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Attorney Docket No. 97410

DATA CLUSTERING METHOD FOR BAYESIAN DATA REDUCTION

STATEMENT OF GOVERNMENT INTEREST

[0001] The invention described herein may be manufactured and

used by or for the Government of the United State of America for

governmental purpose without payment of any royalties thereon or

therefore.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

[0002] This invention relates to a method for classifying

data and more particularly to a training method for a Bayesian

Data Reduction Algorithm classifier that enables the

identification of data clusters.

(2) Description of the Prior Art

[0003] In many real world classification problems the domain

of the observed data, or features, describing each class can be

complicated, obscure, and highly overlapped. The result is that

the task of discriminating amongst the classes with standard

supervised training techniques can be nearly impossible.

However, within these difficult domains, it can often be the

case that the target class of interest (e.g., data that produce
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a desired yield and are thus categorized as the target class)

contains isolated unknown clusters (subgroups of data points),

where the observations within each cluster have similar

statistical properties. In these situations classification

performance (or, the average yield) can be significantly

improved if one develops a classifier to recognize, or mine,

observations within the clusters as the target class, and where

all other nonclustered observations (i.e., both with and without

a desired yield) are considered the alternative class (the non-

target class). A benefit of such a classifier is that subsets

of target data points, producing a consistent desired average

yield, can be recognized with a minimum probability of error.

This is in contrast to a traditional classification approach to

this problem (i.e., trained in a completely supervised manner)

that has the potential to produce a much higher probability of

error and a lower average yield.

[0004] These benefits can be achieved in diverse fields

having multi-dimensional data. Large quantities of data are

available in the securities market, and it would be valuable to

find groups of securities having predefined characteristics such

as a certain yield from the available data. Other fields for

using such a classification system are target identification,

medical diagnosis, speech recognition, digital communications

and quality control systems.
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[0005] FIG. lA illustrates the problem of interest with a

straightforward example containing one thousand samples of one

dimensional domain data (a single feature). Each data point for

the target class, 10, is shown with a "0", and each data point

for the non-target class, 12, is shown with a "+". A data

cluster 14 is apparent from the FIG. (The data for this figure

was generated, for each dimension of each class (i.e., except

those within the cluster), to be uniform, independent, and

identically distributed. However, with respect to the features

each data cluster was generated as Gaussian distributed, with a

randomly generated mean, and constrained to be located around

the specified "center" yield value.)

[0006] In this case, the ordinate that defines the yield of

each data point is plotted versus the domain, where a yield

value of 0.5 is used to separate and define the five hundred

samples of the target class (i.e., yield > 0.5), and the five

hundred samples of the non-target class (yield < 0.5). It can

clearly be seen in this figure that the two classes are highly

overlapped with respect to the range of the single feature. In

fact, later it will be shown that traditional supervised

classification approaches with this data produce nearly a 0.5

probability of error, and an overall average yield of just

slightly more than 0.5. However, notice in FIG. 1A that a

cluster 14 of data points also exists in the target class 10
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with an average yield of approximately 0.6. Thus, it would be

advantageous to develop a classifier for this data that can

essentially mine and recognize the positive yielding cluster 14

from all other data points contained in FIG. 1A. One obvious

technique to classify the cluster point in this data would be to

visually determine threshold points from FIG. 1A; however,

typical problems involve multi-dimensional feature spaces that

prevent visual determination of thresholds. Any developed

technique should be applicable to multi-dimensional feature

spaces.

[0007] FIG. lB shows a more generalized illustration of the

problem. In FIG. lB there is a plot containing one thousand

samples of one dimensional domain data (a single feature). The

data for this figure was generated, for each dimension of each

class (i.e., except those within the cluster), to be uniform,

independent, and identically distributed. However, with respect

to the features each data cluster was generated as Gaussian

distributed, with a randomly generated mean, and constrained to

be located around the specified center yield value. In FIG. 1B,

the ordinate that defines the yield of each data point is

plotted versus the domain, where a yield value of 0.5 is used to

separate and define the five hundred samples of the target class

(i.e., yield > 0.5) identified as 10, and the five hundred samples

of the nontarget class (yield <0.5) identified as 12.
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[00081 It can clearly be seen that the two classes contain

many commonly distributed points with respect to the range of

the single feature. This case differs from the case shown in

FIG. 1A in that three clusters of data points, 18A, 18B and 18C,

exist within the target class containing actual respective

yields of 0.6, 0.75, and 0.9. In this example, each data

cluster was randomly placed to be centered somewhere between the

yield values of 0.5 and 1, where, as stated previously, the

focus of the general embodiment of the method is on mining each

of these clusters.

