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Attorney Docket No. 84513
CHAIN RULE PROCESSOR

STATEMENleF‘GOVERNMENT'INTEREST
The invention described herein may be manufactured éﬁa
used by or for the Government of the United States of‘Aﬁefica
fqr-governmentél purposés without the payment of anf‘rqyalties A

thereon or therefor.

:BACKGROUND OF THE INVENTION

(1) Field of the Invention |

This invention generally relates to a signal
classification system for:claséifying an incoming déta stream.
More particularly, the invention relates to a modularized | |
classifier system that can be used for.easily'assembling
different classifiers. ’ .
(2) Description of thé Prior Art

In order to determine the nature of an incoming signal,
the signal type must be determined. A classifier attempts to
classify a signal into one of M signal classes based on“
features in the data. .M—afy classifiers utilize neural
networks for extracting these features from the data. In a
Eraining stage the.neﬁral networks incorporated in the
classifier are trained with labeled data allowing the neural

networks to learn the patterns associated with each of the M

classes. In a testing stage, the classifier is tested against

1
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ﬁhlabeled data based on the learned patterns. The performanée-
of phe classifier is defined as the‘probability that a signal
is corfectly classified. ‘

The so-called M-ary'élassification problem is ﬁhat of
assigning a multidimehsional sample of data x € R"to oné 6f M
classes. The statistical hypothesis that class j is true is

denoted by Iij, lS;jSAl. The statistical characterization of

% under each of the M hypotheées is described coﬁplétely by

the probability density functions (PDFs), written
p(xIHJ.);ISjSM . Classical theofy as applied to the problem

results in the so-called Bayes classifier, which simplifies to .

the Neyman-Pearson rule for‘equiﬁrobable prior probébilitiés:

Pragmir)
Because this claséifier attains the minimum probability of
error of all possible classifiers, it is the basis ofxmost
classifier designs. Unfoftunately, it does not provide simple
solutions to the dimensionality problem that arises when the

PDFs are unknown and must be estimated. The most common

solution is to reduce the dimension of the data by extraction

of a small number of information-bearing features z==7(x),

then recasting the classification problem in terms of z:
j = argqup(lej'). (2)
J

This leads to a fundamental tradeoff: whether to discard

features in an attempt to reduce the dimension to something
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manageable br'to include them and suffer the problems
associatéd'with estimating a PDF at high dimension. ‘
Unfortunately, there méy-be,no accepﬁable compromiée.
Virtually ail methodé which aftempt to find décision
boundaries on a high—dimensibnal_space are subject to this
tradeoff or “curse” of dimensionality. For this reason, many
fesearchers have éxploredAthe possibility of using'qiaés-'
épecific features. |

The basic idea in using class-specific feétures is fd

extract M class-specific feature sets zj=Tj(x), lSjSM where

the dimension of'each feature set is small, and then to arrive -
at a decision rule based only upon functions of the lower

dimensional features. Unfortﬁnately, the classifier modeled on

' the Neyman-Pearson rule

j'.=argm51xp(zj|Hj). o | : | (3) .

is invalid because comparisons of densities on different
feature spaces are meaningless. One of the first approaches

that comes to mind is to computes for .each class a likelihood

~ratio against a common hypothesis composed of “all other

classes.” While this seems beneficial on the surfaée, there is
no theoretical dimensionality reduction since for each
likelihood ratio to be a sufficient statistic, “all features”
must be included when testing each class against a hypothesis
ﬁhat includes *all other classes.” A number of other
approaches have emerged in recent years to arrive at

meaningful decision rules. Each method makes a strong
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assﬁmption (such as that the classes fall into linear
éubspaces) that limits the applicability’of‘the methéd or else
uses ad hoc method of combiﬁing the likelihoods of the various
feature sets;

