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1 Attorney Docket No. 7S557 

3 METHOD FOR COMPUTING THREE DIMENSIONAL UNSTEADY FLOWS BY SOLUTION 

4 OF THE VORTICITY EQUATION ON A LAGRANGIAN MESH 

5 

6 STATEMENT OF GOVERNMENT INTEREST 

7 The invention described herein may be manufactured and used by or 

8 for the Government of the United States of America for 

9 governmental purposes without the payment of any royalties 

10 thereon or therefor. 

11 

12 BACKGROUND OF THE INVENTION 

13 (1)  Field of the Invention 

14 This invention generally relates to the analysis of fluid 

15 flow past a three dimensional object and more particularly to a 

16 method and apparatus for calculating three-dimensional unsteady 

17 flows past such an object by direct solution of the vorticity 

13 equation on a Lagrangian mesh.        """ 

19 (2)  Description of the Prior Art 

2 0       Understanding the characteristics of fluid as it flows past 

21 an object, such as an airfoil, is important both from the 

22 standpoint of understanding and improving the designs of such 



1 objects and in understanding the nature of any turbulence 

2; introduced as a result of relative motion of a fluid an airfoil, 

3 either by moving of the airfoil through the fluid or by moving 

4 the fluid past the airfoil. 

5 Eventually additional studies determined that vorticity was 

6 useful as a basis for understanding fluid flow.  Vorticity is 

7 produced at a solid boundary because at the surface the fluid has 

8 no velocity (i.e., the fluid exhibits a no-slip condition).  Once 

9 generated at the surface, vorticity diffuses into the volume of 

10 the fluid where it is advected by local flow.  Conventional 

11 vortex methods generally mime this process. ' In accordance with 

12 such methods, the strengths of the vortex elements or segments 

13 originating on the body surface are determined by requiring that 

14 the velocity induced by all the vortex elements on the surface be 

15 equal and opposite to the velocity at the surface.  It is assumed 

15 that this vorticity is contained in an infinitely thin sheet at 

17 the surface.  In these methods a resulting matrix equation is 

IS solved for the surface vorticity at alfpoints on the body 

19 simultaneously.  Vorticity transfer to the flow is then 

20 accomplished by placing the vortex elements above the surface. 

21 It has been recognized that these vortex methods have 

22 several shortcomings.  When computational methods use point 



1 vortices in their simulations, mathematical singularities can 

2 produce divergent solutions.  This has been overcome by using a 

3 kernel function that contains a regularized singularity. 

4 However, this kernel function depends on certain ad hoc 

5 assumptions such as the value of the cutoff velocity and core 

6 radius.  While the no-slip and no-flow boundary conditions 

7 provide information regarding the strength of the surface 

8 vorticity and subsequent strength of the vortex element, their 

9 use often neglects the effects of all other vortex sheets on the 

10 surface.  Other implementations of such methods neglect the 

11 effects of coupling between the surface vortex sheets and surface 

12 sources.  Finally, many methods assume, a priori, a separation 

13 point to analyze shedding of vorticity from the surface into the 

14 flow that generally requires experimental knowledge of the flow. 

!5       More recent prior art has utilized computer modeling based 

16 upon the nature of vortex elements at the surface of an object, 

17 such as an airfoil.  These models then track the motion of each 

13 element as it moves into the flow overtime to calculate the 

15 velocity of each element.  While this prior art produces 

20 acceptable results, the direct calculation of the velocity of 

21 each vortex element produces an N2 increase in the required time 

22 for processing where N is the number of vortex elements for each 



1 time step.  Such increases can become unacceptable when high 

2 resolution demands the calculation of a large number of vortex 

3 elements. 

4 The evolution of fluid flow of uniform density is prescribed 

5 by the vortcity equation 

7 — + u-S7co = co-\u + vv CO (1) 

8 where v is the kinematic viscosity and the velocity u and- 

9 vorticity co are related by 

10 Vxu=&> (2) 

11 

12 Since the density is taken to be uniform, the equation for 

13 conservation of mass reduces to the condition on the velocity 

14 field 

15 V-u=0 (3) 

16 At the no-slip surface of a body immersed in the fluid and moving 

17 with velocity utcd , the velocity of the-*fluid satisfies the 

13 boundary condition 

15 u = uw, f4; 



