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ATTORNEY DOCKET NO. 84432

A METHOD FOR ESTIMATING THE PROPERTIES OF A

.SOLID MATERIAL SUBJECTED TO COMPRESSIONAL FORCES

STATEMENT OF GOVERNMENT INTEREST
The invention described herein may be manufactured and used

by or for the Government of the United States of America for

governmental purposes without the payment of any royalties .

thereon or therefore.

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to a method to measure (or
estimate) the complex frequency dependent dllatatlonal and shear
wavenumbers of a single slab of mater1a1 subjected to large

static compressional forces. More particularly, this invention

- provides a method to determine complexvdilatational wavespeed,

complex shear wavespeed complex Lamé constants, complex Young’s
modulus, complex shear modulus, ‘and complex Poisson’s ratio.
(2) Description of the'Prior Art

Measu:ing_the mechanical properties of slab-ghaped materials

are important because these parameters significantly contribute

‘to the stati¢ and dynamic response of structures'built with such

- materials. One characteristic that most elastomeric solids
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possess is that, when they are subjected to large static forces

(or pressure) thelr rigidity changes Materials that have one

set of mechanical properties at a pressure of one atmosphere can

"have very different properties when subjected to increased

pressure. The ability to determine the pressure dependence of

- material properties is extremely important for modeling'the

behavior of systems comprised of these materials.
- . Resonant techniques have been used to identify and measure
longitudinal and shear properties for many years; These methods

are based on comparing measured eigenvalues to modeled

eigenvalues and calculating the resulting materlal propertles

These methods do not account for static pressure or large

compre581ve forces. Additionally, they typlcally requlre long,

slender materials to perform the measurement process.- Comparison
of analytical models to measured frequency response functions are
also used to estlmate stlffness and loss parameters of a
structure When the analytlcal model agrees with one or more
frequency response functlons, the parameters used to calculate
the analytical . model are con51dered accurate. If the analytlcal
model is formulated using a numerlcal method a comparlson of the
model to the data can be difficult due to dispersion properties
of the materials. These methods do not take into accountllarge
compressive forces.

In the prior art, some‘efforts have been made to measure

material. properties under large pressures. These methods consist
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of'placing materials in pressurized settings, insonifying them,
and then measuring their responsefr These methods are difficult
becanse~they have tépbé conducted'under great atmospheric
pressure that can adversely affect the instrumentation. Safety
issues can also arise in connection with laboratory testlng at
extreme pressures._ Flnally, a mass loaded long th1n rod has been
studied with respect to the bar wavespeed and corresponding
Young’s modulus; however, this work does not investigate shear
motion.-

Accordingly, there is a need for a method of measuring

mechanical properties of slab-shaped materials'placed under

pressure.

SUMMARY OF THE INVENTION

Accordingly, in this invention, a method to measure the

complex frequency dependent d11atat10na1 and shear wavenumbers of

a material under a statlc compressional-force is provided. The
material is flrst v1brated in both vertical and horlzontal

dlrectlons while obtalnlng transfer functlons in each direction.
The two transfer functions are combined with a theoretical model

to estimate a dilatational wavenumber and a shear wavenumber

- The wavenumbers can be combined to give the complex d11atat10na1

_wavespeed complex shear wavespeed, complex Lamé constants,

complex Young’s modulus, complex shear modulus, and complex

Poisson’s ratio.
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BRIEF DESCRIPTION OF THE DRAWINGS.
.‘A‘more'complete understanding of the invention and many of

the attendant advantages thereto will be readily apprec1ated as
the same becomes better understood by reference to the follow1ng
detailed descrlptlon when considered in conjunction with the
accompanying drawings wherein: |

FIG. 1 shous apparatus for measurement ofytransfer functions
in a verticalfdirection according to the current invention;

FIG. 2 shows apparatus for measurement of transfer functions
in a horlzontal direction according to the current invention;

FIG. 3 is a diagram of the coordinate system4of used with a
test specimen in the medel;

