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SYSTEM FOR ELIMINATING OR REDUCING EXEMPLAR NOISE EFFECTS 

(SERENE) 

BACKGROUND OF THE INVENTION 

The present invention relates generally to processing multi-dimensional signals from 

certain types of sensors, and more particularly to a system for reducing the effects of noise 

carried on this type of signal. 

Historically there have been three types of approaches to the problems relating to the 

detection of objects, substances or patterns embedded in complex backgrounds. 

The first approach has been to use low dimensional sensor systems which attempt to detect 

a clean signature of a well known target in some small, carefully chosen subset of all 

possible attributes, e.g., one or a few spectral bands.  These systems generally have difficulty 

when the target signature is heavily mixed in with other signals, so they typically can detect 

subpixel targets or minority chemical constituents of a mixture only under ideal conditions, 

if at all.   The target generally must fill at least one pixel, or be dominant in some other 

sense as in some hyperspectral bands.   Also, the optimal choice of bands may vary with the 

observing conditions or background (e.g. weather and lighting), so such systems work best 

in stable, predictable environments.   These systems are simpler than the high dimensional 

sensors (hypersensors), but they also tend to be less sensitive to subdominant targets and 

less adaptable. 

A hypersensor is a sensor which produces as its output a high dimensional vector or 

matrix consisting of many separate elements, each of which is a measurement of a different 
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attribute of the system or scene under consideration. A hyperspectral imager is an example 

of a hypersensor. Hypersensors based on acoustic or other types of signals, or combinations 

of different types of input signals are also possible. 

The second approach has been to employ high dimensional systems or hypersensors 

which seek to detect well known (prespecified) targets in complex backgrounds by using 

Principle Components Analysis (PCA) or similar linear methods to construct a 

representation of the background.  Orthogonal projection methods are then used to separate 

the target from the background.   This approach has several disadvantages.   The methods 

used to characterize the background are typically not 'real time algorithms'; they are 

relatively slow, and must operate on the entire data set at once, and hence are better suited 

to post-processing than real time operation.  The background characterization can get 

confused if the target is present in a statistically significant measure when the background is 

being studied, causing the process to fail.   Also, the appearance of the target signature may 

vary with the environmental conditions:   this must be accounted for in advance, and it is 

generally very difficult to do.   Finally, these PCA methods are not well suited for detecting 

and describing unanticipated targets, (objects or substances which have not been prespecified 

in detail, but which may be important) because the representation of the background 

constructed by these methods mix the properties of the actual scene constituents in an 

unphysical and unpredictable way. 

The more recent approach, is based on conventional convex set methods, which 

attempt to address the 'endmember' problem.  The endmembers are a set of basis signatures 
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from which every observed spectra in the dataset can be composed in the form of a convex 

combination, i.e., a weighted sum with non-negative coefficients.  The non-negativity 

condition insures that the sum can sensibly be interpreted as a mixture of spectra, which 

cannot contain negative fractions of any ingredient.   Thus every data vector is, to within 

some error tolerance, a mixture of end members.   If the endmembers are properly 

constructed, they represent approximations to the signature patterns of the actual 

constituents of the scene being observed.  Orthogonal projection techniques are used to 

demix each data vector into its constituent endmembers. These techniques are conceptually 

the most powerful of the previous approaches, but current methods for implementing the 

convex set ideas are slow, (not real time methods) and cannot handle high dimensional 

pattern spaces.   This last problem is a serious limitation, and renders these methods 

unsuitable for detecting weak targets, since every constituent of a scene which is more 

dominant than the target must be accounted for in the endmember set, making weak target 

problems high dimensional.   In addition, current convex set methods give priority to the 

constituents of the scene which are dominant in terms of frequency of occurrence, with a 

tendency to ignore signature patterns which are clearly above the noise but infrequent in the 

data set.  This makes them unsuitable for detecting strong but small targets unless the 

target patterns are fully prespecified in advance. 
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SUMMARY OF THE INVENTION 

Accordingly, it is an object of this invention to provide a system for the detection of 

weak or hidden objects or substances embedded in complex backgrounds. 

Another object of this invention is to provide an algorithm which is useful on IHPS 

or other hyper and multidimensional systems to further reduce the effects of intrinsic and 

extrinsic noise while maintaining the resolution and efficiency of the system. 

Another object of this invention is to quickly and accurately detect hidden objects, 

substances or patterns embedded in complex backgrounds via the use of acoustic or other 

types of hypersensors. 

Another object of this invention is to provide an efficient system for signal processing 

capable of handling multidimensional analysis by employing a set of fast algorithms which 

greatly reduces the computational burden in comparison to existing methods. 

Another object of this invention is to provide a system for processing signals from 

hypersensors which offers true real time operation in a dynamic scenario. 

A further object of this invention to provide a system for the detecting of weak or 

hidden objects or substances embedded in complex backgrounds which offers an adaptive 

learning capability. 

These and additional objects of this invention are accomplished by the structures and 

processes hereinafter described. 

SERENE introduces an improved noise reduction technique useful on systems which 

use hypersensors such as IHPS, or other systems which use sensors which are hyper or 
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multi spectral. 

The SERENE technique comprises the following: 

1) Performing an autocorrelation test on the data vector input from the sensor to 

determine if the signal contains an unacceptably high percentage of noise; data vectors which 

fail to meet the S/N threshold are discarded. 

2) Performing a scaled c type comparison on the vector and discarding those which 

fail to meet the S/N threshold. 

3) Performing an autocorrelation test on a difference vector defined by the difference 

in the vector value from step 2 and   the exemplar or another designated vectors. 

SERENE may be employed through out  the  Adaptive Learning Module Processor 

pipeline and further processes the data stream to filter  intrinsic and extrinsic noise, and 

minimize exemplar noise effects in the survivor set. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Figure 1. is a representation of the data cube and the orientation of the spatial and 

wavelength information in X, A and T coordinates. 

Figure 2. is a block diagram of the preferred embodiment showing the system's parallel 

structure. 

Figure 3. is a logic flowchart of the operation of the prescreener 

Figure 4. is a representation of the plane created by V, and V2 during Gram-Schmidt 
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operations. 

