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1- ATTORNEY DOCKET NO. 84432 

2 

3 A METHOD FOR ESTIMATING THE PROPERTIES OF A 

4 SOLID MATERIAL SUBJECTED TO COMPRESSIONAL FORCES 

5. • 

6 STATEMENT OF GOVERNMENT INTEREST 

7 The invention described herein may be manufactured and used 

8 by or for the Government of the United States of America for 

9 governmental purposes without the payment of any royalties 

10 thereon or therefore. . . 

11 

12 BACKGROUND OF THE INVENTION 

13 (1)  Field of the Invention 

14 The present invention relates to a method to measure (or 

15 estimate) the complex frequency-dependent dilatational and shear 

16 wavenumbers of a single slab of material subjected to large 

17 static compressional forces.  More particularly, this invention 

18 provides a method to determine complex dilatational wavespeed, 

19 complex shear wavespeed, complex Lame constants, complex Young's 

20 modulus, complex shear modulus, and complex Poisson's ratio. 

21 (2)  Description of the Prior Art 

22 Measuring the mechanical properties of slab-shaped materials 

23 are important because these parameters significantly contribute 

24 to the static and dynamic response of structures built with such 

25 materials.  One characteristic that most elastomeric solids 



1- possess is that, when they are subjected to large static forces 

2 (or pressure), their rigidity changes.  Materials that have one 

3 set of mechanical properties at a pressure of one atmosphere can 

4 have very different properties when subjected to increased 

5 pressure.  The ability to determine the pressure dependence of 

6 material properties is extremely important for modeling the 

7 behavior of systems comprised of these materials. 

8 Resonant techniques have been used to identify and measure 

9 longitudinal and shear properties for many years.  These methods 

10 are based on comparing measured eigenvalues to modeled • 

11 eigenvalues and calculating the resulting material properties. 

12 These methods do not account for static pressure or large 

13 compressive forces.  Additionally, they typically require long, 

14 slender materials to perform the measurement process.  Comparison 

15 of analytical models to measured frequency response functions are 

16 also used to estimate stiffness and loss parameters of a 

17 structure.  When the analytical model agrees with one or more 

18 frequency response functions, the parameters used to calculate 

19 the analytical model are considered accurate.  If the analytical 

20 model is formulated using a numerical method, a comparison of the 

21 model to the data can be difficult due to dispersion properties 

22 of the materials.  These methods do not take into account large 

23 compressive forces. 

24 in the prior art, some efforts have been made'to measure 

25 material, properties under large pressures.  These methods consist 



10 

1- of placing materials in pressurized settings, insonifying them, 

2 and then measuring their response.  These methods are difficult 

3 because they have to be conducted under great atmospheric 

4 pressure that can adversely affect the instrumentation.  Safety 

5 issues can also arise in connection with laboratory testing at 

6 extreme pressures.  Finally, a mass loaded long thin rod has been 

7 studied with respect to the bar wavespeed and corresponding 

8 Young's modulus; however, this work does not investigate shear 

9 motion. 

Accordingly, there is a need for a method of measuring 

11 mechanical properties of slab-shaped materials placed under 

12 pressure. 

13 

14 SUMMARY OP THE INVENTION 

15 Accordingly, in this invention, a method to measure the 

16 complex frequency-dependent dilatational and shear wavenumbers of 

17 a material under a static compressional force is provided.  The 

18 material is first vibrated in both vertical and horizontal 

19 directions while obtaining transfer functions in each direction. 

20 The two transfer functions are combined with a theoretical model 

21 to estimate a dilatational wavenumber and a shear wavenumber. 

22 The wavenumbers can be combined to give the complex dilatational 

23 wavespeed, complex shear wavespeed, complex Lame constants, 

24 complex Young's modulus, complex shear modulus, and complex 

25 Poisson's ratio. 



1 " BRIEF DESCRIPTION OF THE DRAWINGS- 

2 A more complete understanding of the invention and many of 

3 the attendant advantages thereto will be readily appreciated as 

4 the same becomes better understood by reference to the following 

5 detailed description when considered in conjunction with the 

6 accompanying drawings wherein: 

7 FIG. 1 shows apparatus for measurement of transfer functions 

8 in a vertical direction according to the current invention; 

9 FIG. 2 shows apparatus for measurement of transfer functions 

10 in a horizontal direction according to the current invention; 

