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1 Navy Case No. 78695 

2 

3 CLASSIFICATION OF IMAGES USING A DICTIONARY 

4 OF COMPRESSED TIME-FREQUENCY ATOMS 

5 

6 STATEMENT OF GOVERNMENT INTEREST 

7 The invention described herein may be manufactured and used 

8 by or for the Government of the United States of America for 

9 Governmental purposes without the payment of any royalties 

10 thereon or therefor. 

11 

12 BACKGROUND OF THE INVENTION 

13 (1) Field of the Invention 

14 The present invention relates to the field of image 

15 processing techniques, and more particularly to a method for 

16 automatically classifying test images based on their 

17 similarities with a dictionary of example target and non-target 

18 images organized according to class. 

19 (2) Description of Related Art 

20 The use of automatic pattern recognition systems and image 

21 classifiers for rapid identification and classification of input 

22 patterns (images) into one of several classes is well known in 

23 the art.  Image classifiers have both military and civilian 

24 applications.  For example, such systems can be used by a 

25 military combatant in a naval conflict to identify an unknown 

sonar target as a friend or foe, and thereby enable one to make 26 

27  an informed decision as to whether to attack the target. The 



1 systems are also used by civilians, for example, in medical 

2 screening and diagnostic applications.  Additionally, image 

3 classification techniques are used for quality control in 

4 manufacturing applications. 

5 Existing pattern recognition and image classification 

6 systems are typically based upon one of several conventional 

7 classification techniques.  The conventional techniques for 

.8 classifying images typically use a minimum set of manually 

9 distilled classification parameters from examples of known 

10 images which have been experimentally demonstrated to accurately 

11 classify a database of images into the correct class.  For 

12 example, in the case of statistical classifiers, these 

13 parameters (features) consist of statistical moments scored 

14 according to a threshold criteria or nearest neighbor criteria. 

15 The features may also be based on ad hoc measurements or values 

16 defining properties of the image to be classified which have 

17 been proven successful on a test database.  Additionally, 

18 classification parameters may be based on a model of the 

19 mechanisms which distinguish a class of images.  Such 

20 conventional methods are well known in the art with examples 

21 being found in U.S. Patent Nos. 5,291,563 to Maeda, and 

22 5,452,369 to Lionti et al. 

23 In general, conventional automatic classifiers process a 

24 small set of clues derived from a large sequence of data 

25 representing the image to be classified.  These conventional 

26 classification methods suffer from several significant 

27 drawbacks.  One drawback is that the classification parameters 



1 or features used to classify an image are only a partial 

2 representation of the information in the image.  Additionally, 

3 the methods are biased by the ad hoc algorithm used to 

4 quantitatively score the parameters used for classification. 

5 Furthermore, the existing techniques often are not easily 

6 modified for new or changing operational environments or when 

7 new input images or outcome classes are added.  Often such 

8 changes require changing or modifying the features used for 

9 classification. 

10 Accordingly, there is a need for a classification method 

11 which overcomes these drawbacks. 

12 

13 SUMMARY OF THE INVENTION 

14 It is therefore an object of the present invention to 

15 provide a method of classification which operates by comparing a 

16 near-complete representation of a test image to a dictionary of 

17 example target and non-target images. 

18 Another object of the present invention is the provision of 

19 a classification method which is easily augmented or refined for 

20 new operating environments. 

21 The present method accomplishes these objects by receiving 

22 a test image and then initializing variables for an iteration 

23 count and for a linear expansion of the test image.  The test 

24 image is then projected onto each one of the target and non- 

25 target images in the dictionary.  A scaling coefficient is then 

25 applied for each successive iteration, wherein the scaling 

27 coefficient is set to the maximum value produced by the 



1 projections of the test image onto the dictionary of target and 

2 non-target example images. A residue is then generated, and the 

3 linear expansion of the test image is increased until a 

4 predetermined number of iterations have been performed. 

5 Once this predetermined number of iterations have been 

6 performed, the sum of the scaling coefficients belonging to the 

7 target examples in the dictionary is compared to the sum of the 

8 scaling coefficients belonging to the non-target examples in the 

9 dictionary.  If the sum of the scaling coefficients belonging to 

10 the target examples is greater than the sum of the scaling 

11 coefficients belonging to the non-target examples, then the test 

12 signal is identified as a target signal.  If, however, the sum 

13 of the scaling coefficients belonging to the target examples is 

14 less than the sum of the scaling coefficients belonging to the 

15 non-target examples, then the test signal is identified as a 

16 non-target signal. 