Figure 5. is a representation of the orthogonal projections V1O and Veo during Gram- 

Schmidt operations. 

Figure 6. is a representation of the Salient vector and plane defined by V1O and V4o. 

Figure 7. is a representation of the 3-dimensional spanning space defined during Gram- 

Schmidt/Salient operations. 

Figure 8. is a representation of the 3-dimensional spanning space showing the salient 

vectors. 

Figure 9. is a representation of a hypertriangle convex manifold. 

Figure 10a. is a representation of a minimized hypertriangle defined using shrink wrap 

method 1. 

Figure 10b. is a representation of a minimized hypertriangle defined using shrink wrap 

method 2. 

Figure 11. is a representation of a minimized hypertriangle defined using shrink wrap 

method 3. 

Figure 12. is a logic flowchart of the operation of the adaptive learning module. 

Figure 13. is a flowchart of the operation of the demixer module. 

Figure 14. is  a logic flowchart of the operation of the SERENE technique's initial 

autocorrelation test on a complete data vector. 

Figure 15. is  a logic flowchart an embodiment of the SERENE technique's scaled e 

test. 
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Figures 16 and 17. are representations of the no noise cone decision boundary for the 

scaled e comparison illustrating the "dark pixel" effect. 

Figure 18. is   a logic flowchart of the SERENE S/N autocorrelation test in the 

prescreener module. 

Figure 19. is a representations of a decision boundaries for the Autocorrelation test 

based on statistical data on noise. 

Figure 20. is    a representations of a decision boundaries for the  Derivative test 

based on statistical data on noise. 

Figure 21. is  a logic flowchart of the SERENE technique's autocorrelation test 

integrated into the Gram-Schmidt process. 

DETAILED DESCRIPTION 

In a preferred embodiment the SERENE technique is integrated into the existing 

IHPS system employed on an aircraft or spacecraft.  As the craft flies over or in close 

proximity to an area of interest, the Hypersensor scans the scene or area of interest by 

taking successive snapshots of the scene below.   Each snapshot constitutes a frame of 

spectral data.   The spectral data is scanned frame by frame and displayed as variations in 

intensity. 

In the optical example, a frame is the diffracted image on a 2 dimensional focal plane 

of a narrow slit which accepts light from a narrow linear strip of the scene.   Variations of 



r^ 

Serial No. (unassigned) patent Application 
Inventors: Palmadesso, et al. Attorney Docket No. 78,735 

the optical sensor layout are possible. 

IHPS forms a series of pattern vectors through the concatenation of the outputs of 

multiple sensors. Each sensor measures a different attribute of the system being observed, 

and has a consistent relationship to all the other sensors. 

Referring now to the Figures, wherein like reference characters indicate like elements 

throughout the several views, Figure 1 illustrates a  representation of the data cube and the 

orientation of the spatial and wavelength information.     Data cube 200, is created by the 

concatenation of successive frames 210 (different spatial strips) and represents the observed 

spectral data of the scene provided by the hypersensor.   Each frame 210 comprises multiple 

lines 205; each line 205 being the spectral characteristic for a specific point in the scene 

which  correlates to a specific coordinate of the area scanned.   Frame 210  is configured such 

that the spatial information is expressed along the X axis and wavelength information is 

contained in the Z direction.      The observed spectral data, which is used to create data cube 

200 is expressed in vector form, and processed one spatial pixel, i.e. one spectrum, at a time. 

Each pixel   is fed into a preprocessor (not shown) which performs normalization and purges 

bad spectral data, bad spectral data being data corrupted or otherwise useless due to 

incomplete spectral information. 

Referring now to figure 2,  which shows a block diagram of the basic IHPS system 

architecture, data from the sensors d 200 is entered into a processing system 100 which 

employs a parallel-pipeline architecture.   Hypersensor 10 collects data and simultaneously 

transmits the collected data d 200 through two separate processor pipes, one for demixing 
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140, and one for adaptive learning operations 150.   In demixer pipeline 140,  demixer 

module 20, decomposes each pattern vector into a convex combination of a set of 

fundamental patterns E which are the constituents of the mixture.  The decomposition is 

accomplished using projection operations called 'Filter Vectors' F generated in adaptive 

learning pipeline 150, by adaptive learning module 30. 

Prescreener 50 constructs a survivor set/exemplar set {S} by extracting 

exemplars/survivors, or data collected by hypersensor 10 which may contain new or useful 

information.   The signature pattern of a weak constituent or an unresolved small target is 

separated from background patterns which may hide the target pattern in the unmixed data. 

A priori knowledge about the signatures of known targets can be used, and approximate 

signatures of unknown constituents are determined automatically.   Information detailing the 

composition of the demixed data patterns is sent to Output Module 40, along with 

information about the fundamental patterns c and Filter Vectors F.     Learning module SO, 

performs minimization operations and projects the exemplar set information into a reduced 

dimensional space, generating endmembers E and filter vectors F. 

For other types of hypersensors, the spectral vectors produced by the sensor array 

would be replaced by a vector of other types of data elements, such as the amplitudes of 

different frequencies of sound.   The organization of input data vectors may also vary 

somewhat depending on the type of sensor.  Aside from these sensor-dependent variations in 

the type and organization of the input data, the operation, capabilities, and output of the 

processing system would remain the same. 
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The parallel processing architecture illustrated in the figure 2 is a preferred structure, 

however, this system, algorithms and hardware contained herein may be employed in a 

system with a traditional architecture.   Demixer processor pipeline 140 comprises demixer 

module 20 which decomposes each data vector dkinto a convex combination of a set of 

fundamental patterns, which are endmembers or constituents of the mixture.  The 

decomposition is accomplished using projection operators called 'Filter Vectors' generated by 

adaptive learning module SO. 

