14 48 5 29 2 42 32 39 25 

14 48 5 29 2 42 32 39 13 

14 48 5 29 2 42 32 39 21 

25 48 5 29 2 42 32 39 13 

25 48 5 29 2 42 32 39 21 

13 39 48 5 29 2 42 32 21 

[0051]    Zone 4 connects edges to four boundary vertices in Zone 

5 (Table 6) generating two HPs for each boundary vertex 

combination.  For each case, either 1st and 2nd and 3rd and 4th, or 

the 1st and 4th and 2nd and 3rd boundary vertices can define the 

two HPs, effectively doubling the number of combinations.  The 

number of vertices in each HP can vary, but must sum to ten, and 

only the pair that minimizes the sum of their lengths is 

retained. 

[0052]    Zone 4 contains only six distinct embedded HPs: 34-21, 

34-25, 25-21, 41-21, and 41-25.  Edges 32-21 and 29-34 are both 

contained by embedded HP 34-21. 

[0053] Table 6.  Candidate HPs for Zone 4 

1st H P 2nd H P 

16 41 22 3 34 21 13 25 14 23 

16 41 22 3 34 21 13 25 14 11 

15 



16 41 22 3 34 25 14 13 21 47 

16 41 34 22 23 14 25 21 13 11 

16 41 22 23 13 25 14 34 21 47 

16 41 22 11 13 25 14 34 21 47 

16 41 34 3 23 14 25 21 13 11 

16 41 21 47 3 34 14 25 13 23 

16 41 34 3 11 13 14 25 21 47 

16 41 34 21 47 23 14 25 13 11 

22 41 34 3 23 14 25 21 13 11 

22 41 34 3 23 13 14 25 21 47 

22 41 34 3 11 13 14 25 21 47 

22 41 34 25 14 23 11 13 21 47 

3 34 41 25 14 23 11 13 21 47 

[0054]    Zone 5 (Table 7) has only four distinct sets of 

embedded HPs from Zone 4: 16-23 and 47-11; 16-47 and 3-23; 16-47 

and 23-11; 16-23 and 11-47. 

[0055]    Table 6 shows that the four distinct HPs in Zone 4 

(that are embedded in Zone 5) contain only two distinct HPs from 

Zone 3: 34-21 and 41-21.   Both have the embedded HP 2-42. In 

FIG. 5, HP 2-42 is contained in HP 34-21 (shown).  HP 41-21 is 

not shown, but differs only in that edge 41-29 replaces edge 34- 

29, so both contain HP 2-42.   In other words, the approach 

continues to automatically filter out extraneous HPs that locally 

16 



had a minimum length in a previous combination of zones (for a 

particular boundary vertex combination), but are not consistent 

with the global minimum-length HC. 

[0056]    In Table 7, the first HP connects two edges to Zone 6. 

The second HP demonstrates the "closing the loop" process 

necessary when the number of crossing edges n  decreases from one 

boundary to the next.  In this case, n  decreases from four 

(across the fourth boundary) to two (across the fifth boundary), 

and both ends of the 2nd HP terminate at boundary vertices in 

Zone 4.  The loop closes when the HP crosses back into FIG. 6 to 

capture vertex 13, 25 and 14.  As already noted, the terminating 

loop can contain ends from two separate HPs from Zone 4.  For 

example, the HPs 16-47 and 11-23 from Zone 5 lead to HPs 20-12 in 

Zone 6; HP 16-23 terminates in Zone 5 when n  =  2 in Zone 6.  In 

other words, HP 11-23 and vertices 3, 22, and 16 coalesce into HP 

16-11, which terminates in Zone 5. 

[0057]    Zones 6 to 8 have only two edges connecting to either 

adjacent zone.  The only remaining embedded HPs in Zone 6 (Table 

8) are 12-20 and 1-20, reducing the embedded HPs from Zone 5 to 

11-47 and 16-23, 16-47 and 23-11. 

[0058] Table 7.  Candidate HPs for Zone 5 

1st   HP 2 nd  HP 

8 16 23 3 22 1 47 11 

17 



8 22 16 23 3 9 47 11 

8 22 16 23 3 40 47 11 

8 22 16 47 11 15 3 23 

8 22 16 47 11 12 3 23 

8 22 3 16 47 20 23 11 

1 22 16 23 3 9 47 11 

1 22 16 23 3 40 47 11 

1 22 16 47 11 15 3 23 

1 22 16 47 11 12 3 23 

1 3 22 16 47 20 23 11 

9 22 16 23 3 40 47 11 

9 3 22 16 47 15 23 11 

9 3 22 16 47 12 23 11 

9 3 22 16 47 20 23 11 

40 3 22 16 47 15 23 11 

40 3 22 16 47 12 23 11 

40 3 22 16 47 20 23 11 

15 11 47 12 16 22 3 23 

15 11 47 20 16 22 3 23 

12 11 47 20 16 22 3 23 
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[0059] Table 8.  Candidate HPs for Zone 6 

