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Attorney Docket No. 83123 

AN INVERSE METHOD TO ESTIMATE THE PROPERTIES OF A 

FLEXURAL BEAM AND THE CORRESPONDING BOUNDARY PARAMETERS 

STATEMENT OF GOVERNMENT INTEREST 

The invention described herein may be manufactured and used 

by or for the Government of the United States of America for 

governmental purposes without the payment of any royalties 

thereon or therefore. 

BACKGROUND OF THE INVENTION 

(1) Field Of The Invention 

This invention relates to the field of structural 

properties, and in particular to the determination of the complex 

flexural wavenumber, corresponding wave propagation coefficients, 

and boundary condition parameters of a beam subjected to 

transverse motion. 

(2) Description Of The Prior Art 

By way of example of the state of the art, reference is made 

to the following papers, which are incorporated herein by 

reference.  Not all of these references may be deemed to be 

relevant prior art. 

D.M. Norris, Jr., and W.C. Young, "Complex Modulus 

Measurements by Longitudinal Vibration Testing," Experimental 

Mechanics, Volume 10, 1970, pp. 93-96. 



W.M. Madigosky and G.F. Lee, "Improved Resonance Technique 

for Materials Characterization," Journal  of the Acoustical 

Society of America,   Volume 73, Number 4, 1983, pp. 1374-1377. 

S.L. Garrett, "Resonant Acoustic Determination of Elastic 

Moduli," Journal of the Acoustical Society of America,   Volume 88, 

Number 1, 1990, pp. 210-220. 

I. Jimeno-Fernandez, H. Uberall, W.M. Madigosky, and R.B. 

Fiorito, "Resonance Decomposition for the Vibratory Response of a 

Viscoelastic Rod," Journal  of the Acoustical Society of America, 

Volume 91, Number 4, Part 1, April 1992, pp. 2030-2033. 

G.F. Lee and B. Hartmann, "Material Characterizing System," 

U.S. Patent Number 5363701, November 15, 1994. 

G.W. Rhodes, A. Migliori, and R.D. Dixon, "Method for 

Resonant Measurement," U.S. Patent Number 5495763, March 5, 1996. 

R.F, Gibson and E.O. Ayorinde, "Method and Apparatus for 

Non-Destructive Measurement of Elastic Properties of Structural 

Materials," U.S. Patent Niimber 5533399, July 9, 1996. 

B.J. Dobson, "A Straight-Line Technique for Extracting Modal 

Properties From Frequency Response Data," Mechanical  Systems and 

Signal  Processing,   Volume 1, 1987, pp. 29-40. 

C. Minas and D.J. Inman, "Matching Finite Element Models to 

Modal Data," Journal of Vibration and Acoustics,   Volume 112, 

Number 1, 1990, pp. 84-92, 



T. Pritz, "Transfer Function Method for Investigating the 

Complex Modulus of Acoustic Materials:  Rod-Like Specimen," 

Journal  of Sound and Vibration,   Volume 81, 1982, pp. 359-376. 

W.M. Madigosky and G.F. Lee, "Instrioment for Measuring 

Dynamic Viscoelastic Properties," U.S. Patent Number 4352292, 

October 5, 1982. 

W.M. Madigosky and G.F. Lee, "Method for Measuring Material 

Characteristics," U.S. Patent Number 4418573, December 6, 1983. 

W. Madigosky, "In Situ Dynamic Material Property Measurement 

System," U.S. Patent Niimber 5365457, November 15, 1994. 

J.G. McDaniel, P. Dupont, and L. Salvino, "A Wave'Approach 

to Estimating Frequency-Dependent Damping Under Transient 

Loading" Journal  of Sound and Vibration,   Volume  231(2), 2000, pp. 

433-449. 

J. Linjama and T. Lahti, "Measurement of Bending wave, 

reflection and Impedance in a Beam by the Structural Intensity 

Technique" Journal  of Sound and Vibration,   Volume 161(2), 1993, 

pp. 317-331. 

L. Koss and D. Karczub, "Euler Beam Bending Wave Solution 

Predictions of dynamic Strain Using Frequency Response Functions 

" Journal  of Sound and Vibration,   Volume 184(2), 1995, pp. 229- 

244. 

