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3 NEURAL DIRECTORS 

4 

5 STATEMENT OF GOVERNMENT INTEREST 

6 The invention described herein may be manufactured and used 

7 by or for the Government of the United States of America for 

8 governmental purposes without the payment of any royalties 

9 thereon or therefore. 

10 

11 CROSS-REFERENCE TO RELATED APPLICATION 

12 This patent application is co-pending with related patent 

13 application entitled Neural Sensors (Navy Case No. 74989) by the 

14 same inventor as this patent application. 

15 

16 BACKGROUND OF THE INVENTION 

17 (1) Field of the Invention 

18 .      The present invention relates generally to the field of 

19 electronic neural networks, and more particularly to a new 

20 architecture for neural networks having a plurality of hidden 

21 layers, or multi-layer neural networks, and further to new 

22 methodologies for providing supervised and unsupervised training 

23 of neural networks constructed according to the new architecture. 

24 (2) Description of the Prior Art 



1 Electronic neural networks have been developed to rapidly 

2 identify patterns in certain types of input data, or to 

3 accurately classify the input patterns into one of a plurality of 

4 predetermined classifications.  For example, neural networks have 

5 been developed which can recognize and identify patterns, such as 

6 the identification of hand-written alphanumeric characters, in 

7 response to input data constituting the pattern of on/off picture 

8 elements, or "pixels," representing the images of the characters 

9 to be identified.  In such a neural network, the pixel pattern is 

10 represented by, for example, electrical signals coupled to a 

11 plurality of input terminals, which, in turn, are connected to a 

12 number of processing nodes, or neurons, each of which is 

13 associated with one of the alphanumeric characters which the 

14 neural network can identify.  The input signals from the input 

15 terminals are coupled to the processing nodes through certain 

16 weighting functions, and each processing node generates an output 

17 signal which represents a value that is a non-linear function of 

18 the pattern of weighted input signals applied thereto.  Based on 

19 the values of the weighted pattern of input signals from the 

20 input terminals, if the input signals represent a character which 

21 can be identified by the neural network, one of the processing 

22 nodes which is associated with that character will generate a 

23 positive output signal, and the others will not.  On the other 

24 hand, if the input signals do not represent a character which can 



1 be identified by the neural network, none of the processing nodes 

2 will generate a positive output signal.  Neural networks have 

3 been developed which can perform similar pattern recognition in a 

4 number of diverse areas. 

5 The particular patterns which the neural network can 

6 identify depend on the weighting functions and the particular 

7 connections of the input terminals to the processing nodes, or 

8 elements.  As an example, the weighting functions in the above- 

9 described character recognition neural network essentially will 

10 represent the pixel patterns which define each particular 

11 character.  Typically, each processing node will perform a 

12 summation operation in connection with the weight values, also 

13 referred to as connection values or weighting values, 

14 representing the weighted input signals provided thereto, to 

15 generate a sum that represents the likelihood that the character 

16 to be identified is the character associated with that processing 

17 node.  The processing node then applies the non-linear function 

18 to that sum to generate a positive output signal if the sum is, 

19 for example, above a predetermined threshold value.  The non- 

20 linear functions which the processing nodes may use in connection 

21 with the sum of weighted input signals are generally conventional 

22 functions, such as step functions, threshold functions, or 

23 sigmoids.  In all cases the output signal from the processing 



1 node will approach the same positive output signal 

2 asymptotically. 

3 Before a neural network can be useful, the weighting 

4 functions for each of the respective input signals must be 

5 established.  In some cases, the weighting functions can be 

6 established a priori.  Normally, however, a neural network goes 

7 through a training phase, in which input signals representing a 

8 number of training patterns for the types of items to be 

9 classified (e.g., the pixel patterns of the various hand-written 

10 characters in the character-recognition example) are applied to 

11 the input terminals, and the output signals from the processing 

12 nodes are tested.  Based on the pattern of output signals from 

13 the processing nodes for each training example, the weighting 

14 functions are adjusted over a number of trials.  Once trained, a 

15 neural network can generally accurately recognize patterns during 

16 an operational phase.  The degree of success is based in part on 

17 the number of training patterns applied to the neural network 

18 during the training stage and the degree of dissimilarity between 

19 patterns to be identified.  Such a neural network can also 

20 typically identify patterns which are similar, but not 

21 necessarily identical, to the training patterns. 