FIG.A4A is a plot of the transfer function maénitude versus
input frequency for’the vertical direction test; |

FIG. 4B is a plot of. the transfer function phase angle
versus input frequency‘for the vertieal direction test;

FIG. 5A is a plot of the transfer function magnitudelversus
input frequency for the horizontal direction test;

j FIG. 5B is a plot of the transfer functien phase angle

versus input frequencyvfor~tne horizontal direction test;

FIG. 6 is a contour plot of the absolute value of the

dilatational wavenumber on an real-imaginary coordinate system of

the'diiatational wavenumbers at 2000 Hz;
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FIG. 7 is a contour plot of the absolute value of the

dilatational wavenumber on an real -imaginary coordinate system of

the dilatational wavenumbers at 5000 Hz;

FIG. 8A is a plot of the

frequency;
FIG. 8B is a plot

versus frequency; and

FIG. 9A is a plot

frequency;

‘FIG. 9B is a plot'

frequency;

FIG. 10 is. a plot

versus frequency;

FIG. 11 is a plot
versus frequency; and

FIG. 12 is a plot

of

of

of

of

the

the

the

the

the

the

real dilatatioﬁal_wavenumber versus
imaginary dilatational wajegumber
real shear wavenumber.versué
imaginéry shear wavenumber versus
real and imaginary Yo?ng's modulus
reai'and imaginary sﬂear.modulus

Poisson's ratio versus frequency.

DESCRIPTION.OF THE PREFERRED EMBODIMENT

The test procedure consists of vibrating a mass-loaded,

slab-shaped test specimen 10 with a shaker 12 in two different

directions, vertical 14A and horizontal 14B, as shown in FIGS. 1

-and 2, respectivély.v It is noted that the load mass 16 attached

to the top of the test specimen 10 must be sufficiently stiffer

than the specimen 10 that it can be modeled ag lumped parameter

expression rather than a continuous media gystem. A typical




1 .example would beba steel load mass 16 attached above a rubberé
'2 like material test specimen 10. This-example results in a ratio
3 between the two stiffnesses of greater than 100. Lower ratios

4 resnlt in less accurate estimationsj Vibrating the conbined
5 specimen 10 and load mass 16 causes different waveforms to
6 - propagate in the specimen 10. The 1nverse method developed here
7 allows for the data from the{experlments to be manlpulated so
8 that the-complex dilatational and shear Wavenumbers can be
9 measured for the specimen 10. This.test’is usually'done at
10 multiple frequencies (swept sine)'so any frequency dependencies
11 can be identified and measured. Input vibration data‘is
12 collected from the shaker 12.4_A sensor 18 is mounted on load
13 nass 16 and another sensor 20 is mounted on shaker lz.for
14 collecting transfer function data. In FIG. 1, the test is set up
15 for’monitoring the vertical transfer function. FIG 2 shows the
16: test as set up for monitoring the horizontal transfer function.
17 Sensors 18 and 20 should be oriented properly to capture the
18  motion being measured. Other test.configurations‘using-
19 directions other than vertical andAhorizontal are possible;
20 however, the test setups shown are preferred for ease of set up
21 and calculationl These sensors 18 can be either accelerometers
22 that record accelerations, or laser velocimeters that record'
23 velocities. 1In the swept sine mode, transfer functions of

. 24 acceleration divided by acceleration or velocity divided by -

.25 Avelocity are both equal to displacement divided by displacement.
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The time domain data collected from the sensors 18 and 20 .are
Fourier transformed intd the frequency domain and then'recoraed
as compléx transfer functions, typically using a spectfum:
analyzer 22. | | |

The motion of the test épecimen shown in FIGS. 1 and;2 is

governedvby the equation:
,quu+(_/’L+,u)VVou:,o-O;:—;l , | © (1)

where A and u are the complex Lamé constants (}Unﬂ);'

p is the denmsity (kg/m®);

t is time (S);

e denotes a vector dot product; and

u is the Cartesian cgordinate disélacement'véctor of the
material.