11 FIG- 3 is a diagram of the coordinate system of used with a 

12 test specimen in the model; 

13 FIG- 4A is a- Plot of the transfer function magnitude versus 

14 input frequency for the vertical direction test; 

15 FIG. 4B is a plot of. the transfer function phase angle 

16 versus input frequency for the vertical direction test; 

17 FIG- 5A is a Plot of the transfer function magnitude versus 

18 input frequency for the horizontal direction test; 

19 FIG. 5B is a plot of the transfer function phase angle 

20 versus input frequency for the horizontal direction test; 

21 FIG. 6 is a contour plot of the absolute value of the 

22 dilatational wavenumber on an real-imaginary coordinate system of 

23 the dilatational wavenumbers at 2 000 Hz; 
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1 '  FIG. 7 is a contour plot of the absolute value of the 

2 dilatational wavenumber on an real-imaginary coordinate system of 

3 the dilatational wavenumbers at 5000 Hz; 

4 FIG. 8A is a plot of the real dilatational wavenumber versus 

5 frequency; 

6 FIG. 8B is a plot of the imaginary dilatational wavenumber 

7 versus frequency; and 

8 FIG. 9A is a plot of the real shear wavenumber versus 

9 frequency; 

FIG. 9B is a plot of the imaginary shear wavenumber versus 

11 frequency; 

12 FIG- 10 is a- Plot of the real and imaginary Young's modulus 

13 versus frequency; 

14 FIG- 11  is a plot of the real and imaginary shear modulus 

15 versus frequency; and 

16 FIG. 12 is a plot of the Poisson's ratio versus frequency. 

17 

18 DESCRIPTION OF THE PREFERRED EMBODIMENT 

19 The test procedure consists of vibrating a mass-loaded, 

20 slab-shaped test specimen 10 with a shaker 12 in two different 

21 directions, vertical 14A and horizontal 14B, as shown in FIGS. 1 

22 and 2, respectively.  It is noted that the load mass 16  attached 

23 to the top of the test specimen 10 must be sufficiently stiffer 

24 than the specimen 10 that it can be modeled as lumped parameter 

25 expression rather than a continuous media system.  A typical 



1-  example would be a steel load mass 16 attached above a rubber- 

2 like material test specimen 10.  This example results in a ratio 

3 between the two stiffnesses of greater than 100.  Löwer ratios 

4 result in less accurate estimations.  Vibrating the combined 

5 specimen 10 and load mass 16 causes different waveforms to 

6 propagate in the specimen 10.  The inverse method developed here 

7 allows for the data from the experiments to be manipulated so 

8 that the complex dilatational and shear wavenumbers. can be 

9 measured for the specimen 10.  This test is usually done at 

multiple frequencies (swept sine) so any frequency dependencies 

can be identified and measured.  Input vibration data is 

collected from the shaker 12.  A sensor 18 is mounted on load 

13 mass 16 and another sensor 20 is mounted on shaker 12.for 

14 collecting transfer function data.  In FIG. 1, the test, is set up 

for monitoring the vertical transfer function.  FIG. 2 shows the 

test as set up for monitoring the horizontal transfer function. 

Sensors 18 and 20 should be oriented properly to capture the 

motion being measured.  Other test configurations using . 

directions other than vertical and horizontal are possible; 

however, the test setups shown are preferred for ease of set up 

and calculation.  These sensors 18 can be either accelerometers 

22  that record accelerations, or laser velocimeters that record 

10 

11 

12 

15 

16 

17 

18 

19 

20 

21 

23 velocities.  In the swept sine mode, transfer functions of 

, 24  acceleration divided by acceleration or velocity divided by 

25 velocity are both equal to displacement divided by displacement. 



1- The time domain data collected from the sensors 18 and 20 are 

2 Fourier transformed into the frequency domain and then recorded 

3 as complex transfer functions, typically using a spectrum 

4 analyzer 22. .   ' 

5 The motion of the test specimen shown in FIGS. 1 and 2 is 

6 governed by the equation: 

7 

8 juV2u+(A + ju)VV.u = p?-±   , (1) 
dt 

9 

10 where X  and ju  are the complex Lame constants (N/m2).; 

11 p  is the density (kg/m3) ; 

12 t is time (s); 

13 • denotes a vector dot product; and 

14 u is the Cartesian coordinate displacement vector of the ' 

15 material. 

