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SYSTEM FOR ELIMINATING OR REDUCING EXEMPLAR NOISE EFFECTS
(SERENE)

BACKGROUND OF THE INVENTION

The present invention relates generally to processing multi-dimensional signals from
certain types of sensors, and more particularly to a system for reducing the effects of noise
carried on this type of signal.

Historically there have been three types of approaches to the problems relating to the
defection of objects, substances or patterns embedded in complex backgrounds.

The first approach has been to use low dimensional sensor systems which attempt to detect
a clean signature of a well known t-arget in some small, carefully chosen subset of all

~ possible attributes, e.g., one or a few spectral bands. These systems generally have difficulty
when the target signature is heavily mixed in with other signals, so they typically can detect
subpixel targets or minority chemical constituents of a mixture only under ideal conditions,
if at all. The target generally must fill at least one pixel, or be dominant in some other
sense as in some hyperspectral bands. Also, the optimal choice of bands may vary with the
observing conditions or background (e.g. weather and lighting). so such systems work best
in stable, predictable environments. These systems are simpler than the high dimensional
sensors (hypersensors), but they also tend to be less sensitive to subdominant targets and
less adaptable.

A hypersensor is a sensor which produces as its output a high dimensional vector or

matrix consisting of many separate elements, each of which is a measurement of a different
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attribute of the system or scene under consideration. A hyperspectral imager is an example
of a hypersensor. Hypersensors based on acoustic or other types of signals, or combinations
of different types of input signals are also possible.

The second approach has been to employ high dimensional systems or hypersensors
which seek to detect well known (prespecified) targets in complex backgrounds by using
Principle Components Analysis (PCA) or similar linear methods to construct a
representation of the background. Orthogonal projection methods are then used to separate
the target from the background. This approach has several disadvantages. The methods
used to characterize the background are typically not 'real time algorithms'; they are
relatively slow, and must operate on the entire data set at once, and hence are better suited
to post-processing than real time operation. The background characterization can get
confused if the target is present in a statistically significant measure when the background is
being studied, causing the process to fail. Also, the appearance of the target signature may
vary wAith the environmental conditions: this must be accounted for in advance, and it is
generally very difficult to do. Finally, these PCA methods are not well suited for detecting
and describing unanticipated targets, (objects or substances which have not been prespecified
in detail, but which may be important) because the representation of the background
constructed by these methods mix the properties of the actual scene constituents in an
unphysical and unpredictable way.

The more recent approach, is based on conventional convex set methods, which

attempt to address the 'endmember' problem. The endmembers are a set of basis signatures
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from which every observed spectra in the dataset can be composed in the form of a convex
combination, ie., a weighted sum with non-negative coefficients. The 'non-negativity
condition insures that the sum can sensibly be interpreted as a mixture of spectra, which
cannot contain negative fractions of any ingredient. Thus every data vector is, to within
some error tolerance, a mixture of endmembers. If the endmembers are properly
constructed, they représent approximations to the signature patterns of the actual
constituents of the scene being observed. Orthogonal projection techniques are used to

demix each data vector into its constituent endmembers. These techniques are conceptually

~ the most powerful of the previous approaches, but current methods for implementing the

convex set ideas are slow, (not real time methods) and cannot handle high dimensional
pattern spaces. This last problem is a serious limitation, and renders these methods
unsuitable for detecting weak targets, since every constituent of a scene which is more
dominant than the target must be accounted for in the endmember set, making weak target
problems high dimensional. In addition, current convex set methods give priority to the
constituents of the scene which are dominant in terms of frequency of occurrence, with a
tendency to ignore signature patterns which are clearly above the noise but infrequent in the
data set. This makes.them unsuitable for detecting strong but small targets unless the

target patterns are fully prespecified in advance.
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SUMMARY OF THE INVENTION

Accordingly, it is an object of this invention to provide a system for the detection of
weak or hidden objects or substances embedded in complex backgrounds.

Another object of this invention is to provide an algorithm which is useful on IHPS
or other hyper and multidimensional systems to further reduce the effects of intrinsic and
extrinsic noise while maintaining the resolution and efficiency of the system.

Another object of this invention is to quickly and accurately detect hidden objects,
substances or patterns embedded in complex backgrounds via the use of acoustic or other
types of hypersensors.

Another object of this invention is to provide an efficient system for signal processing
capable of handling multidimensional analysis by employing a set of fast algorithms which
greatly reduces the computational burden in comparison to existing methods.

Another object of this invention is to provide a system for processing signals from
hypersensors which offers true real time operation in a dynamic scenario.

A further object of this invention to provide a system for the detecting of weak or
hidden objects or substances embedded in complex backgrounds which offers an adaptive |
learning capability.

These and additional objects of this invention are accomplished by the structures and
processes hereinafter described.

SERENE introduces an improved‘ noise reduction technique uséful on systems which

use hypersensors such as IHPS, or other systems which use sensors which are hyper or
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multi spectral.

The SERENE technique comprises the following:

1) Performing an autocorrelation test on the data vector input from the sensor to
determine if the signal contains an unacceptably high percentage of noise; data vectors which
fail to meet the S/N threshold are discarded.

2) Performing a scaled e type comparison on the vector and discarding those which
fail to meet the S/N threshold.

8) Performing an autocorrelation test on a difference vector defined by the difference
in the vector value from step 2 and the exemplar or another designated vectors.

