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1 Attorney Docket No.   84513 

2 

3 CHAIN RULE PROCESSOR 

4 

5 STATEMENT OF GOVERNMENT INTEREST 

6 The invention described herein may be manufactured and 

7 used by or for the Government.of the United States of America 

8 for governmental purposes without the payment of any royalties 

9 thereon or therefor. 

10 

11 BACKGROUND OF THE INVENTION 

12 (1)  Field of the Invention 

13 This invention generally relates to a signal 

14 classification system for classifying an incoming data stream. 

15 More particularly, the invention relates to a modularized 

16 classifier system that can be used for easily assembling 

17 different classifiers. 

18 (2)  Description of the Prior Art 

19 In order to determine the nature of an incoming signal, 

20 the signal type must be determined.  A classifier attempts to 

21 classify a signal into one of M signal classes based on 

22 . features in the data.  M-ary classifiers utilize neural 

23 networks for extracting these features from the data.  In a 

24 training stage the neural networks incorporated in the 

25 classifier are trained with labeled data allowing the neural 

26 networks to learn the patterns associated with each of the M 

27 classes.  In a testing stage, the classifier is tested against 



1 unlabeled data based on the learned patterns.  The performance 

2 of the classifier is defined as the probability that a signal 

3 is correctly classified. 

4 The so-called M-ary classification problem is that of 

5 assigning a multidimensional sample of data x  € l?''to one of M 

6 classes.  The statistical hypothesis that class j is true is 

7 denoted hy  Hj,   \<j<M .     The statistical characterization of 

8 X under each of the M hypotheses is described completely by 

9 the probability density functions (PDFs), written 

10 p\x\Hjj,\ < j <M .     Classical theory as applied to the problem 

11 results in the so-called Bayes classifier, which simplifies to 

12 the Neyman-Pearson rule for equiprobable prior probabilities: 

13 j* =^argmcixpY\Hj). (l) 

14 Because this classifier attains the minimum probability of 

15 error of all possible classifiers, it is the basis of most 

16 classifier designs. Unfortunately, it does not provide simple 

17 solutions to'the dimensionality problem that arises when the 

18 PDFs are unknown and must be estimated. The most common 

19 solution is to reduce the dimension of the data by extraction 

20 of a small number of information-bearing features z = T\x), 

21 then recasting the classification problem in terms of z:- 

22 j* = argmcap\z\H.). (2) 

23 This leads to a fundamental tradeoff: whether to discard 

24 features in an attempt to reduce the dimension to something 



1 manageable or to include them and suffer the problems 

2 associated with estimating a PDF at high dimension. 

3 Unfortunately, there may be. no acceptable compromise. 

4 Virtually all methods which attempt to find decision 

5 boundaries on a high-dimensional space are subject to this 

6 tradeoff or "curse" of dimensionality. For this reason, many 

7 researchers have explored the possibility of using class- 

8 specific features. 

9 The basic idea in using class-specific features is to 

10 extract M class-specific feature sets Zj=Tj{x),   \<j<M  where 

11 the dimension of each feature set is small, and then to arrive 

12 at a decision rule based only upon functions of the lower 

13 dimensional features. Unfortiinately, the classifier modeled on 

14 the Neyman-Pearson rule 

15 j* =argmaxp\Zj\Hj\ (3) 

16 is invalid because comparisons of densities on different 

17 feature spaces are meaningless. One of the first approaches 

18 that comes to mind is to computes for .each class a likelihood 

19 ratio against a common hypothesis composed of "all other 

20 classes." While this seems beneficial on the surface, there is 

21 no theoretical dimensionality reduction since for each 

22 likelihood ratio to be a sufficient statistic, "all features" 

23 must be included when testing each class against a hypothesis 

24 that includes "all other classes." A number of other 

25 approaches have emerged in recent years to arrive at 

26 meaningful decision rules. Each method makes a strong 



1 assumption (such as that the classes fall into linear 

2 subspaces) that limits the applicability of the method or else 

3 uses ad  hoc method of combining the likelihoods of the various 

4 feature sets. 