Prior art methods include the following. A method‘used
in speech recognition (Frimpong—Ansah, K. Pearcé,,D.-Holmes,

and W. Dixon, “A stochastic/feature based recognizef and its

training algorithm,” in Proc. ICASSP, vol. 1, 1989, pp. 401-

404.) uses phoneme-specific features. While, at first, this
method appears to usé class-specific features, it is aqtually
using the same features extractéd from the raw data‘gut"
applying different models to the time evolution of these
features. |

A method of image recogﬁition (E.'Sali and S. Ullman;
“Combining class-specific fragments fqr objeét
classification,” in Proc. British Machine Vision Conf., 1999,
pPpP. 203—213.) ﬁses claés—specific features to detect various
image “fragments.” The method uses a nonprobabilistic means of
qoﬁbining fragments to form an image.

A method has been proposed that tests all pairs of
classes (S. Kumar, J. Ghosh, and M. Crawford, “A versatile
framework fof.labeling imagéry with large number of classes,”
in Proc. Int. Joint Conf. Néural Nétworks,.Washinthn, DC,;
1999, pp. 2829-2833.). To be exhaustive, this method hés a
éomplexity of 0(M?) different tests and may be prohibitive for
large M. A hierarchical approach has been proposed based on a

binary tree of tests (“A hierarchical multiclassifier system

4
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for hyperépectral data analysis,” in Multiple Classifier
Systems, J. Kittler and F. Roli, Eds. New York: Springer,
2000, pp. 270-279).. Implementétion of fhe binary tfee rquireé
initial classificafion into meta-classes, which is an approach
that is suboptimal becauée'it makes hard decisions based on
limited infgrmaﬁion. |

Methods.based on linear subspaces (H. Watanabe, T.

Yamaguchi, and S. Katagiri, “Discriminative metric design.for

robust pattern-recognition," IEEE Trans. Signal Processing,
vol.'45, pPp. 2655-2661, Nov. 1997. P. Belhumeur, dJ. Hespanha,
and D. Kriegman, “Eigeﬁfaces vs. Fiéherfaces: Recognition
using class specific linear projection,” IEEE Trahé. Patfé}n

Anal. Machine Intell., vol. 19, pp. 711-720, July 1997.) are

‘popular because they use the powerful tool of linear subspace

analysis. These methods can perform well in ceftain'
applications but are severely limited to problems where when
the classes are separable by linear processing.

Support vectors (D. Sebald, “Support vector machines and

the multiple hypothesis test problem,” IEEE Trans. Signal

Processing,. -vol. 49, pp. 2865-2872, Nov. 2001.) are a

relatively new approach that is based on finding a linea?
decision function between every pair of classes.

The inventor has also developed a prior class specific
classifier, U.S. Patent No. 6,535,641, showing a class |
specific cléssifier for classifying data received from a data
source. The classifief has a feature transformation section
associated with each class of data which receives the data and

5
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‘provides a. feature set for the associated data class. Each

feature transformation section is joined to a pattern matching

processor which receives the associated data class feature

set. The pattern matching prodessors calculate likelihood

functions for the associated data claés. One ﬁormalization
processornis joined ih parallel with each patﬁern matching
processor fof’calculating an invérse_likelihood function‘from
the data, the associated class feéture set and a common d#ta
class set. The common data class set can be either calculated
in a common data class calculator or incorporated in the
normalization célculation. The inverée likelihéod function is
then multiplied with the likelihood function for each
associated data class. A comparétor provides a signal
indicating the appropriate cléss-for the inpuf data baéed upon
the highest multipliéd result. | |

As evidénced by the various approaches, there is a strong
motivation for using class-specific features. Unfdrtunateiy,
classical theory as it stands requires operating in a common
feature space and fails to provide any guidance for a suitable

class-specific architecture.