SERENE may be employed through out the Adaptive Learning Module Processor
pipeline and further processes the data stream to filter intrinsic and extrinsic noise, and

minimize exemplar noise effects in the survivor set.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. is a representation of the data cube and the orientation of the spatial and
wavelength information in X, 2 and T coordinates.

Figure 2. is a block diagram of the preferred embodiment showing the system's paralle]
structure.

Figure 8. is a logic flowchart of the operation of the prescreener

Figure 4. is a representation of the plane created by V, and V, during Gram-Schmidt
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Figure 5. is a representation of the orthogonal projections V,  and V,, during Gram-
Schmidt operations.

Figure 6. is a representation of the Salient vector and plane defined by V,and V,,.

Figure 7. is a representation of the $-dimensional spanning space defined during Gram-
Schmidt/Salient operations.

Figure 8. is a representation of the 3-dimensional spanning space showing the salient
vectors.

Figure 9. is a representation of a hypertriangle convex manifold.

Figure 10a. is a representation of a minimized hypertriangle defined using shrink wrap
method 1.

Figure 10b. is a representation of a minimized hypertriangle defined using shrink wrap
method 2.

Figure 11. is a representation of a minimized hypertriangle defined using shrink wrap
method 3.

Figure 12. is a logic flowchart of the operation of the adaptive learning module.

Figure 18. is a flowchart of the operation of the demixer module.

Figure 1+. is a logic flowchart of the operation of the SERENE technique's initial
autocorrelation test on a complete data vector.

Figure 15. is a logic flowchart an embodiment of the SERENE technique's scaled ¢

test.
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Figures 16 and 17. are representations of the no noise cone decision boundary for the
scaled € comparison illustrating the "dark pixel” effect.

Figure 18. is a logic flowchart of the SERENE S/N autocorrelation test in the
prescreener module.

Figure 19. is a representations of a decision boundaries for the Autocorrelation test
based on statistical data on noise.

Figure 20. is a representations of a decision boundaries for the Derivative test
based on statistical data on noise.

Figure 21. is a logic flowchart of the SERENE technique's autocorrelation test

integrated into the Gram-Schmidt process.
DETAILED DESCRIPTION

In a preferred embodiment the SERENE technique is integrated into the existing
IHPS system employed on an aircraft or spacecraft. As the craft flies over or in close
proximity to an area of interest, the Hypersensor scans the scene or area of interest by
taking successive snapshots of the scene below. Each snapshot constitutes a frame of
spectral data. The spectral data is scanned frame by frame and displayed as variations in
intensity.

In the optical example, a frame is the diffracted image on a 2 dimensional focal plane

of a narrow slit which accepts light from a narrow linear strip of the scene. Variations of

~1



Serial No. (unassigned) Patent Application
Inventors: Palmadesso, et al. . Attorney Docket No. 78,785

the optical sensor layout are possible.

IHPS forms a series of pattern vectors through the concatenation of the outputs of
multiple sensors. Each sensor measures a different attribute of the system beihg observed,
and has a consistent relationship to all the other sensors.

Referring now to the Figures, wherein like reference characters indicate like elements
throughout the several views, F igure 1 illustrates a representation of the data éube and the
orientation of the spatial and wavelength information. Data cube 200, is created by the
concatenation of successive frames 210 (different spatial strips) and represents the observed
spectral data of the scene provided by the hypersensor. Each frame 210 comprises multiple
lines 205; each line 205 being the spectral characteristic for a specific point in the scene
which correlates to a specific coordinate of the area scanned. Frame 210 is configured such
that the spatial informatiop is expressed along the X axis and wavelength information is
contained in the Z direction. The observed spectral data, which is used to create data cube
200 is expressed in vector form, and processed one spatial pixel, i.e. one spectrum, at a time.
Each pixel is fed into a preprocessor (not shown) which performs normalization and purges
bad spectral data, bad spectral data being data corrupted or otherwise useless due to
incomplete spectral information.

Referring now to figure 2, which shows a block diagram of the basic IHPS system
architecture, data from the sensors d 200 is entered into a processing system 100 which
employs a parallel-pipeline architecture. Hypersensor 10 collects data and simultaneously

transmits the collected data d 200 through two separate processor pipes, one for demixing
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140, and one for adaptive learning operations 150. In demixer pipeline 140, démixer
module 20, decomposes each pattern vector into a convex combination of a set of
fundamental patterns E which are the constituents of the mixture. The decomposition is
accomplished using projection operations called 'Filter Vectors' F generated in adaptive
learning pipeline 150, by adaptive learning module 30.

Prescreener 50 constructs a survivor set/ exemplar set {S} by extracting
exemplars/survivors, or data collected by hypersensor 10 which may contain new or useful
information. The signature pattern of a weak constituent or an unresolved small target is
separated frqm background patterns which may hide the target pattern in the unmixed data.
A priori knowledge about the signatures of known targets can be used, and approximate
signatures of unknown constituents are determined automatically. Information detailing .the
composition of the demixed data patterns is sent to Output Module 40, along with
information about the fundamental patterns ¢ and Filter Vectors F. Learning module 30,
performs minimization operations and projects the exemplar set information into a reduced
dimensional space, generating endmembers E and filter vectors F.