5 Prior art methods include the following. A method used 

6 in speech recognition (Frimpong-Ansah, K. Pearce,. D. ■ Holmes, 

7 and W. Dixon, "A stochastic/feature based recognizer and its 

8 training algorithm," in Proc.   ICASSP,   vol. 1, 1989, pp. 401- 

9 404.) uses phoneme-specific features. While, at first, this 

10 method appears to use class-specific features, it is actually 

11 using the same features extracted from the raw data but 

12 applying different models to the time evolution of, these 

13 features. 

14 A method of image recognition (E. Sali and S. Oilman, 

15 "Combining class-specific fragments for object 

16 classification," in Proc.  British Machine Vision Conf.,   1999, 

17 pp. 203-213.) uses class-specific features to detect various 

18 image "fragments," The method uses a nonprobabilistic means of 

19 combining fragments to form an image. 

20 •   A method has been proposed that tests all pairs of 

21 classes (S. Kumar, J. Ghosh, and M. Crawford, "A versatile 

22 framework for labeling imagery with large number of classes," 

23 in Proc.   Int.   Joint Conf.  Neural Networks,   Washington, DC, 

24 1999, pp. 2829-2833.). To be exhaustive, this method has a 

25 complexity of 0 (M^) different tests and may be prohibitive for 

26 large M. A hierarchical approach has been proposed based on a 

27 binary tree of tests ("A hierarchical multiclassifier system 

4 



1 for hyperspectral data analysis," in Multiple Classifier 

2 Systems,   J. Kittler and F. Roli, Eds. New York: Springer, 

3 2000, pp. 270-279).. Implementation of the binary tree requires 

4 initial classification into meta-classes, which is an approach 

5 that is suboptimal because it makes hard decisions based on 

6 limited information. 

7 Methods based on linear subspaces (H. Watanabe, T. 

8 Yamaguchi, and S. Katagiri, "Discriminative metric design for 

9 robust pattern recognition," IEEE Trans.   Signal  Processing, 

10 vol. 45, pp. 2655-2661, Nov. 1997. ■ P. Belhumeur, J. Hespanha, 

11 and D. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition 

12 using class specific linear projection," IEEE Trans.  Pattern 

13 Anal.  Machine Intell.,   vol. 19, pp. 711-720, July 1997.) are 

14 popular because they use the powerful tool of linear subspace 

15 analysis.  These methods can perform well in certain 

16 applications but are severely limited to problems where when 

17 the classes are separable by linear processing. 

18 Support vectors (D. Sebald, "Support vector machines and 

19 the multiple hypothesis test problem," IEEE Trans.   Signal 

20 Processing, vol. 49, pp. 2865-2872, Nov. 2001.) are a 

21 relatively new approach that is based on finding a linear 

22 decision function between every pair of classes. 

23 The inventor has also developed a prior class specific 

24 classifier, U.S. Patent No. 6, 535,641, .showing a class 

25 specific classifier for classifying data received from a data 

26 source.  The classifier has a feature transformation section 

27 associated with each class of data which receives the data and 

5 



1 provides a feature set for the associated data class.  Each 

2 feature transformation section is joined to a pattern matching 

3 processor which receives the associated data class feature 

4 set.  The pattern matching processors calculate likelihood 

5 functions for the associated data class.  One normalization 

6 processor is joined in parallel with each pattern matching 

7 processor for calculating an inverse likelihood function from 

8 the data, the associated class feature set and a common data 

9 class set.  The common data class set can be either calculated 

10 in a common data class calculator or incorporated in the 

11 normalization calculation.  The inverse likelihood function is 

12 then multiplied with the likelihood function for each 

13 associated data class. A comparator provides a. signal 

14 indicating the appropriate class for the input data based upon 

15 the highest multiplied result. 

16 As evidenced by the various approaches, there is a strong 

17 motivation for using class-specific features. Unfortunately, 

18 classical theory as it stands requires operating in a common 

19 feature space and fails to provide any guidance for a suitable 

20 class-specific architecture. 

21 

22 SUMMARY OF THE INVENTION 

23 Therefore, it is one purpose of this invention to provide 

24 a class specific classifier. 

25 Another purpose of this invention is a classifier 

26 architecture having reusable modules. 