The coordinate system of the test coﬁfiguration is.shown'in
FIG. 3. Note that using this orientation results in b = 6 and a
having a value less than zero. The thiékness of the‘specimeﬁ,~h,
is a positiVe»value. ‘Equation (1) is manipulated by writing the

displacement vector u as

Uy (%,3,2,1) ‘ _
Cu=u, (L)1 , (2)
uz(x:y,zst) ‘
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where x is the location along the plate (m), y is the locatidn
into the plate (m), and z is the location normal to the plate

(m), as éhown in FIG. 3. The symbol V is the gradient vector
differential operator written in three-dimensional Cartesian

coordinates as

., O, 0, ' §
V=—%+5H+E%, 0 (3)
with i, denoting the uhit vector in the x-direction, iy denoting
the unit vector in the y-direction, and i; denoting the unit
vector in the z-direction; V2 is the three-dimensional Laplace

operator operating on vector u as
, , , 4
V= Vzuxzx + Vzuy'zy + Vzuzzz' ! | o (4)

and operating on scalar u as

2
VIQ%Z=VOV%WJ=

A | ar gt At @

2 | o |
Veu=—%4 @y+0;f : : ‘ _ - (6)
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The displacement vector u is written as
u=Vg+Vxy , - ' )

where ¢ is a dilatational scalar potential, x denotes a vector

cross product, and v is an equivoluminal vector potential

expressed as

l//x(x,y,z,t) : .
‘!—&: ')”y(xays'z’t) ) ’ ' T (8)
W, (x,,2,t) ‘.

The 'problem is formulated as a two-dimensional systein, thus y=0,
uy'(x,y,'z,t)EO, and A)/g=0. Expanding equation (7) and breaking
the displacement vector into its individual nonzero terms yields

ux (x’z’ t) =

p(x,2,t) &/ly (x,2,1) _ : .
& & | (9)

and

uz (x?z: t) =

Bz | Wy (x’z’»t) : (10)

& 173
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_ Equétions (9) and (10) are next inserted into equation (1),

which results in

c,21V2¢(x,z,.t)=é-¢-(xziQ | (11)

and

, 5 (x,2,1) . : '
c?szIy(x,z,t)=—%)0:tT— o (12)

where équatibn (11) corresponds ﬁo the dilatational compoﬂentvand
equatidn (12) cbrresponds to the shear component of the"'

displacement fieid; Corréspondingly, fhe constantsA¢d and és‘are
the cpmplex dilatational,and shear wave speeds, reépectively, and

are determined by

cq= A+ 2y ' , . : (13)
\IAP | | :

(14)
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The relationship of the Lamé constants to the Young’s and shear

moduli is shown as

__ Ev “(15)
T (1+v)(1-20)
‘and
E |
ey | e

where E is the complex Young’s modulus (Nﬁnz), G is.ﬁhe complex

.shear modulus (PWm?), and v isAthe Poisgon's ratio of the

material (dimensionless).

The conditions of infinite length and steady-state response

are now 1mposed allow1ng the scalar and vector potentlal to be

'wrltten as

#(x,2,) = D(z) exp(ikr) exp(ir) , @

and

¥z =Y()exp(ik)expio) (18)




I where i is the square root of -1, @ is frequency (rad/s), and k

2 'is wavenumber w1th respect to the x axis (rad/m) Insertlng

3 equatlon (17) 1nto equation (11) ylelds‘

. ‘A - 2 . . ) .v = !
5 @Jrach(z):o‘, ' o . (19)
6
7 where
9 Ca=G-K , | L (20)

10

11 and

12

13 k=2 I | | o (21)

14

15 Inserting equation (18) into equation (12) yields.
e _ A

7 d2‘I’(z)

+ﬂ2‘P()0: o o  (22)

(23)
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. The solution to equetion (19) is