[0009] Prior art methods for classifying data are provided in

United States Patent Nos. 6,397,200 and 6,789,070. These are

incorporated by reference herein. U.S. Patent No. 6,397,200

provides a data reduction method for a classification system

using quantized feature vectors for each class with a plurality

of features and levels. The method utilizes application of a

Bayesian data reduction algorithm to the classification system

for developing reduced feature vectors. Test data is then

quantified into the reduced feature vectors. The reduced

classification system is then tested using the quantized test

data. A Bayesian data reduction algorithm is further provided

by computing an initial probability of error for the

classification system. Adjacent levels are merged for each

feature in the quantized feature vectors. Level-based
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probabilities of error are then calculated for these merged

levels among the plurality of features. The system then selects

and applies the merged adjacent levels having the minimum level

based probability of error to create an intermediate

classification system. Steps of merging, selecting and applying

are performed until either the probability of error stops

improving or the features and levels are incapable of further

reduction.

[0010] United States Patent No. 6,789,070 provides an

automatic feature selection system for test data with data

(including the test data and/or the training data) containing

missing values in order to improve classifier performance. The

missing features for such data are selected in one of two ways:

the first approach assumes each missing feature is uniformly

distributed over its range of values, and the second approach

increases the number of discrete levels for each feature by one

for the missing features. These two choices modify the Bayesian

Data Reduction Algorithm for automatic feature selection.

[0011] This method for solving the problem in FIG. 1A builds

upon and utilizes the previously introduced Mean-Field Bayesian

Data Reduction Algorithm (Mean-Field BDRA) based classifier.

The Mean-Field BDRA classifier was developed to mitigate the

effects of the curse of dimensionality by eliminating irrelevant

feature information in the training data (i.e., lowering M),
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while simultaneously dealing with the missing feature

information problem. The mean-field BDRA was first introduced

in R. S. Lynch, Jr. and P. K. Willett, "Adaptive Classification

by Maximizing the Class Separability with Respect to the

Unlabeled Data," Proceedings of the 2003 SPIE Symposium on

Security and Defense, Orlando, FL, April 2003. This paper

discloses a method of Bayesian Data Reduction which assigns an

assumed uniform Dirichlet (completely non-informative) prior for

the symbol probabilities of each class. In other words, the

Dirichlet is used to model the situation in which the true

probabilistic structure of each class is unknown and has to be

inferred from the training data.

[0012] The Modified Mean-Field BDRA was developed to better

deal with problems in which the class-labeling feature is the

primary missing attribute in the training data.. In general,

this problem greatly complicates the modeling of each class, and

to deal with it the mean-field BDRA was created that encourages

dissimilar distributions with respect to all missing value data.

[0013] The primary aspect of the Mean-Field BDRA (that is, in

addition to its data model that incorporates a class-labeling

feature) that differentiates it from the original BDRA is its

method of dealing with the missing features problem. In the

Mean-Field BDRA the missing feature information is adapted by

estimating the missing feature from the available training data.
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The following model provides further detail. Specifically, let

z be an N-dimensional vector containing the entire collection of

training data for all k classes, and using the Dirichlet

distribution based model, this is written as

fPz) = (1

where pi is the probability of the 1 th discrete symbol out of a

total of M (with p representing all M symbols), f(p) is the

Dirichlet distribution prior on the symbol probabilities given

by:

(M - 1)Im}, (1A)

and wi is the set of all discrete symbols that observation zi

could take on if all possible outcomes of its missing features

are substituted in. The notation 1(x) is the indicator function

that has a value of one when "x" is true, and a value of zero

otherwise.

[0014] Equation (1) represents the optimal approach to

solving this problem. However, when expanded, and after

integration, Equation (1) results in a sum of products whose

number of terms depends upon the number of missing features in

the data. That is, there are Rit terms in the sum, where IwI,

is the cardinality of the ithfeature vector. Thus, with no

missing features in any of the data only one term is left over.
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On the other hand, if N= 20 and each feature vector has one

missing binary valued feature then Equation (1) would contain

220, or approximately one million terms. This of course makes

any implementation of this equation impractical.

[0015] As an alternative to Equation (1), the distribution

contained in it, f(zjp), and given by

fPz I P) =2I- ew, A 1

is replaced with

f(zI p) = HM `

in which

X=, Z,f•LiJ •E W, (i) flijiff j w, and

(ii) Ug

It is appropriate to think of each symbol-uncertain datum (i.e.,

each feature vector missing features) in these equations as

being separated into small quanta, with respect to the remaining

training data, and apportioned amongst the possible symbols the

datum can take on. However, it is preferred here to think of

the above equations as a mean-field approximation of the

unknowable probability sum.

[00161 In general, under mean-field theory the expectation

E(f(x)) is replaced by f(E(x)). Thus, identifying "f(x)" as a

particular term in the sum of products in Equation (1), meaning
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a particular configuration of the actual symbols of the symbol-

uncertain data, the expected value of this data is added to the

appropriate symbol's total number of observations. To accomplish

this, the following iterative steps are used (these steps will

be referred to as the mean-field recursion):

(i) Begin with n = 1, 6_'(-,=OVWow., and 73-=ri. Vj Ewi where for the

ith datum, given an equal initial probability is assigned for all

1possible uncertain symbols, Iij=R

(ii) Take the expectation value to update j i and

N 2. 7

(iii) If 6,,n))> (Tolerance) then set n=n+l and go to

(ii).