22 One of the problems with conventional neural network 

23 architectures as described above is that the training 

24 methodology, generally known as the "back-propagation" method, is 



1 often extremely slow in a number of important applications. 

2 Also, under the back-propagation method, the neural network may 

3 provide erroneous results which may require restarting the 

4 training.  In addition, even after a neural network has been 

5 through a training phase, confidence that the best training has 

6 ■ been accomplished may sometimes be poor.  If a new classification 

7 is to be added to a trained neural network, the complete neural 

8 network must be retrained.  Further, the weighting functions 

9 generated during the training phase often cannot be interpreted 

10 in ways that readily provide understanding of what they 

11 particularly represent. 

12 

13 SUMMARY OF THE INVENTION 

14 Accordingly, it is an object of the present invention to 

15 provide a new and improved neural network in which the weighting 

16 functions are determined a priori. 

17 Other objects and advantages of the present invention will 

18 become more obvious hereinafter in the specification and 

19 drawings. 

20 In accordance with the present invention, a new neural 

21 network, referred to hereinafter as a neural director, is part of 

22 a new neural network technology that is constructed rather then 

23 trained.  Since the words "neural networks" often connote a 

24 totally trainable neural network, a constructed neural network is 



1 a connectionist neural network device that is assembled using 

2 common neural network components to perform a specific process. 

3 The constructed neural network assembly is analogous to the 

4 construction of an electronic assembly using resistors, 

5 transistors, integrated circuits and other simple electronic 

6 parts.  A constructed neural network is fabricated using common 

7 neural network components such as processing elements (neurons), 

8 output functions, gain elements, neural network connections of 

9 certain types or of specific values and other artificial neural 

10 network parts.  As in electronics, the design goal and the laws 

11 of nature such as mathematics, physics, chemistry, mechanics, and 

12 "rules of thumb" are used to govern the assembly and architecture 

13 of a constructed neural network.  A constructed neural network, 

14 which is assembled for a specific process without the use of 

15 training, can be considered equivalent to a trained neural' 

16 network having accomplished an output error of zero after an 

17 infinite training sequence.  Although there are some existing 

18 connective circuits that meet the design 'criteria of a 

19 constructed neural network, the term "constructed neural network" 

20 is used herein to differentiate this new neural technology which 

21 does not require training from the common neural network 

22 technology requiring training. 

23 Constructed neural networks can be embodied in analog or 

24 digital technologies, or in software.  Today one can find a 



1 blurring between the boundaries of analog and digital 

2 technologies.  Some of the classic analog processing is now found 

3 in the realm of digital signal processing and classic digital 

4 processing is found in analog charged couple devices and sample 

5 and hold circuits especially in the area of discrete time signals 

6 and shift registers. 

7 In brief, a neural director receives an input vector X 

8 comprising "I" input components Xi and generates in response 

9 thereto, an output vector Y comprising "J" output components Yj, 

10 where "I" and "J" are the neural director's input and output 

11 dimensions.  The neural director has an input processing node 

12 layer comprised of "I" processing nodes and an output processing 

13 node layer comprised of "J" processing nodes.  Each output 

14 processing node receives the outputs from the input processing 

15 nodes to which a weighting value w(i,j) has been applied and 

16 generates one of said output components Yj representing a linear 

17 function in connection therewith.  The weighting values w(i,j) 