For other types of hypersensors, the spectral vectors produced by the sensor array
would be replaced by a vector of other types of data elements, such as the amplitudes of
different frequencies of sound. The organization of input data vectors may also vary
somewhat depending on the type of sensor. Aside from these sensor-dependent variations in
the type and organization of the input data, the operation, capabilities, and output of the

processing system would remain the same.
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The parallel processing architecture illustrated in the figure 2 is a preferred structure,
however, this system, algorithms and hardware contained herein may be employed in a
system with a traditional architecture. Demixer processor pipeline 140 comprises demixer
module 20 which decomposes each data vector d, into a convex combination of a set of
fundamental patterns, which are endmembers or constituents of the mixture. The
decomposition is accomplished using projection operators called 'Filter Vectors' generated by
adaptive learning module 30.

Filter vectors are the column vectors of minimum magnitude constituting matrix F

such that:

Lis the identity matrix, and E is the matrix whose columns are the endmember vectors. If
the vector space defined by the endmembers is N dimensional, and each data vector d is a
convex combination of the endmembers plus a noise vector N, then:

d=cE, + ¢E,+...+cE +N (1)
Where ¢, c,, .. ., ¢, are real, non-negative, numbers, and E,,AE_,, .. E, are the endmember
vectors of the system. Stated alternatively:

d=Ec+N

Where ¢ is the column vector whose elements are P R o
Filter vectors allow the signature pattern of a weak constituent or unresolved small

target to be separated from known background patterns which may hide the target pattern

in the spectral data. Filter vectors demix the spectrum by projecting out one endmember at

10
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Information ¢ detailing the composition of the demixed data spectrum is sent to
Display/Output module 40, along with the information about the fundamental spectra
patterns, Aand filter vectors from adaptive learning module 30. Display/Output module 40,
displays the distribution of the constituents of the scene, or transmits or stores the demixed
data for later analysis.

The second processor pipe 150 comprises prescreener 50, and adaptive leéming
module 30. Referring now to figure 3, prescreener 50 receives data vectors from
preprocessor (not shown) and generates a reduced set of vectors called the exemplar set 55.
The exemplar set members are referred to as exerﬁplars. Exemplar set 55 is then
transmitted to adaptive learning module 30. Prescreener 50 reduces the amount of data
processed by discarding spectral signatures which have been seen before within the set error
criteria 57, 52 and therefore contain no new information. This step reduces the
computational burden on the other elements of the learning pipeline. Exemplar set 55 is
generally about 1000 vectors in size however the size of the exemplar set 55 can vary
depending upon the conditions and applications.

Prescreener 50 generates the exemplar set by comparing 54 the data spectra of the
most recent pixel sampled with existing exemplars 55. The exemplar set is generated by

performing dot operations in accordance to the relation:

d S >1-¢ (2)

11
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where, d, is the newly sampled data, S; is an existing exemplar set vector J= the jth exemplar,
and € is variable controlling noise sensitivity. Here, the vectors d, and ,S" are assumed to be
normalized to unit magnitude. Thus, the condition d; * S, = 1 means that the two vectors are
identical and the condition d, e S, > 1-€ means that they are almost identical if € is small.
Vectors for d;, which meet the above condition for any exemplar §; are discarded 52 and the next
vector is examined. Discarded vectors are not included in the exemplar set. The value of £,
which is set by the operator or a control system, is a function of the exemplar set size desired,
memory length for exemplar set values, desired thruput of data and the noise in the signal 56.
Generally, as the value of € is increased, the sensitivity of the system is decreased.

The exemplar set vector, S; , used for the above comparison is preferably chosen via the
use of a structured search technique to minimize the number of dot operations while offering
thorough analysis of the exemplar set 55. This may be accomplished by comparing 54 the
newly sampled data vector with the most recent vectors entered into the exemplar set. Other
search methods which minimize the number of operations necessary for thorough matching are
also suitable.

Figure 3 illustrates the flowchart of the logical operation of prescreener 50. The pruner
51 is a memory management device which determines when an exemplar ;et vector should be
purged from the memory. Pruner 51 monitors exemplar set 55, and adjusts the control
parameters to control exemplar set size. This is accomplished by setting the value for € 54,
and the maximum allowed age of an exemplar, which determines the threshold for additions to

the exemplar set and the time an exemplar is allowed to remain in the exemplar set without

12
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being regenerated.

Inevitably, exemplar set 55, constructed as described above is contaminated by noise,
which adversely affects the learning process performed in Learning module 30.

In a preferred en?bodiment the SERENE technique is implemented in prescreener
module 50. In this embodiment SERENE operates as a control system to set the value of the
threshold e used in generating the exemplar set as discussed above. SERENE _erﬁploys 3
separate tests on the data vectors, during the prescreening process of selecting exemplars.
Each of the three tests are progressively more sensitive to noise contamination of the signal.

Referring now to figure 14 which shows a flowchart of the operation of the SERENE
technique's initial test, first, SERENE samples the new data vector d and performs an
autocorrelation test 300 on the datia vector d.

In autocorrelation test 300, SERENE introduces an n element shift into the data vector
d 308, which will be represented by the notation d(#). The appropriate number of elements, »,
are then truncated from the beginning of the original vector and the end of the shifted vector
304, and both vectors are normalized to unit magnitude 302. Next, SERENE computes the
autocorrelation index 305, which is a dot product of normalized data vector d in its truncated
form with the normalized truncated shifted data vector d(n) which we represent by the notation
d * d(n). SERENE then determines whether the autocorrelation index is above the selected
threshold value 306. If the autocorrelation index is above the selected threshold, SERENE
retains the data vector for the next test $07. If the autocorrelation index is below the selected

threshold, SERENE characterizes the data vector d as containing predominately noise,

13
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disregards 308 it and selects the next data vector d..,, where i is the ith data vector, for testing
301.