0•J cv e.) is computed for the number[0017] At convergence, xj=E=,, •j

of outcomes of the jth symbol. In general, if the iterative

steps given are not utilized (i.e., only step one is used) then

this amounts to assigning for the ith datum a hard outcome to all

possible uncertain symbols it can be, the jth of which being

assigned nij.

[0018] Notice that steps (i) through (iii) shown above are

similar to the recursive steps utilized in the Expectation
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Maximization (EM) algorithm. A typical implementation of EM

involves using the available data to estimate, or "plug-in," the

components of a Gaussian mixture density. However, the recursive

steps, above, involve estimation of the P.,j's for an algorithm

that is approximately Bayesian. In any case, as the EM

algorithm has been shown to converge to a solution, it is

expected that due to its similar form, the Mean-Field BDRA will

also converge.

[0019] In seeking best performance for a given data set the

dimensionality reduction steps of the BDRA are used after each

application of the mean-field recursion described above. That

is, the Mean-Field BDRA alternates between reducing irrelevant

feature information and "filling-in" missing feature values.

The steps of the basic BDRA have been modified to include a

class-labeling feature in augmentation to each datum. Recall,

the algorithm reduces the quantization complexity to the level

that minimizes the average conditional probability of error,

P(eIX), and in its modified form it appears as

P(e I X) = Z ZP(Hk)I{ allk#rallk1fk (2)
k=1 y

where

f_ ,NY!(Nk +M-1)! (Xi +YJ)!
fk=f(Yxk'Hk)-(Nk +NY +M-1 ! fi= Hk xjyj!;

C is the total number of classes with kE{,...,C};
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M is the number of discrete symbols;

jEHk is defined as all discrete symbols, j, associated with

class k, and with the class-labeling feature is equal to k;

Hk is the hypothesis defined as Py=Pail jEH,, and C=l YMS~k p = 1;

X is the entire collection of training data from all Cclasses;

x EHk is the number of occurrences of the jth symbol in the

training data defined for all jEHk;

NIN=ZmjxjJ is the total number of training data, where the

fraction belonging to the kth class is given by ýk =Ej.H xjj;

yj is the number of occurrences of the jeh symbol in the test

data;

NYýy =Z Myj is the total number of the test data; and

IM is the indicator function such that I{x}=l when x is true and

tx}=0 when x is false.

Note, the typical situation considered involves one observation

of test data (i.e., Ny = 1), thus, f (yIx,Hk) of Equation (2)

becomes

f(Yi = lx, Hk)= XSeH. + (1

N+M

(0020] Given the above equations, dimensionality reduction

(i.e., feature selection) is implemented on the training data
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using the following iterative steps, which are analogous to

backward sequential feature selection.

(i) Apply mean-field recursive steps to the data.

(ii) Using the initial training data with quantization

complexity M (e.g., in the case of all binary valued features

M= 2 Nf, where Nf is the number of features), Equation (2) is used

to compute P(eJX;M).

(iii) Beginning with the first feature (selection is

arbitrary), and excluding the class labeling feature, reduce

this feature by summing or merging (i.e., marginalizing) the

numbers of occurrences of those quantized symbols that

correspond to joining adjacent discrete levels of that feature.

(iv) Re-apply mean-field recursive steps to the data.

(v) Use the newly merged training data (it is referred to as

X')and the new quantization complexity (e.g., M'= 2Nf- in the

binary feature case), and use Equation (2) to compute

P(eIX';M').

(vi) Repeat items (iii), (iv) and (v) for all Nf features.

(vii) From item (vi) select the minimum of all computed

P(ejX';M') (in the event of a tie use an arbitrary selection),

and choose this as the new training data configuration. (This

corresponds to permanently reducing, or removing, the associated

feature.)
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(viii) Repeat items (iii) through (vii) until the probability

of error does not decrease any further, or until M' = 2, at

which point the final quantization complexity has been found.

[0021] The Mean-Field BDRA is modified in this section to

improve its performance. Its performance is particularly

improved when the adapted training data is missing the class

labeling feature. The idea behind the method of the current

invention is based on developing a model that encourages

dissimilar distributions amongst the classes with respect to all

missing feature information. Therefore, given the missing

feature values, the new method is designed to give more

likelihood to those feature vectors that have dissimilar values.