SUMMARY OF THE INVENTION
Therefore, it is one purpose of this invention to provide
a class specific classifier. |
Another.purpose‘of this invention ié alclassifier

architecture having reusable modules.
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Accordingly, there'islprovided a modularized classifier

which includes a plurality of class specific modules. ©Each

module has a feature calculation section, and a cofrection
section. The moduleé can be arranged in chaiﬁs of modules
where each chain is associated with a class. The.first module
in the chain receives raw input data and subsequent modules
éct on the features provided by the previous moduleﬂ‘ fheﬁ
correction section acts on the previouély computed borréction;
Each chain ié terminated by a probability denéity_functign
evaluation modulé.' The output of the evaluation module is
combined with the correction value of the last module in the
chain. This combined output is-provided to a compare module
that indicates the class of the raw‘input data. The invention
may be implemented'eitherAas a device or a method 6perating on

a computer.

BRIEF DESCRIPTION OF THE DRAWINGS
The appended claims particularly point out and distinctly

claim the subject matter of this invention. The various

. objects, advantages and novel features of this invention will

be more fully apparent from a reading of the following

detailed description in conjunction with the accompanying -

drawings in which like reference numerals refer to like parts,
and.in which:
FIG. 1 is a diagram illustrating the chain rule used in

this invention;




10
11
12
13
14
15
16
17
18

19

20

21

22

23

24

FIG. 2 is a blocR diagram of a first ekample'of a
classifier implemented utilizing the preferfed architecture of
the cﬁrrent invention; | ‘

FIG. 3 is a block.diagram of a second example.of a
classifier imp}emeﬁtéd utilizing an alternati#e architecture
of the current invention; and

FIG. 4 is a block diagram of an embodiment of a

classifier implemented utilizing another alternative

. architecture of the current invention.

.DESCRIPTION dF THE PREFERRED EMBODIMENT'

It is well known how to write the PDF of x from the PDF
of z when the transforﬁation is 1:1. This is the éhange of
variables theorem from basic ﬁrobability; Let z=T(x), where
T(x) is an invertible and differentiable multidimensional .

transformation. Then,
P = Plp.@6), O
where |J(x) is the determinant of the Jacobian matrix of

the transformation

Q
K

Ty = o o (5)

)
&

What we seek is a generalization of (4) which is wvalid

for many-to-1 transformations. Define

P(T,p,)={p.(x):2=T(x)and z~ p(z)}, (6)
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that is, P(T,p,) is the set of PDFs p.(x) which through T(x)
genefétes PDF pz(z) on z; If T( ) is many-to-one, é(T,pz) will.

contain more than one fnember. Therefore, it is imﬁqssibls to
uniquély determine px(x) from T() and p,(z). We can, however,
find a particular solution if we constrain p,(x) such that for

every transform pair (x,z), we have:

() _ p(2)_
p.WH,) " p.(H,)

or that the likelihood ratio (with respect to H,) is the same

(7)

in both the raw data and feature domains for some pre-
determined reference Hypothesis Hy. We will soon show that
this consfraint produces desirable properties; | The particular
form of DPx (x). is uniqﬁely defined by the constraint itself,

namely.

px(x)=f,7:(%pz(2); atz=T(x). | (8)

The PDF projection theorem proves that (8) is, indsed, a

PDF and a member of P(T,pz). Under this theorem let H, be some

fixed reference hypothesis with known PDF px(x]Ho). Let y be
the region of support of px(xiHo). In other words y is the set

of all points x where px(xIHo) > 0. Let z = T(x) be a continuous
many-to-one transformation (the continuity reqﬁirement ma? be

overly restrictive). Let Z be the image of % under the

transformation T(x). Let pz(z[Ho) be the PDF of z when x is
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drawn from p,(dH,). It follows that p,(zH,) > 0 for all z e Z.

Now, let be a any‘othe:f PDF with the same region of support Z.

‘Then the function (8) is a PDF on %, thus

o [pod=1. O

Furthermore,' Px (X) is a member of P(T,p:) .