Measuring the flexural properties of beams is important 

because these parameters significantly contribute to the static 

and dynamic response of structures.  In the past, resonant 

techniques have been used to identify and measure longitudinal 



properties.  These methods are based on comparing the measured 

eigenvalues of a structure to predicted eigenvalues from a model 

of the same structure.  The model of the structure must have 

well-defined (typically closed form) eigenvalues for this method 

to work.  Additionally, resonant techniques only allow 

measurements at natural frequencies. 

Comparison of analytical models to measured frequency 

response functions is another method used to estimate stiffness 

and loss parameters of a structure.  When the analytical model 

agrees with one or more frequency response functions, the 

parameters used to calculate the analytical model are considered 

accurate.  If the analytical model is formulated using a 

numerical method, a comparison of the model to the data can be 

difficult due to the dispersion properties of the materials. 

Another method to measure stiffness and loss is to deform 

-the-materiaL-and~measure-the resistance -to—the^indentation.—.This- 

method can physically damage the specimen if the deformation 

causes the sample to enter the plastic region of deformation. 

SUMMARY OF THE INVENTION 

Accordingly, one objective of the present invention is to 

measure flexural wavenumbers. 

Another objective of the present invention is to measure 

flexural wave propagation coefficients. 

A further objective of the present invention is to measure 

Young's modulus when the beam is undergoing transverse motion. 
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Yet another objective of the present invention is to measure 

the boundary stiffness and dampening values when the beam is 

vibrated transversely. 

The foregoing objects are attained by the method and system 

of the present invention.  The present invention features a 

method of determining structural properties of a flexural beam 

mounted to a base.  The method comprises securing a plurality of 

accelerometers spaced approximately equidistant from each other 

along a length of a beam.  One accelerometer can be secured to 

the base.  An input is provided to the beam.  Seven frequency 

domain transfer functions of displacement are measured from the 

accelerometers secured to the beam.  The flexural wavenumber is 

estimated from the seven frequency domain transfer functions. 

The seven frequency domain transfer functions of 

displacement include the following equations: 

T, = ^-3(~3«><») ^ Acos{3a5)-Bsm(3a5) + Ccosh(3a5)-Dsmh(3a5), 
Vo(ft>) 

T = U_^i-2a,0}) ^ ^(,os(2a5) - Bsm(2aS) + Ccosh(2a5)- Dsinh(2a5), 
^0(60) 

T, = ^-i(~^'^) = A cos(a8) - B sm(ad) + C cosh(a5) - D sinh(a5), 
Voico) 

Vo(Q}) 

T = ^'^ '^^ = Acos{aS) + Bsiniad) + Ccosh(a5) + Dsinh(a5), 

^ U^{28,(0) ^ ^pQg(2a(5) + B sin(2a5) + Ccosh(2a5) + Dsinh(2a5), 
Vo(C!)) 

and 

^ U^i3a,(o) ^ ^cos(3a5) + Bsm{3aS) + Ccosh(3a<5) + Dsinh(3a5);and 
Vo(Q)) 



The flexural wavenuinber is determined using the  following 

equations: 

— Arccos(5) + ^       n even 
\ lo 25 

Re(a) = ■ where 

— Arccos(-^) + ^       n odd 
^zo 25 

s = [Re(0)]2 + [Im(0)]2 - ^{Re(0)f + \Im(<t>)f | - ^[Re(0)]2 - 2[lm((l>)f -1} 

and said imaginary part comprises: 

Im(a) = 4lo&J-^Sffi ijm 
5   ^ [cos[Re(a)<5]   sin[Re(a)5]. 

Using the flexural wavenumber and various equations 

disclosed within the present invention, the complex valued 

modulus of elasticity can be determined at each frequency, as 

well as the wave property coefficient, and the boundary 

parameters. 