Filter vectors  are the column vectors of minimum magnitude constituting matrix £ 

such that: 

ETE=I 

Lis the identity matrix, and E is the matrix whose columns are the endmember vectors. If 

the vector space defined by the endmembers is N dimensional, and each data vector d is a 

convex combination of the endmembers plus a noise vector N, then: 

d = c,E, +  c,E, + . . . + cnEn + N (x) 

Where c„ c2, . . ., cn are real, non-negative, numbers, and E„ E„ ...,£„ are the endmember 

vectors of the system. Stated alternatively: 

d =E c + N 

Where c is the column vector whose elements are c„ c.„ . . ., c . 

Filter vectors allow the signature pattern of a weak constituent or unresolved small 

target to be separated from known background patterns which may hide the target pattern 

in the spectral data.   Filter vectors demix the spectrum by projecting out one endmembe ier at 

10 
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a time. 

Information c detailing the composition of the demixed data spectrum is sent to 

Display/Output module 40, along with the information about the fundamental spectra 

patterns, and filter vectors from adaptive learning module 30.  Display/Output module 40, 

displays the distribution of the constituents of the scene, or transmits or stores the demixed 

data for later analysis. 

The second processor pipe 150 comprises prescreener 50, and adaptive learning 

module 30.   Referring now to figure 3, prescreener 50 receives data vectors from 

preprocessor (not shown) and generates a reduced set of vectors called the exemplar set 55. 

The exemplar set members are referred to as exemplars.   Exemplar set 55 is then 

transmitted to adaptive learning module 30.   Prescreener 50 reduces the amount of data 

processed by discarding spectral signatures which have been seen before within the set error 

criteria 57, 52 and therefore contain no new information.   This step reduces the 

computational burden on the other elements of the learning pipeline.   Exemplar set 55 is 

generally about 1000 vectors in size however the size of the exemplar set 55 can vary 

depending upon the conditions and applications. 

Prescreener 50 generates the exemplar set by comparing 54 the data spectra of the 

most recent pixel sampled with existing exemplars 55.  The exemplar set is generated by 

performing dot operations in accordance to the relation: 

d, • Sj > 1-8 (2) 

11 
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where, dj is the newly sampled data, Si is an existing exemplar set vector j= the jth exemplar, 

and e is variable controlling noise sensitivity.  Here, the vectors d, and Si are assumed to be 

normalized to unit magnitude. Thus, the condition d, • S, = 1 means that the two vectors are 

identical and the condition d( • § > 1-s means that they are almost identical if e is small. 

Vectors for d, which meet the above condition for any exemplar S, are discarded 52 and the next 

vector is examined.   Discarded vectors are not included in the exemplar set.   The value of s, 

which is set by the operator or a control system, is a function of the exemplar set size desired, 

memory length for exemplar set values, desired thruput of data and the noise in the signal 56. 

Generally, as the value of 6 is increased, the sensitivity of the system is decreased. 

The exemplar set vector, S}, used for the above comparison is preferably chosen via the 

use of a structured search technique to minimize the number of dot operations while offering 

thorough analysis of the exemplar set 55. This may be accomplished by comparing 54 the 

newly sampled data vector with the most recent vectors entered into the exemplar set. Other 

search methods which minimize the number of operations necessary for thorough matching are 

also suitable. 

Figure 3 illustrates the flowchart of the logical operation of prescreener 50. The pruner 

51 is a memory management device which determines when an exemplar set vector should be 

purged from the memory. Pruner 51 monitors exemplar set 55, and adjusts the control 

parameters to control exemplar set size. This is accomplished by setting the value for e 54, 

and the maximum allowed age of an exemplar, which determines the threshold for additions to 

the exemplar set and the time an exemplar is allowed to remain in the exemplar set without 

12 
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being regenerated. 

Inevitably, exemplar set 55, constructed as described above is contaminated by noise, 

which adversely affects the learning process performed in Learning module SO. 

In a preferred embodiment the   SERENE technique is implemented in prescreener 

module 50.  In this embodiment SERENE operates as a control system to set the value of the 

threshold c used in generating the exemplar set as discussed above.   SERENE employs S 

separate tests on   the data vectors, during the prescreening process of selecting exemplars. 

Each of the three tests are progressively more sensitive to noise contamination of the signal. 

Referring now to figure 14 which shows a flowchart of the operation of the SERENE 

technique's  initial test, first, SERENE samples the new data vector d and performs an 

autocorrelation test 300 on the data vector d. 

In autocorrelation test 300, SERENE introduces an «element shift into the data vector 

d 303, which will be represented by the notation d(a). The appropriate number of elements, n, 

are then truncated from the beginning of the original vector and the end of the shifted vector 

304, and both vectors are normalized to unit magnitude 302.   Next, SERENE computes the 

autocorrelation index 305, which is a dot product of normalized data vector d in its truncated 

form with the normalized truncated shifted data vector d(n) which we represent by the notation 

d • d(n).   SERENE then determines whether the autocorrelation index is above the selected 

threshold value 306.   If the autocorrelation index is above the selected threshold, SERENE 

retains the data vector for the next test 307.  If the autocorrelation index is below the selected 

threshold,  SERENE characterizes  the data  vector d  as  containing predominately noise, 

IS 
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disregards 308 it and selects the next data vector d,+„ where i is the ith data vector, for testing 

301. 

The SERENE technique makes a fundamental assumption that useful information 

contained in a data vector is more correlated than the noise contained in the same data vector. 

In operation, when the autocorrelation test is performed on a data vector the autocorrelation 

index will approach zero as the amount of noise in the signal increases.  The threshold value 

which lies between, 1 the maximum value for the autocorrelation index for 'white1 spectral signal 

with zero noise and 0, the minimum expectation value for a signal containing 100% noise, is 

selected as a function of the mission requirements and the available knowledge of the statistics 

of the spectral data signals and the noise, representing the minimal S/N requirements for a data 

vector to be considered useful by the IHPS system. 

Thus, the autocorrelation test of the complete data vector d, provides a very fast and 

efficient way to determine whether the data vector sampled contains a large enough information 

signal to be considered useful to the system. SERENE simply chooses a threshold which will 

allows signals which are too noisy for processing to be eliminated with a minimum time 

expenditure of processor resources. 