16 The coordinate system of the test configuration is shown in 

17 FIG. 3.  Note that using this orientation results in Jb = 0 and a 

18 having a value less than zero.  The thickness of the specimen, h, 

19 is. a positive value.  Equation (1) is manipulated by writing the 

20 displacement vector u as 

21 

22 
ux(x,y,z,t) 

u = « uy(x,y,z,t) 

ßz^,y,z,i) 



1- where x is the location along the plate (m) , y  is the location 

2 into the plate (m) , and z is the location normal to the plate 

3 (m) , as shown in FIG. 3.  The symbol V is the gradient vector 

4 differential operator written in three-dimensional Cartesian 

5 coordinates as 

6 

„    d .      d .     d . 
3c x    3y y    dz z   ' (3) 

8 

9        with  ix denoting the unit vector in the x-direction,   iy denoting 

10 the unit vector in the y-direction,     and  iz denoting the unit 

11 vector in the  z-direction;   V2  is the three-dimensional Laplace 

12 operator operating on vector u as 

13 

v2u=v2
M^ + v2v^+v2^z ' (4) 

15 

16      and operating on scalar u as 

17 

2 T-,     r, "UXV7        vUrV7        3^Uy 2-w=v.vMw=-^+-_^i+_^p. . ■      (5) is v\V7=v.vMr„,=   y +   w +   x*y* 
3c2 dy1 dz 

19 

20     and the term  V«u  is called the divergence and is equal to. 

21 

v-7        d*x    ^v 3u7 

3c      dy dz    ' (6) 



1 

2  The displacement vector u is written as 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

u=V^+Vx^ , (7) 

where ^ is a dilatational scalar potential, x denotes a vector 

cross product, and \J/  is an equivoluminal vector potential 

expressed as 

W= 

Vx(,x,y,z,t) 
y/y(x,y,z,t) 

yrz{x,ytztt\ 

(8) 

The problem is formulated as a two-dimensional system, thus y = 0, 

uy(x,y,z,t) = 0,   and d(-)/<fy = 0.     Expanding equation (7) and breaking 

the displacement vector into its individual nonzero terms yields 

ex dz (9) 

and 

dz dx (10) 



1-      Equations (9) and (10) are next inserted into equation (1) , 

2  which results in 

3 

4 cdV <p(x,z,t) =    r\: (11) 
at 

5 

6  and 

7 

8 <^V ^(W) = ^  (12) 
dt 

9 

10 where equation (11) corresponds to the dilatational component and 

11 equation (12) corresponds to the shear component of the 

12 displacement field.  Correspondingly, the constants cj  and cs  are 

13 the complex dilatational and shear wave speeds, respectively, and 

14 are determined by 

15 

16 <V=J— (13) 

17 

18  and 

19 

20 C
S=A\—    • (141 

10 



1-  The relationship of the Lame constants to the Young's and.shear 

2  moduli is shown as 

3 

x_        ED 

(l+v)(l-2o) (15) 

5 

6  and 

7 

n       E ß=G = 
2(1 + ü) ' <16> 

9 

10 where E  is the complex Young's modulus (N/m2) , G is the complex 

11 shear modulus (N/m2), and u  is the Poisson's ratio of the 

12 material (dimensionless). 

13 The conditions of infinite length and steady-state response 

14 are now imposed, allowing the scalar and vector potential to be 

15 written as 

16 

17 <t>(x,z,t) = ®(z)exp(ikx)Qxp(icot) (17) 

18 

19  and 

20 

21 ^y(x,z,t) = x¥(z)exTp(ihc)exp(io)t) (18) 

11 



i     where i is the square root of -1, a  is frequency (rad/s), and k 

2 ■ is wavenumber with respect to the x  axis (rad/m) .  Inserting ' 

3 equation (17) into equation (11) yields 

4 

5 W,„2^_> = 0 t (ig) ~ -   -r w  M 

<fe2 

6 

7 where 

8 

9 a = ^-k2 

10 

11 and 

12 

13 kd=—   ' 

14 

(20) 

•  (21) cd 

15  Inserting equation (18) into equation (12) yields. 

16 

ÄWM--0 , .  ■      ■ " (22) 
dz 

18 

19  where 

20 

21 ß = W^   , • (23) 

12 



1      and 

2 

,   _ CO 
Ks~~ ■• (24) 