18 contain a unique internal representation of a uniform spatial 

19 distribution.  A neural director can be constructed to be one of 

20 two types, designated type 1 or type 2.  The two types differ in 

21 what may be termed "spatial linearity".  In addition to classic 

22 linearity, i.e., the use of non-linear weighting functions in the 

23 neural circuit, spatial linearity includes a "linearity in 

24 space".  In a fully populated single layer neural network which 



1 has "I" input processing nodes and "J" output processing nodes, 

2 each of the output processing nodes will contain "I" weight 

3 values.  The "I" weight values of each processing node can be 

4 considered a vector of "I" components in an "I" dimensional 

5 space.  One of the many important characteristics of a 

6 constructed neural network is that a classification of an input 

7 pattern is greatly defined by a vector's direction in a 

8 multidimensional space.  Thus, spatial linearity/nonlinearity 

9 affects the internal process of a neural director.  An angular 

10 relationship between input and output vector pairs can be used to 

11 define the spatial linearity.  A network is linear in space when 

12 the angles between all different vector pairs are the same in the 

13 output space as they are in the input space regardless of the 

14 dimensionalities of the spaces.  A network is nonlinear if it is 

15 either classically and/or spatially nonlinear.  A spatial 

16 nonlinearity causes an input vector pair to diverge in direction 

17 in the output space and is analogous to a system nonlinearity in 

18 chaos theory where two similar initial condition points diverge 

19 over time.  A neural director type 1 is linear in both its neural 

20 circuit, i.e., classically linear, and in its space, i.e., 

21 spatially linear.  Generally, a neural director type 2 is 

22 classically linear but spatially nonlinear, though it will be 

23 understood that either classic or spatial nonlinearity will 

24 result in a neural director type 2.  When compared to a neural 



1 director type 1 of the same input and output dimensions, a neural 

2 director type 2 nonlinearly shifts an input vector away from the 

3 output direction which one would anticipate using the neural 

4 director type 1.  A neural director type 2 produces a nonlinear 

5 gradient between two poles in its multidimensional output space, 

6 one pole lying in the center of a sub space that is directed by 

7 all positive elements and the other pole being the opposite 

8 polarity. 

9 Spatial nonlinearity is a parameter for a constructed neural 

10 network connectionist device which affects the recognition 

11 differentiation between similar input patterns.  Reduced to its 

12 most basic concept, a constructed neural network senses features 

13 from a specific input pattern to provide a deterministic 

14 direction through a connecting circuit as a feature vector.  This 

15 deterministic direction in a multidimensional space is the 

16 information that is used for the recognition and classification 

17 of the pattern.  The spatial nonlinearities of the type 2 neural 

18 director provide a process that allows the discrimination of 

19 finer details in the recognition of an input pattern.  Spatial 

20 nonlinearity is the result of a deterministic change in a 

21 vector's direction in its multidimensional space relative to its 

22 intended direction in a linear space.  The dimensionalities 

23 between these spaces may be different or the same.  While most 

24 conventional neural networks demonstrate a spatial nonlinearity. 



1 their spatial nonlinearity is primarily caused by the use of 

2 nonlinear neurons. 

3 The neural director type 1 has several advantages in 

4 performing different operations depending upon its application in 

5 a network.  A neural director type 1 has the ability to linearly 

6 transform a vector from one set of dimensions to the same or that 

7 of another set of dimensions.  The type 1 neural director can 

8 fuse separate data paths into a single vector as each output 

9 element of the vector contains a composition of all input 

10 elements of the input data.  The type 1 neural director may also 

11 distribute input data into different layers of like data and can 

12 expand its input data into higher dimensions, where the input 

13 data can be sensed at a higher resolution than it can in its 

14 lower dimension.  Although the dimensions are not totally 

15 independent, the dimensional independency can be increased when 

16 the type 1 neural director is coupled with a spatially nonlinear 

17 device.  The neural director type 1 can represent a generalized 

18 matched filter which contains all possible combinations of input 

19 patterns due to its distributed connection set.  The type 1 

20 neural director can linearly expand input data or can use 

21 nonlinear output functions, which when applied to a conventional 

22 neural network in lieu of the original data will make the 

23 conventional network learn faster.  Depending on the resolution 

24 chosen for the internal representation of the uniform spatial 

10 



1 distribution, a neural director type 1 may be called a "near" 

2 ideal neural director type 1.  A near ideal neural director type 

3 1 remains linear in its neural circuit but it is slightly 

4 nonlinear in space because the position of a vector in the neural 

5 director's output space will be altered relative to the vector's 

6 ideal position in a linear space.  Used in a multilayer neural 

7 director, the near ideal neural director type 1, without other 

8 nonlinearities, increases the recognition resolution of similar 

9 input patterns. 

10 

11 BRIEF DESCRIPTION OF THE DRAWINGS 

12 A more complete understanding of the invention and many of 

13 the attendant advantages thereto will be readily appreciated as 

14 the same becomes better understood by reference to the following 

15 detailed description when considered in conjunction with the 

16 accompanying drawings wherein corresponding reference characters 

17 indicate corresponding parts throughout the several views of the 

18 drawings and wherein: 

19 FIG. 1 is a general or neural schematic illustrating a fully 

20 populated neural director constructed in accordance with the 

21 invention; 

22 FIG. 2 is a flow chart depicting the steps performed to 

23 determine the weighting values w(i,j) used by the output 

24 processing nodes of the neural director depicted in FIG. 1; and 

11 



1 FIG. 3 . is a flow chart depicting an second embodiment of 

2 the steps performed to determine the weighting values w(i,j). 