In yet another embodiment SERENE can operate using traditional autocorrelation 

techniques. In this embodiment of SERENE several different element shifts are performed and 

an autocorrelation length is defined as known by those skilled in the art. The autocorrelation 

length of the data vector is then compared to that typical of clean vectors. 

If the S/N is high enough for data vector d to survive the first test (the signal is not 

14 
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predominately noise), SERENE next performs a Scaled e comparison on the data vector d.   In 

the scaled e comparison, SERENE compares data vector d with an exemplar S. where j is 

simply the jth exemplar.   If data vector d falls within the range of an exemplar plus, a noise 

value chosen on the basis of system noise generated from statistical or test data, the data vector 

is considered to be equivalent to exemplar Sj and discarded. 

Referring now to figure 15 which shows a flowchart that is an embodiment of the 

SERENE technique's scaled e test, SERENE first receives a data vector which has passed the 

initial autocorrelation test discussed above. In the scaled c embodiment, SERENE compares 

data vector d with an exemplar Si using a value for c set in relation to noise. 

SERENE chooses a threshold magnitude for the noise | Nko | 401, based on the system 

noise generated from statistical or test data, where k is the scaling factor and a is the standard 

deviation for noise magnitudes. The selected value of | Nk(J | defines the decision boundary for 

the scaled e test.  Next, SERENE computes e 413 in accordance with the following equation: 

t(dobs) =i-cos ena=i-    ' cleani   =1 \<*clean\      ., K obsi 
Obs>     x    v-,-'0   "D3_J-     '   ,     ^ —-1-— (3) 

Vdcie«+iYko Jdlbs+Ni ko 

where dobs is the data vector observed (before normalization), dckan is a noise free spectral signal 

consistent with d^ (dclean= d^-noise), and 9DB is the angle between dclean and d,^, assuming an 

uncorrelated noise vector with magnitude |NkJ. SERENE then applies the standard 

prescreener test using the value for e computed in the previous step, and determines whether 

15 
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the difference between d (normalized data vector) and the normalized exemplar S, currently 

being considered can be explained by a noise vector with magnitude |Nte lor smaller (d • S 

> 1- e, which implies that the angle between the vectors is less than or equal to 6DB) 414.   If 

data vector d falls within this range then SERENE concludes that d is similar to S, and 

disregards it.   If d is beyond the defined range the data vector d is compared with the next 

exemplar Sj, or added to exemplar set 55 if all viable exemplar have been tested. 

Since the noise magnitude |NJ is preferably chosen on the basis of noise generated 

from statistical or test data, the scaled c comparison is most effective for filtering intrinsic noise, 

where some statistical basis or knowledge of the noise is available. In a high quality sensor, the 

magnitude of the intrinsic noise contribution will be small compared to the magnitude of a 

typical data vector. Some sensor data vectors d may have exceptionally small magnitude, as in 

the case of a hyperspectral imager looking at a dark object. In this case the intrinsic noise 

produces a large change in the direction of a vector, which could confuse the learning process. 

We refer to this phenomenon as the "dark pixel" effect. 

The 'scaled e' comparison between signal vector d and an exemplar Sj reduce the 

consequence of the "dark pixel" effect. Referring also to figures 16 and 17, which illustrate the 

basic concept, figure 16 shows unnormalized data vector d, as a solid line 410, and a pair of &„ 

noise vectors as dashed lines 411, 411'. The value for k is chosen to establish a decision 

threshold. ^ is likely to be orthogonal to d, as illustrated. This is the worst case as far as 

change is direction is concerned and also the most probable case in a high dimensional space. 

The dotted vectors 412 lie on the boundary of cone 413 such that any vector within cone 413 

16 
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can be considered the same as §,, because the difference is within the range associated with 

noise. If the vector can be considered the same as exemplar Sj then the vector is discarded as 

similar or repetitive. A vector lying outside cone 413 is assumed to be different. If the vector 

lies outside cone 413, data vector d is retained for the next test. The angle 9DB defines the 

decision boundary, and e = 1- cos 0DB. 9DB depends on the magnitude of d^ i.e., d before 

normalization, as is easily seen by comparing figures 16 and 17. The value of e becomes a 

function of |d |, i.e., e is scaled by Id I in accordance with the relationship disclosed in 

equation (3). 

Noise effect, however is not limited to dark pixels. External noise may affect any data 

vector in an unpredictable way. SERENE integrates an additional set of techniques into the 

prescreener module, 50 for reducing the impact of noise carried by data vectors of arbitrary 

magnitude, without prior knowledge of an expected noise magnitude. 

Referring to figure 18, an embodiment of SERENE applies S/N estimation methods to 

further filter noise in data vectors that have passed the initial autocorrelation and the scaled e 

test 426. If a vector is not determined to be equivalent to a candidate exemplar by the scaled 

£ test, an autocorrelation test is performed on the difference between that vector and the 

exemplars. 

SERENE first computes the difference vector DT which is the difference between the 

normalized data vector and the exemplar or (S,-d) 427. When the autocorrelation test is 

employed in the Gram-Schmidt process, as discussed latter, the difference vector is generated 

using the difference between the full exemplar and its projection into the current space, called 
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the residual.  Once the difference vector DT is defined ,  SERENE generates a shifted version 

of the difference vector, DT 428 defined as DT(n) where n is the number of elements DT is shifted 

by.  Next, n elements are truncated from DT and Dv(n) and both vectors are normalized 429. 

The autocorrelation index is then computed for the difference vector DT  430 by taking a dot 

product of DT against a shifted version of itself DT(n), which can be expressed as DT • DT(n) . 

If the difference vector's autocorrelation index falls within the noise parameters, or 

threshold, i.e., if the difference can be explained by noise,  SERENE concludes that there is a 

'match'  434 the data vector d is discarded and SERENE gets the next data vector d„ 

reinitiating the test regime 435, beginning with the initial autocorrelation test described in 

figure 14.     If the autocorrelation index is beyond the threshold, vector d is compared to other 

exemplars 436, 437, until a match is found or the vector is added to the exemplar set S 438. 

When a data vector d is added to the exemplar set SERENE gets the next vector and 

reinitiates the test regime 439, beginning with the initial autocorrelation test described in figure 

14. 