)= Ak owic)s Blkayorpliar) , @)
and the solution to'eqﬁation (22) is

¥(z) = Ck,w) exp(i,Bz)+D(k,a)) exp(-—iﬂz_) ' | | | - (26)
where Atk,w), Bkw), C(kw), and D(k,w) are wave response
coefficients that are determined ~beiow. The displacemen_ts can
now be written ae functions of the unknown vconstants using the

expressions in equations (9) and (10). They are

Uy (x,2,0)=U, (k;z, o) exp(ikx) exp(iar)

= { la[A(k, CD) exp(laz) - B(k, a)) exp(—iaz)] + (27 )

ik[C(k,a))exp(i,Bz)+D(k,a))exp(—-iﬂz)] } exp(ikx) exp(ior) ,
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1%, 2,2) = U (K 2,00) exp(ikx) exp(io)

= { ik[A(k,w)exp(iaz) + B(k,o)exp(-iaz)]- - (28)

iP[C(k.@)exp(iffz) - D(k,w)exp(-ifi)] } expikx) exp(ior) .

Spe01f1c boundary conditions are now needed to 1nd1v1dua11y solve
for the case of vertlcal and horizontal motion. These are
formulated separately below.

" For the case of vertical motion, the base at z = a is
vibreted vertically using e shaker, as shown in FIG. .1 Four
boundary condltlons are necessary to formulate this problem
Because the mass is.attached to the material the tangential
(horlzontal) motion at the top of the plate (z b) is zero and

this equation 1s written as
u, (x,b,)=0 . R "~ (29)
The normal stress at the top of the specimen is equal to and

opposite the load created by the mass in the z direction. - This

expression is

A (xbyt) | Aé?;x(x,b,t)=_M0"2uz(x,b,t) o
& & - a2

757 (%,b,8) = (A+ 2)

(30)
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where M is mass per unit area (kghﬁ) of the attached mass. The

tangential motion at the bottom of the plate (z = a) is zero and.

this equation is written as
uy(%,a,6)=0 , - - -  (31)

and the normal motion at the bottom of the plate is prescribed’ as

a system input. This expression is
uz(x,a,t)=Upexp(iax) . , ' (32)

Assembling equations (1) - (32) and letting b = 0 yields the
four-by-four system of linear eqﬁations that model the system. -

They‘a;e
Ax=b , - o | (33)
whefé the enfries of eguatign (33) are
| A11=ik.f | | ' | .‘ (34)
A12=_?‘11¥ ' | | o . (35)

Apz=-pg , , | | ' - (36)
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Ay =-43 ,

Ay =04 ~202u- 2k* + iMoa
Ayy =—2kBu—iMo’k

A'24 = 2kﬁy§ Mok |

A31 =4y, ex1‘3(i0!a) '
An%AuﬁM4m0,

433 =' Ayzexp(ifa) ,

A3q =—Ay3exp(-ifa)

Ay = iaexp(iqa) ,

Agy =-iaexp(-iaa) ,

 Agz =ikexp(ifa)

Ay =—a?A-2a%u- MK -iMo?a

14

37
(38)

- (39)-

(41)

(42)

(43)

- (45)

" (46)

(47)

~ (48)



| 1 . - Ayg =ikexp(=ifa) , | - (49)
3 X11 =A(k,a)) ;r : . ' - _ . (50) |
5 Xy1=B(k,w) , - | ' (51)

7  x31=Clko)

~

(52)

(53)

~

9 o x41 = D(k,w)
1 by =0 , | . | | (54)
b : | :
13 . by =0, ' - (55)
14 | o
.15 : b31,=0 . , | ' | (56)
16  and |
17
18 L by =Uy . | o | o (57)
" . ' : .
- 20 Using equatio_ns. (34) - (57) the solution to the constants 'A(‘k,a)),
21 B(k,w), C(k,w), and D(k,w) can be calculated at each specifié
22 waveﬁumber' and freqﬁency using |