Thus, this invention has the advantages that all 

measurements can be calculated at every frequency that a transfer 

function measurement is made.  They do not depend on system 

resonance's or curve fitting to transfer functions.  The 

calculation from transfer function measurement to calculation of 

all system parameters is exact, i.e., no errors are introduced 

during this process.  Furthermore, the measurements can be 

calculated without adverse consequences to the tested beam. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other features and advantages of the present 

invention will be better understood in view of the following 



description of the invention taken together with the drawings 

wherein: 

FIG. 1 is a schematic block diagram of a conventional 

testing system including two springs and two dashpots attached to 

a shaker table; 

FIG. 2 is a schematic block diagram of a conventional 

testing system including one spring and one dashpot attached to a 

shaker table; 

FIG. 3 is a schematic block diagram of a conventional 

testing system including two springs and two dashpots, one of 

which is attached to a shaker table; 

FIG. 4 is a schematic block diagram of a conventional 

testing system wherein the beam is attached directly to a shaker 

table; 

FIG. 5A is a graph of the magnitude of a typical transfer 

function of a beam; 

FIG. 5B is a graph of the phase angle of a typical transfer 

function of a beam; 

FIG. 6 is a graph of the function s versus frequency; 

FIG. 7A is a graph of the real part of a flexural wavenumber 

versus frequency; 

FIG. 7B is a graph of the imaginary part of a flexural 

wavenumber versus frequency; 

FIGS. 8-11 are graphs of the wave propagation coefficients 

versus frequency; 

FIG. 12 is a graph of the real and imaginary parts of the 

Young's Modulus versus frequency; 



FIG. 13 is a graph of the boundary conditions of the system 

shown in FIG. 1 versus frequency; and 

FIG. 14 is a graph of the boundary conditions of the system 

shown in FIG. 2 versus frequency. 

DESCRIPTION OF THE PREFERRED EMBODIMENT 

The method and system, according-to the present invention, 

is used to develop and measure complex flexural wavenumbers and 

the corresponding wave propagation coefficients of a beam 

undergoing transverse motion.  An inverse method has been 

developed using seven transfer function measurements.  These 

seven transfer function measurements are combined to yield closed 

form values of flexural wavenumber and wave propagation 

coefficients at any given test frequency.  Finally, Young's 

modulus, spring stiffnesses, dashpot damping values, and boundary 

condition parameters, among other parameters, are calculated from 

the flexural wavenumber and wave propagation coefficients. 

According to an exemplary test configuration 10, FIG. 1, a 

shaker table 12 initiates transverse motion 14 into a beam 16. 

The beam 16 is connected to the shaker table 12 with a spring 18 

and dashpot 20 at each end 22.  FIG. 1 represents a double 

translational spring and damper input configuration.  Other test 

configurations are also possible, including the shaker table 12 

inputting energy into only one end 22 of the beam 16 with the 

other end terminated to ground 24 directly, as shown in FIG. 2, 

or terminated to ground 24 with a spring 18 and dashpot 20, as 

shown in FIG. 3, or terminated to ground 24 and the shaker 12 

directly, as shown in FIG. 4.  FIG. 2 represents a single 
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translational spring and damper input configuration with the 

other end pinned.  FIG. 3 represents a single translational 

spring and damper input configuration with the other end having a 

translational spring and damper.  FIG. 4 represents a single pin 

input configuration with the other end pinned.  These approaches 

are intended for use when a beam 16 is to undergo motion in the 

transverse direction 14.  This system typically arises in cars, 

ships, aircraft, bridges, buildings and other common structures. 

In any of the embodiments shown in FIGS. 1-4 sensors 26 such 

as accelerators are positioned equally along beam 22.  As 

discussed above, a minimiom of seven such sensors 22 are required. 

Optionally, a reference -sensor 28 can be joined to shaker table 

12 to read the input motion 14.  The input motion 14 can also be 

read directly from the shaker table 12 controls. 

For simplicity, the present invention will be described as 

it relates to the derivation of the linear equations of motion of 

the system with a spring 18 and dashpot 20 boundary condition at 

each end 22, but this is for exemplary purposes only, and is not 

intended to be a limitation. 