5 ,  The  solution to equation   (19)   is 

6 

7 ®(z) = A(k,co)exp(iaz) + B(k,co)exp(-iaz)   , .  (25) 

8 

9  and the solution to equation (22) is 

10 

11 ^) = C(^ß;)exp(iA) + D(^ö))exp(-i^) , (26) 

12 

13 where ^,o>), £fta>), C(*,fi>), and Z)(£,ß>) are wave response 

14 coefficients that are determined below.  The displacements can 

15 now be written as functions of the unknown constants using the 

16 expressions in equations (9) and (10) .  They are 

17 

uz(x,z,t) = Uz(k,z,co) exp(ifcc) exp(iö/) 

18 
= { ia[A(k,co)exp(iaz)-B(k,(o)Qxp(-iaz)]+ (27) 

ik[C(k,co)oxp(iß) + D(k,co)exp(-ißz)] } exp(ifcc) exp(iö*) , 

19 

20  and 

13 



2 

10 

15 

16 

ux(x,z,t) = Ux(k,z,co) exp(ifce) exp(ißtf) 

= { ik[A(k,o))exp(iaz) + B(k,ü})exp(-iaz)]- . (28] 

iß[C(k,(o)exv(ißz)-D(k,o))exip(-ißz)] } exp(ifcc) exp(iötf) . 

3 Specific boundary conditions are now needed to individually solve 

4 for the case of vertical and horizontal motion.  These are 

5 formulated separately below. 

6 For the case of vertical motion, the base at z = a is 

7 vibrated vertically using a shaker, as shown in FIG. 1.  Four 

8 boundary conditions are necessary to formulate this problem. 

9 Because the mass is attached to the material, the tangential 

(horizontal) motion at the top of the plate (z = jb) is. zero and 

11 this equation is written as 

12 

13 ux(x,b,t) = 0   . (29) 

14 

The normal stress at the top.of the specimen is equal to and 

opposite the load created by the mass in the z direction.  This 

17  expression is   ' 

18 

19 ra(^0^A+2/i)i^+AMM = .W^&M ■ 
dz äc ä1 ' 

(30) 

14 



1 where M is mass per unit area (kg/m2) of the attached mass.  The 

2 tangential motion at the bottom of the plate (z = a) is zero and 

3 this equation is written as 

4 

5 ux(x,a,t) = 0   , '      (31) 

6 

7 and the normal motion at the bottom of the plate is prescribed as 

8 a system input.  This expression is 

9 

10 u2(x,a,t) = U0exp(icot)   . (32) 

11 

12 Assembling equations (1) - (32) and letting b =  0 yields the 

13 four-by-four system of linear equations that model .the system. • 

14 They are 

15 

16        Ax = b , 

.17    - 

18  where the entries of equation (33) are 

19 

20 An=\k   , 

21 

22 ^12 = ^11 ».       . 

23 

24        A?,=-iß  , .  (36) 

(33) 

(34) 

(35) 

15 



1- Ai4=-An  > (37) 

2 

3 A2i=-a2A-2a2it-Ak2-iMco2a  , 

4 

5 A22=-a2A-2a2ju-Ak2 + iMü)2a  , 

6 

7 A23=-2kßfi-\M(o2k  , 

8 

9 A24=2kß{i-iM(ö2k   , 

10 

11 ^3i =^iiexp(iaa)   , 

12 

13 ^32=^iiexp(-ioa)   , 

14 

15 A33=A13Gxp(ißä)   > 

16 

17 ^34=-^13exp(-iy&)   , 

18 

19 ^4i =iaexp(iaa)   , 

20 

21 ^42=-iaexp(-iaa)   , 

22 

23 ^43=i^:exp(i^)   , 

(38) 

[39) 

(40) 

(41) 

[42) 

(43) 

(44) 

[45) 

(46) 

(47) 

(48) 

16 



1 ' ^44 = ikexp(-ißa)' , (49) 

3 xn = A(k,a>)   , (50) 

4 

5 x2i=B(k,o))   , (51) 

6 

7 x31 = C(£,6>)   , (52) 

8 

9 x41=£>(£,ä>)   , (53) 

10 

11 ^1=°   < (54) 

12 

13 62! =0   , (55) 

14 

15 &31=0   , (56) 

16 and 

17 

18 &41=^0   • (57) 