[0022] The modified Mean-Field BDRA is based on the

assumptions that the distribution of the true discrete symbol

probabilities, (Pk /), for the ith discrete symbol of the kth class,

are uniformly Dirichlet distributed, and that the form of the

underlying new distributional model is given by,

__K P a - ( P2 j- ) _1_,- _ (4)f PIJ'P 'i ..'" Pc'iP': g Plii A A i) <P

where Z=[PI=Pi, Cis the total number of classes, K is a

normalizing constant, and ais a constant that controls the shape

of the distribution. Typically, a smaller value of cmeans more

dissimilarity between the distributions of each class.
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[0023] Given Equation (4), Equation (3) is now redeveloped by

writing it as,

fAy, = l1ix Hk) - yi f=y 1, PiPjjX, Hk )RdPldkj

= 'f(yi = ljiPpkjI ,xHk)f(pk,i JA ,XHk)f(P~i XHk dPidpkj

Equation (5) can also be written as,

f(Yi = l1XxI Hk) = £ f = ljPkJ I Hk )f(XlPk ,, Hk~)f(Pk,i ipjHk )f&j ix, Hk ;kpldpkj (6)

where,

fAyj = liPk i, Hk) Pkji; f (xipk~i Hk ) = (zj=XJEH j~ J,~., CiPkJ -_Ei )~XE~k

fpkijpiUk)= 1~Pk (1 _ Pki

f(p,ix,Hk)= v(N +M)pjl.ix.IJ , (1-i
-Z= Xj.JH + 1ýN- Z'IXJE + M-1>

[0024] Using these equations, Equation (6) can now be solved,

which produces the result,

fAyl=lijxHk)- =~ JE + l)(-X k +(7+2
F(N +,. + YEC1Xj,,Hk + 1ý .XjGHp + 2a +11

In the results that follow, values for a=1 are to be considered,

which produces the following for Equation (7),

fAy,=lJx5 Hk;a =l1)= XIEHk' +1 1 (8)
(N +M( 1 XJF +2)
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In comparing the previous model of Equation (2) to Equation (8),

it is apparent that under the new model shown above more

emphasis is now placed on dissimilar probabilities for the

training data of each class.

[0025] The prior art does not disclose a method for training

a Mean-Field Bayesian Reduction classifier for detecting

clusters in unknown data.

SUMMARY OF THE INVENTION

[0026] Accordingly, this invention is a method of training a

mean-field Bayesian data reduction algorithm (BDRA) which

includes using an initial training for determining the best

number of levels. The Mean-Field BDRA is then retrained for

each point in a target data set and training errors are

calculated for each training operation. Cluster candidates are

identified as those with multiple points having a common

training error. Utilizing these cluster candidates and

previously identified clusters as the identified target data,

the clusters can be confirmed by comparing a newly calculated

training error with the previously calculated common training

error for the cluster. The method can be repeated until all

cluster candidates are identified and tested.
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[0027] These and other features, aspects and advantages of

the present invention will become better understood with

reference to the following drawings, description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028) FIG. 1A shows data illustrating the problem of the

invention for the case having a single cluster;

[0029) FIG. 1B shows data illustrating the problem of the

invention for the case having a multiple clusters;

[0030] FIG. 2 shows the method of the invention for locating

a single cluster; and

[0031] FIGS. 3A and 3B show the method of the invention for

locating multiple clusters.

DETAILED DESCRIPTION OF THE INVENTION

[0032] The modified version of the Mean-Field BDRA disclosed

in the prior art is used as the basis for a new method to solve

the problem shown in FIG. 1A because of its superior performance

with difficult unsupervised training situations. To further

develop the new technique, a new training method is developed

for the modified algorithm that enables it to mine the domain of

an unlabeled set of data points for clusters. The new training

method utilizes a combination of unsupervised and supervised

training, and a sequential data search to localize all points
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within the cluster. In general, all results shown for the

methods developed here with the Mean-Field BDRA will be based on

simulated data like that shown in FIG. 1A. However, this

approach is equally applicable to real-life data sets.

[0033] Typical domain data can have any number of features so

that a given cluster may exist across all dimensions of the

feature space, or across some subset of features within that

space. Thus, the built-in dimensionality reduction aspects of

the Mean-Field BDRA are useful for isolating the data cluster.

Further, as the Mean-Field BDRA is a discrete classifier, it

naturally defines threshold points in multi-dimensional space

that isolate the relative location of the cluster.

[0034] The automatic algorithm developed here to locate data

clusters strongly relies on the Mean-Field BDRA's training

metric, P(e). This is given above as equation (2), above. Using

this, quantization complexity is reduced to the level that

minimizes the average conditional probability of error, P(elX).

[0035] The idea is that because the Mean-Field BDRA

discretizes all multi-dimensional feature data into quantized

cells (or levels), any data points that are common to a cluster

14 will share the same discrete cell, which also assumes that

appropriately defined quantization thresholds have been

determined by the Mean-Field.BDRA. These are shown as dashed

lines 16 in FIG. 1A. Therefore, given all, or most, cluster
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data points can be quantized to share a common discretized cell

they will all also share a common probability of error metric,

P(e).

[0036] In other words, locating cluster data points can be

based on developing a searching method that looks for data

points sharing a common P(e). In this case, it is expected that

this common P(e) value, for all points within the cluster 14,

will be relatively small with respect to that computed for most

other data points outside of the cluster. This latter

requirement should be satisfied in most situations as data

clusters should tend to be distributed differently with respect

to data outside of the cluster. As a final step in training,

the validity of each cluster can be checked by computing the

overall average yield for all points within the cluster (i.e.,

any grouped data points producing the largest average yield are

chosen as appropriately mined data clusters).