The theorem shows that, provided we know the PDF under
séme reference hyp'othesis H, at both the input and oﬁtput of
ﬁransformation T(x), if we are given an arbitrary PDF éz (z)
defined on gz, we can immediately £f£ind é PDF py(x) definéd on x
that genei‘atés pz(2) . Although it is interesting that py(x)
generates p,(z), there are an infinite nufnber 6f them, and it
is not yet clear that p.(x) is the best choice. However,

suppose we would like to use px(x) as an approximation to the A

PDF px(lel). Let this approximation be

z

- | H ) -
px(lel_) = I;"(jHo) pz(z|H1) at z = T(x) . (1.0)

From the PDF projection theorem, we see that (10) is a PDF.

Furthermore, if T(x) is a sufficient statistic for H; vs H,

then as 132(2|H1) — p,(dH,), we have

E’x(’dH1) - px(lel)' : | - (11)

10
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This is immediately'seen frbm the well-known property of the
likelihood ratio, which states that if T(x) is sufficient for
H; versus H;:
px(leI) = pz(ZlHl)
p.xH,) " p.(dH,)

Note that for a given.Hl, the choice of T(x) and H, are coupled

(12)

ss that'they must be chosen jointly.'In additidn,‘note'that
the sufficiency sondition'is required for optimaiitf, but is
nst necessary for (10) to be a valid PDF. Here, We can séé.thé
ihportance of the theorem. The theoren, in effect, provides a
means of creating PDF approximations on the high-dimensional
input data space without dimensionality penalty using low-
dimensional feature PDFs and provides a wsy to optimize the
aéprqximation by controlling both the reference hypothesis Hy,
as well as the feétures_themselves. This is the remarkable
property of the theorem: that the iesulting function remains a
PDF whether or not the features are sufficient statistics.
Since sufficiency means optimality of the classifier,
approximate sufficiency means PDF approximation and
approximate optimality.'

The PDF projection theorem allows maximum likeiihOOd (ML)

methods to be used in the raw data space to optimize the

accuracy of the approximation over T and H, as well as 0. Let

pz@kﬁ) be parameterized by the parameter 6. Then, the

maximization

11
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6’,’%{% mpz(lel,e),z—T(x) ._ (13)

is a valid ML approach and can be used for model selection
(with appropriate data cross-validation). |

We now mention a uséful pfoperty of (7). Let H, be a
region of sufficiency (ROS) of z, which is defined as a set of .

all hypotheses such that‘for every pair of hypotheses

H, H,cH_, we have

px(leOa)=pz(ZlH0a)
P;(leOb) P:(ZHOb)'

An ROS may be thought of as a famiiy of PDFs traced out

(14)

by the parameters of a PDF, where z is a sufficient statistic
for the parameters. The ROS may'op may not be unique. For
example, the ROS for a sample mean statistic could be a family
of Gaussian PDFs.with variance 1 tracéd out by the mean |
parameter. Another ROS would be produced by a'diffefent
variance. The % j-function”

p.H,) _ plujH,)
p.(T(x}H,)  pldH,)

is independent of H, as long as H, remains within ROS H,..

J(x,T,H,)= (15)

Defining the ROS should in no way be interpreted as a
sufficiency requirement for z. All statistics z have an ROS
that may or may not include H; (it does only.in the-ideal
case) . Defining H, is uged only in determining the allowable
range of feference hypotheses when‘using a data-dependent

reference hypothesis. For example, let z be the sample

12
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variance of x. Let Ho(¢?) be the hypothesis that x is a set of
N independent identically distributed zero-mean Gaussian
sémplés with variance o2. Clearly, an ROS for z is the set of

all PDFs traced out by ¢?. We have

kbl - o) e L) o

n=1

and, since z is a yx*(N) random variable (scaled by 1/N)

) () 2] e

c 2c2

Ze)

It is easily verified that the contribution of o2 is canceled
in the J-function ratio.