1 on the body surface.  In this frame of reference, the velocity of 

2 the fluid at infinity is typically taken to be zero.  The 

3 vorticity boundary condition at the body surface is established 

4 by requiring the satisfaction of (4), as described below.  When 

5 the pressure distribution on the body surface is desired, it is 

6 found by solution of the matrix equation stemming from the 

7 integral form of the pressure Poisson equation (Uhlman, 1992) 

d (\ 
J

C
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9  where B is defined as 

10 5 = £^ + i(u.u-Ux.Ux) 
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12 
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14  with V defined as the volume exterior to the body whose surface 

15 

16 

17 

18 

is S, and Vc is the complement of V.  The matrix equation has as 

its unknown B on the surface; for pressure in the interior of the 

flow, the surface integral on the left-hand side of (5) is known 

from the matrix solution. 



1 To determine the velocity field associated with the 

2 instantaneous vorticity field calculated by solution of (1) and 

3 thus advance the solution in time, we employ the vector identity 

4 for a sufficiently integrable and differentiable vector field a 

5 defined within a volume V bounded by a surface S with normal unit 

6 vector n : 

7 yßa = -^((n-a)G-Gx(nxa)V5 + JJJ((V-aX5-Gx(Vxa))rfr   (8) 
5 r 

8 with ß as given above, and G is any vector Green's function of 

9 the form 

10 G = -^ + H(r) .-    (9) 

11 Here r is the vector from integration element to field point, and 

12 H is regular.  When a is the velocity u, after substituting (2) 

13 and (3) into (6). and taking H to be zero, we have the familiar 

14 Biot-Savart integral 

( \    ! erf" x(x-x'),, , 

4xn/   \x-x'\ 

16 plus surface terms depending on the particular application. 

17 This integral is to be computed given the solution w(xm) on 

18 the calculational points xm, m = 1, 2, ..., N, where N is the 

19 number of points.  An important feature of (6) is that the 

20 farfield boundary condition on velocity is explicit, so that 



1 computational points are needed only where (0 is nonzero.  An 

2. approach to the velocity calculation based on an inversion of the 

3 Poisson equation for velocity would require a volume of 

4 calculational points extending to where the farfield velocity can 

5 be accurately approximated by an analytic expression. 

6 The vortex blob method is an effective way to carry out 

7 integration on scattered points, and is quite useful for many 

8 unbounded flow investigations; however it has some drawbacks for 

9 flow past surfaces.  The principal limitation stems from the blob 

10 geometry.  Flow near a surface is well known to be anisotropic in 

11 scale, strongly so at high Reynolds numbers.  Resolution of the 

12 vorticity field in such flows demands a large number of blobs. 

13 Additionally, anisotropic blobs to have limited utility in 

14 computing flow past an object because it is difficult to maintain 

15 overlap to properly resolve the flow.  In addition, regions near 

16 the object surface can arise where the anisotropy is complicated, 

17 such as in separated flow. 

18 A recent prior art innovation some of these computational 

19 methods was taught in United States Patent No. 5,544,524 filed by 

2 0 Grant, Huyer and Uhlman which is incorporated by reference 

21 herein.  This prior art teaches the use of disjoint elements of 

22 compact support in the form of rectangles to describe the 



1 vorticlty field.  These anisotropic elements are created at the 

2 surface with the strength determined by the no-slip and no-flux 

3 boundary conditions.  In this method, the vorticity is taken as 

4 uniform over the entire element and the endpoints of the element 

5 are advected independently with the area of the element conserved 

6 and, therefore, the total circulation. 

7 This technique was applied to an airfoil undergoing both 

8 single pitch and oscillatory pitching motions to produce large 

9 scale vortex structures.  In the former case, calculations of the 

10 unsteady flow and unsteady lift and drag forces obtained from 

11 surface pressure integrations were in excellent agreement with 

12 experimental results.  In the case of the oscillating airfoil, 

13 however, poor agreement was found as the flow field dynamically 

14 reattached.  The most likely reason is the use of random walk to 

15 model diffusive effects.  Use of this algorithm is required 

16 because disjoint elements are not connected to one another. 

17 Huyer et al., U.S. Patent No. 5,600,060, teach calculation 

13 of fluid flow characteristics directly from a two dimensional 

19 surface model of the object.  A plurality of surface nodes with 

20 defined boundary conditions are established on the surface model. 