17 

18 BRIEF DESCRIPTION OF THE FIGURES 

19 A more complete understanding of the invention and many of 

20 the attendant advantages thereto will be readily appreciated and 

21 may be obtained from consideration of the following detailed 

22 description when considered in conjunction with the sole 

23 accompanying drawing which shows a flow diagram depicting an 

24 exemplary embodiment of the image classification technique 

25 according to the present invention. 



1 DESCRIPTION OF THE PREFERRED EMBODIMENT 

2 The present invention discloses a method for automatically 

3 classifying two-dimensional test images based on their 

4 similarities with a dictionary of example images organized 

5 according to class.  Like conventional image classification 

6 methods, the new method disclosed herein can be used for a 

7 variety of applications. 

8 Images classified by the method of the present invention 

9 comprise two-dimensional arrays of pixels.  Each pixel is 

10 assigned a value representing the gray level of that pixel.  The 

11 pixel values can be distributed over any range.  Additionally, 

12 the images can be comprised of more than one component array, 

13 such as color images.  The image can be generated from an input 

14 signal using any conventional means such as digital cameras, 

15 scanners, acoustic imaging, an image previously stored in a 

16 digital format, or the like.  In addition, the image can be 

17 processed as a whole or it can be divided into sub-images, with 

18 each sub-image being processed as a test image.  Similarly, if a 

19 specific region of interest in the original image can be 

20 identified, the region can be processed as the test image. 

21 This classification is accomplished by projecting a 

22 representation of the test image onto each of the example images 

23 in the dictionary.  The projection process produces a 

24 representation of the test image as a linear expansion of scaled 

25 correlation coefficients in terms of the dictionary examples. 

26 The unknown image is then classified by comparing the scaling 

27 coefficients wherein if the sum of the scaling coefficients 



1 belonging to the target examples is greater than the sum of the 

2 scaling coefficients belonging to the non-target examples the 

3 unknown test image is identified as a target image, and 

4 otherwise the unknown test signal is identified as a non-target 

5 image. 

6 The classification method disclosed herein employs an image 

7 compression technique which uses an invertible, lossy time- 

8 frequency transform. Although the images do not need to be 

9 compressed for the classification method of the present 

10 invention to operate.  However, given that most images contain 

11 large numbers of pixels and that image processing is a 

12 computationally intensive procedure, the test images and the 

13 dictionary of images are usually compressed. An exemplary image 

14 compression algorithm which can be employed in connection with 

15 the method of the present invention is disclosed in U.S. Patent 

16 No. 5,757,974 to Impagliazzo et al.   entitled System and Method 

17 for Data  Compression.     Other image compression techniques known 

18 in the art may also be used provided such methods maintain 

19 (preserve) a large majority of the original image information 

20 and can be reconstructed. 

21 Images compressed utilizing the method of U.S. Patent No. 

22 5,757,974 or the like contain a large majority of the original 

23 image information and can be readily reconstructed.  Thus, when 

24 a compressed image is projected onto an example in a dictionary, 

25 all of the captured information is compared and the comparison 

26 is scored.  As a result, this method is able to more accurately 



1 reproduce an unknown target image from the classification 

2 parameters than conventional methods. 

3 The comparison is performed in the time-frequency domain 

4 because a substantial computational advantage is realized, equal 

5 to the compression ratio applied to the dictionary examples and 

6 test image.  This is typically one to two orders of magnitude or 

7 larger.  In addition, the score is a near complete 

8 representation of the test image. Also, since the dictionary 

9 consists of compressed time frequency transformed images, it can 

10 be augmented to include additional entries to refine the 

11 classifiers performance in other environments.  This flexibility 

12 can be used to rapidly construct a classifier by developing a 

13 dictionary in a lab, on a test range, or in a similar controlled 

14 environment closely resembling an operational area of interest. 

15 The present invention uses a matching pursuit algorithm 

16 disclosed in S.G. Mallat and Z. Zhang, Matching Pursuit With 

17 Time-Frequency Dictionaries,   IEEE Trans. On Sig. Proc, Vol. 41, 

18 no. 12, pp. 3397-3415, December 1993, which allows a signal 

19 function to be decomposed into a linear expansion of functions 

20 belonging to a redundant dictionary of waveforms.  In the 

21 present method, these waveforms are time-frequency atoms 

22 computed from both sample target and non-target images.  It is 

23 assumed that the time-frequency atoms consist of a pattern of 

24 wavelet coefficients related to the local structure of the 

25 target.  Without such an assumption, this information would 

26 otherwise be difficult to detect from individual coefficients 

27 because the forward transform diffuses the information across 



1 the entire basis. The present invention therefore employs an 

2 existing algorithm for a new purpose, i.e., image 

3 classification. 