Because J(X,T,EQGTZ» is independent of ¢, it is possible
to make o° a function of the data itself, changing it with

each input sample. In the example above, since z is the

sample variance, we could let the assumed variance under H,
depend on z according to ¢ = z.

However, if J(x, T, Ho(az)) is independent of &, one may

queétiqn what purpose does it serve to vary o?. The reason is

purely numerical. Note that in general, we do not have an

analytic form for the J-function but instead have separate

numerator and denominator terms. Often, computing JGLZUP%QTZ»

can pose some tricky numerical problems, particularly if x and
z are in the tails of the respective'PDFs. Therefore, our

approach is to position H, to maximize the numerator PDF

13
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(which simultaneously maximizes the denominétor) . Another
reason to do this is to allow PDF épproximations to be used in
the denominator that are not valid in the tails, such as 't;he
central limit theorem (CLT) .

In our example, the maximum of the numerator clearly
happehs ét o =z becaus.e z 1s the mé}éimum 1ikelihood
estimator of' o?. We will e‘xplore thg relétionship of this
method to asymptotic ML theory in a later section. To refiect
the possible dependence of 1"-1’0 on z, we adopt the notation

Ho(z). Thus

Py (XIH o(z )) -

p.(4dH,) = m p,(2H,), where z = TG0 . (18)

The existence of z on the right sidé of.the conditioning
bperator | is admittediy a very bad use of‘notation‘but is doné
for simplicity.- The‘meaning of ‘'z can be understood using the
following imaginary situation. Imagine that we are handed a

data sample x, and we evaluate (10) for a particular

hypothesis H0 €H,. oOut of curiosity, we try it again for a

. different hypothesis of H;e€H,. We find that no matter which

H,eH, we use, the result is the same. We notice, however,
that for an H, that produces larger values of p,(xH,(z)) and

pz(z|Ho(z)), the requirement for numerical accuracy is less

stringent. It may require fewer terms in a polynomial
expansion or else fewer bits of numerical accuracy. Now, we

are handed a new sample of x, but this time, having learned

14



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

our lésson, we immediately choose the fﬁ,el?z that maximizes
pxcdHo@ﬁ). If we do this every time, we realize that Hy, is now

a function of z. The dependence, however, cérriés no
statistical meaning and oply has a numerical interprététion.
This is addressed below in the text differentiating a fixed .
reference hypothésis from a variable reference hypbthesié;

In many problems H, is not easily found, and we must be
satisfied with approximéte sufficiency. 1In this case, there
is a weak dependence of J@qzykg) upon Hp. This dependence is

generally unpredictable unless, as we have suggested, Ho(z) is

always chosen to maximize the numerator PDF. Then, the

' behavior of J(x,T,Hb) is somewhat predictable. Becéuse‘the

numerator is always maiimized, the result is a posiﬁive bias.
This pbsitiﬁe bias is most notable when there is a good match
to the daﬁa, which is a desirable feature.

We have stated that when we use a data-dependent or
variable reference hypothesis, we prefer to choose .the
reference hypothesis such that the numerator of.the‘J—function
is a maximum. Since.we often have parametric forms for fhé
PDFs, this amouhts to finding the ML estimates of the
parameters. If there are a small number of features, all of
the features are ML estimators for parameters of-the PDF, and
there'is sufficient data to guarantee that the ML estimators
fall in the asymptotic (large data) region, then the variable

hypothesis approach is equivalent to an existing approach

15




10

11

- 12

13

14

15

16

17
18
19

20

" based on classical asymptotic ML theory. We will derive the

well-known asymptotic result using (18).
Two well-known results from asymptotic theory are the
following. First, subject to certain regularity conditions

(large amount of data, a PDF that depends on a finite number

bf parameters.and'is differentiable, etc.), the PDF px@zof)‘

may be approximated by

px(x; 0'); = px(x; 0) exp] - —;—(0 - 6)_1(0)(0' - 0) (19)