21 Consecutive layers of nodes are created a preset distance outward 

22 from said surface model.  Curved panels are defined passing 



1 

1 through three nodes at a layer, and a surface shape function is 

2 established for each panel from previous panels or from the 

3 boundary conditions.  The fluid flow velocity for the next layer 

4 is developed from the velocities calculated at the previous layer 

5 and the shape function.  Triangular elements are created by 

6 connecting a node on the next layer with two nodes from the 

7 previous layer to form an element.  First and second vorticity 

8 gradients can be calculated for the current node at a time 

9 segment from the parameters associated with the previous layer of 

10 interest nodes at that time increment.  This can be combined with 

11 the calculated diffusion velocity for the node to produce a rate 

12 of change of vorticity with respect to time which can be used to 

13 calculate the velocity of the fluid at the node. 

14 None of these methods provide an efficient method for 

15 calculating unsteady flows around a three-dimensional object 

16 using Lagrangian meshes. 

17 

18 SUMMARY OF THE INVENTION 

19 

20 

Therefore, it is an object of this invention to provide an 

improved method and apparatus for predicting the flow of fluid 

21 past a three dimensional object that minimizes the assumptions 

22 used in the predictions. 



1 It is a further object that such improved method be 

2 computationally efficient for a given accuracy in order to allow 

3 calculation in a reasonable amount of computing time. 

4 Accordingly, this invention provides a method for computing 

5 three dimensional unsteady flows about an object.  An allowable 

6 error is established for the vorticity term calculations, and 

7 object geometry is provided giving surface points on an object 

8 and a region of interest.  A mesh is established incorporating 

9 points on the object.  Initial flow conditions are set at the 

10 surface.  Vorticity values that will satisfy boundary conditions 

11 are set at the provided surface points.  A new mesh- is 

12 established incorporating the provided points and other points in 

13 the region of interest.  Boxes are generated containing the 

14 provided points and other points.  Velocities and pressures at 

15 each point are calculated from the flow conditions, vorticity 

15 values and boundary conditions.  A time variable is incremented 

17 and each point is moved by applying the calculated velocity. 

18 Vorticity at each point is then recalculated.  The method is 

19 iterated starting with the step of satisfying boundary conditions 

20 until the incremented time variable exceeds a predetermined 

21 value. 

10 



1 In accordance with a method and apparatus of this invention 

2 fluid flow characteristics are calculated from a three 

3 dimensional surface model of the object. 

4 

5 BRIEF DESCRIPTION OF THE DRAWINGS 

6 The appended claims particularly point out and distinctly 

7 claim the subject matter of this invention.  The various objects, 

8 advantages and novel features of this invention will be more 

9 fully apparent from a reading of the following detailed 

10 description in conjunction with the accompanying drawings in 

11 which like reference numerals refer to like parts,.and in which: 

12 FIG. 1 is a general flowchart of the current invention; 

13 FIG. 2 is a diagram illustrating steps of the point meshing 

14 algorithm; 

15 FIG. 3 is a diagram illustrating the box generation 

16 algorithm; 

11 FIG. 4 is a graph showing the variation of cpu time with the 

18 number of points; and "^ 

15       FIG. 5 is a graph showing the velocity calculation error 

20 using different calculating techniques, error factors and point 

21 separations. 

11 



1 DESCRIPTION OF THE PREFERRED EMBODIMENT 

2 FIG. 1 provides an overview of the current invention.  In 

3 order to initialize the computer processing algorithm, data 

4 concerning the allowable error and the object geometry must be 

5 provided to the computer.  The allowable error terms provided in 

6 step 10 are necessary for establishing the number of terms in the 

7 calculation.  The object geometry provided in step 12 is 

8 necessary to set up the initial conditions for the calculation. 

9 After the computer reads initialized data from steps 10 and 12, 

10 initial points are placed in a mesh, 14, generated using a mesh 

11 construction algorithm discussed below.  Initial flow conditions 

12 are provided 16.. 