3 

4 DESCRIPTION OF THE PREFERRED EMBODIMENT 

5 Referring now to FIG. 1, there is shown a general neural 

6 schematic illustrating a neural director 10 constructed in 

7 accordance with the invention.  Neural director 10 includes an 

8 input processing node layer 12, an output processing node layer 

9 14 and a set of connections, or weighting set w(i,j), shown as 16 

10 in FIG. 1.  An input vector X includes a plurality of input 

11 signals Xi through Xj, comprising components Xi of the input 

12 vector X.  Input processing node layer 12 has a corresponding 

13 plurality of input processing nodes 12i through 12i, each input 

14 processing node 12i receiving corresponding input signal Xi. 

15 Each node 12i of the input processing node layer 12 

16 generates a processed signal which it couples to each one of a 

17 plurality of output processing nodes 14i through 14j, as 

18 indicated by weighting set 16.  The number "I" of input 

19 processing nodes 12i and the number "J" of output processing 

20 nodes 14j are the input and output dimensions of the neural 

21 director 10.  In general, the value of "J" is equal to or greater 

22 than the value of "I".  The processed signals generated by each 

23 input processing node 12i represent a value reflecting a 

24 predetermined linear function of the input signal Xi.  All of the 

12 



1 input processing nodes 12i preferably use the same linear 

2 function, but apply different weighting values to the function in 

3 accordance with the weighting set w(i,j) 16. 

4 Each output processing node 14j of the output processing 

5 node layer 14 also generates an output signal Yj, comprising the 

6 output vector elements Yi through Yj of output vector Y.  Each 

7 output processing node 14j effectively receives the weighted 

8 values of processed signals from the input processing nodes 12i 

9 connected thereto according to the weighting set w(i,j) 16, 

10 generates a sum of the weighted values and generates in response 

11 to the sum an output signal Yj representing a value reflecting a 

12 function of the generated sum.  All of the output processing 

13 nodes 14j use the same function, but the function used by the 

14 output processing nodes 14j may differ from the linear function 

15 used by the input processing nodes 12i.  It is to be noted that 

16 function used by the output processing nodes 14j may be nonlinear 

17 functions.  The operations or steps performed to determine the 

18 weighting set w(i,j) 16 will be described below in connection 

19 with the flowchart in FIG. 2. 

20 As described above, the neural director 10 is constructed, 

21 rather than trained as in a conventional neural network. 

22 Accordingly, the weighting set w(i,j) 16 is determined a priori, 

23 and not in relation to any training data.  As noted above, the 

24 input signals received into processing node layer 12 may be 

13 



1 viewed as a vector X, having components Xi, which is a vector of 

2 "I" dimensions.  Similarly, the outputs provided by the output 

3 processing node layer 14 may be viewed as a vector Y having 

4 components Yj, which is a vector of "J" dimensions where "J" is 

5 equal to or greater than "I".  Each of the output processing 

6 nodes 14j contains an "I" dimensional vector of weighted values, 

7 thus all the weighted values in the neural director 10 can be 

8 represented by a "J" array of "I" dimensional vectors, or the 

9 weighting set w(i,j) 16. 

10 An "I" dimensional vector of weight values for a typical 

11 input processing node 12i is in a normalized form of a unit 

12 vector.  Each of the represented unit vectors has a specific 

13 relationship relative to its nearest neighboring unit vectors: 

14 the cosine of the angle between any two adjacent or nearest 

15 neighbor vectors is a constant.  These nearest neighbor vector 

16 requirements will produce a neural director 10 with a weighting 

17 set w(i,j) 16 that has the same values as a set of "J" unit 

18 vectors of "I" dimensions which are uniformly distributed 

19 throughout an "I" dimensional unit sphere.  Each input processing 

20 node 12i is associated with a common dimension "i" of the 

21 weighting set w(i,j) 16. 

22 The neural director 10 weight values of the weighting set 

23 w(i,j) 16 contain a unique internal representation for a relative 

24 spatial distribution.  The weighting set w(i,j) 16 for neural 

14 



1 director 10 with an "I" input dimension and a "J" output 

2 dimension is given as: 

3 'w(i,j) = ka(i,j)     \S*,   where (1) 

4 a(i,j) is a "J" dimensional array of unit vectors of "I" 

5 dimensions; 

6 k is a constant which represents a non unit vector magnitude 

7 of a weighting set w(i,j) 16 as compared to the vector set 

8 a(i,j); and 

9 IS* is defined as a symbol to represent the uniform 

10 distribution of the "J" unit vectors throughout a unit sphere of 

11 "I" dimensions. 