[0037] To improve results, the steps shown in FIG. 2 and

described below have been developed for training the Mean-Field

BDRA, that is, in such a way that the data cluster is identified

with a minimum probability of error. For each of these steps

training will proceed in a semi-unsupervised manner in that all

target data (yield > 0.5) identified as 10 is utilized without

class labels (i.e., no class information at all), and all non-

target data (yield < 0.5) identified as 12 is utilized with
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class labels (full class information). The motivation for

training in this way is to force the Mean-Field BDRA to readily

recognize the contrast between target cluster data points 14 and

all other data points in both classes 10 and 12 that are not

like the cluster. In this way, when adapting class labels for

the target class the Mean-Field BDRA is more likely to label

cluster data points as target, while grouping most other non-

cluster target data points with the non-target. The new method

of training proceeds with the following steps.

[0038] Initially, a maximum number of levels should be set as

in step 20. A user can provide this maximum based on the

available amount of computing resources, the time required for

completion or by some characteristic of the data. This maximum

can also be computed from these attributes. In step 22, using

all available training data (i.e., with all target points

unlabeled and all non-target points labeled), the Mean-Field

BDRA is separately trained for each level. The levels are shown

for illustrative purposes in FIG. 1A by dashed lines 16. After

training the Mean-Field BDRA, the training error is computed in

step 24. The number of levels is incremented in step 26. Step

28 continues the process until the maximum number of levels is

reached. From the separate training runs, the method chooses

the initial number of discrete levels to use for each feature as

that producing the least training error (see Equation (2),
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above) in step 30. In the next stage of training, the Mean-

Field BDRA is trained for each target data point. In step 32, a

target data point is labeled with the correct target label. The

remaining data points are unlabeled in step 34. The Mean-Field

BDRA is trained in step 36 with this labeling, and training

error is computed for each point in step 38. Step 40 proceeds

to the next point, while step 42 loops through the routine until

the Mean-Field BDRA has been separately trained for each

training data point. Notice that these steps produce a set of

Nta,.get computed training errors equal to the number of target

training data points.

[0039] The next group of steps is utilized to identify the

clusters from the computed training errors. Target data points

are sorted by training error and grouped in step 44. Step 46

chooses all data points that have both the smallest common

training error and the most number of data points from the set

of Nia,ret computed training errors. These data points are

candidate cluster data points and are accepted or rejected, for

example, with the problem of FIG. 1A, by checking the

commonality of associated yield values in step 48.

[0040] Notice that it is possible that in some problems

multiple data clusters can be found in this way. That is, if

more than one candidate cluster appears to have points with more

than one minimum error probability value. In this case, data
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points common to each cluster can be grouped according to

accepted yield values.

[0041] As a final step, in step 49, the training is finished

by refining the computed number of levels. In this step, all

cluster data points found in step 48 are labeled as target, and

all other target data points are unlabeled. The Mean-Field BDRA

is then retrained to recognize this data. This step fine-tunes

the best initial number of discrete levels to use for each

feature by the Mean-Field BDRA.

[0042] To extend the idea described above to finding multiple

unknown clusters, it is required for the new method to have the

ability to intelligently sort through and separate data points

having common error probabilities. In this case, both the total

number of clusters and the number of samples per cluster are

assumed to be unknown to the classifier. Therefore, with

multiple data clusters, each error probability value must now be

thought of as an indicator to each point within each cluster.

Restated, it is expected that with multiple clusters all data

points within each separate thresholded cluster region will

share common error probability values. These common error

probability values will be relatively small with respect to

those computed for most other data points outside of any

clusters. In general, the degree to which this latter

requirement is satisfied depends on how differently the clusters
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tend to be distributed with respect to the non-clustered data.

As data within a cluster becomes distributed more like the data

outside of the cluster, it becomes less distinguishable. Unknown

clusters within a data set will be distinguishable by being

distributed differently with respect to all other data points

outside of the clusters. Notice that these methods exploit this

important assumption.

[0043] Therefore, a proper data mining algorithm of multiple

clusters, and one that is based on the Mean-Field BDRA, will

have a higher likelihood of finding leading cluster candidates

by focusing on the largest groups of data points that cluster

around smaller common error probability values. As the sorting,

or mining, continues in this way any data points associated with

small error probabilities and that have few common data points

are rejected as cluster members. The algorithm will be designed

to automatically stop when all unknown data clusters have been

found, or when the training error begins to increase. Finally,

and as in the single cluster case, the validity of each cluster

with respect to the training data can be checked by computing

the overall average yield for all points within the cluster.

[0044] The steps shown below have been developed for training

the new multiple cluster classifier using the Mean-Field BDRA,

that is, in such a way that all unknown data clusters are

identified with a minimum probability of error. These steps are
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detailed in the flow chart given as FIGS. 3A and 3B. For each

of these steps training proceeds in a semi-unsupervised manner

in that all target data (yield > 0.5) identified as 10 in FIG.

lB is utilized without class labels (i.e., no class information

at all), and all non-target data (yield < 0.5) identified as 12

is utilized with class labels (full class information). The

motivation for training in this way is to force the Mean-Field

BDRA to readily recognize the contrast between target cluster

data points such as 18A, 18B and 18C and all other data points

in both classes that are not like the cluster. Therefore, when

adapting class labels for the target class the Mean-Field BDRA

is more likely to label any cluster data points as target, while

grouping most other non-cluster / target data points with the

non-target. The new method of training proceeds with the

following steps for each feature of interest.