13 The algorithm then proceeds to calculate new point locations 

14 for each step in time.  First, in step 18 the points near the 

15 object are given values to satisfy the boundary conditions at the 

16 surface of the object.  The points are then placed in meshes 20 

17 using the mesh construction algorithm below.  Boxes are generated 

13 about a number of points 22 using the k>ox construction algorithm 

15 discussed below.  In step 24, point velocities and optionally 

20 pressure are calculated from the vortici'ties of the surrounding 

21 points.  The time step is incremented in step 26.  Prior to 

22 incrementing time, the algorithm writes the time increment, point 

12 



1 locations, velocities, pressures and vorticities to an output 

2 file.  In step 28, points are moved to new positions based on the 

3 velocities calculated in step 24.  New vorticities are calculated 

4 30.  The algorithm then loops back to step 18 to continue.  This 

5 results in the points being meshed twice, but meshing is 

6 relatively fast and this provides a convenient method of setting 

7 up the loop for the initial flow.  This part of the algorithm 

8 continues until the period of interest has elapsed. 

9 FIG. 2 provides a diagram of the point meshing algorithm 

10 showing the points chosen.  In order to form a single tetrahedral 

11 element, a first point 200 is chosen closest to an.origin 202.  A 

12 second point 204 is chosen closest to the first point 200, and 

13 then a third point 206 is chosen to minimize the radius of the 

14 circle 208 including all three points.  A random point 210 is 

15 then chosen in a positive normal direction 212 to the plane 

15 containing the three points.  Next, the algorithm constructs a 

17 sphere 214 from points 200, 204, 206 and 210.  Nearby points are 

18 searched with relation to sphere 214. Nearby points can be 

19 defined as those points that are within the local box or adjacent 

2 0 boxes or as those points that are within a predetermined radius 

21 of the other selected points.  If a nearby point 216 lies within 

22 sphere 214, it replaces the random point 210 and a new sphere 218 

13 



1 is constructed.  After replacement, nearby points are again 

2 searched until all nearby points have been searched. 

3 Once the first tetrahedron 220 has been constructed, its 

4 sides can serve as the first three points for other tetrahedrons. 

5 As above another random point is chosen in a positive normal 

6 direction to the plane formed by the side of the original 

7 tetrahedron 220.  The sphere formed by the four points is tested 

8 against nearby unincorporated points and incorporated if no other 

9 ■ point falls within the sphere.  New tetrahedra are established in 

10 this manner until all points are incorporated, into tetrahedra. 

11 •     FIG. 3 is a diagram showing the box construction algorithm 

12 discussed as step 22 above.  The total number of points and boxes 

13 is calculated from the allowable error provided upon 

14 initialization.  This calculation should give the minimum number 

15 of points for each box.  As a further example, box 3 08 is shown 

16 divided into box 310 and box 312. 

17 An initial box 300 is formed around all the points of 

18 interest 302.  The initial box 300 is ffien divided along its 

19 longest dimension 3 04 into two new boxes 3 06 and 3 08 each having 

20 substantially the same number of points 302 therein.  Boxes 

21 having an odd number of points therein will be subdivided into 

22 two boxes having a number of points differing by one instead of 

14 



1 an equal number of points.  These boxes 306 and 308 are then 

2 subdivided in the same manner as above until each resulting box 

3 has approximately the calculated minimum number of points 

4 therein. 

5 In step 24 of FIG. 1, calculation of point velocities is 

6 performed by a selected method depending on the resulting error. 

7 The net effect of this is that the contribution to velocity of 

8 the points outside the local box is performed using the Gaussian 

9 quadrature one point rule, the contribution of tetrahedrons 

10 inside the local box is performed using the Gaussian quadrature 

11 five point rule, and the contributions of tetrahedrons bordering 

12 the local tetrahedron are performed using analytic integration. 

13 These calculations are then combined to obtain the velocity at 

14 the current point.  These steps are carried out for each point. 

15 Contributions from more distant points are performed by 

16 using the integral over the boxes calculated by multipole 

17 expansion.  The integration is carried out in terms of the 

18 tetrahedra in each box, so that momentan the multipole 

15 expansion for a box are computed by integration over each 

20 tetrahedron in the box.  The memory requirement for the relation 

21 of the tetrahedra to the box structure is minimized by the use of 

22 a linked list. 

