
Serial Number 09/912.655 

Filing Date 25 July 2001 

Inventor Richard A. Katz 
Azizul H. Quazi 

NOTICE 

The above identified patent application is available for licensing. Requests for information 
should be addressed to: 

OFFICE OF NAVAL RESEARCH 
DEPARTMENT OF THE NAVY 
CODE 00CC 
ARLINGTON    VA    22217-5660 

20020107 008 



1 Attorney Docket No. 79941 

2 SYSTEM AND METHOD FOR PROCESSING AN UNDERWATER ACOUSTIC SIGNAL 

3 BY IDENTIFYING NONLINEARITY IN THE UNDERWATER ACOUSTIC SIGNAL 

4 

5 STATEMENT OF GOVERNMENT INTEREST 

6 The invention described herein may be manufactured and used 

7 by or for the Government of the United States of America for 

8 governmental purposes without the payment of any royalties 

9 thereon or therefore. 

10 

11 CROSS-REFERENCE TO RELATED PATENT APPLICATIONS 

12 Not applicable. 

13 

14 BACKGROUND OF THE INVENTION 

15 (1) Field Of The Invention 

16 The present invention relates to systems and methods for 

17 processing acoustic signals and particularly, to a system and 

18 method for processing an underwater acoustic signal by 

19 identifying nonlinearity (e.g., chaos) in the underwater signal. 

20 (2) Description Of The Prior Art 

21 Underwater acoustic signals, such as sonar signals, have 

22 intrinsic nonlinear properties.  Nonlinearity is a property of a 

23 dynamical system whereby the evolution of its variables depends 

24 on products of two or more of the present values of the 



1 variables.  Chaos is a special type of nonlinearity.  A defining 

2 characteristic for chaos to be present in a nonlinear system is 

3 that the system contains at least one positive lyapunov 

4 exponent.  Nonlinearity in acoustics can arise from irregular 

5 (i.e., nonlinear) boundary conditions of the propagation 

6 channel, the target "echo" response, reverberant scattering 

7 within the channel, or any combinations of these. 

8 Underwater acoustic sensors and sonar systems typically 

9 employ traditional linear processing methods.  The intrinsic 

10 nonlinear properties present in underwater sound propagation and 

11 reflection cannot be detected using the traditional linear 

12 processing techniques.  A linear processor can detect first 

13 order effects only.  Linear processes are additive processes, 

14 i.e., the additive property of superposition applies only to 

15 linear processes.  For nonlinear processes, the superposition 

16 principle no longer holds up and one must revert to some 

17 alternate means of signal analysis to best determine the 

18 information contained in the signal.  Although a conventional 

19 method of signal analysis, such as a Fourier analysis, is very 

20 robust for analysis of a signal for a linear process, such 

21 methods are unable to make quantitative delineations in a signal 

22 structure whenever there exists a dominant nonlinearity in the 

23 signal of interest.  Thus, the nonlinearity and chaos in the 

24 
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1 acoustic signature cannot be exploited when using conventional 

2 linear processing systems and methods. 

3 

4 SUMMARY OF THE INVENTION 

5 Accordingly, one object of the present invention is to 

6 process an underwater acoustic signal by identifying 

7 nonlinearity (i.e., chaos) in the underwater acoustic signal. 

8 In accordance with one aspect of the present invention, the 

9 system and method of the present invention detects the 

10 underwater acoustic signal and digitizes the underwater acoustic 

11 signal to produce an acoustic time series representing the 

12 underwater acoustic signal.  The acoustic time series is 

13 reconstructed using a phase space embedding algorithm to 

14 generate a phase space embedded acoustic signal.  A differential 

15 radius signal is generated from the phase space embedded 

16 acoustic signal using chaotic radius computations and 

17 differential computations.  Thresholds detected in the 

18 differential radius signal represent nonlinear events hidden in 

19 the underwater acoustic signal. 