The decision boundary or threshold SERENE uses in the above autocorrelation test to 

determine whether there exist conditions which warrant further testing of the data vector d 434, 

may be set on the basis of the statistics of the noise 433 or by defining the threshold based on 

the statistics of the signal if the noise statistics are unavailable 432. 

Autocorrelation indices provides an measure of how much noise is mixed with a given 

data vector. Referring now to figure 19 which shows a statistical noise data, if the 

autocorrelation characteristics of the signal (spectra), sought are known, a threshold value 

18 
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(decision boundary) can be defined as illustrated by dashed line 568. 

If one knows the statistics of noise which one will ordinarily encounter, one can predict 

the relationship between the signal to noise ratio (S/N) of a data vector, e.g. Dv, and its 

autocorrelation length. Figure 19 shows shuch a relationship. For plural vectors having identical 

S/N, their respecive autocorrelations wUl vary statistically about a mean value. Curves 569 and 

569 are selected to encompass between them a preselected variation in autocorrelation index, 

within which the system will deem associated with a specific value of S/N. This variation could 

be, e.g., a preselected number of standard deviations about the mean value of autocorrelation 

length which one would expect at the given S/N. Selection of this variation is mission 

dependent, with a large width resulting in a larger number of noisy data vectors missed by the 

system.   Discriminant line 567 is arbitrarily set so that all data having autocorrelatin lengths 

567 (and correspondingly small S/N) are retained; those below are rejected. Line 567 is 

preferably set to intersect the "autocorrelation length" axis of figure 19 just below line 569 so 

that all clean data which autocorrelates within one's preselected statistical range will not be 

rejected. Although one could use this test on any data vector, it is preferred to use Dv, because 

it results from a subtraction of vectors. Because information is less random than noise, 

subtraction tends to remove information and leave noise, making it easier to identify and 

quantify the noise. This is especially important for dark pixels, in which the noise itself may be 

of the same order of magnitude as the signal. 

Another embodiment of SERENE uses a derivative test in place of the autocorrelation 

test as a measurement of the noisiness of a signal.   These are basically higher order finite 
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differences constructed by shifting the vector elements. If d(n) represents the data vector with 

its elements shifted to the right by n places, then the n* autocorrelation index is oc d«d(n), and 

the second derivative index is oc (d<">-2d + d<+")4. As illustrated in figure 20, derivative indices 

tend to be more sensitive to the presence of noise as indicated by the shaded area 570, which 

represents the range of expected derivative values for a given S/N ratio due to the randomness 

of the noise and the diversity of signals area quickly crossing the decision boundary 571 or 

threshold, providing more accurate estimates of S/N.   SERENE applies these methods for 

estimating S/N directly from the data to the problem of reducing the effects of noise on the 

IHPS learning process. 

Yet another embodiment the SERENE technique may also use a 'nonlinear scaled e' 

comparison in Prescreener Module 50 in place of the 'scaled e' comparison. The magnitude of 

the signal vector is in general less than the magnitude of the observed vector, which is the 

signal plus noise. Statistically, the most likely relationship is dä
obs* d* + N*. Therefore the best 

value for c is likely to be larger than the value computed above, for small magnitude data 

vectors.   To correct for this, SERENE computes c from a formula of the form 

e„i(dobs)=f(z(dobs)) 

where/is a function such that f(e(dobs))~e(dobs) for large magnitude data vectors, and ^e(dj) 

> e(dob5) for small vectors. This biases the exemplar selection process against small vectors, 

which are most likely to be seriously corrupted by noise. The optimal functional form for the 

function f can be inferred from the noise statistics, if they are known, or constructed in an 
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empirical way well known to those skilled in the art 

Again referring to figure ,, the exempiar set data, as computed by prescreener 50 is 

«t, a set of endows {Ej}, where, is thejth endmember, which together span the current 

scene. Endmembers are a set of fundamental patterns (vectors) from which any pattern vector 

in the data se, can he reconstructed as a convex combination in reduced dimensiona, space to 

within an error determined by the noise or other error criteria. The retirement that a,, of the 

observed spectra, vectors „k be represent as convex combinations of conventional basis 

vectors, insures tha, the decomposition makes sense as a physical mixture of co„s,,,ue„,s. since 

any such mixture must have this nronprtv    TU-        t - 
tms property.   The resulting patterns conform as closely as 

possible to signatures of actual constituents of the scene. 

Referring now to figure ,,. Iearning mod„]e ^ ^^ ^ ^ ^^ 

analvsis using salients to construe, a reduced dimensional spanning space „5. while retainmg 

•he spectra, information contained in the exemplar set. The spanning space is constructe<f ^ 

on a spectra, u„ique„ess hierarchy.   The observed spectra of the exempt set, expressed as 

vector data are then projected into the spanning space 12,  Computation of the endmembers 

- Performed by   Learning moaule so hy projecting ,he exemplar set data ^ , ^ 

dimensional spanning space using . Gram-Schmidt/Salien, ana.ysis of the exemplar set ^ 

and emptying Shrink Wrap minimiaat.on ,„ to m,,mize the spanning ^ ^ ^ 

usmg Gram-Schnudt/Sahent a„a,ysis. The endmembers are defined us by the vertices of the 

hyper triangie defined by the minimized spanning space as illustrated in figure 8. 
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Gram-Schmidt/ Salient Analysis 

The spanning space is defined by using a Gram-Schmidt / Salient analysis of the 

exemplar set.    In the parameter vector space which contains the exemplar set data, one first 

determines the two vectors which are furthest apart in the space, then, in the plane formed by 

these two vectors, select two mutually orthogonal vectors which lie in the plane. These mutually 

orthogonal vectors are for convenience called basis vectors, for reasons made apparent below. 