1 Accordingly, there is provided a modularized classifier 

2 which includes a plurality of class specific modules..  Each 

3 module has a feature calculation section, and a correction 

4 section.  The modules can be arranged in chains of modules 

5 where each chain is associated with a class.  The first module 

6 in the chain receives raw input data and subsequent modules 

7 act on the features provided by the previous module.  The 

8 correction section acts on the previously computed correction. 

9 Each chain is terminated by a probability density function 

10 evaluation module.  The output of the evaluation module is 

11 combined with the correction value of the last module in the 

12 chain.  This combined output is provided to a compare module 

13 that indicates the class of the raw input data.  The invention 

14 may be implemented either as a device or a method operating on 

15 a computer. 

16 . 

17 BRIEF DESCRIPTION OF THE DRAWINGS 

18 The appended claims particularly point out and distinctly 

19 claim the subject matter of this invention.  The various 

20 , objects, advantages and novel features of this invention will 

21 be more fully apparent from a reading of the following 

22 detailed description in conjunction with the accompanying 

23 drawings in which like reference numerals refer to like parts, 

24 and in which: 

25 FIG.   1  is  a diagram illustrating the  chain inile used in 

26 this  invention; 



1 FIG. 2 is a block diagram of a first example of a 

2 classifier implemented utilizing the preferred architecture of 

3 the current invention; 

4 FIG. 3 is a block diagram of a second example of a 

5 classifier implemented utilizing an alternative architecture 

6 of the current invention; and 

7 FIG. 4 is a block diagram of an embodiment of a 

8 classifier implemented utilizing another alternative 

9 architecture of the current invention. 

10 

11 DESCRIPTION OF THE PREFERRED EMBODIMENT 

12 Itiswell known how to write the PDF of x from, the PDF 

13 of z when the transformation is 1:1.  This is the change of 

14 variables theorem from basic probability.  Let z=T{x) ,   where 

15 T(x) is an invertible and differentiable multidimensional . 

16 transformation. Then, 

17 Pjx)  = \J{X}PM^))' (4) 

18 where \j{x^   is the determinant of the Jacobian matrix of 

19 the transformation 

20 Jij   - — • (5) 

21 What we seek is a generalization of (4) which is valid 

22 for many-to-1 transformations.  Define 

23 

24 P(T,pJ = {p/x):z = T(x)andz^p/z)}, (6) 



1 that is, P{T,P^)  is the set of PDFs Px{x)  which through r(x) 

2 generates PDF pAz)   on z.  If T( ) is many-to-one, P(r,pz) will 

3 contain more than one member.  Therefore, it is impossible to 

4 uniquely determine Px(x) from T() and Pziz) .    We can, however, 

5 find a particular solution if we constrain Pxix)   such that for 

6 every transform pair (x,z), we have: 

Px(x)    _    Pjz) 
Px[A^o) ~pj^^' 

(7) 

8 or that the likelihood ratio (with respect to Ho) is the same 

9 in both the raw data and feature domains for some pre- 

10 determined reference hypothesis HQ.  We will soon show that 

11 this constraint produces desirable properties.  The particular 

12 form of px{x)   is uniquely defined by the constraint itself, 

13 namely 

14 pJx) = ^Mj4pJz);atz = T(x). (8) 

15 The PDF projection theorem proves that (8) is, indeed, a 

16 PDF and a member of P{T,pJ.    Under this theorem let HQ be some 

17 fixed reference hypothesis with known PDF p^^Hg).     Let %  be 

18 the region of support of p^{^Hg).     In other words %  is the set 

19 of all points x where P^(X]HO) > 0 . Let z = T{x)  be a continuous 

20 many-to-one transformation (the continuity requirement may be 

21 overly restrictive) .  Let Z be the image of %  under the 

22 transformation T(x).  Let P^(Z|HJ be the PDF of z when x is 



1 drawn from p^(x|Ho).  It follows that p^{z\Hg) > 0   for all z e Z. 

2 Now, let be a any other PDF with the same region of support Z. 

3 Then the function (8) is a PDF on %,   thus 

4 . 