The SERENE technique makes a fundamental assumption that useful information
contained in a data vector is more correlated than the noise contained in the same data vector.
In operation, when the autocorrelation test is performed on a data vector the autocorrelation
index will approach zero as the amount of noise in the signal increases. The threshold value
which lies between, 1 the maximum value for the autocorrelation index for 'white' spectral signal
with zero noise and 0, the minimum expectation value for a signal containing 100% noise, is
selected as a function of the mission requirements and the available knowledge of the statistics
of the spectral data signals and the noise, representing the minimal S/N requirements for a data
vector tb be considered useful by the IHPS system.

Thus, the autocorrelation test of the complete data vector d, provides a very fast and
efficient way to determine whether the data vector sampled contains a large enough information
signal to be considered useful to the system. SERENE simply chooses a threshold which wil]
allows signals which are too noisy for processing to be eliminated with a minimum time
expenditure of processor resources.

Inv yet another embodiment SERENE can operate using traditional autocorrelation
techniques. In this embodiment of SERENE several different element shifts are performed and
an autocorrelation length is defined as known by those skilled in the art. The autocorrelation
length of the data vector is then compared to that typical of clean vectors.

If the S/N is high enough for data vector d to survive the first test (the signal is not

14
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predominately noise), SERENE next performs a Scaled & comparison on the data vector d. In
the scaled & comparison, SERENE compares data vector d with an exemplar S; where j is
simply the jth exemplar. If data vector d falls within the range of an exemplar plus, a noise
value chosen on the basis of system noise generated from statistical or test data, the data vector
is considered to be equivalent to exemplar S; and discarded.

Referring now to figure 15 which shows a flowchart that is an embodiment of the
SERENE technique's scaled € test, SERENE first receives a data vector which has passed the
initial autocorrelation test discussed above. In the scaled & embodiment, SERENE compares
datg vector d with an exemplar §; using a value for ¢ set in relation to noise.

SERENE chooses a threshold magnitude for the noise | N | 401, based on the system
noise generated from statistical or test data, where k is the scaling factor and & is the standard
deviation for noise magnitudes. The selected value of IN,“,I defines the decision boundary for

the scaled ¢ test. Next, SERENE computes €& 413 in accordance with the following equation:

,dcleanl =1- !dobsl

V dclean+Nko V djbs"'Nko '

e (d ) =1-cos B,;=1-

(3)

where d,, is the data vector observed (before normalization), d,,,,, is a noise free spectral signal
consistent with d,, (dye.n= dy,e-noise), and B is the angle between d,,,, and d,s assuming an
uncorrelated noise vector with magnitude IN,“, |. SERENE then applies the standard

prescreener test using the value for € computed in the previous step, and determines whether
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the difference between d (normalized data vector) and the normalized exemplar S; currently
being considered can be explained by a noise vector with magnitude lN,w lor smaller (d S
> 1- &, which implies that the angle between the vectors is less than or equal to O;;) 414. If
data vector d falls within this rahge then SERENE concludes that d is similar to §; and
disregards it. If d is beyond the defined range the data vector d is compared with the next
exemplar S, or added to exemplar set 55 if all viable exemplar have been tested.

Since the noise magnitude IN“' is preferably chosen on the basis of noise generated
from statistical or test data, the scaled ¢ comparison is most effective for filtering intrinsic noise,
where some statistical basis or knowledge of the noise is available. In a high quality sensor, the
magnitude of the intrinsic noise contribution will be small compared to the magnitude of a
typical data vector. Some sensor data vectors d may have exceptionally small magnitudé, as in
the case of a hyperspectral imager looking at a dark object. In this case the intrinsic noise
produces a large change in the direction of a vector, which could confuse the learning process.
We refer to this phenomenon as the "dark pixel" effect.

The 'scaled &' comparison between signal vector d and an exemplar S; reduce the
consequence of the "dark pixel” effect. Referring also to figures 16 and 17, which illustrate the
basic concept, figure 16 shows unnormalized data vector d, as a solid line 410, and a pair of N,
noise vectors as dashed lines 411, 411 The value for K is chosen to establish a decision

threshold. N, is likely to be orthogonal to d, as illustrated. This is the worst case as far as

change is direction is concerned and also the most probable case in a high dimensional space.

The dotted vectors +12 lie on the boundary of cone 418 such that any vector within cone 413

16
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can be considered the same as S;, because the difference is within the range associated with
noise. If the vector can be considered the same as exemplar §; then tile vector is discarded as
similar or repetitive. A vector lying outside cone +13 is assumed to be different. If the vector
lies outside cone 4183, data vector d is retained for the next test. The angle 0, defines the
decision boundary, and & = 1- cos ;. Bps depends on the magnitude of d ie., d before
normalization, as is easily seen by comparing figures 16 and 17. The value of & becomes a
function of ldl, e, € is scaled by Idl in accordance with the relationship disclosed in
equation (3).

Noise effect, however is not limited to dark pixels. External noise may affect any data
vector in an unpredictable way. SERENE integrates an additional set of techniques into the
prescreener module, 50 for reducing the impact of noise carried by data vectors of arbitrary
magnitude, without prior knowledge of an expected noise magnitude.

Referring to figure 18, an embodiment of SERENE applies S/N estimation methods to
further filter noise in data vectors that have passed the initial autocorrelation and the scaled ¢
test #26. If a vector is not determined to be equivalent to a candidate exemplar by the scaled
€ test, an autocorrelation test is performed on the difference between that vector and the
exempl#rs.