12 Thus the cosine value between any two adjacent unit vectors 

13 is a constant everywhere in the unit sphere.  The cosine test is 

14 a metric to measure the uniformity of the distribution.  For a 

15 typical k value of one, w(i,j) = a(i,j).  Thus the weight values 

16 to an output processing node "j" are the same numerical values as 

17 the "i" elements of the appropriate "j" unit vector. 

18 A neural director that contains equal input and output 

19 dimensions has an additional requirement in its construction, the 

20 additional requirement being a coordinate axis shift between the 

21 input space and the output space.  The coordinate axis shift is 

22 defined by the following description.  The position of the first 

23 output coordinate axis is at a 45 degree angle relative to any 

24 and each pair of input coordinate axes.  The remaining output 

15 



1 coordinate axes are all orthogonal to said first output 

2 coordinate axis. 

3 The operations or steps performed to determine the weighting 

4 set w(i,j) 16 used by the input processing nodes 12i can be an 

5 algorithm or a process as described in connection with an 

6 exemplar flow chart in FIG. 2.  First a general outline of the 

7 operations will be described followed by a detailed description 

8 in relation to FIG. 2.  A general outline for the design of an 

9 "I" input dimension and a "J" output dimension neural director 10 

10 is to fully pack a unit sphere with unit vectors of "I" 

11 dimensions.  A packing cosine is chosen to produce an optimum 

12 high packing density with a minimum size of the array of vectors 

13 packed.  When the sphere is judged "fully packed" the array of 

14 vectors is saved to allow an at least one iteration of vector 

15 selection.  An input of a culling cosine parameter is used to 

16 estimate the correct final density of the "J" vectors in the unit 

17 sphere.  The fully packed sphere of vectors is used to select a 

18 set of "J" unit vectors where each vector is chosen from the pack 

19 to produce the uniform distribution required by the design of the 

20 neural director. 

21 More spe,cifically, and with reference to FIG. 2, to 

22 generate an array of unit vectors a(i,j) for the weighting values 

23 w(i,j) of a neural director 10 depicted in FIG. 1, initially 

24 several parameters are selected at step 100:  a packing cosine; 

16 



1 an input dimension "I"; and an output dimension "J".  The packing 

2 cosine is selected to develop a high vector count throughout a 

3 unit sphere with a density that is tighter in vector packing than 

4 the maximum error of placement for the final set of vectors.  The 

5 packing cosine also determines an overall high packing density 

6 with a maximum number of unit vectors to be dispersed in the "I" 

7 dimensional unit sphere.  Step 102 generates a vector by a random 

8 selection of positive and negative vector element values and the 

9 vector is normalized into a unit vector of "I" dimensions.  Step 

10 104 compares the unit vector in closeness to all existing unit 

11 vectors in the packed array.  If the generated unit vector is 

12 closer then the packing cosine value to any existing vector in 

13 . the array, the vector is rejected and the process returns to step 

14 102 to generate a new unit vector.  If the generated unit vector 

15 is not near any existing vectors, it is accepted into the packed 

16 array at step 106.  Step 108 tests the packed array in the "I" 

17 dimensional unit sphere to determine if'it is full.  The test is 

18 the inspection of the number of rejected unit vectors to that of 

19 the accepted unit vectors.  A very high ratio of rejected vectors 

20 to accepted vectors indicates that there is a high probability 

21 that the "I" dimensional unit sphere is full and the packed array 

22 is saved at step 110.  If, however, the ratio is low, the process 

23 returns to step 102 to generate a new unit vector. 