5 I^p/X)dx = l. (9) 

6 

7 Furthermore, px(x) is a member of P(T,pz), 

8 The theorem shows that, provided we know the PDF under 

9 some reference hypothesis HQ at both the input and output of 

10 transformation T(x),   if we are given an arbitrary PDF Pz(z) 

11 defined on z, we can immediately find a PDF px(x)   defined on x 

12 that generates pz(z).  Although it is interesting that Px(x) 

13 generates Pz(z),   there are an infinite number of them, and it 

14 is not yet clear that Px(x)   is the best choice. However, 

15 suppose we would like to use Px(x)  as an approximation to the 

16 PDF PJ^\X\HI) .     Let this approximation be 

17 

18 k{4^i) =    (HA ki^l^i) ^t ^ = nx).        (10) 

19 

20 From the PDF projection theorem, we see that (10) is a PDF. 

21 Furthermore, if T(x)   is a sufficient statistic for Hi vs HQ, 

22 then as P2(z|H^) -> p^[z\Hj),   we have 

23 P.(X|HJ-> P,(X|HJ. (11) 

10 



1 This is immediately seen from the well-known property of the 

2 likelihood ratio, which states that if T(x)   is sufficient for 

3 Hi versus Ho: . 

—7\ ^~—7\ ^ \J-^) 
Px[x\Ho)    PM^O) 

5 Note that for a given Hi, the choice of T(x)  and Ho are coupled 

6 so that they must be chosen jointly.   In addition, note that 

7 the sufficiency condition is required for optimality, but is 

8 not necessary for (10) to be a valid PDF. Here, we can see the 

9 importance of the theorem.  The theorem, in effect, provides a 

10 means of creating PDF approximations on the high-dimensional 

11 input data space without dimensionality penalty using Ibw- 

12 dimensional feature PDFs and provides a way to optimize the 

13 approximation by controlling both the reference hypothesis Ho 

14 as well as the features themselves.  This is the remarkable 

.15 property of the theorem: that the resulting function remains a 

16 PDF whether or not the features are sufficient statistics. 

17 Since sufficiency means optimality of the classifier, 

18 approximate sufficiency means PDF approximation and 

19 approximate optimality. 

20 The PDF projection theorem allows maximum likelihood (ML) 

21 methods to be used in the raw data space to optimize the 

22 accuracy of the approximation over T  and Ho  as well as 9.  Let 

23 P^(Z|HJ be parameterized by the parameter 9.  Then, the 

24 maximization 

11 
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maxi ^'hX^KQ]z = T(x) 
Ho) 

(13) 

is a valid ML approach and can be used for model selection 

(with appropriate data cross-validation). 

We now mention a useful property of (7) . Let H^  be a 

region of sufficiency  (ROS) of z, which is defined as a set of 

all hypotheses such that for every pair of hypotheses 

^Oa'Hob^H^,  we have 

Px\x {' 
w 

H..)_PX^ 

^ TX^ 
ffoa) 

'tQ 
(14) 

9      An ROS may be thought of as a family of PDFs traced out 

10 by the parameters of a PDF, where z is a sufficient statistic 

11 for the parameters. The ROS may or may not be unique.  For 

12 example, the ROS for a sample mean statistic could be a family 

13 of Gaussian PDFs with variance 1 traced out by the mean 

14 parameter.  Another ROS would be produced by a different 

15 variance.  The " j-function" 

J(r T U U-^jifeL-Zfe) (15) 

17 is independent of Ho as long as Ho remains within ROS H^.. 

18 Defining the ROS should in no way be interpreted as a 

19 sufficiency requirement for z.  All statistics z have an ROS 

20 that may or may not include Hi (it does only in the ideal 

21 case) .  Defining H^ is used only in determining the allowable 

22 range of reference hypotheses when using a data-dependent 

23 reference hypothesis. For example, let z be the sample 

12 



1 variance of x. Let Ho(a^) be the hypothesis that x is a set of 

2 N  independent identically distributed zero-mean Gaussian 

3 samples with variance a^. Clearly, an ROS for z is the set of 

4 all PDFs traced out by a^.  We have 

5 p(^HXai={2^a^y''''eJ-^J:x!\ (16) 

6 and, since z is a x^(N)  random variable (scaled by 1/N) 

7 >(zk(<J^))= 
N 
2 

\ 2G' 
(17) 

8 It is easily verified that the contribution of a^   is canceled 

9 in the J-function ratio. 