SERENE first computes the difference vector D, which is the difference between the
normalized data vector and the exemplar or (S;-d) 427. When the autocorrelation test is
employed in the Gram-Schmidt process, as discussed latter, the difference vector is generated

using the difference between the full exemplar and its projection into the current space, called
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the residual. Once the difference vector D, is defined, SERENE generates a shifted version
of the difference vector, D, 428 defined as D,(n) where nis the number of elements D, is shifted
by. Next, n elements are truncated from D, and D,(n) and both vectors are normalized 429.
The autocorrelation index is then computed for the difference vector D, 430 by taking a dot
product of D, against a shifted version of itself D,(n), which can be expressed as D,*D,n) .

If the difference vector's autocorrelation index falls within the noise parameters, or
threshold, i.e., if the difference can be explained by noise, SERENE concludes that there is a
‘match’ 434 the data vector d is discarded and SERENE gets the next data vector d,
reinitiating the test regime 435, beginning with the initial autocorrelation test described in
figure 14. If the autocorrelation index is beyond the threshold, vector d is compared to other
exemplars 436, 437, until a match is found or the vector is added to the exemplar set S +38.

When a data vector d is added to the exemplar set SERENE gets the next vector and
reinitiates the test regime 439, beginning with the initial autocorrelation test described in figure
14.

The decision boundary or threshold SERENE uses in the above autocorrelation test to
determine whether there exist conditions which warrant further testing of the data vector d 434,
may be set on the basis of the statistics of the noise 433 or by defining the threshold based on
the statistics of the signal if the noise statistics are unavailable 432.

Autocorrelation indices provides an measure of how much noise is mixed with a given
data vector.  Referring now to figure 19 which shows a statistical noise data, if the

autocorrelation characteristics of the signal (spectra), sought are known, a threshold value

18
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(decision boundary) can be defined as illustrated by dashed line 568.

If one knows the statistics of noise which one will ordinarily encounter, one can predict
the relationship between the signal to noise ratio (S/N) of a data vector, e.g. D, and its
autocorrelation length. Figure 19 shows shuch a relationship. For plural vectors having identical
S/N, their respecive autocorrelations will vary statistically about a mean valu_e. Curves 569 and
569 are selected to encompass between them a preselected variation in autocorrelation index,
within which the system will deem associated with a specific value of S/N. This variation could
be, e.g., a preselected number of standard deviations about the mean value of autocorrelation
length which one would expect at the given S/N. Selection of this variation is mission
dependent, with a large width resulting in a larger number of noisy data vectors missed by the
system. Discriminant line 567 is arbitrarily set so that all data having autocorrelatin lengths
567 (and correspondingly small S/N) are retained; those below are rejected. Line 567 is
preferably set to intersect the “aﬁtocorrel_ation length” axis of figure 19 just below line 569 so
that all clean data which autocorrelates within one’s preselected statistical range will not be
rejected. Although one could use this test on any data vector, it is preferred to use D, because
it results from a subtraction of vectors. Because information is less random than noise,
subtraction tends to remove information and leave noise, making it easier to identify and
quantify the noise. This is especially important for dark pixels, in which the noise itself may be
of the same order of magnitude as the signal.

Another embodiment of SERENE uses a derivative test in’ place of the autocorrelation

test as a measurement of the noisiness of a signal. These are basically higher order finite
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differences constructed by shifting the vector elements. If d(n) represents the data vector with
;ts elements shifted to the right by n places, then the n* autocorrelation index is oc ded(n), and
the second derivative index is « (d“"-2d + d*")%. As illustrated in figure 20, derivative indices
tend to be more sensitive to the presence of noise as indicated by the shaded area 570, which
represents the range of expected derivative values for a given S/N ratio due to the randomness
of the noise and the diversity of signals area quickly crossing the decision boundary 571 or
threshold, providing more accurate estimates of S/N. SERENE applies these methods for
estimating S/N directly from the data to the problem of reducing the effects of noise on the
IHPS learning process.

Yet another embodiment the SERENE technique may also use a 'nonlinear scaled &'
comparison in Prescreener Module 50 in place of the 'scaled ¢' comparison. The magnitude of
the signal vector is iﬁ general less than the magnitude of the observed vector, which is the
signal plus noise. Statistically, the most likely relationship is d°,,,~ d*+ N*. Therefore the best
value for € is likely to be larger than the value computed above, for small magnitude data

vectors. To correct for this, SERENE computes € from a formula of the form
€1 (dops) =£ (e (d,p) )

where fis a function such that fe(d,,,))~¢(d,,,) for large magnitude data vectors, and fe(d,,))
> g(d,,,) for small vectors. This biases the exemplar selection process against small vectors,
which are most likely to be seriously corrupted by noise. The optimal functional form for the

function f can be inferred from the noise statistics, if they are known, or constructed in an
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empirical way well known to those skilled in the art.

input 58 into adaptive learning module so. Learning module 30, computes from the exemplar

set, a set of endmembers {E,}, where j is the jth endmember, which together span the current

vectors, insures that the decomposition makes sense as a physical mixture of constituents, since
any such mixture must have this property. The resulting patterns conform as closely as
possib'le to signatures of actual constituents of the scene.

