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Attorney Docket No. 98406

OLIVO-CEREBELLAR CONTROLLER

[0001] This application claims the benefit of United States

Provisional Patent Application Serial No. 60/994,093, filed on

September 17, 2007 and which is entitled "Olivo-Cerebellar

Controller" by the inventors, Sahjendra Singh and Promode R.

Bandyopadhyay.

STATEMENT OF GOVERNMENT INTEREST

[0002] The invention described herein may be manufactured and

used by or for the Government of the United States of America for

governmental purposes without the payment of any royalties thereon

or therefore.

CROSS REFERENCE TO OTHER PATENT APPLICATIONS

[0003] This application relates to United States Patent

Application Serial No. 11/901,546, filed on September 14, 2007 and

which is entitled "Auto-catalytic Oscillators for Locomotion of

Underwater Vehicles" by the inventors Promode R. Bandopadhyay,

Alberto Menozzi, Daniel P. Thivierge, David Beal and Anuradha

Annnaswamy.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

[0004] The present invention relates to a controller and

control system for an underwater vehicle; specifically, a

controller and control system which utilize non-linear dynamics
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supported by underlying mathematics to control the propulsors of

an underwater vehicle.

(2) Description of the Prior Art

[0005] Future underwater platforms are expected to have

numerous sensors and performance capabilities that will mimic the

capabilities of aquatic animals. A key component of such

platforms would be their controller. Because such platforms, and

an existing U.S. Navy Biorobotic Autonomous Undersea Vehicle

(BAUV) is an example, keep station in highly disturbed fields near

submarines or in the littoral areas, it is essential for the

platforms (vehicles) to have quick-responding controllers for

their propulsor systems.

[0006] Hydrodynamic models based on conventional engineering

controllers have not been able to produce the desired levels of

control. Thus, a biology-inspired controller is a realistic

alternative. Because the brains of animals perform complex tasks

which rely on nonlinear dynamics, the underlying mathematics

provide a foundation for the controller and control system of the

present disclosure.

[0007] Traditional control systems are designed using linear

models obtained by Jacobian linearization. This linearization

allows design using frequency domain techniques (such as lag-lead

compensation, PID feedback, etc.) and a state-space approach

(linear optimal control, pole assignment, servo-regulation,

adaptive control, etc.). However, any controller designed using

linearized models of the system will fail to stabilize unless the

perturbations are small.
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[0008] One must use nonlinear design techniques if the control

system is to operate in a larger region. For underwater vehicles,

linear and nonlinear control systems based on pole placement,

feedback linearization, sliding mode control, and adaptive

control, etc. have been designed. However, in these designs, it

is assumed that the vehicle is equipped with traditional control

surfaces. As such, these vehicles have limited maneuvering

capability.

[0009] For large and agile maneuvers, traditional control

surfaces are inadequate and new control surfaces must be

developed. Observations of marine animals provide the potential

of fish-like oscillating fins for the propulsion and maneuvering

of autonomous underwater vehicles (AUVs). AUVs exist with

multiple oscillating fins which impart high lift and thrust. The

oscillatory motion of the fins or propulsors is obtained by

inferior olives which provide robust command signals to

controllers and servomotors of the fins.

[0010] Inferior olives have complex nonlinear dynamics and

have robust and unique self-oscillation [(Limit Cycle Oscillation

(LCO)] characteristics. Efforts have been made to model the

inferior olives (10). Limited results on phase control of IOs in

an open-loop sense are available using a pulse type stimulus.

However, the required pulse height of the input signal which

depends on the state of the IOs at the switching instant as well

as the target relative phase between the IOs has not been derived.

For the application of the IOs to the AUV, closed-loop control
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systems must be developed for the synchronization and phase

control of the IOs.

SUMMARY OF THE INVENTION

[0011] It is therefore a general purpose and primary object of

the present invention to provide control laws for the

synchronization and phase angle control of multiple inferior

olives (10) used in a maneuvering controller or control system of

an underwater vehicle;

[0012] It is a further object of the present invention to

provide non-linear control laws that the controller or control

system can use to change a phase of one 1O with respect to

another 10; and

[0013] It is a still further object of the present invention

to provide a global control law for a controller to use in

maneuvering an underwater vehicle; and

[0014] It is a still further object of the present invention

to provide a local control law for a controller to use in

maneuvering an underwater vehicle.

[0015] In order to attain the objects described, the present

invention provides closed-loop control of multiple inferior olives

(IOs) for maneuvering a Biorobotic Autonomous Undersea Vehicle

(BAUV). A model of an ith IO is described where variables are

associated with sub-threshold oscillations and low threshold

spiking. Higher threshold spiking is also described.
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[0016] For the sake of simplicity, the synchronization of only

two IOs is considered, but it is seen that the approach is

extendable for the synchronization of any number of IOs.

[0017] In optimizing the controller or control system for

maneuvering, the state vector for the ith 10 is defined and a

nonlinear vector function and constant column vector are obtained.