10 Because j[x, T, Hg[cr^jj  is independent of a^, it is possible 

11 to make cr^   a function of the data itself, changing it with 

12 each input sample.  In the example above, since z is the 

'13 sample variance, we could let the assumed variance under Ho 

14 depend on z according to cr^ = z . 

15 However, if J[x, T, Hg(a^)j  is independent of a^,   one may 

16 question what purpose does it serve to vary a^.  The reason is 

17 purely numerical.  Note that in general, we do not have an 

18 analytic form for the J-function but instead have separate 

19 numerator and denominator terms.  Often, computing j{x, T, Hg[cr^]j 

20 can pose some tricky numerical problems, particularly if x and 

21 z are in the tails of the respective PDFs.  Therefore, our 

22 approach is to position Ho  to maximize the numerator PDF 

13 



1 (which simultaneously maximizes the denominator) . Another 

2 reason to do this is to allow PDF approximations to be used in 

3 the denominator that are not valid in the tails, such as the 

4 central limit theorem (CLT) . 

5 In our example, the maximum of the numerator clearly 

6 happens at a^  = z  because z is the maximum likelihood 

7 estimator of cr^ .  We will explore the relationship of this 

8 method to asymptotic ML theory in a later section.  To reflect 

9 the possible dependence of Ho on z, we adopt the notation 

10 EQ (Z) .     Thus 

11 PJXIHJ ^ ^T1''T\\ PM^I)' ^h^re z  = T(x) .    (18) 

12 The existence of z on the right side of the conditioning 

13 operator I is admittedly a very bad use of notation but is done 

14 for simplicity.  The meaning of z can be understood using the 

15 following imaginary situation.  Imagine that we are handed a 

16 data sample x, and we evaluate (10) for a particular 

17 hypothesis HQ &H^ .  Out of curiosity, we try it again for a 

18 different hypothesis of HQ&K^.     We find that no matter which 

19 HQGH^  we use, the result is the same.  We notice, however, 

20 that for an Ho  that produces larger values of p^(xJH(,(z)) and 

21 PJ,(Z|HO(Z)), the requirement for numerical accuracy is less 

22 stringent.  It may require fewer terms in a polynomial 

23 expansion or else fewer bits of numerical accuracy.  Now, we 

24 are handed a new sample of x, but this time, having learned 

14 . . 



1 our lesson, we immediately choose the H^ GH^  that maximizes 

2 p^{:>^Hg{z}).     If we do this every time, we realize that Ho  is now 

3 a function of z.  The dependence, however, carries no 

4 statistical meaning and only has a numerical interpretation. 

5 This is addressed below in the text differentiating a fixed 

6 reference hypothesis from a variable reference hypothesis. 

7 In many problems Hz  is not easily found, and we must be 

8 satisfied with approximate  sufficiency.  In this case, there 

9 is a weak dependence of j{x,T,Hg)  upon Ho-     This dependence is 

10 generally unpredictable unless, as we have suggested, Ho(z)   is 

11 always chosen to maximize the numerator PDF.  Then, the 

12 behavior of j{x, T, Hg)   is somewhat predictable.  Because the 

13 numerator is always maximized, the result is a positive bias. 

14 This positive bias is most notable when there is a good match 

15 to the data, which is a desirable feature. 

16 We have stated that when we use a data-dependent or 

17 variable reference hypothesis, we prefer to choose the 

18 reference hypothesis such that the numerator of the J-function 

19 is a maximum.  Since we often have parametric forms for the 

20 PDFs, this amounts to finding the ML estimates of the 

21 parameters.  If there are a small number of features, all of 

22 the features are ML estimators for parameters of the PDF, and 

23 there-is sufficient data to guarantee that the ML estimators 

24 fall in the asymptotic (large data) region, then the variable 

25 hypothesis approach is equivalent to an existing approach 

15 
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based on classical asymptotic ML theory.  We will derive' the 

well-known asymptotic result using (18) . 