19 

20 Using equations   (34)   -   (57)   the  solution to the  constants   A(k,a>), 

21 B{k,co),    C(k,a),   and  £>(£,#)  can be  calculated at  each specific 

22 wavenuiuber and frequency using 

23 

24 x = A"1b   . •  (58) 

17 



1 Noting that for vertical motion, k  = 0, and using the ■ ■ 

2 coefficients from equation (58), the transfer function between 

3 the vertical base displacement and the vertical mass displacement 

4 can be written as 

5 

14 

„, ,        1        Uz(0,b,a) 1 
T^a>) = ^7^=     TT       

= <\A    • (59) Rl(fi>)        u0 cos(kdh) kdsin(kdh) 

8 where T^a)  or R^co)  correspond to the data from the vertical 

9 motion experiment. 

10 The next step is to solve the inverse problem for vertical 

11 motion.  This involves using the experimental data and equation 

12 (59) to estimate the dilatational wavenumber.  Equation (59) can 

13 be rewritten as 

fM^ 15 f(kd) = 0 = cos(kdh) kdsm(kdh)-Rx (60) 
\PJ 

16 

17 where the problem now becomes finding the zeros of the right-hand 

18 side of equation (60), or, in the presence of actual data that 

19 contains noise, finding the relative minima of the right-hand 

20 side of equation (60) and determining which relative minimum 

21 corresponds to dilatational wave propagation and which relative 

22 minima are extraneous.  Because equation (60) has a number of 

23 relative minima, zero finding algorithms are not applied to this 

18 



1 function, as they typically do not find all of the minima ' 

2 locations and are highly dependent on initial starting locations. 

3 The best method to find all of the minima locations is by 

4 plotting the absolute value of the right-hand side of equation 

5 (60) as a surface with the real part of dilatational wavenumber 

6 kd  on one axis and the imaginary part of kd  on the other axis. 

7 In order to do this, the user should start at a low frequency 

8 where the aliasing .minimum has not yet appeared.  In the specific 

9 example shown herein, this is below 3850 Hz for the dilatational 

10 wave and below 1550 Hz for the shear wave. At these lower 

11 frequencies, the minimum furthest to the left will correspond to 

12 dilatational wave propagation.  As the frequency increases, 

13 extraneous minima will appear to the left of the minimum that 

14 corresponds to dilatational wave propagation, however, the wave 

15 propagation minimum will always be close to the previous test 

16 frequency wave propagation minimum provided that the frequency 

17 increments are relatively small.  At a resolution of 0.5 rad/m 

18 for the materials in the example herein, this requires a 

19 frequency increment of 37.3 Hz for the dilatational measurement 

20 and 14.4 Hz for the shear measurement.  Different test specimens 

21 and top masses require different increments.  Additionally, the 

22 real part of the wavenumber is a monotonically increasing 

23 function with respect to frequency, so at each increase in 

24 frequency, the new wavenumber to be estimated has to be greater 

25 than the old wavenumber that was previously estimated.  This ' 

19 



1 process is further illustrated as related to the discussion 

2 concerning FIG. 6 and FIG. 7 below. 

3 For the case of horizontal motion, the base at z  = a is 

4 vibrated horizontally using a shaker, as shown in FIG. 2. ■ Four 

5 boundary conditions are necessary to formulate this problem. 

6 Because the mass is attached to the material, the shear 

7 (tangential) stress at the top of the plate is equal to opposite 

8 the load created by the mass in the x  direction.  This expression 

9 is 

10 

11 rzx(x,b,t) = ju 

12 

dux(x,b,i) | duz(x,b,i) 

.      dz dx, 
.,crux(x,b,t) 

= -M *y }   , (61) a1 

13 where M  is mass per unit area (kg/m2) of the attached mass.  The 

14 normal motion at the top of the plate (z = jb) is zero and this 

15 equation is written as 

16 

17 uz(x,b,t) = 0   . (62) 

18 

19 The tangential motion at the bottom of the plate (z = a) is 

20 prescribed as a system input and this equation is written as 

21 

22 ux(x,a,t) = V0exip(iü)t)   , (63) 

20 



1 arid the normal motion at the bottom of the plate is zero.  This 

2 expression is 

3 

4 uz(x,a,t) = 0   . (64) 

5 

6 Assembling equations (1) - (28) and (62) - (64) and letting 

7 b  = 0 yields the four-by-four system of linear equations that 

8 model the system.  They are 

9 

10 Ax = b , (65) 

11. 