Synchronization is defined by first considering the

synchronization of two IOs having arbitrary and possibly large

initial conditions. Note that if a delay time is zero, the IOs

oscillate in synchronism with a relative phase zero. However, if

one sets the delay time, the 101 will oscillate lagging behind the

102 with a relative phase angle. Although, the convergence of the

synchronization error has been required to be only asymptotic; for

practical purposes, it will be sufficient if one can design a

control system for the I01 which is sufficiently fast.

[0018] In the disclosure, four control systems are presented

for the synchronization of two IOs based on an input-output

feedback linearization (nonlinear inversion) approach. For the

purpose of the design of the controller or control system, output

variables associated with the nonlinear system. It is shown that

the choice of the output variable is important in shaping the

behavior of the closed-loop system; although, by following the

approach presented, various input-output linearizing control

systems can be obtained.

[0019] The derivation of a control law is considered for the

global synchronization of the 101 with the reference 102. It is

desired to design a synchronizing control system such that 101
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oscillates in synchronism with a delay time corresponding to a

desired phase angle with respect to the reference 102. In global

synchronization, the synchronization is accomplished for all

values of initial conditions of the two IOs. The output function

is a function of the state vectors of 101 and 102. This choice of

the output yields the global result.

[0020] For the nonlinear closed-loop system, the output

satisfies a fourth order linear differentiai equation. One can

choose larger gains to obtain faster convergence to zero. For the

chosen output, because the system is of dimension four and the

relative degree is four, the dimension of the zero dynamics is

null. The zero dynamics represent the residual dynamics of the

system when the output error is constrained to be zero.

[0021] The frequency of oscillation of the IOs depends on the

system parameters. Signals of different frequencies can be

obtained by time scaling. In the disclosure it is observed that

the IOs are not initially in phase. As the controller switches,

the IOs synchronize. However, as the command changes, it causes

larger deviations in the tracking of trajectories due to a large

control input.

[0022] The controller or the control system uses feedback of

nonlinear functions of state variables and has a global

synchronization property. The complexity and performance of the

controller depends on the choice of the output function.

[0023] The IOs will synchronize if the equilibrium point is

asymptotically stable (globally asymptotically stable). For

asymptotic analysis, ignoring a decaying part, which represents
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the deviation of a trajectory from, a periodic signal can be

represented by a Fourier series. Moreover, the amplitude of the

harmonic converges to zero and for stability analysis a finite

number of harmonics will suffice.

[0024] A simple control law has linear feedback terms

involving only Y and wv variables and are independent of ui and vi

variables. The output wv satisfies a first-order equation

and in the closed-loop system wv tends to zero. However, the

stability in the closed-loop system will depend on the stability

property of the zero dynamics. Apparently if the origin

(i, i, ) = 0 of the zero dynamics is asymptotically stable, then

converges to zero as w tends to zero.

[0025] The relative merits of the four controllers are such

that the first controller has a global stabilization property and

the remaining controllers have established local synchronization.

It is expected that as the complexity of control law increases,

the region of stability enlarges. For this reason, one expects

that the control law can accomplish synchronization for relatively

small perturbations at the instant when the phase command is

given. Of course, the error, and therefore the synchronization of

the IOs, depends on the instant of controller switching. Based on

simulation results, it has been found that two control laws for

the controllers have fairly large regions of stability and one

control law does not necessarily have to use another control law.

[0026] Unlike the global control laws for the controller, the

local control laws provide smoother responses. This is due to a
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fast-varying nonlinear function of large magnitude in the control

law. There exists flexibility in the design, and by a proper

choice of feedback gains and the reference phase command signals,

one can obtain different response characteristics. This

flexibility in phase control of IOs is useful in performing

desirable maneuvers for the BAUV.

[0027] One must note that the profile of the control signal

will depend on the states of the IOs when a pulse is applied. The

derived controllers are based on the input-output feedback

linearization theory, as well as stability and convergence. The

control system can be switched on for phase control at any instant

since the system utilizes state variable feedback and one can

command the 10 to follow a sequence of phase change when needed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] Further objects and advantages of the invention will

become readily apparent from the following detailed description

and claims in conjunction with the accompanying drawings wherein;

[0029] FIG. 1A - ID are each a graph depicting global

synchronization using control law C, with 10, commanded to track

102 with a delay 0.125 for t e [0, 4), 0.25 for te [4, 6), 0.5

for tE [6, 8) and 0.75 for te [8, 10) with the controller of I01,

switching at two seconds, plots are of x 1(t) and x 2 (t - td);

[0030] FIG. 2A - 2D are each a graph depicting global

synchronization using control law, Cu, plots are of x2 (t) and

x2 (t - td) for command inputs of FIG. 1A - ID;
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[0031] FIG. 3A - 3D are each a graph depicting global

synchronization using control law, C, plots are of ui (t) , vi(t) ,

zi (t) and control inputs Iestl, Iext2 for command inputs of FIG. 1A

- ID;

[0032] FIG. 4A - 4D are each a graph depicting local

synchronization using control law C, with I01 commanded to track

102 with a delay 0.125 for t e [0, 4), 0.25 for t e [4, 6), 0.5

for t r [6, 8) and 0.75 for t e [8, 10) where the controller of

I01 switches at two seconds, plots are of xl(t) and x 2 (t - td);

[0033] FIG. 5A - 5D are each a graph depicting local

synchronization using control law, C,, plots of ul (t), vi (t), z1

(t) and control inputs Iextl, Iext2 for the command inputs of FIG.