23

24 x=A"lp | | | | " (58)
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Noting that for vertical motion, k = 0, and using the
coefficients from equatibn (58), the transfer function between

the vertical base displacement and the vertical mass displacement

can be wrltten as : ' ' .

i U (0,6,0) _ 1
Ri(w) | Uo cos(k, dh)—[%]kd éin(kdh)

hi(w)= ) " (59)

where Tj(w) or Rj(w) correspond tovfhe data from the vértical
motiqn experiment.’ |

The next sfeb is to solve the inverse problem for vertical
mqtion. This involves using the experimental déta and equatioﬁ
(59) to eétimate the dilatational wavenumber. Equation,(sé) éan

be rewritten as
M), . | |
S(kg)=0=cos(kzh) —(—)kd sin(kgh)— Ry _ ‘ (60)
p - | o

where the problem now becomes finding the zeros of the right-hand

side of equation (60), or, in the presence of actual data that

‘contéins noise,»finding the relative minima of the,right—hand

side of equation (60) and determining‘which relative minimum

4correéponds to dilatational wave propagation and which relative

minima are extraneous. Because equation (60) has a number of

‘relatlve minima, Zero finding algorlthms are not applled to this




function, as they tybically do not find all of the minima-
locations and are highly dependent on initial startfngvlocations.
The best method to find all of the minima 1ocationsvis by
plotting the absolute value of the right-hand side of equation.
(60) as a surface with the real part of dilatational wavenumber
ky on one axis and the imaginary nart of k; on the other axis.

In order to do this, the user should start at a low frequency

~where the aliasing minimum has not yet appeared;' In the specific

example shown herein, this is below 3850 Hz for the dilatational'
wave and below 1550 Hz for the shear wave. At these lower
frequencies, the minimum furthest to the left will correspond to

dllatatlonal wave propagatlon As the frequency 1ncreases,

-extraneous minima w111 appear to the left of the minimum that

corresponds to d11atat10na1 wave propagatlon, however, the wave’
propagatlon mlnlmum will always be close to the previous test
frequency wave propagatlon minimum provided that the frequency
increments are relatlvely small. At a resolution of 0.5 rad/m‘
for the materials in the example herein, this requ1res a
frequency increment of 37.3 Hz for the dllatatlonal measurement
and 14.4 Hz for the shear measurement Different test specimens

and top masses requlre different increments. -Additionally, the

'real part of the wavenumber is a monotonically increasing

function with respect to frequency, so at each increase in
frequency, the new wavenumber to be estimated has to be greater

than the old wavenumber that was previously estimated. This
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process is further illustfated as related to the diécussiqn
concerning FIG. 6 and FIG. 7 below. |

For the case of horizontal motion; the base at z - a'is
Qibrated‘horizontally using a shéker, as shown in FIG. 2;- Four
boundary conditions are nécessafy to formulate this'problem.
Because the mass is attaéhed.to the material, thehéhear
(tangential) stress at the tbp of the plate is equal to opposite

the load'created.by the mass in the x direction. This expression

is

rzx(x,b,t)a{d‘xg’b’t)+d‘zgr’b”)]=-M—ﬁ-z%ﬂ . (61

where M is mass per unit area (kghﬁ) of the attached méss; The
normal motion at the top of the plate (z = b) is zero and this

equation is written as

u(nbf)=0 . | ' L - (682)

The tangential motion at the bottom of the plate (z = a) is

prescribed as a system input and this equation is written as

uy(x,a,t)=Vyexp(ior) , a (63)

20
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anid the normal motion at the bottom of the plate is zero. . This

expression is
u,(x,0,)=0 . BN (64)