Referring now to figure 12, learning module 30, employs an ordered Gram-Schmidt
-analysis using savlients to construct a reduced dimensional Spanning space 125, while retaining

the spectral information contained in the exemplar set. The spanning space is constructed based

dimensional Spanning space using a Gram-Schmidt/Salient analysis of the exemplar set data,

and employing Shrink Wrap minimization 127 to minimize the spanning space volume defined
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Gram-Schmidt/ Salient Analysis

The spanning space is defined by using a2 Gram-Schmidt / Salient analysis of the
exemplar set. In the parameter vector space which contains the exemplar set data, one first
determines the two vectors which are furthest apart in the space, then, in the plane formed by
these two vectors, select two mutually orthogonal vectors which lie in the plane. These mutually
orthogonal vectors are for convenience called basis vectors, for reasons made apparent below.
Then select the vector in the data cube which is furthest from the plane and identify the
hyperplane in which the basis vectors, and the newly selected vector, lie, and select a third basis
vector such that it lies in the hyperplane and is mutually orthogonal to the other two basis
vectors. One repeats this process, and accumulates more and more mutually orthogonal basis
vectors, until the most distant remaining vector is found to be within a preselected distance of
the hyéerplane containing all the basis vectors. At this point, the exemplar set vectors are
projected onto the reduced dimensional space defined by these basis vectors, and further
processing is done thereon. By reducing the dimension of the vector space in which one must
work, one correspondingly reduces the number of operations one must do to perform any
calculation. Because none of the data vectors lie very far outside the hypervolume spanned by
the basis vectors, projecting the vectors into this subspace will change their magnitude or
direction very little, ie. projection merely sheds components of each vector which were small
already. Furthermore, because such components are necessarily too small to correspond to
significant image features, these components are disproportionately likely to be noise, and

discarding them will increase the system's signal to noise ratio.
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Gram-Schmidt \ Salient analysis of the exemplar set data is performed in accordance
with the following algorithm:

a) Designate the two exemplars farthest apart, V, and V,. Figure 4 illustrates the
orientation of V, and V, and the plane that V, and V, define.

b) Generate a 2 dimensional orthogonal set of basis vectors from V, and V, labeled V,,
and V,, in the plane defined by V, and V., labeled as PV_,, as illustrated in F igure 5.

¢) Determine the salient vector (vector displaced farthest from plane) in relation to plane
PV,,,, defined in Figure 6 as S,.

d) The salient S, can be represented as a sum of vectors S,+ and S,}, where S, is
orthogonal to the plane PV,,, and S| lies in the plane. Use the Gram-Schmidt procedure to
find S, 1, and call this V,. -V, V., and V,, now define a subspace in 8 dimensions. See ‘the
figure 7. representation of the subspace created by this step.

e) Select the salient S, which is the exemplar farthest from tile subspace defined by step
(d).

f) Generate a new orthogonal direction from S, defined as V.. V,_ coupled with Vie
V., and V,, now defines a subspace of 4 dimensions.

g) Steps (e) and (f) are repeated to define a spanning space of N dimensions. The
distance out of the current subspace of the salient selected at each step is the maximum residual
error which would be incurred by projecting all of the exemplars into the subspace. This

decreases at each stage, until the remaining error is within a specified error tolerance. At this

- point the subspace construction process is complete. The value of N is the number of
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dimensions necessary to allow the projection of the exemplars into the subspace while at the
same time preserving important but infrequent signatures.

h) Project all of the exemplar data into the spanning space defined in steps (aHg).

In another embodiment, SERENE is integrated into the Gram-Schmidt/ Salient
technique. Referring now to figure 21, when SERENE is incorporated into the Gram-Schmidt
process, each time an exemplar is projected into the spanning space defined by Gram-Schmidt
580 SERENE selects the largest residual as a candidate salient 531. Next, SERENE determines
whether the residual is above the threshold 532, the selection of which is mission dependent.
If the residual is below the threshold, SERENE concludes that a sufficient amount of data has
been projected into the spanning space and the Shrink Wrap process is initiated 533. If the
candidate residual is above the threshold, an autocorrelation test is then performed on the
residual comparing the full data vector to its Gram-Schmidt projection 53+. The residual is the
difference between the data vector and its projection, and the objective of the test is to
determine if the difference is the result of noise alone, or is indicative of information not yet
captured by the Gram-Schmidt space. The autocorrelation test implemented in the Gram-
Schmidt process follows the algorithm of the autocorrelation test defined above and illustrated
in figure 18.

Referring to figure 21 an autocorrelation index is computed using the residual 535. The
autocorrelation index of the residual is then used to deterrﬁine if the residual is clean (noise

free) enough to be a salient 537. If sufficient knowledge of the noise statistics is available, the
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index is used to estimate the noise magnitude, which in turn is used to construct the cone in
the scaled € test 536, otherwise the index value is compared to a predetermined threshold, as
described above. If the residual is determined to be noise dominated 337, the residual is
discarded 539 and another (the next largest) is chosen 531. If the residual is determined to be
sufficiently clean 537, the residual is used to define the next Gram-Schmidt basis vector and
added to the Gram-Schmidt basis set 538.

Thus SERENE is able to continually filter noise and further reduce the affects of
intrinsic and extrinsic noise while maintaining the resolution and efficiency of the system

In other embodiments, these correlation techniques can also be integrated into the Shrink

Wrap process.