12 where  the entries  of equation   (61)   are 

13 

14 An=-2/jka-ia>2Mk  , '      (66) 

15 

16 Au=2/jka-i<D2Mk  , (67). 

17 

18 Al3=£iß2-iik2+ito2Mß   , (68) 

19 

20 Au=Mß2-pk2-i(o2Mß  , (69) 

21 

22 A2l=\a   , (70) 

23 

24 ^22 =-^21   ' (71). 

21 



1     • 

2 A23 =ik   , 

3 

6 A3l=A23exp(iaa)   / 

7 

8 A32=A23exp(-iaa)  , 

9 

10 A33=-ißexp(ißa)   , 

11 

12 A34=ißexp(-ißa)   , 

13 

14 .    A4i=A2lexp(iaa)   , 

15 

16 A42=-A2lexp(-iaa)   , 

17 

18 A43=A23exp(\ßä)   , 

19 

20 

21 

22 

23 xn=^(Ä:,ö?)   , 

24 

25 *21 =#(*,*>)   , 

(72) 

4 A
24=A23   > (73) 

5 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

A44=A23exp(rißa)   , (81) 

(82) 

(83) 

22 



2 x3l=C(k,co)   , (64) 

■3 

4 x4l=D(k,co)   , (85) 

5 

6 

7 *11=0   # ■      ■ (86) 

8 

9 b2i=0   , (87) 

10 

11 ö31 = ^0   / ' (88) 

12 and        ' 

13 

14 2>41=0   . (89) 

15 

16 Using equations (67) - (89) the solution to the constants A{k,co), 

17 B(k,o)),   C{k,cd),   and D(k,a>)  can be calculated at each specific 

18 wavenumber and frequency using 

19 

20 x = A-1b . (90) 

21 

22 Noting that for horizontal motion, k  = 0, and using the 

23 coefficients from equation (90) , the transfer function between 

24 the horizontal base displacement and the horizontal mass 

25 displacement can be written as 

23 



2 

3 

4 

5 

6 

7 

8 

T2(co) = 
R2(a>) 

Ux(Q,b,co) 

cos(ksh) - 
M 

KpJ 

(91) 
ks sm{ksh) 

where T2(co)   or  R2{co)   correspond to the data from the horizontal ' 

motion experiment. 

The next step is to solve the inverse problem for horizontal 

motion.  This involves using the data and equation (91) to 

estimate the shear wavenumber.  Equation (91) can be rewritten as 

f(ks) = 0 = cos(ksh)- ^ 

KPJ 
kssin(ksh)-R2 (92! 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21  and 

It is noted that this equation is identical, except for the 

subscripts, to equation (60).  The shear wavenumber is estimated 

using the same procedure that was used to estimate the 

dilatational wavenumber above. 

The material properties can be determined from the 

wavenumbers.  First, the dilatational and shear wavespeeds are 

determined using 

cd=- 
CO 

(93) 

24 



CO c =— 
k Ks 

(94) 

respectively. The Lame constants are calculated using equations 

1 

2 

3 

4      (13)   and   (14)   written as 

5 

6 H = pc2
s (95) 

7 

8      and 

9 

10 l = pc1
d-2pc1

s    . (96) 

11 Poisson's  ratio  is  then calculated using 

12 

13 o=      X 

2Ci/+A) 

14 

15      Young's modulus  can be  calculated with 

16 

17 EJlyQ.p+lX) 
2(ju+A) 

(97) 

(98) 

18 

19 and the shear modulus can be determined using 

20 

21 G = // . (99) 

22 The above measurement method can be simulated by means of a 

23 numerical example.  Soft rubber-like material properties of the 
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1 test specimen are used in this simulation.  The material has a 

2 Young's modulus E  of [(Ie8-i2e7) + (5e3/-i3e2/)] N/m2 where f is 

3 frequency in Hz, Poisson's ratio o   is equal to 0.40 

4 (dimensionless) , density p  is equal to 1200 kg/m3, and a 

5 thickness h  of 0.1 m.  The top mass is a 0.0254 m (1 inch) steel 

6 plate that has a mass per unit area value M of 199 kg/m2.  FIG. 4 

7 is a plot of the transfer function of the system for vertical 

8 motion and corresponds to equation (59) .  FIG. 5 is a plot of the 

9 transfer function of the system for horizontal motion and 

10 corresponds to equation (91).  In FIGS. 4 and 5, the top plot is 

11 the magnitude in decibels and the bottom plot is the phase angle 

12 in degrees. 