[0045] Initially, a user selects a maximum number of levels

for the algorithm in step 50. This selection depends on type

and amount of data and the available computing resources. For

the example shown here, the maximum level is set as twenty.

Typically, it is desired to train with as many initial levels as

the data will support for best results. As above, this can be

set by a user or calculated based on preferences. Using all

available training data (i.e., with all target points unlabeled

and all non-target points labeled), the Mean-Field BDRA is
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trained, separately for each level, step 52. For the results

shown here, "all available" training data means 50% of the

entire data set. After training, step 54 computes the training

error for that level. The number of levels is incremented in

step 56 until the preset maximum level is exceeded, step 58.

[0046] From the iterated training runs for each level, the

initial number of discrete levels to use for each feature is

chosen as the number of levels that produces the least training

error, step 60. (See Equation (2)). Notice that the idea of

steps 50-60 is to find the best initial number of discrete

levels to use for each feature prior to looking for individual

clusters.

[0047] The next steps of the method train the Mean-Field BDRA

to identify clusters in the data. A first target data point is

labeled in step 62 and the remaining points are left unlabeled

in step 64. The Mean-Field BDRA, is retrained in this manner in

step 66. A cluster-training error is computed after training

for each target data point in step 68. This error is computed

based on counting the number of wrong decisions made under each

hypothesis. The method then proceeds to the next point in step

70. Step 72 returns back to step 62 until processing of all

target data points is complete. Thus, step 68 produces a set of

Ntarget computed training errors equal to the number of target

training data points.
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[0048] In step 74, the set of Ntarget computed cluster-training

errors in steps 62-72 are sorted and grouped according to those

having common error values. The final list of separate cluster-

training errors should proceed from the smallest error to the

largest error. All data points that share each error should be

identified. This step helps to reveal those data points that

are sharing a similar region in quantized feature space.

[0049] Step 76 conducts a cluster search and looks for the

first data cluster candidate using the list obtained in step 72,

above. In step 78, the first data cluster candidate is chosen

as the one having simultaneously the smallest cluster-training

error and the largest number of common data points. Typically,

the first error value on the list has both the absolute smallest

error and the largest number of common points. However, because

the algorithm is suboptimal, this does not have to always be the

case. Optionally, the user can set a minimum number of data

points for each cluster. Once the cluster is selected, the

error associated with all points of this first cluster candidate

are identified as P(ejO).

[0050] After selecting the first cluster candidate in step

78, pre-existing cluster candidates and current cluster points

are all labeled in step 80. All points not associated with the

current or previous cluster candidates are unlabeled in step 82.

The Mean-Field BDRA is then retrained in step 84. A new
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cluster-training error is computed in step 86. This error is

identified as P(e1l). Steps 80-86 determine how statistically

similar the selected group of training data points are with each

other, or, on the other hand, how different this group is with

respect to the non-target class (which now includes all other

target data points outside of the cluster).

[0051] In step 88, P(ell) and P(eIO) from steps 86 and 78 are

compared. If P(eIl) • P(eIO), as it should be in most cases

containing data clusters, one can conclude that the current

cluster is a valid data cluster and proceed to process for

additional clusters. Otherwise, one can conclude that no

substantial data clusters exist in step 90, and terminate the

algorithm.

[0052] When the current cluster is valid, this is indicated

in step 90. A search is conducted for the next cluster

candidate in step 92 according to the previously stated criteria

excluding all points in the first cluster. This new group of

points will have simultaneously the next smallest cluster-

training error and the largest number of common data points.

Steps 78-88 and 92-94 are then repeated until the current error

is greater thanthe initially computed error as found in step

86. It is important to note that these steps always utilize and

train with all previously determined clusters from the previous

steps marked. Upon terminating the algorithm, the average yield
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for each cluster is computed in step 96 and, if applicable, step

98 is performed selecting those clusters producing the largest

overall yield. The training method results in a trained mean-

field BDPA classifier that is capable of recognizing data

clusters in the target region.