15 



1 In order to calculate terras near the current point, i.e. in 

2 tetrahedrons bordering the local tetrahedron, the vorticity over 

3 a tetrahedron is taken to be the average of that at the four 

4 nodes and taken out of the integral of equation (10).  The 

5 following technique is taught by Grant et al., Solution of  the 

6 Vorticity Equation  on a  Lagrangian Mesh  Using  Triangularization: 

7 Computation of  the Biot-Savart  Integral   in  Three Dimensions, 

8 Forum on Vortex Methods for Engineering Applications Papers, 

9 Sandia National Laboratory, Albuquerque, NM, (February 1995). 

10 The resulting volume integral is converted by integration by 

11 parts to a surface integral over the triangular faces of the 

12 tetrahedra.  These four integrals are computed using expressions 

13 provided in Newman, Distributions  of Sources  and Normal  Dipoles 

14 Over a Quadrilateral  Panel,   20 J. Engineering Math. 113-26 

15 (1986) . 

16 In order to compute the velocity and pressure as in step 24 

17 one must first compute the velocity gradient tensor and the 

18 Laplacian and thus advance the solutioff of (1), a moving least- 

19 squares method algorithm is employed.  Several algorithms for 

20 calculation of the Laplacian of a vector field on scattered 

21 points are known in the art; however, in order to take full 

22 advantage of the Lagrangian aspects of the approach, 

16 



1 calculational techniques depending on interpolation to a grid 

2 have been avoided.  It is also desirable that the approach not 

3 require a point density depending on the diffusion term, since in 

4 high Reynolds number flows diffusion is paramount only in limited 

5 regions of the flow.  The moving least squares method enables 

6 computation of the velocity gradient tensor and the Laplacian 

7 with the same algorithm, and is directly adaptable to turbulence 

8 modeling. 

9 Utilizing the moving least-squares method, a quadratic 

10 polynomial is fit on the neighbors about each point to give the 

11 values of the field variable to be differentiated. .. The constant 

12 term in the polynomial is taken to be the value of the field 

13 variable at the point in question, and the coefficients 

14 multiplying the nine (in three dimensions) terms of the 

15 polynomial must be specified by this fit.  Nine equations are 

16 obtained by minimizing the sum over the neighbor points of the 

17 square of the difference between the polynomial and the variable. 

IS These constants and thus the first and Second derivatives of the 

IS polynomial are found by solution of the 9 X 9 set at each point. 

20 The field variable derivatives are taken to be those of the 

21 polynomial.  This algorithm is known in applications where 

17 



1 derivatives are desired for information provided on scattered 

2 points. 

3 Several issues must be taken into account.  When applied to 

4 a regular grid of points, computation of the full polynomial, 

5 including the cross terms, there are 26 neighbors of each point. 

6 This number, 26, thus is a scale for the number of neighbors 

7 needed in forming the sums for this fit.  If the number of 

8 neighbors included in the sum is much below that, the 9X9 

9 matrix is ill-conditioned.  Even if the number of neighbors is 

10 sufficient, the points might be arranged so that again the matrix 

11 is ill-conditioned (a distribution nearly along a straight line 

12 is an example).  To account for these special cases, the lower- 

13 upper decomposition solution strategy used for most points has 

14 been supplemented with a singular value decomposition algorithm 

15 as taught by Press, et al, Numerical  Recipes,   Cambridge 

16 University Press, New York (1992), if the condition number of the 

17 original matrix is high. 

18 Another issue arises through the effect of the irregular 

19 spacing on the fit.  Irregular spacing enters the value of the 

20 polynomial coefficients due to a higher polynomial power 

21 variation in the field that is being fit than that used for the 

22 fit.  Thus, the moving least-squares method may be said to be 



1 'second-order' in that the derivatives of a quadratic polynomial 

2 are computed exactly (to machine accuracy) on irregularly spaced 

3 points.  But, for polynomials of higher order, the error in the 

4 computed derivatives decreases with decreasing average separation 

5 at a power slightly less than 2.  For the Laplacian of a Gaussian 

6 (containing derivatives of unlimited order) computed on points 

7 placed randomly in a sphere, the L, error decreases approximately 

8 as D"-4, where D is the average point spacing.  This effect of 

9 irregular spacing on the fit precludes the repeated application 

10 of a linear fit to produce higher derivatives. 

11 The triangulation of the points done for the Biot-Savart 

12 integration immediately gives the list of neighbors needed for 

13 this fit, so this approach to differentiation works well with the 

14 above for integration.  However, this approach can also be used 

15 with an independent scheme for finding neighbors. 