~

Where 0" is an arbitrary value of the parameter # is the
maximum likelihood estimate (MLE) of O, and I(6) is the '
Fisher’s information matrix (FIM). The components of the FIM

for PDF parameters 0y, O¢ are given,by‘

o ’Inp. (x; 0 .
I, (0) = —p ——=x"17 | 20
00,0 z( 26,86, ) | (20)

The approximation is valid only for 6" in the vicinity of the

MLE (and the true value). Second, the MLE @ is appfoximately
Gaussian with mean equal to the true value 0 and covariance

equal to I'%(9) or

16
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where P is the dimension of 6. Note that wevuse 6 in
évaluéting the FIM in placelof 0, which is unknown. This is
allowed because I *(6) haé‘a weak dependence on 6. Tﬁe
approximation. is valid oniy for 6 in the viéiﬁity of the MLE;

~To apply (18), 6 takes the place of z, and H,(2) is the

~

hypothesis that @ is the true value of . We substitute (19)

for p,(dH,(z)) and (21) p.(2#,(z). Under the stated conditions,

the exponential terms in approximations (19), and (21) become

1. _Using these approximations, we arrived at

~ Apx(xl' 5) - ~ . ' : | X
px(lel) = 1/2 pa(elHl) - . (22)

o §)

which agrees with the PDF approximation from'asymptotic

theory.

- To compare (18) and (22), we note that for both, there is

~ .

an implied sufficiency requirement for z and 0,-respectivé1y.

~

Specifically, H,(2) must remain in the ROS of z} whereas 0 must

be asymptotically sufficient for 6. However, (18) is more

17
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general since (22) is valid only when all of the feetures are

ML estimators and only holds asymptotically for large data

° ~

records with the implication that @ tends to Gaussian, whereas
(18) has no such implication.A This is particularly important

in upstream processing, where there has not been significant

data reduction, and asymptotic results do not apply.. Using

(18), we can make simple adjustments to the reference
hypotheeis to match the data better and avoid the PDF tails
(such as controlling variance), where we are certain that we
remain in the Rosjof z. As an aside, we note that (10) with a
fixed refefence hypothesis is even mofe general sinee there is
no implied sufficiency requirement for z.

In many‘cases, it is difficult to derive the J—funcfion
for an entire processing chain. On the othe? hend, it may be
quite easy to do it fornone stage of processing at a time. 1In
this case, the chain rule can be used to.good advantage. The
chain rule is just the recursive application of the PDF .
projectien theorem. For example, consider a processing chain -

T T T
XDy S>w>D2zZ g ‘ o (23)

The recursive use of (10) gives

.o ) G0 2, I8 2.l )
Y p, (ylH .0)) p, (wiH o (w)) P, (z H, (z))

where y = Ty(x),w = T,(y), z = T,w), and H,(y), Hw), Hy(z) are

p,(4H,) ' (24)

reference hypotheses (possibly data-dependent).suited to each

stage in the processing chain. By defining the J-function of

18
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each stage, we may write the above as

T T H G, G ). @)

There is a special embedded relationship between the

hypotheses. Let H},.HW,'and H, be the ROSs of y, w, and z,

respectively. Then, we have H, CHWCHy. If we use variable

reference hypotheses, we also must have

.Hg(Z)GHZ,H{,(W)GHw, and Hy(y)eH,. This embedding of the

hypotheses is illustrated in FIG. 1. The condition H,€H, is

the ideal situation and is not necessary to produce a valid
PDF. The factoriéation (24), together wiﬁh the embedding of
the hypotheses, we call the chain-fule processor (CRP).