[0053] Table 1, below, shows classification performance

results for the Mean-Field BDRA (i.e., w/o a cluster mining

algorithm applied) with supervised training (i.e., data with

yields greater than 0.5 are called target and those with yields

less than 0.5 are called non-target), for single cluster data of

the type shown in FIG. 1A. Appearing in this table is the

average probability of error computed on an independent test set

(50% training/50% test), and the average associated yield (shown

in parentheses) obtained from data classified as the target

class. Each entry in the table is shown as a function of the

true mean yield value, Cea,z, per dimension, of the data cluster

(where the two entries in braces, f g, shows the initial number

of discrete levels used for each feature by the Mean-Field

BDRA) , respectively, for one, liil(l), and four, ,ltj(4), dimensional

data spaces. Also appearing in this table is the total number

of features, nto1a, in the data space, where the true number of

those features relevant to the data cluster, nrelevant is shown in

brackets, [ ]
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ntotal [nrelevant]

Cineanf {lin l), lini}(4)} 1 [1] [ 4[1]

0.6 {9,8} 0.478(0.495) 0.500(0.476)

0.9 {10,9} 0.480(0.528) 0.494(0.512)

Table 1

[0054] It can be seen in Table 1 that average classification

results are poor when all of the training data are labeled

correctly and training proceeds in a supervised manner. This is

significant as the results in this table were obtained by

partitioning the available data into 50% training and 50% test

sets, which highlights the difficulty of the classification

problem shown in FIG. 1A. Observe that the exact location of the

cluster seems to make very little difference to the overall

average probability of error, and average yield, no matter how

many features are contained in the data. Even in the case when

three additional irrelevant features are added to the data, notal =

4, the results are very similar for both actual cluster

locations.

[0055] As a final observation in Table 1, notice that the

initial number of discrete levels per feature was chosen to be

either eight, nine, or ten by the Mean-Field BDRA for either the
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one or four dimensional cases. For the supervised training case

shown in this table, the initial number of discrete levels used

for each feature was chosen to be consistent with that used

below in obtaining the modified results of Table 2. In all

cases, when obtaining these results the actual number of initial

discrete levels per feature was incrementally varied between two

and ten by the Mean-Field BDRA. The final values shown were

determined by the Mean-Field BDRA to be those that produced the

smallest training error with the clustering algorithm applied.

[0056] Table 2 shows classification performance results for

the Mean-Field BDRA (with the cluster mining algorithm applied),

and semi-supervised training (i.e., all cluster data points are

labeled as target, and all unclustered target data points and

all non-target data points are unlabeled), for single cluster

data of the type shown in FIG. 1A. Appearing in this table is

the average probability of error computed on an independent test

set (50% training/50% test), and the average associated yield

(shown in parentheses) obtained from data classified as the

target class. Each entry in the table is shown as a function of

the true mean yield value, cea,,, per dimension, of the data

cluster (where the two entries in braces, f g, shows the initial

number of discrete levels used for each feature by the Mean-

Field BDRA), respectively, for one, lfii(, and four, lini4),

dimensional data spaces. Also appearing in this table is the
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total number of features, ntotat, in the data space, where the true

number of those features relevant to the data cluster, nrelevant is

shown in brackets, [

nftotai[n,'eievant]

Cmean{linit(1), liniv(4)} 1[11 4[1]

0.6 {9,8} 0.030(0.582) 0.046(0.547)

0.9 {10,9} 0.019(0.749) 0.022(0.746)

Table 2

[0057] In Table 2, it can be seen that when the cluster

mining method is applied, average classification results have

dramatically improved over that shown in Table 1. That is, not

only have error probabilities been substantially reduced but

average yields have also been significantly increased. For

example, notice in Table 1 that with a true cluster location of

0.6, and for both the one and four dimensional cases, the

average yield is less than 0.5. However, in Table 2, and after

the cluster algorithm is applied, it can be seen that the

average yield has been increased to be much closer to the true

value of 0.6. Notice that a similar significant performance

improvement occurs for a true cluster location of 0.9.
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[0058] It is interesting to note that in obtaining the yield

results of Table 2, the Mean-Field BDRA classifier labeled an

average of fifty four data points as target (i.e., belonging to

the cluster). In Table 1, the Mean-Field BDRA called an average

of two hundred forty eight points the target. In other words,

the clustering algorithm was able to significantly increase the

average yield of the data with only slightly more than twenty

percent of the number of data points. Thus, the clustering

algorithm is utilizing the data much more efficiently to predict

a gain in yield in unlabeled data. However, there still are some

"false alerts" with the clustering method as other data points

share the exact same feature space as those within the cluster.

The fine tuning of threshold locations shown as the last step in

the clustering algorithm above helps to reduce these false

declarations by more precisely locating the best initial

discrete levels to use by the Mean-Field BDRA.

[0059] In Table 3, classification performance results are

illustrated for the Mean-Field BDRA (i.e., w/o a cluster mining

algorithm applied) with supervised training (i.e., data with

yields greater than 0.5 are called target and those with yields

less than 0.5 are called non-target), for two and three cluster

data of the type shown in FIG. lB. Appearing in this table is

the average probability of error computed on an independent test

set (50% training/ 50% test), for the respective number of
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unknown clusters shown. In this case, supervised training

results appear for both unclustered (i.e., the classifier has no

knowledge about the data clusters), and clustered (i.e., the

classifier knows all data points in each cluster, and these are

the only points labeled as target). In producing these results

the Mean-Field BDRA trains with twenty initial discrete levels

of quantization.