1A - FIG. ID;

[0034] FIG. 6A is a graph depicting local synchronization

using control law Cz with I01 commanded to track 102 with a delay

0.125 for t e [0, 4), 0.25 for t e [4, 6), 0.5 for t E [6, 8),

and 0.75 for t E [8, 10) with the controller of I01 switching at

two seconds, plots are of x1 (t) and x 2 (t - td);

[0035] FIG. 7A - 7D are each a graph depicting local

synchronization using control law, Cz, plots of ul (t), v, (t),

z, (t) and control inputs Iextl, Iext2 for the command inputs of

FIG. 1A -ID;

[0036] FIG. 8A - 8D are each a graph depicting local

synchronization using control law Cw, with I01 commanded to track

102 with a delay 0.125 for t e [0, 4), 0.25 for t e [4, 6), t E
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[6, 8)and 0.75 for t E [8, 10) with the controller I01 switching

at two seconds, plots are of x1 (t) and x 2 (t - td);

[0037] FIG. 9A - 9D are each a graph depicting local

synchronization using control law, Cw, plots of ul (t) , v, (t) ,

zl(t) and control inputs Iexti, Iext2 for the command inputs of FIG.

1A -ID;

[0038] FIG. 10A - 10D are each a graph depicting local

synchronization using control law C,,, (faster oscillation) with I01

commanded to track 102 with a delay 0.125 for t E (0, 4), 0.25 for

t e [4, 6], 0.5 for t e [6, 8) and 0.75 for t e [8, 10) with the

controller I01 switching at two seconds, plots are of x1 (t) and

x 2 (t - td) ;

[0039] FIG. 11A - liD are each a graph depicting

synchronization, plots are of x 2 (t) and x 2 (t - td) for the command

inputs of FIG. 1A - ID; and

[0040] FIG. 12A - 12D are each a graph depicting local

synchronization using control law Cw (faster oscillation), plots

are of ul (t), v, (t), z, (t) and control inputs Iextl, Iext2 and

control inputs for the command inputs of FIG. 1A - ID.

DETAILED DESCRIPTION OF THE INVENTION

[0041] Referring now to the present disclosure, a subsection

on inferior-olives and a practical application of control laws

affecting inferior-olives are presented.
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Inferior Olives Model and Synchronization

[0042] This disclosure focuses on closed-loop control of

multiple inferior olives (IOs) for maneuvering Biorobotic

Autonomous Undersea Vehicles (BAUVs). The model of an ith 10 is

described by

21i. (1)

E / p(Z- Ca ECa

where the variables "zi" and "w", are associated with the sub-

threshold oscillations and low threshold (Ca- dependent) spiking,

and "uj" and "vi" describe the higher threshold (Na-

dependent) spiking. The constant parameters Eca and ENa control

the oscillation time scale; , and INa drive the depolarization

levels; and k sets a relative time scale between the uv- and zw-

subsystems.

[0043] The nonlinear functions are:

piu (u,) = u,(u, - a) (1 - u,) (2)

piz(zi) = zi(z i - a)(1 - zi)

"p" being a non-linear function and "a" is a constant parameter.

[0044] The function I,a (t) is the extra-cellular stimulus which

is used here for the purpose of control.

[0045] Define

= (u,,vi,zi,w,) T (R (3)

where "x" is the state vector of the ith 10, "R" is the set of

real numbers. Equation (1) can be written in a compact form as
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= fi(Xu) + (4)

where uciI=Ii is the control input of the ith 10 and "f","g" are

vectors. The nonlinear vector function ] (xdeR4 and the constant

column vector gj are obtained from Equation (1). It is known to

those skilled in the art that a system utilizing Equation (1)

exhibits limit cycle oscillations. Using harmonic balancing, it

is possible to predict the approximate magnitudes, frequency and

phases of periodic solutions of the components of the system.

[0046] As stated, the primary objective is to develop control

laws for the synchronization and phase angle control of multiple

IOs for the purpose of BAUV control. For the sake of simplicity,

the synchronization of only two IOs is considered, but it is seen

that the approach is extendable for the synchronization of any

number of IOs. Synchronization is defined first.

[0047] Consider two IOs

ii fi(xi) + glu'l (5)
= f2(X2) +

[0048] Suppose that the state vector x2 of the second 10 is

treated as the reference signal.

[0049] Consider a solution x2(t) of the 102 beginning from an

initial conditionx20, with an input uc2 = 0 set to zero and let

X2(t-td) ["t" being time] be the delayed signal obtained from x2 (t),

where td > 0 is an arbitrary delay time. Then for the prescribed

delay time td, I01 is said to be asymptotically synchronized to the

12
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102 if the error signal x (t) = x1(t) - x2(t - td) converges to zero as t

tends to o [infinity].