The system model of the beam is the Bernoulli-Euler beam 

equation written as 

Hi!^+p^i!f^=o , (1) 
dx at 

where x.  is the distance along the length of the beam in, meters, t 

is time in seconds, u is the displacement of the beam in the 

(transverse) y  direction in meters, E is the unknown frequency- 



2 
dependent, complex Young's modulus (N/m ), J is the moment of 

inertia (m ), p is the density (kg/m ), and A^ is the cross- 

sectional area of the beam (m ) .  Implicit in equation (1) is 

the assumption that plane sections remain planar during bending 

(or transverse motion).  Additionally, Young's modulus, the. 

moment of inertia, the density, and the cross sectional area are 

constant across the entire length of the beam.  The displacement 

is modeled as a steady state response and is expressed as 

u(x,t)=U(x,0})exp(,\0)t)   , (2) 

where (O is the frequency of excitation (rad/s) , U(x,(a)  is the 

temporal Fourier transform of the transverse displacement, and i 

is the square root of -1.  The temporal solution to equation (1), 

derived using equation (2) and written in terms of trigonometric 

functions, is 

U(x,co) = A((o)co&[a(co)x] + Bi(o)sm[a{(o)x] + 

Ci(o)cosh[ai(o)x] + D((o)smh[ai(o)x]   ' 

where A((0) , B(a)) , C((a) , and D((o)   are wave propagation 

coefficients and a(to) is the flexural wavenumber given by 

n/4 

(3) 

a(o)) = 
co^ 

{EIIP\)\ 
(4) 

For brevity, the O) dependence is omitted from the wave 

propagation coefficients and the flexural waveniimber during the 

remainder of the disclosure and Qr((0) is references as a.  Note 

that equations (3) and (4) are independent of boundary 

conditions, and the inverse model developed in the next section 

does not need boundary condition specifications.  Boundary 
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conditions are chosen, however, to show that the boundary 

parameters can be estimated and to run a realistic simulation. 

One of the most typical test configurations is the beam 

mounted to shock mounts on each end that are attached to a shaker 

table that generates a vibrational input, as shown in FIG. 1. 

Using the middle of the beam as the coordinate system origin, 

these boundary conditions are modeled as 

A(-L/2,0 
= 0 , 

-El 
d\(-L/2,t) 

= ki[u(-L/2,t)-v(t)]+Ci 
dx 

d\(LI2,t)    ^ 

_^jiuiU2j) ^k2[u(L/2,t)-v(t)] + C2 
etc 

(5) 

^1 
'du{-LI2,t)    dv(t) 

[       dt             dt  \ 
(6) 

^ 
(7) 

' du{LI2,t)    dv{t) 

I      dt            dt  \ 
t (8) 

where 

v(f) = Vb(ft))exp(i<w) , (9) 

which is the input into the system from the shaker table. 

Inserting equation (3) into equation (5), (6), (7), (8), and 

(9) yields the solution to the wave propagation coefficients. 

Inserting these back into equation (3) is the displacement of the 

system, and is sometimes called the forward solution. The wave 

coefficient A  is 

AT 
A = - (10) 

^B 

where 

11 



Aj- = [(ki +io)Ci)-(k2 +ift)C2)](£'/a; )cos 

[(ki +ia)Ci)-(k2 + iox2 )](EIa ) sin 

a 
L 
2. 

cosh 
f   z 

■ sinh f    ^1 
"2 

sin a 
L; 
2. 

2 
cosh f   ^^ - 

4(A:i + i<uci)(A;2 + i ftr2) sin a— 
V    2y 

cosh a— sinh 
2 ^    2J 

(11) 

and 

AB = 2(£;/a^)2sin2fa- 
V    2; 

2-2f.L)^^^j^2f^|' 

2[(% +iftjCi)-(A2 +iQ)C2)](EIa^)sm'^ 
r     r\ f    j\ L 
a— 

\    2. 
cosh a- sinh a- 

2iEIa^fco%Aa- 
V   2; 

sinh' 
^   L^ 
a- 

2j 

2[(^1 +iG)Ci)-(fe2 +i(0C2 )](£■/«) cos 
/^ 
a— sin _ 

V    2;     I    2 
a— 

Y 
sinh^ 

2[(^l + i(OCj) - (^ + ift)C2)](£'/a^)cos2 a — cosh a— 
i.    2 

a— + 
I.   2) 

sinh a— 
V   2, 

2[(^i +ifoci)-(/^ +ift)C2)](£7a^)cos I-^l a— sin 
2; 

8(^1 + \(oc{){k2 + i(UC2 )coa a— sin a— cosh 

^   ^1 a— 
2) 

cosh 2 a—  - 

a— sinh a— I    2J       I    2. 