Two well-known results from asymptotic theory are the 

following.  First, subject to certain regularity conditions 

(large amount of data, a PDF that depends on a finite number 

of parameters and is differentiable, etc.), the PDF p^\x; 0) 

may be approximated by 

o^{x;e*) = plx;d]e:xp 
'•\ 

-\e' - e Adle" - e (19) 

Where 0* is an arbitrary value of the parameter 9   is the 

maximum likelihood estimate (MLE) of 0, and I(^) is the 

Fisher's information matrix  (FIM).  The components of the FIM 

for PDF parameters 0^, 0t are given by 

/^^a 

Ie,eJ0) = -E 
d^lnpjx; 9 

d9,d9,    ^ 
(20) 

17 The approximation is valid only for 0* in the vicinity of the 

18 MLE (and the true value) .  Second, the MLE 9   is approximately 

19 Gaussian with mean equal to the true value 0 and covariance 

20 equal to I"^(0) or 

16 



Pe 0!0\ = {2n)-'f'l\e 
1/2 

eM--2\o-0\i\e 9 -e 
A ) 

(21) 

3 where P is the dimension of 9.  Note that we use 6  in 

4 evaluating the FIM in place of 9, which is unknown.  This is 

5 allowed because T^{0)  has a weak dependence on 9.  The 

6 approximation is valid only for 9 in the vicinity of the MLE. 

7 To apply (18), d  takes the place of z, and li^[^z)   is the 

hypothesis that 9  is the true value of 9.  We substitute (19) 

for P^(X|HO(Z)) and (21) p^(z|Ho(z)).  Under the stated conditions, 

the exponential terms in approximations (19), and (21) become 

1.  Using these approximations, we arrived at 

k¥^ = 
Px ^; 0 

{2n)-'"l\9 
TTJ Pe\ 0pi (22) 

8 

9 

10 

11 

12 

13 

14 

15 which agrees with the PDF approximation from asymptotic 

16 theory. 

17 To compare (18) and (22), we note that for both, there is 

18 an implied sufficiency requirement for z and ^, respectively. 

19 Specifically, Hg{z)  must remain in the ROS of z, whereas 9  must 

20 be asymptotically sufficient for 9.  However, (18) is more 

17 



1 general since (22) is valid only when all  of the features are 

2 ML estimators and only holds asymptotically for large data 

3 records with the implication that 9  tends to Gaussian, whereas 

4 (18) has no such implication.  This is particularly important 

5 in upstream processing, where there has not been significant 

e data reduction, and asymptotic results do not apply.. Using 

7 (18) , we can make simple adjustments to the reference 

8 hypothesis to match the data better and avoid the PDF tails 

9 (such as controlling variance), where we are certain that we 

10 remain in the ROS of z.  As an aside, we note that (10) with a 

11 fixed reference hypothesis is even more general since there is 

12 no implied sufficiency requirement for z. 

13 In many cases, it is difficult to derive the J-function 

14 for an entire processing chain.  On the other hand, it may be 

15 quite easy to do it for one stage of processing at a time.  In 

16 this case, the chain rule caii be used to good advantage.  The 

17 chain rule is just the recursive application of the PDF ■• 

18 projection theorem.  For example, consider a processing chain 

T,U)        Tjly)        Tjfw) 

19 X -> y -> w -> z (23) 

20 The recursive use of (10) gives 

, , ^ pX^H,{);))Py{}'H',(w)) piM\Hl(z))    ,      . 

22 where y = T^{x) , w = T^^y) , z = Tj(w),   and Hgiy) , H'^iw) , Hl{z)  are 

23 reference hypotheses (possibly data-dependent).suited to each 

24 stage in the. processing chain.  By defining the J-function of 

18 



1 each stage, we may write the above as 

pMH^)=J{x,T„Ho(<y))JiyJ^.H',(w)) 
2 /       „/ \x  / 1   \ (25) 

3 There is a special embedded relationship between the 

4 hypotheses.  Let Hy,  H„,   and Hz be the ROSs of y, w, and z, 

5 respectively.  Then, we have H^dH^dH   .     If we use variable 

6 reference hypotheses, we also must have 

7 HQ(Z)GH^,H'Q(W)GH^. and H^fyJEHy .     This embedding of the 

8 hypotheses is illustrated in FIG. 1.  The condition HyGH^   is 

9 the ideal situation and is not necessary to produce a valid 

10 PDF.  The factorization (24), together with the embedding of 

11 the hypotheses, we call the chain-rule processor (CRP). 