[0050] Consider the synchronization of the two IOs having

arbitrary and possibly large initial conditions. Note that if the

delay time is zero, x&Q)-x 2 ) diminishes to zero as time

progresses and the IOs oscillate in synchronism with a relative

phase zero. However, if one sets the delay time as

td = 0 / (27rf) ("If " is the period of oscillation of the 102),

the 10, will oscillate lagging behind the 102 with a relative

phase angle 0. Although, the convergence of the synchronization

error, has been required to be only asymptotic, for practical

purposes, it will be sufficient if one can design the control

system for the 10, which is sufficiently fast.

Synchronizing Control Systems

[0051] Four control systems are presented for the

synchronization of the two IOs based on an input-output feedback

linearization (nonlinear inversion) approach. For the purpose of

the design, consider output variables associated with the

nonlinear system for Equation (5) of the form

e = h (X1 , X2 - td)) 6)

[0052] Later "h", which is a function of the state variables of

the two IOs, is selected to meet the desired objective. It will

be seen that the choice of the output variable "e" is important in

shaping the behavior of the closed-loop system. Although, by

13
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following the approach presented here, various input-output

linearizing control systems can be obtained, derivation of the

four control systems of varying complexity and synchronizing

characteristics are considered.

Global Synchronization: Control Law (C )

[0053] Now consider the derivation of a control law for the

global synchronization of the 101 with the reference 102. The

reference 102 has an input I,, 2 =0. It is desired to design a

synchronizing control system such that 101 oscillates in

synchronism with a delay time of td seconds corresponding to a

desired phase angle with respect to reference 102. By global

synchronization, the synchronization must be accomplished for all

values of initial conditions xio e R4, i= 1,2 of the two IOs.

[0054] For the purpose of design, the controlled output

variable is chosen as:

e () = h. (xl (t), X2 ( - td) U1 W1  - U2 ( - td)(7

[0055] Note that the output function "e" is a function of only

the first component of the state vectors of 10, and 102 at time t

and t-td, respectively. But it will be seen later that this choice

of the output "e" yields the global result. The subscript "u" of

the function "h" denotes dependence on the variables "ui/'.
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[0056] For compactness, define the composite state vector for

the two IOs as Xa(t) = (x1(t) r , x 2 (t - td) T e R 8 , where "T" denotes

matrix transposition. Then from Equation (5), one has

.*ait W 1 XI f(t 1 )) 1 g]UC1Q
W (t - td)_ [ (x2 (t - td)) 0

(8)

f(Xa(t)) + gucl(t)

[0057] The state error ('=xI(t)-x 2(t-td)) dynamics and the

associated output e can be written as

x= fl(i(t) + x2 (t - td)) - f 2 (x 2 (t - td)) + giUci(t)

e(i(t), t) + glucm(t) (9)

e = hu(xa(t)) = hX ( t))

where fe( , t) = fl('(t) + x2 (t - td)) - f 2 (x2 (t - td)) is defined. Note

that argument "t" has been used in "fe" to indicate dependence on

the bounded and known delayed reference state vector of the

unforced 102. Thus, the system of Equation (9) can be treated as

a nonautonomous system of dimension four.

[0058] Define the Lie derivative of the function hu along the

vector field f as

Lfhu(Xa(t)) f(Xa(t)) "hu fA(x (t)) + u f 2 (x 2 (t - td)) (10)
axa ax1  a x 2

and f or k = 0,1 , 2 .... ; and let Lhu (xa) = Lf'h(xa()) and

LgLkh(Xa) axa g . (11)
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[0059] For the system of Equation (8), computing the Lie

derivatives, it is verified that for j = 0,1,2,3, one has

e(J)(t) = Lf hu(xa(t)) (12)

and for j = 4 gives

e(j)(t) = LJ* h(xa(t)) + LgL -'h(xa(t) uc(t)

(13)

- aul(.9, t) + buluc,

where e(k) = dek / dtk and one can show that bul = k2 ECa /ENa" For

the nonautonomous system of Equation (9), defining

L fe(. ) a= + -" fe (t, x(14)

one has

Lhu (I t) = LJhu(xa),j = 0, 1, ...,4 (15)

and LgiL e hu t) = b Since the control input appears in the

fourth derivative of the output e for the first time for the

system utilizing Equation (9), the output e is of the relative

degree r = 4.

[0060] In view of Equation (13), an input-output linearizing

control law is selected as

3
ue, = b-,'(-aul - I"pjLJfh. (x. (t)) (16)

j=0

where pj, j= 0,1,3, are the constant feedback gains and "b" is a

vector. Because e(j)(t) = Lfhu(xa(t)), substituting the control law
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of Equation (16) in Equation (13) gives an output equation of the

form

e(4) + p 3e(3) + p 2e(2) + pi + poe = 0 (17)

[0061] For the nonlinear closed-loop system of Equations (9)

and (16), the output e(t) satisfies a fourth order linear

differential equation. The gains pj are chosen such that Equation

(17) is exponentially stable, and thereby e(t) and derivatives of

e (t) converge to zero as t tends to infinity. Of course, one can

choose larger gains to obtain faster convergence of e(t) to zero.