Then select the vector in the data cube which is furthest from the plane and identify the 

hyperplane in which the basis vectors, and the newly selected vector, lie, and select a third basis 

vector such that it lies in the hyperplane and is mutually orthogonal to the other two basis 

vectors. One repeats this process, and accumulates more and more mutually orthogonal basis 

vectors, until the most distant remaining vector is found to be within a preselected distance of 

the hyperplane containing all the basis vectors. At this point, the exemplar set vectors are 

projected onto the reduced dimensional space defined by these basis vectors, and further 

processing is done thereon. By reducing the dimension of the vector space in which one must 

work, one correspondingly reduces the number of operations one must do to perform any 

calculation. Because none of the data vectors lie very far outside the hypervolume spanned by 

the basis vectors, projecting the vectors into this subspace will change their magnitude or 

direction very little, i.e. projection merely sheds components of each vector which were small 

already. Furthermore, because such components are necessarily too small to correspond to 

significant image features, these components are disproportionately likely to be noise, and 

discarding them will increase the system's signal to noise   ratio. 
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Gram-Schmidt \ Salient analysis of the exemplar set data is performed in accordance 

with the following algorithm: 

a) Designate the two exemplars farthest apart, V, and V2.   Figure 4 illustrates the 

orientation of V, and Vs and the plane that V, and V, define. 

b) Generate a 2 dimensional orthogonal set of basis vectors from V, and V, labeled Vlo 

and V,0 in the plane defined by V, and V„ labeled as PVolä as illustrated in Figure 5. 

c) Determine the salient vector (vector displaced farthest from plane) in relation to plane 

PVOI.„ defined in Figure 6 as S,. 

d) The salient S, can be represented as a sum of vectors S,x and S,|, where S.j. is 

orthogonal to the plane PV01S and S, | lies in the plane. Use the Gram-Schmidt procedure to 

find S,x, and call this V3o. V1O, VSo and VSo now define a subspace in 3 dimensions. See the 

figure 7. representation of the subspace created by this step. 

e) Select the salient S2 which is the exemplar farthest from the subspace defined by step 

(d). 

f) Generate a new orthogonal direction from S2 defined as V^. Vw coupled with Vlot 

Vio, and VSo now defines a subspace of 4 dimensions. 

g) Steps (e) and (f) are repeated to define a spanning space of N dimensions. The 

distance out of the current subspace of the salient selected at each step is the maximum residual 

error which would be incurred by projecting all of the exemplars into the subspace. This 

decreases at each stage, until the remaining error is within a specified error tolerance. At this 

point the subspace construction process is complete.    The value of   N is the number of 
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dimensions necessary to allow the projection of the exemplars into the subspace while at the 

same time preserving important but infrequent signatures. 

h)   Project all of the exemplar data into the spanning space defined in steps (a><g). 

In  another embodiment, SERENE  is integrated   into  the Gram-Schmidt/ Salient 

technique. Referring now to figure 21, when SERENE is incorporated into the Gram-Schmidt 

process, each time an exemplar is projected into the spanning space defined by Gram-Schmidt 

530 SERENE selects the largest residual as a candidate salient 531. Next, SERENE determines 

whether the residual is above the threshold 532, the selection of which is mission dependent. 

If the residual is below the threshold, SERENE concludes that a sufficient amount of data has 

been projected into the spanning space and the Shrink Wrap process is initiated 533.   If the 

candidate residual is above the threshold, an autocorrelation test is then performed on the 

residual comparing the full data vector to its Gram-Schmidt projection 53*. The residual is the 

difference between the data vector and its projection, and the objective of the test is to 

determine if the difference is the result of noise alone, or is indicative of information not yet 

captured by the Gram-Schmidt space.   The autocorrelation test implemented in the Gram- 

Schmidt process follows the algorithm of the autocorrelation test defined above and illustrated 

in figure 18. 

Referring to figure 21 an autocorrelation index is computed using the residual 535. The 

autocorrelation index of the residual is then used to determine if the residual is clean (noise 

free) enough to be a salient 537.  If sufficient knowledge of the noise statistics is available, the 
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index is used to estimate the noise magnitude, which in turn is used to construct the cone in 

the scaled e test 536, otherwise the index value is compared to a predetermined threshold, 

described above.    If the residual is determined to be noise dominated 537, the residual 

discarded 539 and another (the next largest) is chosen 531.  If the residual is determined to be 

sufficiently clean 537, the residual is used to define the next Gram-Schmidt basis vector and 

added to the Gram-Schmidt basis set 538. 

Thus SERENE is able to continually filter noise and further reduce the afTects of 

intrinsic and extrinsic noise while maintaining the resolution and efficiency of the system 

In other embodiments, these correlation techniques can also be integrated into the Shrink 

Wrap process. 

Shrink Wrap 

Once the .V-dimensional spanning space is defined using the Gram-Schmidt \ Salient 

analysis, a convex manifold in the form of a hypertriangle within the spanning space is 

generated using shrink wrap minimization. Shrink wrap minimization of the spanning space 

is a simple minimization operation, in which the volume of the manifold is reduced, while 

maintaining the condition that all of the data vectors projected into the reduced dimensional 

space via Gram-Schmidt \ Salient operations are contained within the hypertriangle. The 

vertices of the hypertriangle are the endmembers, and the volume defined by the hypertriangle 

itself is the locus of all possible mixtures (convex combinations) of endmembers. The shrink 

wrap process determines good approximations of the physical constituents of the scene 
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(endmembers), by insuring that the shape and orientation of the hypertriangle conforms as 

closely as possible to the actual distribution of the data vectors (exemplars). The exemplars are 

assumed to be mixtures of the actual constituents. The number of endmembers is equal to the 

dimension of the Gram-Schmidt /Salient spanning space. 

The salients are used to guide the shrink wrap process. Referring to figure 8, 

hypertriangle TSlS2S3 is defined by salient vectors, however, other vectors which include data 

may not be within the spanning space which TSlS2Ss defines, as depicted in figure 9. The shrink 

wrap operation must satisfy the condition that all of the data vectors projected into the 

spanning space must be contained within the volume defined by convex manifold TElEaE3. The 

shrink wrap operation starts with TElEiE3= TSlS2S3 and then expands or contracts the triangle 

TElEiE3 by manipulating the vertices, E„ E., and E, or by manipulating the orientation of planes 

that  define  TElEiE3 , by the minimal amount to fulfill the above stated condition. 