We now summarize the various methods we have discussed
for computing the J-function. For modules using a‘fixéd
reference hypothesis,_care must be taken in calculation of the
J-function because the data is morevoften than not in thé
tails of the PDF. For fixed reference hypotheses, the J—'

function is

J(x, T, H) = —%‘—%z%%. | | (26)

The numerator density is usually of a gimple form, so it is
known exactly. The denominator density Pz@#%) must be known
exactly or approximated carefully so that it is accurate even

in the far tails of the PDF. The saddlepoint approximation

(SPA) provides a solution for cases when the exact PDF cannot

I
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be derived but the exact moment-generating function is known.

The SPA is known to be accurate in the far tails of the PDF.

For a Vériable_reference hypotheses, the J-function is

I, 7, Hy(2)) =

Modules using a variable reference areAusuaily designed to
position the_referenées hypothesis at the'peak of the
denominator PDF, which is approximated by the CLT.

A special case of the variable reference hypoﬁhesis

approach is the ML method, when z is an MLE. Whenever the

Py (XIH 0 (z ))

(27)

feature is also a ML estimate and the asymptotic results apply

(the number of estimated parameters is small and the amount of

data is large), the two methods are identicalﬂ The variable

reference hypothesis method is more general because it does

not need to rely on the CLT.

One-to-one transformations do not change the information

content of the data, but théy are'important for feature

conditioning prior to PDF estimation. Recall from that the PDF

projection theorem is a generalization of the change;of—

variables theorem for 1:1 transformations. Thus, for 1:1

transformatibns, the J-function reduces to the absolute value

of the determinant of the Jacobian wmatrix (4)

J(x,T)=|JT(x]

Application of the PDF projection theorem to

(28)

classification is performed by substituting (18) into (1). In

other words, we implement the classical Neyman-Pearson
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classifier but with the class PDFs factored using the PDF

projection theorem

" .chqb%x(z‘»a _ |
I T R

where we have allowed for class-dependent, variable, reference '
hypotheses.

FIG. 2 éhows anlexample of a classifier 10 coﬁstructéd
with the arChiteéture‘ofbthe current invention. Raw data.X
having a plurality of time samples and falling into a
plﬁrality of classes is pfovided'to the classifier 10. Raw
data X is provided t§ chains 11 of class—specific modules 12.
Each class is associated with a chqin 11 of class-specific
modules 12.

Each module 12 receives a feature calculation iﬁput which
it provides to a feature calculation séction 14. The featuré
calculations section performs calculations on the feature
calculation input. The feature calculation input can be data

or previously computed features from previous feature

calculation outputs. Upon completing these calculations the

module 12 provides a feature calculation output. Each module
12 also includes a Log J-Function section 16. The Log J- .

Function section 16 computes a correction factor that can be

summed at summer 18 with the correction factors pfovided by

the correction output of Log J-Function sections 16 in
previous modules 12 to allow chaining of modules 12.
Modules 12 are joined in chains so that the first module

in the chain receives raw data X at its feature calculation
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input-and zero or a null vaiue at its corréction_input. .Eachi
succeeding module 12 then réceives its inputs from the
preceding‘module 12 in the chain 11. Chain 11 can have any
number of modules 12. -The last module 12 in the chain 11 is
joined to a probability density function evaluation sectibn
20. The probability density function evaluatibn'section.éb
receives the feafure calculation output from the last modﬁle
in the chain and convefts it into a form for summing at summer
22 with the correction output of the.last}modulé 1é.in thé.
éhain‘ll. The output of summer 22 applies the probability
density function for the class associated with the chain 11 to
the raw data and produces a value indicating thé likelihood

that the raw data is a member of the class. A compare module

24 is joined to the output of each summer 22.  The compare

module 24 provides an output that iﬁdicates'that the faw.data
X ié of the class having features indicated by high values at
the outputs of summers 22.