For the chosen output, because the system of Equation (9) is of

dimension four and the relative degree of e is four, the dimension

of the zero dynamics is null. The zero dynamics represent the

residual dynamics of the system when the output error e(t) is

constrained to be zero.

[0062] In fact, there exists a diffeomorphism P, for t E [0,00)

mapping R4 into R 4 such that Y=P( ,t), where = (3))T E R 4 .

One can find the map P. First of all, one has W =e, where

Y=x1()-x 2(t-td)=(i,V,',iV)T is defined. Using Equation (12) one can

show that

e

P. ( ') q, (e,,t) (18)
q2(e, ,,t) (3)8

Lq3(e,, e(3,)

17
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where

q, = - ak + plu( + u2 0 - td)) - P2u(U2t - td)), q 2 = + e, and q 3 =

- 42 + Piz(i + z 2 - td)) - P2z(Z2 _ td)).

Note that the argument "t" in "qj"and Pu" indicates dependence on

the reference trajectory x2 t-td) and derivatives of the reference

trajectory. Furthermore, it can be verified that Pu (0, t) = 0; that

is, 3x=o when e and derivatives of e vanish. Because P, is a

diffeomorphism, P,,(,t)=o, and the linear system of Equation (17) is

exponentially stable, global synchronization of the IOs is

accomplished and the two IOs oscillate together but with the

required relative phase. Note that the control stimulus, l

vanishes when the IOs capture the unique limit cycle; only the 101

falls behind by the delay time td (phase angle c).

[0063] To examine the synchronizing capability of the control

system, the closed-loop system including the IOs given in Equation

(5) and the control law of Equation (16) is simulated. The

parameters of the IOs selected are: EN = 0.001, Ec, = 0.02, k =

0.1, Ic, = 0.018, IN, = -0.61, and a = 0.015. One can use another

set of parameters as well. The input to 102 is kept to zero. The

feedback gains chosen are such that the poles of Equation (17) are

at 25(_ 0.424 ± j1.263) and 25(- 6.26 ± j0.4141). These poles

have been selected to obtain good transient responses by observing

the simulated responses, however one could choose other pole

locations as well for synchronization. The initial conditions are

18
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X10 = (0.4,0.6,0.4, 0. 5 )T and x2 0 = (0.2 ,0.4 ,0.2 , 0 . 3 )T Thus the

initial condition of the IOs differs. The frequency of

oscillation of the IOs depends on the system parameters. Signals

of different frequencies can be obtained by time scaling. For

illustration, a time scaling is introduced by multiplying the

derivatives of the variables by a scaling factor of sixty.

[0064] It is desired to have the delay time td as 0.125 for

t e [0, 4), 0.25 for t ( [4,6), 0.5 for t e [6,8) and 0.75 for

t e [8,10), respectively. The controller is switched on at

t = 2 (sec), that is I tl =0 for t < 2 and the delay command changes

every two seconds. Referring now to the drawings, responses are

shown in FIG. 1 (a) - (d), FIG. 2 (a) - (d) and FIG. 3 (a) -

(d). In the figures, the variables with a subscript "d" indicate

delayed values (such as u2d denoting u2(t - td)). It is observed

that the IOs are not initially in phase. As the controller

switches at two seconds, the IOs synchronize having a delay time

of 0.125 seconds. The command changes at four, six, and eight

seconds to delay times of 0.25, 0.5 and 0.75 seconds. Following

each command, x,(t) tracks x2(-td) and it is seen that ul)-u 2 t-t)

and vl(t)-v 20-td) remain close to zero after two seconds. However,

as the command changes, it causes larger deviations in the

tracking of z- and w- trajectories due to large control input

acting on the system. Note that a comparatively large spike

appears in the control input at two seconds and subsequently

smaller magnitudes of control input are required each time that

19
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the command changes. Simulation has been done for other initial

conditions and a parameter value of a. It is found that frequency

changes with a, but for a low value of a= .01, u-response has a

sharper spike.

[0065] The controller C,, uses feedback of nonlinear functions

of the state variables and has a global synchronization property.

A controller using fewer state components and/or nonlinear

feedback functions will be notable for implementation. The

complexity and performance of the controller depends on the choice

of the output function e. The existence of simpler controllers

using different controlled output variables is examined in the

next subsections.

Local Synchronization: Control Law (Cv)

[0066] Now consider the derivation of a control law (termed as

C) for the choice of controlled output variable

e()=h x t)= VW V2(-td= VW-(19)

Note that the same symbol "e" is used to indicate a different

function. For this choice of e, that for j = 0, 1, 2, one has

e(J)Q) = Lif hv(Xa(t)) (20)

and for j = 3 gives

e(j)t) = Lh(xa(t) + LgL -'hv(xa(t)) Uc(t)

(21)

aV (, ) + bvluc,

20



Attorney Docket No. 98406

where one can show that bvl = -k ECa" Since the control input

appears in the third derivative of the output e for the first time

for the system of Equation (9), the output e has the relative

degree r = 3.