17 



1 Once the densely packed array of unit vectors in an "I" 

2 dimensional sphere is available from step 110, a culling cosine 

3 value is selected at step 112.  Step 114 selects a unit vector in 

4 the packed array as the first vector to be loaded into the neural 

5 director array.  For neural directors having equal input and 

6 output dimensions, step 114 selects the unit vector wherein the 

7 absolute value of each element is the most equal to the average 

8 absolute value of all elements in the vector.  Step 116 culls or 

9 deletes all those vectors of the packed array which are within 

10 the culling cosine range from the selected unit vector except for 

11 the selected unit vector itself, thus isolating the selected unit 

12 vector within the culling cosine range.  Step 118 searches the 

13 packed array to determine if there are vectors not selected nor 

14 culled.  If there are vectors remaining, step 120 finds the 

15 closest vector to both the last vector isolated and the next to 

16 last vector isolated and returns to step 116 to cull around the 

17 found vector.  If only the first vector has been isolated, i.e., 

18 on the first iteration through step 120, then step 120 finds the 

19 vector closest to the first isolated vector.  If step 118 

20 determines there are no vectors remaining, step 118 proceeds to 

21 step 122 which tests the array of isolated vectors, i.e., the 

22 neural director array, for the correct output dimension "J".  The 

23 number of isolated unit vectors must equal "J".  If the dimension 

24 is not correct, step 122 proceeds to step 124 to open the packed 



1 array again.  Once the packed array is again made available, the 

2 process returns to step 112 to select an iterative value of a new 

3 culling cosine and repeat steps 114 through 122 until the correct 

4 dimension is obtained.  If the dimension is correct then step 122 

5 proceeds to step 126 to save the array of unit vectors a(i,j). 

6 Upon the completion of steps 100 through 126, the saved 

7 array of unit vectors a(i,j) becomes the weighting set w(i,j) 16 

8 through the equation given.  Also, due to the symmetry of the 

9 uniform vector distribution in both input and output dimensions, 

10 the same vector array of unit vectors a(i,j) can be shown as 

11 a(j,i) containing the same values.  Thus, the unit vectors a(i,j) 

12 can produce an inverse transform neural director with a weighting 

13 set w(j,i).  In this case, the input dimension of the inverse 

14 neural director is the numerical value "J" and the output 

15 dimension is the numerical value "I".  It is also to be noted 

16 that the packed array of specific input dimensions developed in 

17 steps 100 through 110 can be used to produce different neural 

18 directors all with the same input dimension but with different 

19 output dimensions. 

20 The neural director 10 has been described as comprising a 

21 "J" dimensional construct within an "I" dimensional space, 

22 including regions of the "I" dimensional space having both 

23 positive and negative component values.  However, it will be 

24 appreciated that neural director 10 may be constructed with unit 

19 



1 vectors having a propensity toward selected regions of the "I" 

2 dimensional space.  For example, once step 122 determines that 

3 the dimensions are correct, one of the unit vectors may be chosen 

4 as a reference vector, denoted as aref-  The weight values, 

5 w(i,j), for each element (i = 1 to I) of a unit vector "j" are 

6 then taken as 

7 w(/, j) = w{i, j) + a CQs{^"'/^ X \v{i,a^^), where (2) 

8 a is a proportionality constant; 

9 cos(dist/2) is the cosine of half the distance between the 

10 reference vector aref and the vector "j"; and 

11 w(i,aref) is the weight value of the "i"th element of the 

12 reference vector.  The resulting vectors are then normalized to 

13 provide new unit vectors.  It can be seen that the resulting 

14 distribution would tend to cluster about the reference vector, 

15 with the clustering having a gradient so as to become more 

16 pronounced the closer one gets to the reference vector.  This 

17 construction method produces a neural director type 2 which 

18 contains a spatial uni-polar, or single region, non-linearity. 

19 If the distance term were to be acos(dist), the resulting 

20 distribution would tend to cluster about the reference vector and 

21 its corresponding opposite polarity unit vector.  Again, the 

22 clustering becoming more pronounced the closer one gets to the 

23 reference vector or to its opposite polarity unit vector.  This 

24 construction method produces a neural director type 2 which 

20 



1 contains a spatial bi-polar, or two region, non-linearity.  Other 

2 functions of the distance between the reference vector aref and 

3 the vector "j" could be used to obtain distributions having 

4 differing polarity, or uni-polar and bi-polar distributions with 

5 varying clustering gradients. 