16 The accuracy produced by solution of the diffusion equation 

17 is a weak test of the accuracy of a Laplacian calculation. 

18 Apparently, the diffusion equation is,Within limits, self- 

19 correcting. 

20 The Laplacian of the vorticity field may be computed by the 

21 algorithm just described, and the result used in equation (1). 

22 However, as is advecticn, diffusion is a means of vorticity 

19 



1 transport.  For the usual Lagrangian method, the calculational 

2 points are transported by velocity alone, accounting for 

3 vorticity transport by advection.  As long as points are provided 

4 wherever vorticity may diffuse, this is sufficient.  However, 

5 unless 'empty' points are maintained in the neighboring 

6 irrotational flow, there will be no means by which diffusion can 

7 transport vorticity into the irrotational flow.  An 

8 algorithmically effective strategy is to account for vorticity 

9 transport by diffusion by moving the calculational points with 

10 the sum of the fluid velocity and a diffusion velocity. 

11 Diffusion velocity is taught'by Truesdell, The Kinematics  of 

12 Vorticity,    Indiana University Press, Bloomington (1954), and 

13 elegant formulations may be made in terms of such velocities that 

14 conserve circulation or for that which vorticity behaves as a 

15 material element.  Simple scalar diffusion velocity calculations 

16 are appropriate for this invention. 

17 Thus, a diffusion velocity V based on the magnitude co of 

13 the vorticity is given as: 

IS v = -vV(lnöj) (11) 

20 To obtain the equation which describes the evolution of vorticity 

21 on points moving with the sum of u and v, 

22 v-Wt» (12) 

20 



1  is added to both sides of (1): 

■ + (u + v) ■ Vco = co • Vu + CL)[i-aV: (In a») + i'V'a - v • Va 

10 

d(o 
(i3: 

ct 

3 Here a is the unit vector tangent to the vorticity vector:  a = 

4 co/co.  The location of the calculational points is now given by 

dx 
5 — = u + v (14) 

dt 

6 Note that equation (13) is written with ln(co) rather than co 

7 appears under the Laplacian.  The form shown minimizes the 

8 effects of errors in the calculation of the Laplacian, and it is 

9 much more stable than the alternative. 

The computation of diffusion with the moving least-squares 

11 method is subject to a stability limitation on the size of the 

12 time step, similar to that for the explicit diffusion equation 

13 with centered finite-difference taught by Peyret et al., 

14 Computational  Methods  for Fluid Flow,   Springer-Verlag, New York 

15 (1990).  For fluid flows of interest, such a' restriction often 

16 requires a time step much smaller than would otherwise be needed 

17 based on the other (inviscid) terms in (13) and (14).  These 

18 inviscid terms are the advection and stretching terms.  However, 

19 differentiation requires much less time than does integration to 

20 compute the velocity appearing in the inviscid terms. 

21 



1 Consequently, a diffusion sub-step is embedded within the larger 

2 inviscid time steps.  This strategy is particularly useful where 

3 boundary layers are involved.  Typically, 5 to 10 sub-steps are 

4 taken per time step.  The Adams-Bashforth second-order explicit 

5 time stepping is used for the stretching term in equation (13) 

6 and the advection term in equation (14), and a second-order 

7 predictor-corrector algorithm for the terms containing viscosity. 

8 All differentiations are carried out with the moving least- 

9 squares method. 

10 The vorticity boundary condition is designed to continually 

11 force the tangential velocity at the body surface to zero. 

12 Consider the condition at a point m on the body surface.  Let Am 

13 be one-third of the area of the triangular panels which intersect 

14 at node m, let Vm be one-fourth of the volume of the tetrahedra 

15 which intersect at point m, and let n be the outward unit normal 

16 of the body surface at this point.  For a (non-physical) slip 

17 velocity um at this point, the total vorticity associated with 

18 this slip is Amn X um.  A change in vorticity Avm at node m and 

15 time t causes a change in the vorticity in the flow of VmAvm. 