[0067] In view of Equation (21), an input-output linearizing

control law is selected as

Uc1 =b - aV1  - (x (22)

where pj, j = 0, 1, 2, are the constant feedback gains.

Substituting the control law of Equation (22) in Equation (21)

gives the output equation of the form

e(3 ) + p2e(2) + pj + poe = 0. (23)

[0068] The gains pi are chosen such that the characteristic

polynomial

FI (A)= A3 + p'A2 + pt A+ Po .(24)

associated with Equation (23) is Hurwitz, commonly known in the

art. Hurwitz means that the roots of lv(A)=O have real part

negative. For the choice of such parameters, e and the

derivatives tend to zero.

[0069] For the nonlinear closed-loop system of Equation (9)

and Equation (22), the output e(t) satisfies a third-order linear

differential equation. Because the system of Equation (9) is of

dimension four and the relative degree or e is three, the

dimension of the zero dynamics is one. In fact, there exists a
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diffeomorphism P, for te[0,oo) mapping R4 into R4 such that '=P( ,t)

where 4 is now defined as =(,e,,)T. Using Equation (20) one

can show that

U

e
P () W- k-' j (25)

Y, (ii,e,,,t

where

q, =k . (-Pu(u +u 2(t-td))+P 2 (u 2(t-td))+e)+P,(?+z2t-t))-P 2 .(z 2 (t-td))+k-

(26)

and it is understood that Y is replaced by u - e/k in q,-

Furthermore, it can be verified that P(O, t) = 0. However, the

convergence of the error "e" and the derivative to zero does not

necessarily imply the convergence of Y to the origin. For the

synchronization of the IOs, the stability property of the residual

dynamics (the zero dynamics) must be examined when e vanishes.

[0070] It can be shown that the zero dynamics (when e = 0) is

given by
-- 1 -1-ka ENa i + k ENa

[(1 + a - 3U2 (t - td))ff2 + (2(1 + a) u2 (t - td)- 3u2(t -t7))ff- )3(

gc (ii, U 2 0 -td))

[0071] The IOs will synchronize in a local (global) sense only

if the equilibrium point i=0 is asymptotically stable (globally

asymptotically stable). The system of Equation (27) is a

nonlinear nonautonomous system and depends on the state u2(t-td) of
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the reference 10. It is seen that the solution of Equation (27)

is bounded, because for large W, g, is dominated by -W'.

[0072] For the stability analysis, consider the solutions of

the zero dynamics in a sufficiently small open set 0. around

u=0. If U2(-td) is sufficiently small, one has

(agc(,t) / a i) < 0, and therefore Wu=0 of the zero dynamics is

exponentially stable and the controller accomplishes local

synchronization.

[0073] Alternatively, one can establish asymptotic stability

of the zero dynamics using a center manifold .theorem known to

those ordinarily skilled in the art. First note that, the

solution x2 (t-t) of the reference 10 converges to a closed orbit

r2 . For asymptotic analysis, ignoring the decaying part, which

represents the deviation of the trajectory from F,, the periodic

signal u2(t-td) can be represented by a Fourier series. Moreover,

the amplitude of the kth harmonic converges to zero as k tends to

infinity and for stability analysis a finite number (N, a

sufficiently large integer) of harmonics will suffice. Let We be

the fundamental frequency of oscillation of the reference 10. As

such, in the steady-state, it can be assumed that U2(t-td) can be

generated by an exosystem

ie = Axe (28)

and U2 (t-td)=CXe for row vector Co, where the block diagonal

matrix A is
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A = diag,, [ - n]) n = 0, 1,2, .... N}. (29)

Assume that xe E Qxe and that the set nxe is sufficiently small.

This implies that u2(t-td) is small. Since Equation (27) is a

function of Xe and Equation (27) is stable, there exists an

invariant manifold WW)=U(Xe) which satisfies the partial

differential equation

&e Axe = gcU(Xe), Xe). 
(30)

[00741 In view of the form of the function gc(W,u 2(t_td)),

Equation (30) has a trivial solution U=0, and moreover for small

initial conditions W(O), the solution of Equation (27) satisfies

11141) - 1911 5 ge-U'lIi(O) - '911 (31)

where "6" and "p" are positive numbers. Since U=0, according

to Equation (31), it follows that for small u (-td), W converges

exponentially to zero and this establishes local synchronization

of the IOs because P is diffeomorphic. However, only local

synchronization of the IOs is established using the control law

of Equation (22).

[0075] The closed-loop system including the control law of

Equation (22) is simulated. The initial conditions, phase command

signals and the model parameters of FIG. 1 (A) - (D) are retained.