20 According to one embodiment of the system and method, the 

21 phase space embedding algorithm is: 

22 Y(t)={S(n), S(n+T), S (n+2T) , ...S (n+ (m-1) T) ] 

23 where S(n) represents the acoustic time series for n=l,2,...N, T 

24 is a time shift parameter, m is the number of dimensions in the 

3 



1 embedding space, and Y(t) is a time dependent Euclidean vector 

2 function in Rm.  The dimension m can be determined using a False 

3" Nearest neighbor (FNN) technique.  The time shift parameter T 

4 can be determined by computing average mutual information (AMI) 

5 or by selective choice from a number of trial values for T. 

6 In accordance with another aspect of the present invention, 

7 a nonlinear signal processor processes the acoustic time series 

8 representing the underwater acoustic signal.  The nonlinear 

9 signal processor comprises a phase space embedded signal 

10 generator for reconstructing the acoustic time series using a 

11 phase space embedding algorithm to generate a phase space 

12 embedded acoustic signal.  A chaotic radius processor computes a 

13 chaotic radius for each point in phase space for the phase space 

14 embedded acoustic signal producing a time series of chaotic 

15 radius values.  A differential radius processor computes a time 

16 derivative of the time series of chaotic radius values to 

17 produce the differential radius signal. 

18 

19 BRIEF DESCRIPTION OF THE DRAWINGS 

20 These and other features and advantages of the present 

21 invention will be better understood in view of the following 

22 description of the invention taken together with the drawings 

23 wherein: 

Of 



1 FIG. 1 is a schematic block diagram of a system for 

2 processing an underwater acoustic signal by identifying 

3 nonlinearity, according to one embodiment of the present 

4 invention; 

5 FIG. 2 is a flow chart representing the method for 

6 processing the underwater acoustic signal, according to one 

7 embodiment of the present invention; 

8 FIGS. 3A-3D are plots of phase space orbits of a linear 

9 frequency modulated (LFM) signal having different embedding 

10 delays T, according to one example of the present invention; 

11 FIGS. 4A-4D are plots of phase space orbits of a LFM signal 

12 having different signal-to-noise ratios, according to one 

13 example of the present invention; 

14 FIGS. 5A-5C are plots of an acoustic time series for three 

15 different types of LFM signals, according to one example of the 

16 present invention; 

17 FIGS. 6A-6C are plots of a differential radius signal for 

18 three different types of LFM signals where the embedding delay 

19 T=13, according to one example of the present invention; 

20 FIG. 7 is a phase plot of a LFM signal at time t=.2s and 

21 having a delay T=13, according to one example of the present 

22 invention; and 

5 



1 FIGS. 8A-8C are plots of a differential radius signal for 

2 three different types of LFM signals where the embedding delay 

3 T=28, according to another example of the present invention. 

4 

5 DESCRIPTION OF THE PREFERRED EMBODIMENT 

6 A signal processing system 10, FIG. 1, according to the 

7 present invention, is used to process an underwater acoustic 

8 signal 12 by identifying nonlinearity such as chaos in the 

9 signal 12.  The signal processing system 10 uses a nonlinear 

10 dynamical systems technique referred to as the differential 

11 radius technique for identifying the nonlinearity in the 

12 acoustic signal 12, such as a sonar signal.  In the exemplary 

13 embodiment, this approach to modeling sonar signal propagation 

14 is based on a deterministic characterization of sonar dynamics. 

15 Although the exemplary embodiment is used for the detection and 

16 classification of a sonar signal, the present invention is 

17 applicable to any situation requiring detection and monitoring 

18 of underwater acoustic signals (e.g., bottom and target mapping) 

19 and applies to any underwater signal-of-interest having 

20 nonlinearity or chaos. 

21 The signal processing system 10 includes a signal detector 

22 14 that detects the acoustic signal 12 and converts the acoustic 

23 signal into an electronic signal.  In one example, the signal 

24 detector 14 is a hydrophone or  an array of hydrophones so that 



1 the time series output of the measured acoustic fluctuations 

2 represents element or beam level output. The signal processing 

3 system 10 includes a digitizer 16 that digitizes the acoustic 

4 signal (e.g., by time sampling the acoustic signal) to produce 

5 an acoustic time series.  The signal processing system 10 also 

6 includes a nonlinear processor 20 that processes the digitized 

7 signal or acoustic time series using a differential radius 

8 technique for identifying nonlinearity (e.g., chaos) in the 

9 acoustic signal 12. 