For the foregoing system, one could use advantageously any of the tests described above 

to filter out noisy data at any point within the system. These tests, however, vary in the amount 

of computation   they  require.   As   a   result,   the  fixed   epsilon   correlation   test   is   most 

advantageously used in a preprocessor to provide a coarse and computationally cheap way to 

remove badly corrupted data at the outset. The scaled epsilon test, or the substration and 

autocorrelation test (cf. Figure 19) are most advantageous as a prescreener, immediately prior 

to testing the data against exemplars. The derivitive test is best used in the Gram-Schmidt 

processor, to test and weed out spurious endmember Candidates. Addition of bogus endmembers 

will rapidly destroy system effectiveness, so this most precise and computationtally expensive 
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test is best used here. 

Just as subtracting data vectors amplifies the effect of noise, so too does taking the 

derivative of data, provided that noise is changing more rapidly than the data, i.e. that the noise 

has a higher frequency spectral content. If the data vectors are hyperspectral data, most of the 

elements of the vectors represent light intensity as a function of frequency bin, i.e. a spectrum 

If one uses any known numerical method to calculate, element by element, the first or higher 

derivative of the normalized spectrum as a function of frequency, one produces a resultant 

vector, each of whose elements corresponds to the first or higher derivative of the spectrum at 

the respective frequency bins represented by the original data vector. One can then estimate 

how rapidly the spectrum is changing by calculating the magnitude of the resultant vector, a 

high magnitude indicating high noise content. 

Figure 20 illustrates this, and is a schematic plot of magnitude, or "derivative index," as 

a function of S/N. Similar to the data of figure 19, the derivative index will statistically vary 

about some mean value for a given data vector S/N, and thus one preferably selects the degree 

of variation which one's mission can tolerate, and generates corresponding boundary curves 570. 

Discriminant 571 is arbitrarily set to reject as noisy all data having S/N above line 571. 

This discriminant is preferably chosen to be just above the zero noise values of curves 570 to 

ensure that all data with zero noise will not be rejected. 

As figure 20 indicates, curves 570 rise sharply with increasing noise. One need not 

practice this approach with a first derivative, but may use a derivative of any order, and, in 

general, the curves rise more sharply and provide better noise discrimination with increasing 
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order derivatives. However, the higher the order of the derivative, the more computations are 

required. 

This method is much faster than conventional forier transforms and other standard 

methods of determining frequency content, and is therefore better suited for use in high data 

rate systems. 

For purposes of example, the method described above and the following methods have 

been found effective, however, any minimization method which maintains the condition that all 

of the data vectors be contained within the minimized space is suitable. 

Adaptive learning module 30 generates a set of filter vectors {FJ and endmembers {E„ 

E_„ E,...EN}in accordance with one or a combination of the following procedures, or variants 

thereof: 

Method 1 

With reference to figure 10a, find a set of endmembers {£,} such that each endmember 

E, is matched to a salient vector S„ and is as close as possible to its salient, subject to the 

condition that all the data vectors are inside the hypertriangle with vertices {£,}. I.e., minimize 

c=j;(Ei-si)
2 

subject to the constraints F, • dk > 0 for all i and k and ND is the number of dimensions. The 

filter vectors are computed from the candidate endmembers as described above. This constraint 

condition means that all the coefficients of the decomposition of dk into endmembers are non- 

negative, which is equivalent to saying that all dk are inside TElE,..EN .   This is a nonlinear 
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constrained optimization problem which can be solved approximately and quickly using various 

iterative constrained gradient methods. 

Method 2 

Compute a set of filter vectors {Fsi} from the salients {S,}, using the formulas previously 

provided. These vectors will not, in general satisfy the shrink wrapping constraints see figure 

10b. Find a new set of Filter vectors {FJ such that each Filter vector F-, is matched to a salient 

Filter vector F„, and is as close as possible to its salient filter, subject to the condition that all 

the data vectors are inside the hypertriangle.   I.e., minimize 

C = (F-FJ- 

subject to the constraints Fj • dk > 0 for all k. This is a set of independent quadratic 

programming problems with linear constraints, which can be solved in parallel using standard 

methods. The decoupling of the individual filter vector calculations increases computational 

efficiency. Manipulation of the Filter vectors instead of the endmember vectors is equivalent 

to manipulating the plane faces of the triangle instead of the vertices. Given solutions for the 

Filter vectors, find the endmembers using the same procedure used to compute Filter vectors 

from endmembers (the defining relationships are symmetric except for a normalization constant). 

Method 3 

With reference to figure 11, find an approximate centroid Cd of the set of exemplars, and 

then find the hyperplane of dimension one less than the dimension of the Gram-Schmidt / 
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Salient space which is closest to the centroid.  Hyperplane 120 divides the complete subspace 

into two halves, and the minimization is subject to the constraint that all the survivor vectors 

dk must be in the same half-space as the centroid {cd}.  The normal to the optimal hyperplane 

120, is F„ the first filter vector, and the condition that all the survivors are in the same half- 

space is equivalent to the constraint that F, • dk > 0 for all k.   This process is equivalent to 

finding a vector F, with a fixed magnitude which minimizes the dot product F, • Cd subject to 

the constraint F, • dk > 0 for all k.   As such it is amenable to solution using conventional 

constrained optimization methods.   The hypertriangle TElEiEi can be constructed out of a set 

of suitably chosen optimal (locally minimal distance to the centroid) bounding hyperplanes 

which form the faces of the convex manifold.   The normal to each face defines the associated 

filter vector. Again, the endmembers can be determined from the Filter vectors at the end of 

the shrink wrapping process. 