20 Additionally, the total amount of vorticity diffusing into the 

21 flow from the region of the body surface with area Am during the 

22 



1 time interval (t, t + At) (where At is the time step) is given 

2 by  - n Am At (rv/r'n) .  Balancing the slip vorticity with the two 

3 volumetric vorticity terms gives 

4 A,„ n x u„, = Vm AÜ „, - v Am M(dco I dn)m (15) 

5 The terms on the right-hand side involving vorticity may be 

6 written in terms of the vorticity at the nodes of the tetrahedra 

7 attached to point m.  The result is a matrix equation involving 

8 the vorticity at point m and its neighbors.  An iterative 

9 solution converges with a relative error of 10~4 in only three or 

10 four iterations. 

11 The normal velocity at the surface would be effectively zero 

12 using this method, if there were no discretization error.  In the 

13 current method, the normal velocity component must be driven to 

14 zero using a source panel method for this purpose.  The K 

15 triangular panels on the surface are taken to have a source 

16 strength a uniform over each panel.  The velocity at field point 

17 x due to these panels is 

18 
K a. .(x-x') 

k = l °<K „.   X-X 

13  where a^ is the area of the kth triangle.  When this term is 

2 0  added to the volume integral in (10) and the boundary condition 

23 



1 (4) applied to the centroid of each panel, a K X K matrix 

2 equation results for the source strengths.  An upper-lower 

3 decomposition solution is used to solve this matrix.  The 

4 decomposition needs to be done only once, unless the relative 

5 position of the panels changes.  This solution is obtained after 

6 the vorticity at the surface is set by solution of (15). 

7 The requirement mentioned in the description of the moving 

8 least-squares method that the neighbors number at least 20 or so 

9 stems from the fact that accurate calculations are impossible 

10 when points are too sparsely spaced.  Based on the integration 

11 routine, which assumes linear variation of vorticity within 

12 tetrahedra, points are added if the second-order terms in the 

13 Taylor series expansion of the vorticity within a tetrahedron 

14 becomes larger, relative to the sum of the zeroth and first-order 

15 terms, as a criterion.   Use of 0.1 as a experimental criterion 

15 has been found to be successful. 

17 A large vorticity gradient exists above a no-slip surface. 

18 Transport of the calculational points }5y" the diffusion velocity 

19 as in equation (13) results in a streaming of the points away 

2 0 from the surface.  This is, of course, a physically correct 

21 behavior, but, at the same time, it requires stringent measures 

22 to maintain sufficient point density in the vicinity of the 

24 



1 surface.  One solution to this difficulty is establishing a set 

2 of fixed points above those on the surface.  These fixed points 

3 are staggered, and number 6 to 10 layers above the surface, each 

4 layer consisting of approximately the same number of points as 

5 those that define the surface.  The outer layer height above the 

6 surface is determined by the diffusion length scale (a small 

7 integer multiple of this scale), so that this grid extends a very 

8 small distance into the flow, not compromising the stated goal of 

9 making full use of the advantages associated with Lagrangian 

10 points.  Points still stream away from the upper layer of this 

11 grid to be replaced as described above, but the diffusion 

12 velocity is less and the diffusion in the near vicinity of the 

13 surface is better controlled. 

14 xt   is well known that a direct calculation of the velocity 

15 at each .point in the field using (10) requires a number of 

16 operations that is proportional to the square of the number N of 

17 calculational points, and that the associated computational time 

18 prohibits calculations requiring more fnan a few thousand points. 

19 The above algorithm reduces the variation in computational time 

20 with the number of points to approximately NlogN, by grouping the 

21 points to be integrated into boxes and performing with the help 

22 of multipole expansions the integral over these boxes. The 
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1 integration is performed in terms of the tetrahedra, so that 

2 moments in the multipole expansion for a box are computed by 

3 integration over each tetrahedron in the box.  The memory 

4 requirement for the relation of the tetrahedra to the box 

5 structure can be minimized by the use of a linked list. 

6 The computational time is controlled by an integer L, where 

7 2L is the number of levels of box division to be made in step 22, 

8 by a limit  , which is the maximum relative error allowed for an 

9 integration over a box (the smaller a value for  , the further 

10 away from the field point a box must be), and by the number of 

11 terms kept in the multipole expansion. 

12 FIG. 4 and 5 show results of tests of the Biot-Savart 

13 integration scheme (that is, tetrahedra with the accelerated 

14 calculation, after the tetrahedral mesh is constructed) for the 

15 spherical patch of vorticity known as Hill's vortex.  The radius 

16 of the sphere is unity, and the points are placed randomly within 

17 the sphere.  The number of points ranges from N = 1000 to 32,000. 