10 The nonlinear signal processor 20 comprises a phase space 

11 embedded signal generator 22, a chaotic radius processor 24, and 

12 a differential radius processor 26.  These components of the 

13 nonlinear signal processor 20 can be implemented as discrete 

14 structures, as software modules in a data processing system, or 

15 as a combination of both.  The nonlinear processor 20 processes 

16 the acoustic time series and generates a differential radius 

17 signal.  A threshold detector 30 detects thresholds in the 

18 differential radius signal, which represent nonlinear or chaotic 

19 events hidden in the underwater acoustic signal 12. 

20 The method for processing the underwater acoustic signal 12 

21 is shown in FIG. 2.  The underwater acoustic signal 12 is 

22 detected (step 110), and digitized to produce the acoustic time 

23 series (step 112).  The acoustic time series is then 

24 reconstructed to generate a phase space embedded signal (step 

7 



1 114).  According to one exemplary embodiment, the state space 

2 embedding algorithm can be described as follows: 

3 Y(t)={S(n), S(n+T), S(n+2T),...S(n+(m-1)T)] (1) 

4 where- S(n) represents the acoustic time series for n=l,2,...N, T 

5 is a time shift parameter, m is the number of dimensions in the 

6 embedding space, and Y(t) is a time dependent Euclidean vector 

7 function in Rm.  Each added delay (e.g., T, 2T, 3T, etc.) can be 

8 thought of as a derivative of higher order.  For a 2-D system, 

9 the first derivative is captured, for a 3-D system, a second 

10 derivative is captured, and so on until all of the derivatives 

11 necessary for some prescribed nth order differential system are 

12 obtained. 

13 One method of determining the dimension m is by applying a 

14 numerical technique called False Nearest Neighbors (FNN).  One 

15 preferred method of determining an optimal delay or time shift 

16 parameter T is by computing the average mutual information 

17 (AMI).  According to another alternative, the parameter T is 

18 computed using a value obtained by choosing from a number of 

19 trial selections that maximally fill out orbits in the phase 

20 space domain.  The selection of an appropriate time delay value 

21 T is described in greater detail below. 

22 The chaotic radius for each point in the phase space 

23 embedded signal is then computed, step 116.  The chaotic radius 

24 is defined as the Euclidean distance from the point of origin in 



1 is defined as the Euclidean distance from the point of origin in 

2 phase space to any given point along the phase space orbit.  In 

3 two dimensions, the chaotic radius is obtained by computing the 

4 hypotenuse using the Pythagorean Theorem, in which values for 

5 the legs of the triangle are given by the x and y vector 

6 components of the point in phase space.  According to one 

7 example, a vector is drawn from the origin to a point in the 

8 Euclidean phase space, and the vector magnitude is the chaotic 

9 radius.  Vectors are constructed from the origin to each 

10 succeeding point in phase space, and the magnitude of each 

11 successive vector yields a time sequence of chaotic radius 

12 values that replaces the original acoustic time series. 

13 The differential radius signal is then generated by 

14 computing the time derivative of the chaotic radius values (step 

15 118).  The differential radius is computed from the time 

16 sequence of chaotic radius values by computing the time 

17 derivative, or rate at which points separate in phase space.  In 

18 one example, the differential radius can be approximated by 

19 taking the difference of magnitude between adjacent points in 

20 the time sequence of chaotic radius values. 

21 Threshold values in the differential radius signal can be 

22 detected (step 120) to allow nonlinear or chaotic events to be 

23 identified.  The differential radius signal indicates where 

24 significant "jumps" occur in phase space and thus can be used to 

q 



1 monitor and track the entropy of an evolving dynamical system. 

2 Because the differential radius, when plotted as 'a function of 

3 time, is a measure of the separation rate of neighboring points 

4 in phase space, it is also related to the Lyapunov exponent (the 

5 characteristic parameter that is used to define chaos), and 

6 thereby, to the entropy as well.  The differential radius signal 

7 provides an indication of events in which the state of the 

8 system changes rapidly with respect to itself, such as when the 

9 transmitted signal "echoes" off of a target (e.g., in time and 

10 space). 