The feedback parameters pi now correspond to the poles -3.5405 and

- 5(0.521 ± jl.0681) of the polynomial r,(A). Simulated responses
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are shown in FIG. 4 (A) - (D)and FIG. 5 (A) - (D). Observe that

the IOs synchronize following each phase command. The control

magnitude is smaller [see FIG. 3 (A) - (D)] since the gains chosen

are relatively small in this case. Although, it is not easy to

establish global stability, it has been found by simulation that

synchronization is accomplished for larger values of the initial

conditions and different phase command sequences.

Local synchronization: Control Law (C.)

[0076] Consider the derivation of a control law based on

e ( = Z1W- Z2( - td) = h.(X.) (32)

as the controlled output. For this choice of "e" it is easily

verified that for j = 0,1, one has

e(J)(t) : LJhz (xa()) (33)

and for j = 2 gives

e(J)(t)= Ljhz(a(t)) + LgLj-lhz(xa()) Uci )
(34)

aZ1(X, t) + bzluc(

where one can show that bzl = ECa. Since the control input

appears in the second derivative of the output e for the first

time for the system of Equation (9), the output e has the

relative degree r = 2.

[0077] In view of Equation (34), an input-output linearizing

control law is selected as
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Uc = bz'(-az -l pjLj hv(x')) (35)

j=o

where p, = 0,1 , are the constant feedback gains. Substituting

the control law of Equation (35) in Equation (34) gives the

output equation of the form

e(2) + p, + po e = 0. (36)

[0078] The gains pi are chosen such that the characteristic

polynomial

ri:(A)=2I +p,A+po (37)

associated with Equation (36) is Hurwitz.

[0079] The zero dynamics in this case are described by the

Equations

u =[-akENa -kEN+ (38)
k 00

where

gu = k E-1 [(I + a - 3u2(t - td))2 + (2(1 + a)u 2 (t -td)-3 u2 ( -td))U - ii3]
(39)

and a diffeomorphism p(j, t) exists such that i=P(>,t) where now

=(W, V,e,@)T , and

X = = U (40)
e- e + PJz(e + z2(t -'d)) - P2z (z2(' -'d
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[0080] It follows that if the origin (u,V)=O of the zero

dynamics is asymptotically stable and (e, )-+O, then tends to

zero which implies the convergence of Y to zero.

[0081] For the parameters of the IO, the matrix

AZ = Iak Na 0keNa (41)

is Hurwitz (i.e., the eigenvalues have a negative real part). In

the steady state, gu is a function of xe, the state of the

exosystem of Equation (28). In this case, in view of the center

manifold theorem, for xe E nxe, there exists an invariant manifold

(i, ) = (UXe), P(xe)) which satisfies the set of partial differential

equations

= ak - J(xe) - k E- P(xe) + 9u((XeJ, Xe)
axe Na(42)&e_ Axe = kU(xe)

[0082] These equations are satisfied by ((Xe), P(xe)) = O.

[0083] Similar to the arguments based on either the Jacobian

linearization or the center manifold theorem, it can be concluded

that for small u2(-td), the origin of the zero dynamics is

exponentially stable (in a local sense), and thereby local

synchronization is accomplished. Note that this control law is

simpler that C,.

[0084] Simulation results are now presented for the closed-

loop system of Equations (5) and (35). The parameter values,
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command input sequence, and the initial conditions of FIG. 1 (A) -

(D) are retained. The feedback gains are chosen are so that the

poles of the e-dynamics are at ( 7.07 ± j7.072). Simulated

responses are shown in FIG. 6 (A) - (D) and FIG. 7 (A) - (D).

Synchronization is accomplished and the (z and w)- responses are

smoother and control input is smaller than those obtained using

the control laws, Cu and Cv . However, sharper peaking of u- and

w- response is observable at certain instances, when the phase

command changes. However, the stability results have been

established only for the local synchronization.

Local Synchronization: Control law (C.)

[0085] A still simpler control law for the choice of the

controlled output variable is:

e (t) = w 1 (W - w2 ( - td ' = hw(xa W) (43)

[0086] For this choice, one has

() = Lfhw(xa(t)) + Lghw(xa(t)) Ucit) (44)

and the control law is

Uc= (t) + Po Ca f (45)

where p0 is any positive number. Thus the control law has simple

linear feedback terms involving only the Y and iv variables and

are independent of ui and vi.
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[0087] The output i now satisfies a first-order equation

W+ PO = 0 (46)

and in the closed-loop system i tends to zero. However, the

stability in the closed-loop system will depend on the stability

property of the zero dynamics which is now of dimension three.

[0088] The zero dynamics in this case are obtained by setting

w = 0 and can be shown to be described byLI -11 E-
ak ENa -k Na 0 U -gu(',t)

o -k +

o - a gZ(i t

(47)

- Aw(ii', ;j)T + gu(ii '  , t)

where guz (ii, f, t) = (gu,O, gz)T and

9Z- (i + a - 3z,(t - jd)2 + ( 2(1 + a)Z2 (t -td 3Z2t -(t)) j3 (48)

[0089] Apparently if the origin (u, v, i) = 0 of the zero

dynamics is asymptotically stable, then x converges to zero as ;

tends to zero.