4 The advantage of the wavelet domain theory embodied in the 

5 method disclosed in the aforementioned article is that the 

6 respective image and dictionary waveforms can be compressed 

7 using wavelet image compression techniques, thereby preserving 

8 information about the local target structure without making any 

9 assumptions about the nature of the target.  This compression, 

10 in turn, minimizes the computational requirements on the 

11 matching pursuit algorithm which defines a family of vectors 

12 D = (g-t) g.   in H>   where H = L2{R),   suchthat ||sr| = l.  Letting/e//, a 

13 linear expansion of / is computed over a set of vectors selected 

14 from D  to best match the local target structure.  This is done 

15 by successive approximations of / with orthogonal projections on 

16 elements of D.     Letting gyo eD , the vector/ can be decomposed 

17 into 

18 f = {f,gy0)gyo+Rf (1) 

19 where Rf is the residual vector after approximating / in the 

20 direction of gyo .     The element gyo   is orthogonal to Rf,   hence 

(f.SnhWt' (2) 21 

22 To minimize ||i?/||, gu e D is  selected such that |(/.g-/0)| is 

23 maximized.  To consider the iterative approach, let R°f=f.     To 



1 compute the n,h  order residue R"f,   for n>0,   an element e   e D  is 
°"ln 

2 chosen with the choice function C, which best matches the 

3 residue R"f.     The residue R"f is subdecomposed into 

4 R"f = (R"f,gyn)gu+R"«f (3) 

5 which defines the residue at the order w+1.  Since Rn+1f is 

6 orthogonal to gy 

7 \\R"f(=\R"f>zJ+\\Rn+lf(- (4) 

8 Extending this decomposition to order m,   equation (3) yields: 

m-l 

10  and equation (4) yields an energy conservation equation: 

11 ll/«2=Z|(^v.^)|2
+||/?v (6) 

12 The original vector / is decomposed into a sum of dictionary 

13 elements that are chosen to best match its residues. Although 

14 the decomposition is nonlinear, it maintains an energy 

15 composition as if it was a linear orthogonal decomposition. 

!6      In utilizing the matching pursuit algorithm for target 

17 classification, the projection of the test image function onto 

18 each of the dictionary waveforms is computed.  The waveform 

19 which best matches the image function is selected for the 

20 iteration and a residue is computed from the image function. 

21 The residue is formed by subtracting the selected waveform 

22 scaled by the correlation coefficient, from the image function 



1 to produce a new image function for the next iteration. After 

2 the last iteration, the image function is represented as a 

3 linear expansion of the scaled dictionary waveforms. 

4 Target-like objects are discriminated from non-target image 

5 functions by comparing the energy in the dictionary's target 

6 waveform to that of the dictionary's non-target waveforms:  The 

7 class associated with the greater energy is assigned to the 

8 image waveform.  This process is shown in flowchart form in the 

9 sole figure in the case.  The process starts as step 101 with 

10 the receipt of a test image xit At step 102, variables for the 

11 iteration count i and the linear expansion of the test image 

12 denoted by y  are initialized, with i being set to 1 and y being 

13 set to 0. 

14 At step 103, test image x±  is projected onto each of the 

15 images in the dictionary of example target and non-target images 

16 Dtgts+ntgts  and a scaling coefficient is identified.  The scaling 

17 coefficient y±  for the ith  iteration is set to the maximum value 

18 produced by the projections of x±  onto the dictionary of images 

19 Dtgts+„tgts.     The dictionary image which produces the maximum value 

20 when x±  is projected onto it, identified as [D,gts+ntgli]i,   is 

21 associated with the scaling coefficient y±.     The projection of 

22 xi  onto the dictionary image is given as the inner product 

23 \xi>Dtgts+ntgts)  which produces a scalar quantity. 

24 At step 104, the residue xi+I is calculated by subtracting 

25 the dictionary image [Dlgl,+nlgh];,   identified in step 103 as 

10 



1 producing the maximum result, scaled by y±  from x±.     That is, 

2 the residue x±+1  is given as: 

3 XM = xi ~y\Dlsts+n,glsl (7) 

4 At step 105, the linear expansion of scaled dictionary 

5 waveforms y  is refined by adding the scaled dictionary waveform 

6 y± [D,gts+„,gts]i  to the existing linear expansion of scaled dictionary 

7 waveforms y.     That is, 

8 y = y+y{Dtsts+mgt]. (8) 

9      The process of projecting x^ onto each waveform in the 

10 dictionary, generating the residue, and refining the linear 

11 expansion y  is repeated until M iterations have been performed. 