11 Thus, the chaotic radius and differential radius 

12 computations provide highly precise temporal and spatial 

13 detection markers for evolving events as the time series 

14 unfolds.  Hidden or anomalous events can therefore be detected 

15 in an acoustic time series.  These events are associated with 

16 rapidly changing evolutions in phase space, typical for a 

17 variety of nonlinear and chaotic motions exhibited in a large 

18 number of acoustic signatures.  Target echo responses, man-made 

19 and biologic anomalies in an otherwise ambient acoustic 

20 background are examples of such evolutions. 

21 The present invention is now described in greater detail in 

22 connection with a simulated sonar signal X(t), a linear 

23 frequency modulated (LFM) wave form given by the following 

24 expression: 

to 



1 X(t) = A  sin[2;r(./(> + a?2)] + n(t) (2) 

2 where A is the amplitude level, fo is the start frequency, a is 

3 the change in frequency per second, t is the time duration, and 

4 n(t) is additive noise.  In this example, assume that the 

5 amplitude A is 1, the start frequency f0 is 50 hertz, (Hz), the 

6 end frequency is 90 Hz, a = 20 Hz per second, the time duration 

7 t is 1 second, and the sampling interval At is 1 millisecond. 

8 FIGS. 3A-3D show how this LFM signal looks in phase space 

9 in two dimensions for four different values of the delay 

10 parameter T in the pure signal case having 0% additive noise or 

11 n(t) =0.  In the example shown, the abscissa is X(t) and the 

12 ordinate is X(t+T) for values of T=l (FIG. 3A), T=3 (FIG. 3B), 

13 T=10 (FIG. 3C) and T=13(FIG. 3D).  Although the topology is 

14 similar at each value of the delay, T, the intricacy of the LFM 

15 signal is best revealed at a delay of T=13 sampling points (FIG. 

16 3D). This LFM signal exhibits an almost-limit cycle behavior as 

17 in a simple sine or co-sine function, but unlike a sine wave, 

18 the LFM signal is made of several almost-connected sine waves. 

19 A limit cycle is an orbit that comes back on itself.  If the LFM 

20 signal were to propagate in time over and over again 

21 continually, one would observe a repetition of combined 

22 frequency singular limit cycle orbit for each repeated cycle 

23 when plotted in phase space.  This LFM signal having 0% additive 

// 



1 noise is dynamically linear in that there are no apparent 

2 perturbations that force the LFM signal away from its natural 

3 orbit. 

4 FIGS. 4A-4D show the phase space orbits of the LFM signal 

5 at different signal-to-noise ratios (SNR's): SNR = D (FIG. 4A) ; 

6 SNR = 20 dB (FIG. 4B); SNR = 17 dB (FIG. 4C); and SNR = 14 dB 

7 (FIG. 4D).  When noise is added to this signal, the phase space 

8 images become more diffuse.  Ac an SNR of 14 (FIG. 4D), for 

9 example, the intricate helical pattern is totally obscured, yet 

10 very rough near-limit cycle behavior can be observed.  As more 

11 noise is added to the LFM signal, the almost-limit cycle 

12 appearance of the LFM signal eventually becomes unrecognizable. 

13 FIGS. 5A-5C shows the time series for three simulated 

14 conditions: (1) the pure LFM signal (FIG. 5A); (2) the LFM 

15 signal plus 10% additive noise (FIG. 5B); and (3) a full wave 

16 square law rectification of the pure LFM signal (FIG. 5C). 

17 Condition (3) is a nonlinear analog of condition (1) due to the 

18 squaring operation.  By discriminating between a linear and non- 

19 linear time evolution, the differential radius technique 

20 discussed above is able to identify the nonlinearity in 

21 condition (3) . 

22 The time series plots can be interpreted analytically 

23 through trigonometric relationships as well as dynamically 

24 through corresponding phase plots and differential radius plots. 

/- 



1 Analytically, a trigonometric relationship exists between the 

2 pure LFM signal (FIG. 5A) and the squaring of the' same LFM 

3 signal (FIG. 5C).  Since the LFM signal is represented 

4 analytically by a sine function, as indicated above in Equation 

5 (2), the relationship between the two signals is made clear by 

6 the following identity: 

7 &in
2(co{t)) = ±-Uos(2w{t)) (3) 

8 This sine-squared signal is the superposition of two 

9 signals, one a 0 Hz or "flat line" signal with constant 

10 amplitude equaling 1/2, and the other, a cosine or phase-shifted 

11 sine wave of twice the frequency co  and one-half the amplitude. 