12 We now summarize the various methods we have discussed 

13 for computing the J-function.  For modules using a fixed 

14 reference hypothesis, care must be taken in calculation of the 

15 J-function because the data is more often than not in the 

16 tails of the PDF.  For fixed reference hypotheses, the J- 

17 function is 

18 j{^,T,H,) = ^^. (26) 

19 The numerator density is usually of a simple form, so it is 

20' known exactly.  The denominator density p^{z\Hg)  must be known 

21 exactly or approximated carefully so that it is accurate even 

22 in the far tails of the PDF.  The saddlepolnt approximation 

23 (SPA) provides a solution for cases when the exact PDF cannot 

19 



1 be derived but the exact moment-generating function is known. 

2 The SPA is known to be accurate in the far tails of the PDF. 

3 For a variable, reference hypotheses, the J-function is 

j{pc,T,HM = ^4^- (27) 

5 Modules using a variable reference are usually designed to 

6 position the references hypothesis at the peak of the 

7 denominator PDF, which is approximated by the CLT. 

8 A special case of the variable reference hypothesis 

9 approach is the ML method, when z is an MLE.  Whenever the 

10 feature is also a ML estimate and the asymptotic results apply 

11 (the number of estimated parameters is small and the amount of 

12 data is large), the two methods are identical. The variable 

13 reference hypothesis method is more general because it does 

14 not need to rely on the CLT. 

15 One-to-one transformations do not change the information 

16 content of the data, but they are important for feature 

17 conditioning prior to PDF estimation. Recall from that the PDF 

18 projection theorem is a generalization of the change-of- 

19 variables theorem for 1:1 transformations. Thus, for 1:1 

20 transformations, the J-function reduces to the'absolute value 

21 of the determinant of the Jacobian matrix (4) 

22 J{xj) = \jj,{x} (28) 

23 Application of the PDF projection theorem to 

24 classification is performed by substituting (18) into (1). In 

25 other words, we implement the classical Neyman-Pearson 
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1 classifier but with the class PDFs factored using the PDF 

2 projection theorem 

(^ 3 j =argmax 
% 

^^Akl^Jat Zj=T.{x) (29) 

4 where we have allowed for class-dependent, variable, reference 

5 hypotheses.   , 

6 FIG. 2 shows an example of a classifier 10 constructed 

7 with the architecture of the current invention.  Raw data X 

8 having a plurality of time samples and falling into a 

9 plurality of classes is provided to the classifier 10. Raw 

10 data X is provided to chains 11 of class-specific modules 12. 

11 Each class is associated with a chain 11 of class-specific 

12 modules 12. 

13 Each module 12 receives a feature calculation input which 

14 it provides to a feature calculation section 14.  The feature 

15 calculations section performs calculations on the feature 

16 calculation input.  The feature calculation input can be data 

17 or previously computed features from previous feature 

18 calculation outputs.  Upon completing these calculations the 

19 module 12 provides a feature calculation output.  Each module 

20 12 also includes a Log J-Function section 16.  The Log J- 

21 Function section 16 computes a correction factor that can be 

22 summed at summer 18 with the correction factors provided by 

23 the correction output of Log J-Function sections 16 in 

24 previous modules 12 to allow chaining of modules 12. 

25 Modules 12 are joined in chains so that the first module 

26 in the chain receives raw data X at its feature calculation 
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1 input and zero or a null value at its correction input. . Each 

2 succeeding module 12 then receives its inputs from the 

3 preceding module 12 in the chain 11,  Chain 11 can have any 

4 number of modules 12.  The last module 12 in the chain 11 is 

5 joined to a probability density function evaluation section 

6 20.  The probability density function evaluation section 20 

7 receives the feature calculation output from the last module 

8 in the chain and converts it into a form for summing at summer 

9 22 with the correction output of the last module 12 in the 

10 chain 11.  The output of summer 22 applies the probability 

11 density function for the class associated with the chain 11 to 

12 the raw data and produces a value indicating the likelihood 

13 that the raw data is a-member of the class. A compare module 

14 24 is joined to the output of each summer 22.  The compare 

,15 module 24 provides an output that indicates that the raw data 

16 X is of the class having features indicated by high values at 

17 the outputs of summers 22. 