12 If, as shown at step 106, fewer than M  iterations have been 

13 performed, then at step 107 the number of iterations is 

14 incremented by 1 and the process is repeated from step 103.  If 

15 however, M  iterations have been performed, then at step 108 the 

16 sum of the scaling coefficients y±  belonging to the target 

17 examples in the dictionary D,s,s+ntg!s  is compared to the sum of the 

18 scaling coefficients y±  belonging to the non-target examples in 

19 the dictionary.  If the sum of the scaling coefficients y± 

20 belonging to the target examples is greater than the sum of the 

21 scaling coefficients yi  belonging to the non-target examples, 

22 then the test signal is identified at step 109 as a target 

23 signal.  If, however, the sum of the scaling coefficients 

24 belonging to the target examples is less than the sum of the 

25 scaling coefficients belonging to the non-target examples, then 

11 



1 at step 110 the test signal is identified as a non-target 

2 signal. 

3 The classification of target-like image functions is 

4 further refined by a back-propagation neural network.  Such 

5 networks, which use artificial intelligence, are well known in 

6 the art and are used in the classification of test images. The 

7 neural network used need not be a back-propagation network but 

8 can be any type of neural network for classifying images. 

9 Although use of a neural network is not required to use the 

10 method of the present invention, such networks have been found 

11 to reduce the number of false alarms when classifying images. 

12 In using a neural network to further classify the test images, 

13 only the images identified as being targets are sent to the 

14 network.  Because the input to the network is limited to those 

15 images which have been identified as targets, the construction 

16 of such a network is much simpler than that of a network that 

17 must distinguish targets from the set of all images.  The input 

18 to the neural network can be the original image, a compressed 

19 image, a non-compressed image in the time frequency domain, or 

20 the linear expansion of scaled dictionary waveforms y. 

21 In order to implement the matching pursuit/neural network 

22 classifier, it is necessary to divide the training set of data 

23 into subsets A and B.  Half of the training set, subset A, is 

24 used as target waveforms for the matching pursuit dictionary. 

25 Non-target waveforms are also in the dictionary, but are 

26 selected from areas not proximate to the target.  The remaining 

27 half of the training set, subset B, is processed using the 

12 



1 matching pursuit algorithm having subset A in the target 

2 dictionary. 

3 These results are then scored to form two lists for 

4 training the neural network: one of the functions for correctly 

5 classified targets, and one for the false alarms. The list of 

6 functions for correctly classified targets is augmented by an 

7 additional set generated from targets in training subset B with 

8 offset centers.  The target and false alarm lists are used to 

9 train a neural network to discriminate targets from false alarms 

10 for the limited set of target-like image functions classified by 

11 the matching pursuit algorithm. 

12 Successful application of this method is not limited to 

13 two-dimensional target images.  The method described herein can 

14 be easily applied to classification of one dimensional signals 

15 or n-dimensional signals.  In n-dimensional space, the 

16 compressed time-frequency representation of the signals is 

17 reshaped as a vector.  The test signal vector is then projected 

18 onto equivalent signal vectors for each of the examples in the 

19 dictionary.  In the one dimensional case, the compressed time- 

20 frequency representation of the signals is a vector. Typically, 

21 the number of iterations taken range between one an ten, but an 

22 alternative approach would be to increase the number of 

23 iterations further, but not to exceed the number of entries in 

24 the dictionary. 

25 Numerous modifications to and alternative embodiments of 

26 the present invention will be apparent to those skilled in the 

27 art in view of the foregoing description.  Accordingly, this 

13 



1 description is to be construed as illustrative only and is for 

2 the purpose of teaching those skilled in the art the best mode 

3 of carrying out the invention. Details of the structure may be 

4 varied substantially without departing from the spirit of the 

5 invention«- 

6 

14 



1 Navy Case No. 78695 

2 

3 CLASSIFICATION OF IMAGES USING A DICTIONARY 

4 OF COMPRESSED TIME-FREQUENCY ATOMS 

5 ABSTRACT OF THE DISCLOSURE 

6 A method for automatically classifying test images based on 

7 their similarities with a dictionary of example target and non- 

8 target images.  The method operates by receiving a test image 

9 and then initializing variables for an iteration count and for 

10 the linear expansion of the test image.  The test image is then 

11 projected onto each one of the target and non-target images in 

12 the dictionary, wherein a maximum scaling coefficient is 

13 selected for each iteration. A residue is then generated, and 

14 the linear expansion of the test image is increased until a 

15 predetermined number of iterations have been performed.  Once 

16 this predetermined number of iterations have been performed, the 

17 sum of the scaling coefficients belonging to the target examples 

18 in the dictionary is compared to the sum of the scaling 

19 coefficients belonging to the non-target examples in the 

20 dictionary to determine whether the image is a target signal or 

21 a non-target signal. 
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yj <- Select {max<xj, Dtgts + ntgts>} 103 

Xj+1 = Xj - yi [Dtgts + ntgts]i m 

y =y + yi[Dtgts + ntgts]i 
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