[0090] In Equation (47), the matrix A, is Hurwitz and the

periodic signals u2(t-td) and z 2(t-td) are functions of the state Xe

of the exosystem. In this case, in view of the functions gu and

gz in Equation (47), one finds that the center manifold is

Similar to the arguments used on either the

Jacobian linearization or the center manifold theorem, it can be

concluded that for small (u2 (t-tdZ 2(t-td)), the origin of the zero
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dynamics is exponentially stable (in a local sense), and thereby

local synchronization is accomplished.

(0091] Simulation results are now presented for the closed-

loop system of Equation (5) and Equation (45). The parameter

values, command input sequence, and the initial conditions of

FIG. 1 (A) - (D) are retained. The feedback gain chosen is p0 =8.

The responses are shown in FIG. 8 (A) - (D) and FIG. 9 (A) - (D).

It is observed that synchronization has been accomplished

following each change in the phase command signal, but convergence

time is larger. The plots of ul show high frequency oscillation

at certain instances, but it has not caused any problems. Only a

small control magnitude has been used.

[0092] Simulation results are obtained for a different value

of the parameter a=0.01 and the time scaling factor is set to 100

giving the frequency of oscillation close to one Hz. The closed-

loop control system using each of the control laws Cu, C, and C,

and Cw is simulated. The command input, the feedback gains, and

initial conditions of FIG. 1 (A) - (D) are retained for

simulation. Results are presented only for the closed-loop system

including the simplest control law Cw . The responses are shown

in FIG. 10(A) - (D) through FIG. 12 (A) - (D).

[0093] It is of interest to discuss the relative merits of the

four controllers. As indicated earlier, the first controller has

a global stabilization property and for the remaining controllers

only local synchronization has been established. It is important

to note that only a finite region of stability in the Yx-space
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exists because the local stability of the closed-loop system

including the controllers Cvo Cz, and Cw has been proven. But it

is expected that as the complexity of control law increases, the

region of stability enlarges. For this reason, one expects that

the control law Cw has been proven. But it is expected that as

the complexity of control law increases, the region of stability

enlarges. For this reason, one expects that the control law Cw

can accomplish synchronization only for relatively small

perturbations in xi at the instant when the phase command is

given. Of course, the error x, and therefore the synchronization

of the IOs, depends on the instant of controller switching. Based

on the simulation results, it has been found that the controllers

Cv and Cz have fairly large regions of stability and one does not

necessarily have to use the controller C., which has the highest

degree of complexity among the derived controllers. Unlike the

global controller, the controllers Cv, Cz, and C, provide smoother

(z,w)-responses. This is due to the fast-varying nonlinear

function of large magnitude in the control law C,. It may be

pointed out that there exists flexibility in the design, and by a

proper choice of feedback gains and the reference phase command

signals, one can obtain different response characteristics. This

flexibility in phase control of IOs is useful in performing

desirable maneuvers of the BAUV.

[0094] In the derivation of the control laws, it is assumed

that the IOs are identical. While for the BAUV application, it is

31



Attorney Docket No. 98406

appropriate to have similar parameters, it is pointed out that the

design approach is quite general, and it is applicable to

nonidentical IOs having different parameters. The design has been

presented only for two IOs, but it is straightforward to extend

the derivation for the synchronization of any number of IOs.

Advantages and Disadvantages

[0095] The IOs have complex nonlinear dynamics. As such,

controllers (PID, optimal, lead-lag compensation, etc.) designed

using linearized models cannot guarantee global synchronization.

One must note that the profile of the control signal will depend

on the states of the IOs when the pulse is applied. The derived

controllers are based on the input-output feedback linearization

theory, and stability and convergence. The designed global

controller accomplishes synchronization for all initial

conditions. Moreover, design parameters provide flexibility in

shaping response characteristics. The controller can be switched

on for phase control at any instant since the controller utilizes

state variable feedback and one can command the 10 to follow a

sequence of phase changed when needed for the control of the BAUV.

This is especially important if operating fins of the BAUV operate

at low frequencies. The control laws are explicit functions of

the state variables of the IOs and can be easily implemented.

[0096] The foregoing description of the preferred embodiments

of the invention has been presented for purposes of illustration

and description only. It is not intended to be exhaustive nor to

limit the invention to the precise form disclosed; and obviously
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many modifications and variations are possible in light of the

above teaching. Such modifications and variations that may be

apparent to a person skilled in the art are intended to be

included within the scope of this invention as defined by the

accompanying claims.
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ABSTRACT OF THE DISCLOSURE

Non-linear control laws are disclosed and implemented with a

controller and control system for maneuvering an underwater

vehicle. The control laws change the phase of one Inferior-Olive

(10) neuron with respect to another 10. One control law is

global, that is, the control law works (stable and convergent)

for any initial condition. The remaining three control laws are

local. The control laws are obtained by applying feedback

linearization, while retaining non-linear characteristics. Each

control law generates a profile (time history) of the control

signal to produce a desired phase difference recognizable by a

controller to respond to disturbances and to maneuver an

underwater vehicle.
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