_Class specific moauies 12 have been built for feature
transfo;mations including various invertible transforMations,
spectrograms, arbitrary linear funcfions of exponential fandom'
values, -the autocorrelation funcfion (contiguous and non-
contiguous), autoregressive parameters, cepstrum, order
statistics of independent random values, and sets of quadratic
forms. These represent some of the many feature'
transformations that can be incorporated as modules in a

classifier built using the chain rule.
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FIG. 3 shows an examplé of a classifier 10' éonstructed
using an alternative embodiment of the architecturerf'thé
current invention. This architecture utilizes a J-Function
25, insteéd of a Logarithmic J-Function 18, in each module 12.
This J-Function can be multiplied with the previous'correction
outputs at multiplier 30. fhe probability function evalﬁation.
sectidn 34 can then provide an output which can be multiplied
at 32 with the output of the last module. The muitiblied"
outpuf can thén be used as fhe probability density function_
for the feature.

FIG. 4 is another’alternate embodiment 10" of-a
classifier utilizing the architecture taught by the curreﬁt

invention. 1In this embodiment, a thresholding module 36 is

.provided for each class between summer 22 and compare module

24. Threéholding module 36 does not allow summer 22 to send a
value to compare module 24 if the value does not exceed a
threshold value. This thréshold value can be set as.one.value
for all of the chains or set independently for each chain.

The threshold value can be caiculated based on the level of‘
background noise in the raw input data. Use of thresholding
modules’ 36 allows weak samples to be.ignored rather than

forcing them into a poorly fitting class. While thresholding

“is shown applied to the log J-fundtion embodiment, it can also

be applied to the J-function embodiment of the invention. -
The J-function and the feéture PDF provide a

factorization of the raw data PDF into trained and untrained

components. The ability of the J-function to provide a “peak”
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at the “cérrect” featufe set gives the classifier a measure of‘
classification performaﬁce without needing to train:‘In fact;
it is not uncommon that the J-function dominates, éliminaﬁipg
the need to train_at'all. This we cali the feature selectivity
effect. For a fixed amount of raw data, as'the-dimenéion of
the feature set decreases, indicating a larger rate -of data
éompression, the effect of the J-function compared-with the
effect of the featufe PDF increases. An example where the J-
function dominates is a bank of matched filter for known |
signals in noise. If we regard the matched filters as feature
extractors and the matched filter outputs as scalar.featureé,

it may be shown that this method is identical to comparing

' : 2 R
only the J-functions. Let zj=4“ﬂjx|,.where W is a normalized

 signal template such that W';w,;=1. Then, under the white

(independent) Gaussian noise (WGN) assumption, z; is

distributed xzﬂ). It is straightforward to show that the J-

function is a monotonically increasing function of zy. Signal

waveforms can be reliably classified using only the J-function
and ignoring.the PDF of under each hypothesis.vThe curse of
dimensionality can be avoided if the dimeﬁsion of zj‘is small
for each j. This possibility exists, even in complex probiems,
because z; is required only to have information sufficient to
separate class H; from a specially chosen reference‘hypothesis

Hp, ;-

24




This invention has been disclosed in terms of certain
embodiments. It will be’appareﬁﬁ that many modifidafions cén
be made to the disclosed apparatus without departing frém'phe{
invention. Therefore, it is the intent of thé appended claims
to cover all such vafiations and modifications as come wiﬁhin

the true spirit and scope of this invention.
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Attorney Docket No. 84513
CLASS SPECIFIC CLASSIFIER

ABSTRACT.OE THE DISCLOSURE

- A hodularized classifier is provided whicﬁ.inq1Udés a
plurality of class specific.modules. Each module has a feature
calculation ééction, and a currection section. The modulés can
be arranged in chains of modules where each chain is aésociated’
with.a claés. The fitst_module in the chain receiVés raw input
data and subseéuent modules act on the features ptdvided by the
previous module. The correction settion acts on the previously

computed correction. Each chain is terﬁinated by a probability"

den51ty function evaluatlon module The output of the evaluatlon,

module is combined with the correction value of the 1ast module
in the chain. ThlS combined output is prov1ded to a compare

module that indicates the class of the raw input data.
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