Shrink Wrap

Once the N-dimensional spanning space is defined using the Gram-Schmidt \ Salient
analysis, a convex manifold in the form of a hypertriangle within the spanning space is
generated using shrink wrap minimization. Shrink wrap minimization of the spanning space
is a simple minimization operation, in which the volume of the manifold is reduced, while
maintaining the condition that all of the data vectors projected into the reduced dimensional
space via Gram-Schmidt \ Salient operations are contained within the hypertriangle. The
vertices of the hypertriangle are the endmembers, and the volume defined by the hypertriangle
itself is the locus of all possible mixtures (convex combinations) of endmembers. The shrink

wrap process determines good approximations of the physical constituents of the scene
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(endmembers), by insuring that the shape and orientation of the hypertriangle conforms as
closely as possible to the actual distribution of the data vectors (exemplars). The exemplars are
assumed to be mixtures of the actual constituents. The number of endmembers is equal to the
dimension of the Gram-Schmidt /Salient spanning space.

The salients are used to guide the shrink wrap process. Referring to figure s,
hypertriangle Ty, is defined by salient vectors, however, othér vectors which include data
may not ‘be within the spanning space which T, defines, as depicted in figure 9. The shrink
wrap operation must satisfy the condition that all of the data vectors projected into the
spanning space must be contained within the volume defined by convex manifold Tg,c.p, . The
shrink wrap operation starts with Te gees= Tss0ss and then expands or contracts the triangle
Te\eees by manipulating the vertices, E,, E, and E, or by manipulating the orientation of planes
that define Tg,py, , by the minimal amount to fulfill the above stated condition.

For the foregoing system, one could use advantageously any of the tests described above
to filter out noisy data at any point within the system. These tests, however, vary in the amount
of computation they require. As a result, the fixed epsilon correlation test is most
advantageously used in a preprocessor to provide a coarse and computationally cheap way to
remove badly corrupted data at the outset. The scaled epsilon test, or the substration and |
autocorrelation test (cf. Figure 19) are most advantageous as a prescreener, immediately prior
to testing the data against exemplars. The derivitive test is best used in the Gram-Schmidt
processor, to test and weed out spurious endmember candidates. Addition of bogus endmembers

will rapidly destroy system effectiveness, so this most precise and computationtally expensive
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test is best used here.

Just as subtracting data vectors amplifies the effect of noise, so too does taking the
derivative of data, provided that noise is changing more rapidly than the data, i.e. that the noise
has a higher frequency spectral content. If the data vectors are hyperspectral data, most of the
elements of the vectors represent light intensity as a function of frequency bin, i.e. a spectrum.
If one uses any known numericﬂ method to calculate, element by element, the first or higher
derivative of the normalized spectrum as a function of frequency, one produces a resultant
vector, each of whose elements corresponds to the first or higher derivative of the spectrum at
the respective frequency bins represented by the original data vector. One can then estimate
how rapidly the spectrum is changing by calculating the magnitude of the resultant vector, a
high magnitude indicating high noise content.

Figure 20 illustrates this, and is a schematic plot of magnitude, or "derivative index," as
a function of S/N. Similar to the data of figure 19, the derivative index will statistically vary
about some mean value for a given data vector S/N, and thus one preferably selects the degree
of variation which one's mission can tolerate, and generates corresponding boundary curves 570.

Discriminant 571 is arbitrarily set to reject as noisy all data having S/N above line 571.
This discriminant is preferably chosen to be Just above the zero noise values of curves 570 to
ensure that ali data with zero noise will not be rejected.

As figure 20 indicates, curves 570 rise sharply with increasing noise. One need not
practice this approach with a first derivative, but may use a derivative of any order, and, in-

general, the curves rise more sharply and provide better noise discrimination with increasing
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order derivatives. However, the higher the order of the derivative, the more computations are
required.

This method is much faster than conventional forier transforms and other standard
methods of determining frequency content. and is therefore better suited for use in high data
rate systems.

For purposes of example, the method described above and the following methods have
been found effective, however, any minimization method which maintains the condition that all
of the data vectors be contained within the minimized space is suitable.

Adaptive learning module 30 generates a set of filter vectors {F,} and endmembers {E,,
E,, E,..Ey}in accordance with one or a combination of the following procedures, or variants
thereof:

Method 1

With reference to figure 10a, find a set of endmembers {E;} such that each endmember

E, is matched to a salient vector S, and is as close as possible to its salient, subject to the

condition that all the data vectors are inside the hypertriangle with vertices {E:}. Le, minimize

Ny

c=Y (E,-s,)?
=

subject to the constraints F; - d, > 0 for all i and k and Ny, is the number of dimensions. The
filter vectors are computed from the candidate endmembers as described above. This constraint
condition means that all the coefficients of the decomposition of d, into endmembers are non-

negative, which is equivalent to saying that all d, are inside Teieoen - This is a nonlinear
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constrained optimization problem which can be solved approximately and quickly using various
iterative constrained gradient methods.
Method 2
Compute a set of filter vectors {F s} from the salients {S;}, using the formulas previously
provided. These vectors will not, in general satisfy the shrink wrapping constraints see figure
10b. Find a new set of Filter vectors {F.} such that each Filter vector F i is matched to a salient
filter vector F, and is as close as possible to its salient filter, subject to the condition that al]

the data vectors are inside the hypertriangle. I.e., minimize
C = (F-F)