18 Class specific modules 12 have been built for feature 

19 transformations including various invertible transformations, 

20 spectrograms, arbitrary linear functions of exponential random 

21 values, the autocorrelation function (contiguous and non- 

22 contiguous), autoregressive parameters, cepstrum, order 

23 statistics of independent random values, and sets of quadratic 

24 forms.  These represent some of the many feature 

25 transformations that can be incorporated as modules in a 

26 classifier built using the chain rule. 
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1 FIG. 3 shows an example of a classifier 10' constructed 

2 using an alternative embodiment of the architecture of the 

3 current invention.  This architecture utilizes a J-Function 

4 26, instead of a Logarithmic J-Function 18, in each module 12. 

5 This J-Function can be multiplied with the previous correction 

6 outputs at multiplier 30.  The probability function evaluation 

7 section 34 can then provide an output which can be multiplied 

8 at 32 with the output of the last module.  The multiplied 

9 output can then be used as the probability density function 

10 for the feature. 

11 FIG. 4 is another alternate embodiment 10" of a 

12 classifier utilizing the architecture taught by the current 

13 invention.  In this embodiment, a thresholding module 36 is 

14 provided for each class between summer 22 and compare module 

15 24.  Thresholding module 36 does not allow summer 22 to send a 

16 value to compare module 24 if the value does not exceed a 

17 threshold value.  This threshold value can be set as one value 

18 for all of the chains or set independently for each chain. 

19 The threshold value can be calculated based on the level of 

20 background noise in the raw input data.  Use of thresholding 

21 modules 36 allows weak samples to be ignored rather than 

22 forcing them into a poorly fitting class.  While thresholding 

23 is shown applied to the log J-function embodiment, it can also 

24 be applied to the J-function embodiment of the invention. 

25 , The J-function and the feature PDF provide a 

26 factorization of the raw data PDF into trained and untrained 

27 components. The ability of the J-function to provide a "peak" 
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1 at the "correct" feature set gives the classifier a measure of 

2 classification performance without needing to train. In fact, 

3 it is not uncommon that the J-function dominates, eliminating 

4 the need to train at all. This we call the feature selectivity 

5 effect.   For a fixed amount of raw data, as the dimension of 

6 the feature set decreases, indicating a larger rate of data 

7 compression, the effect of the J-function compared with the 

8 effect of the feature PDF increases. An example where the J- 

9 function dominates is a bank of matched filter for known 

10 signals in noise. If we regard the matched filters as feature 

11 extractors and the matched filter outputs as scalar features, 

12 it may be shown that this method is identical to comparing 

wVx 
2 

, where W,- is a normalized 13 only the J-functions. Let z.= 

14 signal template such that WyWy=l. Then, under the. white 

15 (independent) Gaussian noise (WGN) assumption, zj is 

16 distributed X^(l). It' is straightforward to show that the J- 

17 function is a monotonically increasing function of Zj.  Signal 

18 waveforms can be reliably classified.using only the.J-function 

19 and ignoring the PDF of under each hypothesis. The curse of 

20 dimensionality can be avoided if the dimension of zj is small 

21 for each j.   This possibility exists, even in complex problems, 

22 because Zj  is required only to have information sufficient' to 

23 separate class Hj  from a specially chosen reference hypothesis 

24 Ho,j. 
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1 This invention has been disclosed in terms of certain 

2 embodiments.  It will be apparent that many modifications can 

3 be made to the disclosed apparatus without departing from the 

4 invention.  Therefore, it is the intent of the appended claims 

5 to cover all such variations and modifications as come within 

6 the true spirit and scope of this invention. 
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1 Attorney Docket No. 84513 

■ 2 

3 CLASS SPECIFIC CLASSIFIER 

4 

5 ABSTRACT OF THE DISCLOSURE 

6 A modularized classifier is provided which includes a 

7 plurality of class specific modules.  Each module has a feature 

8 calculation section, and a correction section.  The modules can 

9 be arranged in chains of modules where each chain is associated 

10 with a class.  The first module in the chain receives raw input 

11 data and subsequent modules act on the features provided by the 

12 previous module.  The correction section acts on the previously 

13 computed correction.  Each chain is terminated by a probability 

14 density function evaluation module.  The output of the evaluation 

15 module is combined with the correction value of the last module 

16 in the chain.  This combined output is provided to a compare 

17 module that indicates the class of the raw input data. 
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