(12) 

The wave coefficient B  is 

BB 
(13) 

where 

Bf =-[{ki ■¥\(Oc{) + {k2 +iftJC2)](£:/a^)sin a— cosh a— sinh 
I    2) 2 

r 
[(^1 + ifflCi) + (A:2 + iftfc2)](^^« )cos a- sinhn «- 

^2;        I    2. 

(14) 

and 
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fig=2(£:/a3)2cos2fa-^ sinh^ a—\- 

2[iki +iG)q) -(k2 +i(oc2)](EIa^)cosH a— 
V    2/ 

cosh a— sinh a— I   2j 

liEIa^)^ sin^ a— 
y    2; 

cosh' a— 
V    2j 

2[(ki+iQ)Ci)-(k2 +ift)C2 )](£/«) cod a— 

2[(ki +ift>q)-(^ +ifi>C2)](£^/a^)siii2 a- 
\    2/ 

• (     ^1      u2f    L sin a— cosh   a— 
{2)        I   2 

rN 

cosW a— sinh a— 
V   2) 

3^      I     ^ 
\ r\ 

2[(^i +ift)C2)-(^2 +i(UC2)](£'/a^)cod a— sini a— sinhn a— + 
2) 

S(ki+i(oci)(k2 + icJC2)coi a— 
r   T\ 

sin 
L 

V    2 
cosW a— 

\   2 
sinh a— 

(15) 

The wave coefficient C is 

(16) 

where 

CT = Kh + iG^)- (^2 + icuc2)](EIa^)cos^ a- sinh a- - 
I   2;     \   2; 

[(^1 +ituci) -(^2 +ic*:2)](£'/a^)cod «-]si ( L] a— 
\   2) 

\ 
cosh a— 

\   2) 

4(^1 + \(Oci)ik2 + iffiiC2)]cosl a- Jsin a— sinh ̂    ^1 a— 
2; 

(17) 

The wave coefficient D is 

(18) 

where 

DT = -Kki + icoci) + (h + i0)c2 )](£'/«^)sin^ 
V.   2) 

coshi a— I - 

[(^1 +ifflCi) + (^2 +iftkr2)](£/a^)cos a^ sin 
j ■ 

a— sinh a— 
2)      [    2 

\ (19) 
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These coefficients are used for the simulation below.  If 

the beam model corresponds to FIG. 2, 3, or 4, then the boundary 

conditions given in equations (5) -(8) change slightly as do the 

wave propagation coefficients. 

Equation (3) has five unknowns and is nonlinear with respect 

to the unknown flexural wavenumber.  It will be shown that using 

seven independent, equally spaced measurements, that the five 

unknowns can be estimated with closed form solutions. 

Furthermore, in the next section, it will be shown that the 

components that comprise the beams mounting system can also be 

estimated.  Seven frequency domain transfer functions of 

displacement are now measured.  These consist of the measurement 

at some location divided by a common measurement.  Typically this 

would be an accelerometer at a measurement location and an 

accelerometer at the base of a shaker table.  These seven 

measurements are set equal the theoretical expression given in 

equation (3) and are listed as 

r_3 = "^   •  = A cos(3a5) - Bsin(3«5) + Ccosh(30(5) - Dsinh(3a5) ,   (20) 

T_2 =   ~^^~ '^^ = Acos(2aS)- Bsm(2a8) + Ccosh(2a<5)- Dsinh(2a5) ,   (21) 
VQ(Q)) 

T_i = ^-}^~  '^^ =Acos{a8)-Bsm(aS) + Ccosh(ocS)-DsinHaS)   , (22) 
VQ(CO) 

Uo(0,(o) 
To=   ^^\\=A + C  , (23) 

VO(Q)) 

Ti=-^^^=Acosiad)+Bsm(aS)+CcoshicxS) + Dsmh(ocS)   , (24) 

14 



^2 = Ir, \ = Acos(2a(5) + 5sin(2a5) + Ccosh(2a5) + Z)sinh(2a5) ,     (25) 
Ko(0}) 

and 

^3=~4^-T^^ = ^cos(3a5) + 5sin(3a5)+Ccosh(3a(5) + £)sinh(3a5) ,     (26) 
yo(G>) 

where 5 is the sensor to sensor separation distance (m) and Vb(CD) 

is the reference measurement.  Note that the units of the 

transfer functions given in equations (20) -(26) are 

dimensionless. 