Assémbling equations (1) - (28) and (62) - (64) and letting

b = 0 yields the four-by-four system of linear equations that

‘model the system. They are

Ax=b , - | ' " (65)

where the entries of'equation,(61) are

Ay =2k —io* Mk 3 - e - ('66)
Ay =2da—ic? M, | o | (67).
A1?=yﬁ2—;zk2}im2Mﬂ , | | | - | ‘(68),‘
Arg =pp* - yk* ~io’ Mp . | - (69)
Ay =ia , : | .(70)
Ap=-dy , | | | »- (M)

21
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Ay =ik ,
Ay =4Ay3 ,

A31 = Ayzexp(ica) ,

A3y = Adyzexp(—aa) ,

- Azz=-ifexp(ifn) ,

- Aszg=ifexp(-ifa) ,

Ay = Ay exp(ica) ,
Agy =—Ar1exp(-ioa) ,

Agz =Ayzexp(ifa) ,

Ay = Apzexp(-ifa) ,

(72)

(73)

'(74).'

- (75)

(76)

NCE))

(78)

 (79)
' (80)

(81)

(82)

(83)



2  x=Ckw) , | o | C (84)

4 - g =Dko) | (85)

7 by =0 , " (86)

9 . by =0 , | | | (87)
o _ , v ,
1 by1=Vo . | | - . (88)
12 and

- 13
14 byt =0 . : | (89)
15 |
16 Using équations (67) - (89) the solution to the conétants'AQhw),
17 .lﬂhaﬁ, C(k,w), and D(k,w) can be calcﬁlated at each specific
18  wavenumber and frequencylusing

19

20  x=A"h . - ' (90)
’ . :
22 Noting that for horizontal motion, k = 0, and using the

23  coefficients from equation (90), the transfer function between

24 ;the horizontal base displacement and the horizontal mass

25 displacement can be written as
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RBy(@) Yo cos(ksh)—(MJks sin(k,h)
RV

Ty(w)= (91)

where T)(w) or Ry(w) correspond to the data from the horizontal |

motion experiment.

The next step is to solve the inverse problem for horizontal
motion. This involves using the data and equation (91) to

estimate the shear wavenumber;' Equation (91) can be rewritten as
(M) .
Skg)= O=cos(ksh)—(-—Jks sin(ksh)—Ry . . (92)
. ' P |

It is noted that this equation is identical, except for the

subscripts, to equation (60). The sheéar wavenumber is estimated

using the same procedure that was used to estimate the
dilatational wavenumber above.
The material properties can be determined from the

wavenumbers . First, the dilatational and shear wavespeeds are

determined using

(93)



1 cs=k—a: ,' o | N | | A(94‘)

2

3 respectively. The Lamé constants are calculated Lis'iﬁg equatioris

4 (13) and (14) written as

5

6 u=pc? (95)

8 and

9

10 A=pcl-2pc2 . | (96)

11 Poissoﬁ's ratio is then calculated using

12 . |

13 022(;11 : o | o (97)

14

'15 Young's modulus can be calculateci with

16

17 E=2H20+30) © (98)
2(u+ A)

18

19 and the shear modulus cah_ be de‘termined using

20

21, G=u . _ | (99)

22 N ‘The abéve measurement method _c.a1v1 be sir’nulated by means of a

23  numerical example. Soft ' rubber-like matérial pfoperties of ;th'e

25
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test specimen are used in this simulation. The materlal has a

Young’s modulus E of [(1e8 12e7)+(5e3f—-13e2f)] N/m? where fis

frequency in Hz, Poisson’s ratio v is equal to 0.40

(dimensionless), density p is equal to 1200 kghﬁ, and a

thickness h of 0.1 m. The top mass is a 0.0254 m (1 inch) steel

plate that has a mass per unit area value M of 199 kghn FIG. 4
is a plot of the transfer functlon of the system for vertlcal
motion and corresponds to equatlon (59) FIG. 5 is a plot of the
transfer function of the system for horizontal metion-and-
corresponds to- equatlon (91). In FIGS. 4 and 5, the top plot is
the magnitude in dec1bels and the bottom plot is the phase angle
in degrees. | |