38 8 1 9 40 15 12 20 33 31 

38 8 1 9 40 15 12 20 33 46 

38 8 1 9 40 15 12 20 33 36 

31 9 8 1 40 15 12 20 33 46 

31 9 8 1 40 15 12 20 33 36 

46 33 12 15 40 9 8 1 20 36 

[0060]    Table 9 indicates that Zone 7 has only one embedded HP 

(38-46), which has the effect of eliminating all extraneous (non- 

optimal) embedded HPs from all previous zones. 

[0061]    Finally, both Zones 8 and 9 have only two edges 

crossing their right boundaries (n  =  b  =   2), reducing the number 

of minimum-length HPs in both cases to one: 27-19-37-6-28-30-43 

(Zone 8) and 17-27-43-17 (Zone 9). 

[0062]    The optimal HC (Table 10) results from working 

backwards to extract the embedded HP (28-30) from the Zone 8 

solution, and then extracting the embedded HP (38-46), from the 

Zone 7 solution, etc.  Substituting all of the vertices into 

embedded HPs leads to the overall solution.  In FIG. 10, the 

vertices of the embedded HPs are circled. 

19 



[0063] Table   9.     Candidate  HPs   for  Zone  7 

28 7 18 44 31 38 46 36 6 

28 7 18 44 31 38 46 36 30 

28 7 18 44 31 38 46 36 37 

28 7 18 44 31 38 46 36 19 

6 7 18 44 31 38 46 36 30 

6 36 46 38 31 44 18 7 37 

6 36 46 38 31 44 18 7 19 

30 36 46 38 31 44 18 7 37 

30 36 46 38 31 44 18 7 19 

37 7 18 44 31 38 46 36 19 

[0064] Table 10.  ATT48 solution 

Zone Optimal HPS (embedded HPs in bold) 

1 26 4 35 45 10 

2 2 26 10 24 42 

3 34 29 2 42 5 48 39 32 21 

4 16 41 34 21 47 23 14 25 13 11 

5 12 11 47 20 16 22 3 23 

6 38 8 1 9 40 15 12 20 33 46 

7 28 7 18 44 31 38 46 36 30 

8 27 19 37 6 28 30 43 

9 17 27 43 17 
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[0065]    Introducing lengthwise boundaries allows optimal HPs to 

be determined locally for each zone (one for each boundary vertex 

combination).  The lengthwise boundaries also allow the solution 

to progress successively from zone to zone, automatically 

filtering out previous HPs that are inconsistent with a globally 

minimum-length HC.  Embedded HPs from previous zones helps to 

reduce the computation time. 

[0066]    The solution efficiency depends on the number of 

boundary vertices and crossing edges for each zone.   The 

referenced ATT4 8 problem requires only two interzone edges from 

each zone, except Zone 4, which has four inter-zone edges (to 

Zone 5) .  Although the approach considered only limited values of 

n  and b  rather than all possible values, the approach can also 

increase n  and b  for more complex problems. 

[0067]    Including results for n ¥=  2   (or n # 4 for Zone 4) will 

add non-optimal solutions to ATT48, increasing the computation 

time linearly with the added number of combinations. 

[0068]    The foregoing description of the preferred embodiments 

of the invention has been presented for purposes of illustration 

and description only.  It is not intended to be exhaustive nor to 

limit the invention to the precise form disclosed; and obviously 

many modifications and variations are possible in light of the 

above teaching.  Such modifications and variations that may be 

apparent to a person skilled in the art are intended to be 

included within the scope of this invention as defined by the 

accompanying claims. 
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Attorney Docket No. 97247 

A METHOD FOR SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS 

ABSTRACT OF THE DISCLOSURE 

A method for solving a combinatorial optimization problem 

and applying the solutions to routing as employed in naval 

convoying and other transit point scheduling.  The method 

involves isolating a plurality of vertices into open-ended zones 

with lengthwise boundaries.  In each zone, a minimum length 

Hamiltonian path is found for each combination of boundary 

vertices, leading to an approximation for the minimum-length 

Hamiltonian Cycle.  The method discloses that when the boundaries 

create zones with boundary vertices confined to the adjacent 

zones, the sets of candidate HPs are found by advancing one zone 

at a time, considering only the vertices in the zone in question 

(with embedded HPs from previous zones) and an adjacent zone in 

the direction of progression.  Determination of the optimal 

Hamiltonian paths for subsequent zones has the effect of 

filtering out non-optimal Hamiltonian paths from earlier zones. 
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