Equation (22) is now subtracted from equation (24), equation 

(21) is subtracted from equation (25), and equation (20) is 

subtracted from equation (26), yielding the following three 

equations: 

gsin(cia?)+Dsinh(05S)= ^~ ~^ , (27) 

fisin(2a5)+£)sinh(2a5) = -^^-^ , and (28) 

T —T 
i5sin(3a5)+Dsinh(3ai5)=-2—=^ . (29) 

Equations (27), (28), and (29) are now combined to give 

cosh(a5) cos(a5) - 
2(T,-T,)^ 

[cosh(a5) + cos(a5)] + 
4(7;-r.) 

= 0 .(30) 

Equation (22) is now added to equation (24) and equation (21) is 

added to equation (25), yielding the following two equations: 

T +T 
Acos(a5)+Ccosh(a5)=-^—^ , (31) 

and 

15 



A cos(2aS) + Ccosh(2a<5) = ^^2JLLI (32) 

Equations (23), (31), and (32) are now combined to yield the 

following equation: 

cosh(a5) cos(aS) - [cosh(a5) + cos(a5)] + = 0 (33) 

Equation (30) and (33) are now combined, and the result is a 

binomial expression with respect to the cosine function, and is 

written as 

a cos (cxS) + bcos(ad)+c=0  , (34) 

where 

and 

a = 4T^-4J^l + 4T_2To-4TQT2   , (35) 

b = 2T_2T_i - 2T_2Ti + 2T_ITQ -2TQTI +2T_{r2 -2T{r2 + 2TQT2, -2T_^TQ   ,(36) 

c = T^l-T^ +Ti -T^2+T-3T-i-T_^Ti + T_^n-T^Ti+2TQT2-2T_2To   .(37) 

Equation (34) is now solved using 

-b±-Jb^-4ac 
cos(a5) = 

2a 
(38) 

where ^  is typically a complex niomber.  Equation (38) is two 

solutions to equation (34).   One, however, will have an absolute 

value less than one and that is the root that is further 

manipulated.  The inversion of equation (38) allows the complex 

flexural wavenumber a to be solved as a function of ^  at every 

16 



frequency in which a measurement is made.  The solution to the 

real.part of a is 

Re(«) = ■ 

1 .   ^ s   njt —-Arccos(5) + —-  n even 
25 15 

(39) 

—-Arccos(-5) + ——  n odd 
25 25 

where 

s = [Re(0)]2 + [Im(<^)]2 - y {Re(0)f + [lm(0)f '^ - -^[Re(0)]2 - 2[Im(^)]2 - l} , (40 

n is a non-negative integer and the capital A denotes the 

principal value of the inverse cosine function.  The value of n 

is determined from the function s, which is a periodically- 

varying cosine function with respect to frequency.  At zero 

frequency, n is 0.  Every time s cycles through n radians (180 

degrees), n  is increased by 1.  When the solution to the real 

part of a is found, the solution to the imaginary part of a is 

then written as 

^   ,  ,     1,      I ,   Re(0) lm(0)     I Im(a) = -logei ^^ ii^—^   . (41) 
5   ^ [cos[Re(a)5]   sin[Re(a)(5]J 

Once the real and imaginary parts of wavenumber a are known, the 

complex valued modulus of elasticity can be determined at each 

frequency with 

2 
£((U) = Re[£:(ft))] + iIm[£(ft))] = ^^^^ -j   . (42) 

/[Re(a) + ilm(a)r 

assuming that the density, area, and moment of inertia of the 

beam are known.  Equations (20) - (42) produce an estimate 

17 



Young's modulus at every frequency in which a measurement is 

conducted. 

Additionally, combining equations (27) and (28) yields 

^_ 2(7i -r_i)cosh(ag)-(r2 -r-2) 
4sin(a5)[cosh(ai5) - cos(os5)] 

(43) 

and 

D = 
(T2-T_2)-2(T,-T_0cosiaS) 
4sinh(a5)[cosh(a(5) -cos(a5)] 

(44) 

Combining equations (23) and (31) yields 

2TQ cosh(0!>?) - (r, + r_]) 
2[cosh(ci55)-cos(a5)] 

(45) 

and 

C = 
(7i+r_i)-27ocos(ag) 
2[cosh(a5) - cos(a^)] 

(46) 

Equations (43) - (46) are the estimates of the complex wave 

propagation coefficients.  These are normally considered less 

important than the estimate of the flexural wavenumber.  It will 

be shown, however, that these coefficients can be used to 

estimate the boundary condition parameters of the beam. 