13 The number of terms in the multipole expansion is fixed at 3 

IS (through quadrapole).  L is set to 11, and  = I0_n, where n = 2, 

20 3, or 4.  FIG. 4 shows the central processing unit (cpu; time for 

21 *the velocity calculation on each point; also shown is the cpu 

22 time without the accelerated algorithm.  The 'cross-over', the 
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1 number of points above which the accelerated calculation is 

2 faster than the fully direct calculation, is below 2000 for all 

3 three values of n.  The fully direct calculation increases with N 

1 So 
4 as N ' , rather than N~, reflecting the shorter time required for 

5 the 1-point quadrature than for the 5-point quadrature, and that 

6 more tetrahedra are integrated via the former rule as  tetrahedra 

7 size decreases relative to distance to the field point.  When N 

8 is so large that effectively all of the tetrahedra are integrated 

9 by the 1-point rule, the direct time will increase as N~.  As 

10 expected, the accelerated calculation contributes more for lower 

11 n, and by N = 32,000 has approached a N log N increase with N. 

12 FIG. 5 shows the L. error in the velocity calculation for 

13 Hill's vortex, for the three values of n, with, as above, the 

14 number of box levels set to L = 11 and the number of terms in the 

15 multipole expansion set to 3.  The error is plotted versus the 

16 average point separation distance, with again the number of 

17 points ranging from N = 1000 to 32,000.  For the smaller values 

18 of N (larger spacing), the error allowed in the accelerated 

19 calculation is not significant, since integration over most of 

20 the volume is performed with the direct expressions, so that the 

21 direct calculation contributes most of the error.  On the other 
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1 hand, for typical point separations below about 0.09 the error in 

2 the calculation is significantly affected by that allowed in the 

3 accelerated algorithm, with the minimum error limited by the 

4 error in the direct calculation. 

5 Also included in FIG. 5 is the variation in the L. error 

6 with average point spacing when the velocity calculation is 

7 performed using the vortex blob method, as described above.  Here 

8 L = 11 again, and n = 3.  The error does not decrease nearly as 

9 rapidly with decreasing point spacing, as it does for the 

10 calculations via tetrahedra.  This is in part due to the greater 

11 resolution provided by the tetrahedra (recall that ..the number of 

12 tetrahedra is slightly greater than six times the number of 

13 points).  However, a significant contribution to the error 

14 appears to come from the fact that blobs associated with points 

15 near the outer boundary of the spherical vortex extend outside 

16 the nominal radius limit of the vorticity.  This plot thus 

17 demonstrates the usefulness of tetrahedra for fitting the 

18 vorticity field in situations where the**field abruptly (compared 

19 to the scale of the point spacing) ends.  The vorticity field at 

20 the surface of a body is a relevant example. 

21 This invention has been disclosed in terms of certain 

22 embodiments.  It will be apparent that many modifications can be 
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1 made to the disclosed apparatus without departing from the 

2 invention.  Therefore, it is the intent c to 

3 cover all such variations and modifications as come within the 

4 true spirit and scope of this invention. 
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1 Attorney Docket No. 78557 

-i 

3 METHOD FOR COMPUTING THREE DIMENSIONAL UNSTEADY FLOWS BY SOLUTION 

4 OF THE VORTICITY EQUATION ON A LAGRANGIAN MESH 

5 

6 ABSTRACT OF THE DISCLOSURE 

7 A method for computing three dimensional unsteady flows 

8 about an object.  An allowable error is established for the 

9 vorticity term calculations, and object geometry is provided 

10 giving surface points on an object and a region of interest.  A 

11 mesh is established incorporating points on the object.  Initial 

12 flow conditions are set at the surface.  Vorticity values that 

13 will satisfy boundary conditions are set at the provided surface 

14 points.  A new mesh is established incorporating the provided 

15 points and other points in the region of interest.  Boxes are 

16 generated containing the provided points and other points. 

17 Velocities and pressures at each point are calculated from the 

18 flow conditions, vorticity values and Boundary conditions.  A 

19 time variable is incremented and each point is moved by applying 

20 the calculated velocity.  Vorticity at each point is then 

21 recalculated.  The method is iterated starting with the step of 

3d 



1 satisfying boundary conditions until the incremented time 

2 variable exceeds a predetermined value. 
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