Referring to figure 12, once the endmembers and filter vectors are computed  adaptive 

learning module SO stores this endmember and filter vector data, along with data reflecting the 

exemplar set, and source vectors S3 for future recall.   The adaptive learning module SO then 

searches the exemplar set for any changes. If the system detects change in the exemplar set 99, 

the Gram-Schmidt and shrink wrap processes are repeated.  This process allows the system to 

continually learn and adapt to changes in the environment.    Endmember data and the 

accompanying exemplar set and source data can be labeled as being consistent with a particular 

threat or target allowing the system to learn and remember the signature of specific targets in 

real time S-t. 
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Similarly, the IHPS Shrink Wrap procedure involves an iterative movement of candidate 

endmember vectors, subject to the condition that all the exemplars end up inside the 

hypertriangle defined by the endmembers. Small excursions of exemplar vectors outside the 

hypertriangle can be ignored if the difference between the actual exemplar and its projection on 

the hypertriangle can be attributed to noise. 

In the real time mode, preprocessor, prescreener and the Gram-Schmidt/shrink wrap 

routines all run simultaneously in parallel. 

Again, referring to figure 1, the filter vectors and endmember data stream are 

transmitted from learning module SO, to demixer module 40, for computation of the endmember 

coefficients. The original data set from the sensor is also transmitted to demixer module 20 

through the first processor pipe. 

Demixer module 20 may contain several processors, each of which convolves the 

unprocessed data vector with a different filter vector. These operations could be performed 

sequentially on a single fast processor, but in the best mode they are performed in parallel. The 

output of demixer module 20, is a vector called the endmember coefficient vector, the jth 

element of which indicates the fraction of the jth fundamental pattern which is present in the 

unprocessed data vector. The endmember coefficients indicate the amplitude of the signal from 

the associated endmember, in a mixed spectrum. 

Demixer module 20 convolves the unprocessed data vector and computes the endmember 

coefficient in accordance with the equation; 
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n 
FJ*^=£cJkFJ,VFJ,Nk*cJk 

where F.- said filter vector,  dk = said data set, cjk = said endmember coefficient,  Nk = noise 

vector and  E— said endmember. 

Demixer module 20 next computes the fraction coefficient 131, which tells what 

percentage of the photons from the given pixel are associated with the endmember in accordance 

to the equation: 

_CjkA(E)j 
jk fraction—^J- 

where A(dk) is the area under vector dk, i.e. the sum of the elements of dk. 

Figure 13 illustrates the flowchart for demixer module 20 operation including the 

demixer module's function in the system's learning process. If the pixel information passed from 

the preprocessor indicates bad data or an unlearned spectrum 133, 134 demixer module 20 

routes that information to the display/ output module 40 with a notation of the status of the 

pixel data 135, 136. 

The spectral information, filter vectors, endmember coefficients, and all is passed to the 

display/ output module 40 for display and further processing 138. The spectral characteristics 

of the data is displayed in terms of endmembers and endmember coefficients in maintaining to 

the relation: 
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n 

where  dk = said data set, cjk = said endmember coefficient and c is > 0,  Nk = noise and E = 

said endmember. 

As described above, IHPS uses the exemplar set vectors S as the foundation for 

describing a scene observed by the hypersensor 10, generating therefrom endmembers E, which 

are the fundamental constituents of each pixel used to describe the scene sampled by 

hypersensor 10. A data vector d having a low S/N ratio, when allowed to enter the 

exemplar set {S}, often have an adverse efTect on the systems operation.  When a low S/N or 

otherwise noisy vector d is designated as an exemplar S-, and allowed to infiltrate the exemplar 

set {S}, the prescreeners ability to discriminate new information from repetitive or useless data 

can be compromised.   This may happen because an exemplar S containing a high content of 

noise is will most certainly be characterized by the prescreener 50 as dissimilar from most of 

the other data vectors including other noise corrupted data causing a breakdown in the 

prescreeners ability to discard repetitive data.   Thus, when the system samples a succession of 

noisy data or a noisy cluster of data, prescreener 50  may become confused, and the ability of 

the prescreener to make accurate decisions on whether a match condition exist between d and 

S is compromised. 

The SERENE technique greatly curtails this phenomena, by filtering out data vectors 

with low S/N ratios, thereby preventing the corruption of the exemplar set by adding a degree 

of resistance to clusters of noisy data the system may encounter. 
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Noise allowed to enter the system may also have a cumulative effect, causing ,he 

endmembera generated from a noisy exemplar to be inaccurate in the sense that noise contained 

in the exemp.ar becomes a substantial part of the mixture defined by the endmembera rather 

than the information signal the exemplar contains.    Degradation in the accuracy of the 

information described by the endmembera causes a reduction in the system resolution.  One 

»ay to minimize this effect is ,„ place a limit on the hfe span of the exemphars, however this 

necessitates the systems relearning of exemplars periodically because of the shorter exemplar 

lifespan.   This necessarily causes a reduction of the systems on station time in a real time 

environment. 

The exemplars used in a system employing SERENE may be assigned a longer lifespan 

thereby necessarily extending the systems on station time. A further benefit of reducing the 

noise in the exemplars S allowed in the exemplar se, (S}is the generation of endmembera which 

accurately describe each pixel, thus improving systems resolution. more 

Obviously, many modifications and variations of the present invention are possible in 

light of the above teachings.   For example this invention may be practiced without the use of 

a parallel processing architecture, or the SERENE technique may be applied to the Presenter, 

Gram-Schmidt and Shrink Wrap operations, or combinations of the nonlinear scaled e test, 

scaled e and the derivative test may be combined with the autocorrelation test within the 

SERENE technique. 

It is therefore understood that, 
the invention 

may be practiced otherwise than as specifically described. 
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ABSTRACT 

The Intelligent Hypersensor Processing System (IHPS) is a system for the rapid detection of 

small, weak, or hidden objects, substances, or patterns embedded in complex backgrounds, 

providing fast adaptive processing for demixing and recognizing patterns or signatures in 

data provided by certain types of "hypersensors".  SERENE introduces an improved noise 

reduction algorithm useful on systems which use hypersensors such as IHPS, or other 

systems which use sensors which are hyper or multi spectral.  The SERENE technique may 

be employed through out  the Learning Module Processor pipelining and further processes 

the data stream to filter  intrinsic and extrinsic noise, and minimize exemplar noise effects 

the exemplar set.   This system represents an alternative to prior systems for hidden object 

detection by solving the problems encountered when attempting to detect hidden 

objects/targets in dynamic scenarios at real-time. 

in 
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