Inserting equations (2), (3), (4), and (9) into equation (6) 

and solving for the boundary parameters at x = -L/2 yields 

ki = Re" 
(Ela^) AsinI a— + Bcos a— 

\   2) 
+ Csinh a- 

2) 
-Dcosh a— 

AcosI a-  -5sin a-  + Ccosh a—  -Dsinh a- 1 
(47) 

and 
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Ci =—Im 
CO 

(Ela^) 
r 

A sin a—  + 5cos 
2) 

a- 
\   2^ 

+ CsinW a— - Dcosh 
L 

a— 
2> 

A cos 
L 

a— 
2. 

-Bsinl a—\ +Ccosh L 
a— 

2) 
-DsinW a—\ -1 

(48) 

Similarly, inserting equations (2), (3), (4), and (9) into 

equation (8) and solving for the boundary parameters at x = L/2 

yields 

^ =Re" 

i-EIa^) A sin a— \-Bcos 
[   2) 

^   L\ (   L\ (   L\ 
a—  + CsinW a— + Dcosh a— 2) \    2) I    2) 

Acoa a- 
2) 

+ 5sin a— +Ccosh a— 
2) y   2 

+ Dsinh 
L 

a— 
y 2 

-1 
(49) 

and 

C2 = —Im' 
(O 

(-Ela^) Asiria -Bcoi a- ( L] + Csinh a- +Dcosh 
\    2) 

f   1} 
a— 

\    2 

AcoJ a-  + Bsid a- + Ccosh a- +Dsinlia- -1 
(50) 

Thus, once the flexural wavenumber and wave coefficients are 

estimated, the properties of the springs and dashpots at the 

boundaries can be calculated. 

Niomerical simulations conducted to determine the 

effectiveness of this method use the following parameters to 

define a baseline problem:  Re(S) = (3-10^°+ 10^/) N/m^, Im(J5) = 

(3-10^+10^/) N/m^, p = 5000 kg/m^ At=0.02m2, / = 6.67 x 10"^ m"^, L = 3 

m, 5 = 0.5 m, ^i = 50000N/m, q = 4000N• s/m , ^2= 60000 N/m, and 

C2 = 5000N-s/m where f is frequency in Hz.  FIG. 5A and 5B 

represent a typical transfer function of the beam displacement 

measured at x = 0 m, which is the middle of the beam, divided by 
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base displacement.  The top plot, FIG. 5A, is the magnitude 

versus frequency and the bottom plot, FIG. 5B, is the phase angle 

versus frequency.  This figure was constructed by inserting the 

above parameters into equations (3), (4), (10), (11), (12), (13), 

(14), (15), (16), (17), (18), and (19) and calculating the 

solution (a forward model). 

FIG. 6 graphs the function s  versus frequency.  It was 

calculated by inserting the left-hand side of equations (20) - 

(26) into equations (34) - (40) and represents the first step of 

the inverse method calculations.  FIG. 7A and 7B represent the 

flexural wavenumber versus frequency.  The top plot, FIG. 7A, is 

the real part and the bottom plot, FIG. 7B, is the imaginary 

part.  The values created using equation (4) (the forward 

solution) are shown as solid lines and the values calculated (or 

estimated) using equations (34) - (41) (the inverse solution) are 

shown with x's and o's.  Note that there is total agreement among 

the forward and inverse solutions. FIGS. 8 - 11 are the wave 

propagation coefficients A,   B,   C,   and D versus frequency, 

respectively.  The top plots are the magnitudes and the bottom 

plots are the phase angles.  The values created using equation 

(10) - (19) (the forward solution) are shown as solid lines and 

the values calculated using equations (43) - (46) (the inverse 

solution) are shown with x's and o's.  FIG. 12A and FIG. 12B 

graph the real and imaginary parts of Young's modulus versus 

frequency.  The actual values are shown as solid lines and the 

values calculated using equation (42) are shown with x's and o's. 
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FIG 13 is the boundary condition parameters of mount one versus 

frequency.  The top plot is the stiffness and the bottom plot is 

the damping.  The actual values are shown as solid lines and the 

values calculated using equations (47) and (48) are shown with 

x's and o's.  FIG. 14 is the boundary condition parameters of 

mount two versus frequency.  The top plot, FIG. 14A, is the 

stiffness and the bottom plot, FIG. 14B, is the damping.  The 

actual values are shown as solid lines and the values calculated 

using equations (49) and (50) are shown with x's and o's. 