Number of Supervised Supervised

clusters Unclustered Clustered

2 0.400 0.104

3 0.388 0.126

Table 3

[0060] Table 3 illustrates the interesting aspects of this

data with regard to classifying data that contains isolated

clusters. Observe in this table that average classification

results 'are poor when all of the training data are labeled

correctly, and training proceeds in a supervised manner (see the

unclustered results column), given the classifier has no

knowledge about any data clusters. However, it can also be seen

(see the clustered results column) that performance improves
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dramatically when the classifier is given precise knowledge

about the location of all points within the data clusters.

[0061] The error probabilities in Table 3 indicate that there

is only a slight difference in the results if the data contains

either two or three clusters, such as the data shown in FIG. lB.

For example, with the unclustered results the three cluster case

is slightly better as more clusters are providing information to

help discriminate the classes (as a comparison to this, in Table

1 single cluster results using supervised training produced an

error probability of near 0.5). When the classifier is given

knowledge about the points within each cluster, the two cluster

case appears to perform slightly better. In this situation,

with three clusters an increasing number of isolated quantized

cells also causes more false positive classifications to occur

in the regions containing all clusters.

[0062] As a final observation in Table 3, notice that the

initial number of discrete levels per feature was chosen to be

twenty by the Mean-Field BDRA. For the supervised training case

shown in this table, the initial number of discrete levels used

for each feature was chosen to be consistent with that used

below in obtaining the modified results of Table 4. In all

cases, when obtaining these results the actual number of initial

discrete levels per feature was incrementally varied between two

and twenty by the Mean-Field BDRA. The final value of ten shown
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was determined by the Mean-Field BDRA to be those that produced

the smallest training error with the clustering algorithm

applied.

Number of Unsupervised Mean-Field BDRA Supervised

clusters Clustered

2 0.110 0.104

3 0.134 0.126

Table 4

[0063] In Table 4, classification performance results appear

for the Mean-Field BDRA (i.e., with a cluster mining algorithm

applied) and unsupervised training (i.e., using the algorithmic

steps described above), for two and three cluster data of the

type shown in FIG. lB. Appearing in this table is the average

probability of error computed on an independent test set (50%

training/50% test), for the respective number of unknown

clusters shown. Notice, that for comparison the error

probabilities are repeated for the supervised clustered case of

Table 3. Observe that the utility of the data clustering

algorithm developed here can clearly be seen in the results of

Table 4. Observe for both the two and three cluster cases, that

the error probability of the cluster mining algorithm is only
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about one percent higher than it is for the clustered supervised

classifier that knows everything. This is significant because

the cluster mining algorithm used here has no prior information

at all about the clusters.

Supervised
Number of clusters Unsupervised Mean-Field BDRA

Unclustered

1 0.666 0.512

2 0.608 0.555

3 0.622 0.588

Table 5

[0064] Table 5 shows average yield results for the multiple

cluster cases of Tables 3 and 4, and for comparison previously

obtained single cluster results are also shown. In each of

these cases, the actual average yield for all data clusters is

0.75. Appearing for two and three clusters are computed average

yields for the unsupervised Mean-Field BDRA based classifier of

Table 3, and the supervised unclustered classifier of Table 1.

For the single cluster case, yield values are based on averaging

the one-dimensional results for actual cluster yields of 0.6 and

0.9. From this table, it can be seen that the cluster mining

algorithm developed here is improving the overall average yield
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for all numbers of clusters over that of the supervised

classifier. This implies that the new algorithm is improving

the quality of the decisions in that it is declaring a

proportionately larger ratio of high yielding data points as the

target. However, notice also that as the number of clusters

increases yield performance of the supervised classifier

improves with respect to that of the unsupervised Mean-Field

BDRA. Intuitively, as more clusters appear in the data

classification performance with supervised training should

improve as each cluster provides additional information. This

implies that in some cases it might be best for an algorithm

such as the Unsupervised Mean-Field BDRA to mine for clusters

individually, as opposed to collectively as a group.

[0065] In summary, this invention provides a new cluster

mining algorithm which has been developed for the Mean-Field

Bayesian Data Reduction Algorithm (BDRA). The new method works

by utilizing a semi-unsupervised method (only non-target

training data points were completely labeled), and an iterative

sequential search through the target data, to locate features

that are clustered relative to all other target and non-target

features within the data set. For the simulated data generated

here, clustering was typically based on two defined goodness

metrics. In particular, the clustering was based both on

reducing the relative training error and on improving the
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Attorney Docket No. 97410

DATA CLUSTERING METHOD FOR BAYESIAN DATA REDUCTION

ABSTRACT OF THE DISCLSOURE

This invention is a method of training a mean-field

Bayesian data reduction algorithm (BDRA) based classifier which

includes using an initial training for determining the best

number of levels. The Mean-Field BDRA is then retrained for

each point in a target data set and training errors are

calculated for each training operation. Cluster candidates are

identified as those with multiple points having a common

training error. Utilizing these cluster candidates and

previously identified clusters as the identified target data,

the clusters can be confirmed by comparing a newly calculated

training error with the previously calculated common training

error for the cluster. The method can be repeated until all

cluster candidates are identified and tested.
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