12 Multiplying two sine waves of different frequencies together is 

13 equivalent to superposing two signals of differing freauencies 

14 in which both superposed frequencies are non-zero. 

15 The time series of the LFM signal plus additive noise (FIG. 

16 5B) represents a small perturbation (i.e., 10% added noise) to 

17 the pure LFM signal and looks almost the same.   The dynamical 

18 sensitivity to 10% additive noise can be seen by comparing the 

19 phase space orbits for the pure LFM signal (FIG. 4A) and the LFM 

20 signal with 10% added noise (FIG. 4B). 

21 FIGS. 6A-6C show the differential radius signals for the 

22 three times series across a one second window and with a time 

23 delay T=13.  Where the time delay T=13, the differential radius 

13 



1 of the pure LFM signal has a region where the differential 

2 radius is very close to zero from time t=0.18 to 't=0.20.  During 

3 this portion of the temporal evolution of the LFM signal, the 

4 dynamical signal trajectory in phase space resides on a circle 

5 of radius of approximately equal to one. 

6 FIG. 7 shows a phase plot of the simulated LFM signal taken 

7 around the interval .18<t<.2 at a delay of T=13, which is hidden 

8 in the more complicated phase plot shown in FIG. 3D.  This phase 

9 plot represents a typical circular (near-limit cycle) pattern in 

10 which T=13 represents 1/4 wavelength for a frequency of about 57 

11 Hz, which is the same frequency being "swept out" by the LFM 

12 signal in the time interval .18<t<.2. 

13 As the LFM signal evolves over time, there is a continual 

14 shift in its frequency.  The starting frequency of the simulated 

15 signal is 50 Hz, and at .19 seconds from the starting time, the 

16 frequency has advanced to 57 Hz.  The chosen delay of T=13 

17 corresponds to a time interval approximately equal to X/4,   where 

18 X  is the associated period of the LFM 57 Hz frequency component. 

19 Choosing a different delay T would require a corresponding 

20 shift in frequency to obtain a circular geometry of the orbit. 

21 For a delay of T=13 (FIG. 6A), the differential radius of the 

22 pure LFM signal converges while in oscillation to zero around 

23 t=.2 seconds and thereafter diverges while still in oscillation 

24 to a maximum around t=.7 beyond which it again begins to 

If 



1 converge back to zero.  In the differential radius of the LFM 

2 signal with 10% additive noise (FIG. 6B), the trends in 

3 differential radius fluctuation are very similar, but several 

4 deflections are evident above and below the pattern for the pure 

5 LFM signal.  Thus there is an appearance of a higher degree of 

6 randomness in the case of the noisy signal as compared to the 

7 pure signal.  This apparent increase in random behavior can be 

8 associated with a corresponding increase in entropy between the 

9 two signals. 

10 The differential radius of the full wave square law 

11 rectified signal (FIG. 6C) has approximately the same maximum in 

12 comparison to the pure LFM signal (FIG. 6A) but exhibits 

13 differences when comparing the minima.  The differential radius 

14 of the squared LFM signal has no zero convergence.  The squaring 

15 operation has pushed the limit cycle at 57 Hz away from the 

16 origin to the extent that it no longer maintains, at least for 

17 the short duration, a constant radius (i.e., a near perfect 

18 circular geometry centered at the origin).  Thus, the dynamical 

19 distinction in differential radius between the pure LFM signal 

20 and the squared LFM signal shows that the differential radius is 

21 a useful analytical tool for identifying and discriminating 

22 nonlinearities in a measured time sequence. 