FIG. 6 is a contour plot of the absolute value Of,equation
(60). expressed in decibels versué’real dilatationalvwavenumber on
the x axis andvimaginary'dilatational wavenumber on the y axis at
2000 Hz. The'estimeted dilatational wavenumber, read directly
from the plot at the lecation the minimum value appears and
merked with an arrow, is 27.89 + 2.61i rad/m. The actual value
of the dilatational wavenumber is 27.99 + 2.60i rad/m, which is
slightly different from Ehe estimated value due to the surfaee
discretization of eQuationv(GO). FIG. 7 is a contour plot of"
eéuation (60) at 5000 Hz. At this frequency, en extraneous
minrmum appears on the ieft—hand side of ﬁhe plot. However,

because the real part of the wavenumber must be increasing with
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iﬁéreasing frequency, the mihiﬁum corresponding to dilatational
wave propagation is located at the arrow marked spot and is equal
to 65.86‘+ 5.60i rad/m, as compared to an actuél value of 65.77 +
5.62i rad/m. Again, the difference between the two values can bé
attributed to the discretization of the surface.

FIG. 8 is plot of actual (solid line).and estiﬁated (x
symbols) dilatational wavenumber versus frequency. FIG. 9 is
plot of actual (solid line) and estimated (+ symbols) shear
wavenumber versus frequency. 1In FIGS. 8 and 9, the top plot is
the real part of the wavenumber and the bottom part is.the
imaginafy part of the wavenumber. FIG. 10 is a plot oflactual
(solid line) aﬁd estimated (real part - x symbols, imaginary part
- o0 symbols) Young'’s mbdulus versus frequency; FIG[ 11 ié a ﬁloﬁ

of actual (solid line) and estimated (real part - x symbols,

imaginary part - o symbols) shear modulus - versus frequency. . In

FIGS. 10 and 11, the imaginary part of the modulus all have a
neéative sign but are depicted with positive signs for plbtting
purposes. FIG. 12 is.a plot of actual (solid line) and estimated
(sqﬁare symbols) of the reai part of Poisson’s fatio versus
freqﬁency. Bedause the humerical example is formulated'using-a
Poiséon's ratio that is striétly real, no imaginary component is
shoWn in this plot. imaginary values of Poisson’s fatio are
possible and have been shown to theoretically exist.
'ThisAinvéntion gives the ability to estimate complex

dilatational and shear wavespeeds of a material that is slab-
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shnbed and subjected to comnressive forces. it.also allows
estimation of complex Lamé-constants of a material thatlis sléb—
shaped éna subjected to compressive forces. Complex Youné's and
shear moduli of a materiai that is slab;shaped and éubjected to
compressive forces can be estimated using this invention. The
invention also .allows estimation of the complex Poisson’s ratio
of a material that is slab-shaped and subjected to compressive.
forces. The advantage of this patent is that it does not réquire
a testing configuration that has to be préssﬂrized.

Obviously many modifications and variations nf the present
invention may become apparent in light of the above teachings.
In light of the above, it is therefore understood that within the

scope of the appended claims, the invention may be practiced

6thefwiée than asAspecificaliy described.
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ATTORNEY DOCKET NO. 84432 -

‘A METHOD FOR ESTIMATING THE PROPERTIES OF A

- SOLID MATERIAL SUBJECTED TO COMPRESSIONAI, FORCES

ABSTRACT OF. THE DISCLOSURE

A method to measure the complex frequency-dependent.

dilatational and shear wavenumbers of a material under a static

compressional force. The material is first vibrated in a

vertical and horizontal directions while obtaining transfer

functions in each direction. The two transfer functions are

combined with a theoretical model to estimate a dilatational

‘wavenumber and a shear wavenumber. The wavenumbers can be

utilized to give the complex dilatational wavespeed,:complex

shear wavespeed, complex Lamé constants, complex Young’s modulus,

complex shear modulus, and complex Poisson’s ratio.