13 FIG. 6 is a contour plot of the absolute value of equation 

14 (60). expressed in decibels versus real dilatational wavenumber on 

15 the x  axis and imaginary dilatational wavenumber on the y  axis at 

16 2 000 Hz.  The estimated dilatational wavenumber, read directly 

17 from the plot at the location the minimum value appears and 

18 marked with an arrow, is 27.89 + 2.61i rad/m.  The actual value 

19 of the dilatational wavenumber is 27.99 + 2.60i rad/m, which is 

20 slightly different from the estimated value due to the surface 

21 discretization of equation (60).  FIG. 7 is a contour plot of 

22 equation (60) at 5000 Hz.  At this frequency, an extraneous 

23 minimum appears on the left-hand side of the plot.  However, 

24 because the real part of the wavenumber must be increasing with 
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1 increasing frequency, the minimum corresponding to dilatational 

2 wave propagation is located at the arrow marked spot and is equal 

3 to 65.86 + 5.60i rad/m, as compared to an actual value of 65.77 + 

4 5.62i rad/m.  Again, the difference between the two values can be 

5 attributed to the discretization of the surface. 

6 FIG. 8 is plot of actual (solid line) and estimated (x 

7 symbols) dilatational wavenumber versus frequency.  FIG.. 9 is 

8 plot of actual (solid line) and estimated (+ symbols) shear 

9 wavenumber versus frequency.  In FIGS. 8 and 9, the top plot is 

10 the real part of the wavenumber and the bottom part is the 

11 imaginary part of the wavenumber.  FIG. 10 is a plot of actual 

12 (solid line) and estimated (real part - x symbols, imaginary part 

13 - o symbols) Young's modulus versus frequency.  FIG. 11 is a plot 

14 of actual (solid line) and estimated (real part- - x symbols, 

15 imaginary part - o symbols) shear modulus versus frequency.  In 

16 FIGS. 10 and 11, the imaginary part of the modulus all have a 

17 negative sign but are depicted with positive signs for plotting 

18 purposes.  FIG. 12 is a plot of actual (solid line) and estimated 

19 (square symbols) of the real part of Poisson's ratio versus 

20 frequency.  Because the numerical example is formulated using a 

21 Poisson's ratio that is strictly real, no imaginary component is 

22 shown in this plot.  Imaginary values of Poisson's ratio are 

23 possible and have been shown to theoretically exist. 

24 This invention gives the ability to estimate complex 

25 dilatational and shear wavespeeds of a material that is slab- 
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1 shaped and subjected to compressive forces.  It also allows 

2 estimation of complex Lame constants of a material that is slab- 

3 shaped and subjected to compressive forces:  Complex Young's and 

4 shear moduli of a material that is slab-shaped and subjected to 

5 compressive forces can be estimated using this invention.  The 

6 invention also allows estimation of the complex Poisson's ratio 

7 of a material that is slab-shaped and subjected to compressive 

8 forces.  The advantage of this patent is that it does not require 

9 a testing configuration that has to be pressurized. 

10 Obviously many modifications and variations of the present 

11 invention may become apparent in light of the above teachings. 

12 In light of the above, it is therefore understood that within the 

13 scope of the appended claims, the invention may be practiced 

14 otherwise than as specifically described. 
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1- ATTORNEY DOCKET NO. 84432 

2 

3 A METHOD FOR ESTIMATING THE PROPERTIES OF.A 

4 SOLID MATERIAL SUBJECTED TO COMPRESSIONAL FORCES 

5 • 

6 ABSTRACT OF THE DISCLOSURE 

7 A method to measure the complex frequency-dependent 

8 dilatational and shear wavenumbers of a material under a static 

9 compressional force.  The material is first vibrated in a 

10 vertical and horizontal directions while obtaining transfer 

11 functions in each direction.  The two transfer functions are 

12 combined with a theoretical model to estimate a dilatational 

13 wavenumber and a shear wayenumber.  The wavenumbers can be 

14 utilized to give the complex dilatational wavespeed, complex 

15 shear wavespeed, complex Lame constants, complex Young's modulus, 

16 complex shear modulus, and complex Poisson's ratio. 
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