23 The implications of the choice of the delay T on the 

24 dynamical evolution of the differential radius can be seen by 

IS 



1 examining the corresponding limit cycle frequency component of 

2 the LFM signal for a prescribed delay value T.  For a given 

3 value of T, the limit cycle period X. is related to T by the 

4 following expression: 

5 %+"% = J (4) 

6 This expression shows that a circular limit cycle exists in a 

7 phase space orbit if the embedding delay T is chosen to be 1/4 

8 of the period of oscillatory wave plus any integer multiple 180 

9 degree translation of the period.  For example, a delay value of 

10 T=13 corresponds to X=52 msec or f=19 Hz for n=0.  Since 19 Hz 

11 lies outside of the band of the simulated LFM signal, an integer 

12 multiple 180 degree translation must be identified that first 

13 appears inside the band, according to equation (4).  Where the 

14 band of the signal described above goes from 50 to 90 Hz, the 

15 integer value n that satisfies this requirement is n=l.  Solving 

16 for f=lA where X  is obtained by solving the above equation (4), 

17 one obtains f=57 Hz.  Therefore, the 57 Hz component of the LFM 

signal will have a differential radius value equaling zero 18 

19 whenever the specified embedding delay T equals 13 sample units. 

20 FIGS. 8A-8C show the differential radius signals for the 

21 three times series with a time delay of T=28.  According to 

22 equation (4), when the delay T equals 28, X=112 msec and f = 9 Hz 

23 for n=0.  Because 9 Hz lies outside the LFM band of 50 to 90 Hz, 

Ih 



1 one must choose an appropriate value for n.  For example, a 

2 value of n=3 yields f=62 Hz and a value of n=4 yields f=81 Hz, 

3 which correspond identically to the null points in the 

4 differential radius plot of the pure LFM signal (FIG. 8A) at .3 

5 seconds and .75 seconds, respectively. 

6 Although the examples described above use the values of 13 

7 and 28 for the delay T, there are many selections of the delay T 

8 for which the differential radius will equate to zero, and the 

9 number of choices grows as the signal bandwidth grows.  Although 

10 the selection of the delay T is described above in reference to 

11 the pure LFM signal, this applies also to the LFM signal with 

12 noise and the squared LFM signal.  An appropriate value for the 

13 delay T should be selected to best quantify the dynamics 

14 underlying the evolution of a particular signal of interest. 

15 For the case of aperiodic or chaotic signals, the first minimum 

16 of the average mutual information (AMI) is one of the preferred 

17 methods for selecting the delay value T. 

18 Accordingly, the nonlinear signal processing system and 

19 method of the present invention is used in data processing of 

20 active sonar signals for enhanced detection and classification 

21 and identification of nonlinearity in the signal structure.  The 

22 enhancement techniques, namely the chaotic and differential 

23 radius, when operated on an original acoustic time series 

24 measurement, provide precise, temporal and spatial detection 

n 



1 markers for evolving events as the time series unfolds.  This 

2 allows the detection of hidden or anomalous events in an 

3 acoustic time series, associated with rapidly changing 

4 evolutions in phase space, typical for a variety of nonlinear 

5 and chaotic motions exhibited in a large number of acoustic 

6 signatures. 

7 In light of the above, it is therefore understood that 

8 _ . the invention may be 

9 practiced otherwise than as specifically described. 

It 



1 Attorney Docket No. 79941 

2 

3 SYSTEM AND METHOD FOR PROCESSING AN UNDERWATER ACOUSTIC SIGNAL 

4 BY IDENTIFYING NONLINEARITY IN THE UNDERWATER ACOUSTIC SIGNAL 

5 ABSTRACT OF THE DISCLOSURE 

6 A nonlinear signal processing system and method is used to 

7 identify nonlinearity (e.g., chaos) in underwater acoustic 

8 signals, such as sonar signals.  The system and method detects 

9 the underwater acoustic signal and digitizes the underwater 

10 acoustic signal to produce an acoustic time series.  The 

11 acoustic time series is reconstructed using a phase space 

12 embedding algorithm to generate a phase space embedded acoustic 

13 signal.  A differential radius signal is generated from the 

14 phase space embedded acoustic signal using chaotic radius 

15 computations and differential radius computations.  Thresholds 

16 can be detected in the differential radius signal to reveal 

17 nonlinear or chaotic events hidden in the underwater acoustic 

18 signal. 
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110 
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/ 112 

RECONSTRUCT ACOUSTIC 
TIME SERIES TO GENERATE 
PHASE SPACE EMBEDDED 

SIGNAL 
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/ 120 
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