6 The neural director 10 constructed as described above can be 

7 used in a number of environments.  While the output processing 

8 nodes 14j would normally use weighting set w(i,j) 16 as 

9 multiplicative factors on the values of input vector X, they may 

10 use the weighting values to represent time as relative delay 

11 values d(i,j), in which case the neural director 10 would be a 

12 temporal neural director.  Such a temporal neural director would 

13 have temporal sensitivities to the input sequences of input 

14 vector X.  In either case, the neural director 10 may be used to 

15 extract and transform features into a higher-dimensional space, 

16 in the manner of visual, aural, olfactory and color sensor 

17 architectures of an artificial brain.  In addition, the neural 

18 director 10 may be used in a memory constructed neural network as 

19 a generalized matched filter set to reduce the dimensionality of 

20 an input sensor's feature vectors, and, with nonlinear neurons it 

21 may be used as a "general function" in a functional-link neural 

22 network.  Furthermore, the neural director 10 can be used as a 

23 generalized Kohonen map without training; in that use, the output 

24 processing nodes 14j are a representation of similar input 

21 



1 vectors X, with resolution between similar input vectors being 

2 directly related to the Euclidean distance across the surface of 

3 the "I" dimensional output subspace at which the "J"  output 

4 processing nodes  14j are placed. 

5 The neural director type 1 has the ability to linearly 

6 transform a vector from one dimension to that of another 

7 dimension.  The neural director when coupled with a constructed 

8 neural network that develops data context dependent paths through 

9 the neural network generates a spatial nonlinearity.  This 

10 spatial nonlinearity causes the output vector elements to be less 

11 dependent as compared to the elements of an ideal linear vector 

12 transformation.  The neural director makes another constructed 

13 neural network or a common trainable neural network more 

14 sensitive to pattern variations of close pattern classification. 

15 Although the present invention has been described relative 

16 to a specific embodiment thereof, it is not so limited.  FIG. 3 

17 is a flow chart of the steps of a second embodiment for 

18 developing the weighting set w(i,j) 16 for neural director 10. 

19 The parameters "I" and "J" are first selected at step 200.  Step 

20 202 then places "J" random direction unit vectors in a unit 

21 spherical space of "I" dimensions.  Step 204 randomly selects a 

22 unit vector and step 206 measures its Euclidean distance to all 

23 other unit vectors and determines its nearest neighbor.  Step 208 

24 randomly selects one element of the unit vector and step 210 

22 



1 randomly alters its value.  Step 212 determines if the new 

2 element value has caused the selected unit vector to move away 

3 from its nearest neighbor and not move into a lesser distance 

4 towards one or more of its other neighbors.  If it has, then step 

5 212 proceeds to step 214 which normalizes the new vector with the 

6 new element value to a new unit vector.  The process then returns 

7 to step 204 to choose another unit vector.  If the selected unit 

8 vector has not moved away from its nearest neighbor, or has moved 

9 into a lesser distance towards one or more of its other 

10 neighbors, step 212 proceeds to step 216 which 'checks whether the 

11 position, of all vectors are uniform within a predetermined 

12 accuracy.  If not, step 216 returns to step 204-210 to randomly 

13 select a vector and alter an element value once more.  When the 

14 cycle through steps 204-212 has been sufficiently completed as 

15 determined at step 216, all unit vectors will have been placed 

16 exactly in a uniform distribution throughout the unit sphere, 

17 satisfying the unit vector requirements to produce a neural 

18 director weighting set w(i,j), and the neural director can be 

19 normalized and saved as shown at step 218.  The disadvantage of 

20 this embodiment is that the magnitude of the random element 

21 change must be prudently selected to keep the dynamics of the 

22 behavior relatively stable. 

23 Thus, it will be understood that many additional changes in 

24 the details, materials, steps and arrangement of parts, which 

23 



1 have been herein described and illustrated in order to explain 

2 the nature of the invention, may be made by those skilled in the 

3 art within the principle and scope of the invention as expressed 

4 in the appended claims. 

24 



1 Attorney  Docket  No.   74988 

2 , 

3 NEURAL DIRECTORS 

4 

5 ABSTRACT OF THE DISCLOSURE 

6 A neural director is provided which is a neural network 

7 constructed with weights that are determined a priori.     The 

8 neural director receives an input vector X comprising "I" input 

9 components "Xi" and generates in response an output vector Y 

10 comprising "J" output components.  The neural director has an 

11 input processing node layer which receives the input vector X and 

12 an output processing node layer which generates the output vector 

13 Y.  The connections between the input and output processing node 

14 layers are a unique weighting set w(i,j) that contains an 

15 internal representation of a uniform spatial distribution of "J" 

16 unit vectors throughout a unit sphere of "I" dimensions.  Thus 

17 the cosine value between any two adjacent unit vectors is a 

18 constant everywhere in the unit sphere. 
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