In light of the above, it is therefore understood that 

within the scope of the appended claims, the invention may be 

practiced otherwise than as specifically described. 
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What is claimed is: 

1. A method of determining structural properties of a flexural 

beam comprising the steps of:        , 

securing a plurality of accelerometers spaced approximately- 

equidistant from each other along a length of said 

beam; 

providing a vibrational input to said beam; 

measuring seven frequency domain transfer functions of 

displacement; and 

estimating a flexural wavenumber from said seven frequency 

domain transfer functions. 

2. The method of claim 1 wherein said seven frequency domain 

transfer functions comprise: 

_ U_3(-35,a)) _ 
rp   = _^:iz3 = A cos(3a5) - B sin(3a5) + Ccosh(3a6) - D sinh(3oc5) , 

Vo(«) 

TJ ,(-25,0)) 
T ,=     :^ , = Acos(2a6)-Bsin(2a5) + Ccosh(2a5)-Dsinh(2oc5), 
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TT (-5,(0) 
X_, = ^"^^  = A cos(a5) - B sin(a6) + C cosh(a5) - D sinh(a6), 

IL(0.«) 

U,(8,(0) 
j^ = Mil i = A cos(cx6) + B sin((x5) + C cosh(a6) + D sinh(a6), 

TT (26,(0) 
T, = -^^ = A cos(2a8) + B sin(2(x5) + C cosh(2a5) + D sinh(2a6), and 

Vo(«) 

TL (35,(0) 
np = ^22 i = Acos(3cc5) + Bsin(3(x5) + Ccosh(3a5) + Dsmh(3(x5). 

3. The method of claim 2 further comprising the step of 

securing at least one accelerometer to said base. 

4. The method of claim 2 further comprising securing said beam 

to a shaker table using a spring and a dashpot disposed at both a 

first and a second end of said beam; 

5. The method of claim 4 further comprising the step of 

securing at least one accelerometer to said base. 

6. The method of claim 2 further comprising: 
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securing a first end of said beam to a shaker table using a 

spring and a dashpot; and 

securing a second end of said beam to a fixed object by a 

pinned connection. 

7. The method of claim 6 further comprising the step of 

securing at least one accelerometer to said base. 

8. The method of claim 2 further comprising the steps of: 

securing a first end of said beam to a shaker table using a 

spring and a dashpot; and 

securing a second end of said beam to a fixed object using a 

spring and a dashpot. 

9. The method of claim 8 further comprising the step of 

securing at least one accelerometer to said base. 

10. The method of claim 2 further comprising the steps of: 

securing a first end of said beam directly to a shaker 

table; and 
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securing a second end of said beam to a fixed object by a 

pinned connection. 

11. The method of claim 10 further comprising the step of 

securing at least one accelerometer to said base. 

12. The method of claim 1 further comprising the step of 

determining a complex valued modulus of elasticity at each 

frequency using said flexural waveniomber. 

13. The method of claim 1 further comprising the step of 

determining wave property coefficient using said flexural 

wavenumber. 
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3 AN INVERSE METHOD TO ESTIMATE THE PROPERTIES OF A - 

4 FLEXURAL BEAM AND THE CORRESPONDING BOUNDARY PARAMETERS 

5 

6 ABSTRACT OF THE DISCLOSURE 

7 A system and method is used for estimating the properties of 

8 a flexural beam.  The beam is shaken transverse to its 

9 longitudinal axis.  Seven frequency domain transfer functions of 

10 displacement are measured at spaced apart locations along the 

11 beam. The seven transfer functions are combined to yield closed 

12 form values of the flexural wavenumber in propagation 

13 coefficients at any test frequency. 
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