subject to the constraints F, » d, > 0 for all k. This is a set of independent quadratic
programming problems with linear constraints, which can be solved in parailel using standard
methods. The decoupling of the individual filter vector calculations increases computational
efficiency. Manipulation of the Filter vectors instead of the endmember vectors is equivalent
to manipulating the plane faces of the triangle instead of the vertices. Given solutions for the
Filter vectors, find the endmembers using the sz;me procedure used to compute Filter vectors
from endmembers (the defining relationships are symmetric except for a normalization constant).
Method 3
With reference to figure 11, find an approximate centroid C, of the set of exemplars, and

then find the hyperplane of dimension one less than the dimension of the Gram-Schmidt /
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Salient space which is closest to the centroid. Hyperplane 120 divides the complete subspace
into two halves, and the minimization is subject to the constraint that all the survivor vectors
d, must be in the same half-space as the centroid {ca}. The normal to the optimal hyperplane
120, is F,, the first filter vector. and the condition that all the survivors are in the same half-
space is equivalent to the constraint that F , dkv 2 O for all k. This process is equivalent to
finding a vector F, with a fixed magnitude which minimizes the dot product F, e C, subject to
the constraint F, ¢ d, > 0 for all k. As such it is amenable to solution using conventional
constrained optimization methods. The hypertriangle Tg,,e, can be constructed out of a set
of suitably chosen optimal (locally minimal distance to the centroid) boundiqg hyperplanes
which form the faces of the convex manifold. The normal to each face defines the associated
filter vector. Again, the endmembers can be determined from the Filter vectors at the end of
the shrink wrapping process.

Referring to figure 12, once the endmembers and filter vectors are computed adaptive
]éarning module 30 stores this endmember and filter vector data, along with data reflecting the
exemplar set, and source vectors 33 for future recall. The adaptive learnihg module So then
searches the exemplar set for any changes. If the system detects change in the exemplar set 99,
the Gram-Schmidt and shrink wrap processes are repeated. This process allows the system to
continually learn and adapt to changes in the environment. Endmember data and the
accompanying exemplar set and source data can be labeled as being consistent with a particular

threat or target allowing the system to learn and remember the signature of specific targets in |

- real time $4.
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Similarly, the IHPS Shrink Wrap procedure involves an iterative movement of candidate
endmember vectors, subject to the condition that all the exemplars end l:lp inside the
hypertriangle defined by the endmembers. Small excursions of exemplar vectors outside the
hypertriangle can be ignored if the difference between the actual exemplar and its projection on
the hypertriangle can be attributed to noise.

In the real time mode, preprocessor, prescreener and the Gram-Schmidt/ shrink wrap
routines all run simultaneously in paral]evl.

Again, referring to figure 1, the filter vectors and endmember data stream are
transmitted from learning module 30, to demixer module 40, for computation of the endmember
coefficients. The original data set from the sensor is also transmitted to demixer module 20
through the first processor pipe.

Demixer module 20 may contain several processors, each of which convolves the
unprocessed data vector with a different filter vector. These operations could be performed
sequentially on a single fast processor, but in the best mode they are performed in parallel. The
output of demixer module 20, is a vector called the endmember coefficient vector, the jth
element of which indicates the fraction of the Jth fundamental pattern which is present in the
unprocessed data vector. The endmember coefficients indicate the amplitude of the signal from
the associated endmember, in a mixed spectrum.

Demixer module 20 convolves the unprocessed data vector and computes the endmember

coefficient in accordance with the equation;
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n
F,: dk=2 CyxFy* E;+F;r Np=c,,
)=1

where F,= said filter vector, d, = said data set, C; = said endmember coefficient, N, = noise
vector and E;= said endmember.

Demixer modl;le 20 next computes the fraction coefficient 131, which tells what
percentage of the photons from the given pixel are associated with the endmember in accordance
to the vequation:

R A B
jk fraction A(dk)

C
where A(d,) is the area under vector d,, i.e. the sum of the elements of d,.

Figure 18 illustrates the ﬂo‘wchart for demixer module 20 operation including the
demixer module's function in the system's learning process. If the pixel information passed from
the preprocessor indicates bad data or an unlearned spectrum 133, 184 demixer module 20
routes that information to the display/ output module 40 with a notation of the status of the
pixel data 135, 136.

The spectral information, filter vectors, endmember coefficients, and all is passed to the
display/ output module 40 for display and further processing 138. The spectral characteristics
of the data is displayed in terms of endmembers and endmember coefficients in maintaining to

the relation:
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n
3=l

where d, = said data set, ¢, =.said endmember coefficient and ¢ is > 0, N, = noise and E=
said endmember.

As described above, THPS uses the exemplar set vectors S as the foundation for
describing a scene observed by the hypersensor 10, generating therefrom endmembers E, which
are the fundamental constituents of each pixel used to describe the scene sampled by
hypersensor 10. A data vector d having a low S/N ratio, when allowed to enter the |
exemplar set {S}, often have an adverse effect on the systems operation. When a low S/N or
otherwise noisy vector d is designated as an exemplar §, and allowed to infiltrate the exemplar
set {S}, the prescreeners ability to discriminate new information from repetitive or useless data
can be compromised. This may happen because an exemplar § containing a high content of
noise is will most certainly be characterized by the prescreener 50 as dissimilar from most of
the other data vectors including other noise corrupted data causing a breakdown in the
prescreeners ability to discard repetitive data. Thus, when the systeh samples a succession of
noisy data or a noisy cluster of data, prescreener 50 may become confused, and the ability of
the prescreener to make accurate decisions on whether a match condition exist between d and
S is compromised.

The SERENE technique greatly curtails this phenomena, by filtering out data vectors
with low S/N ratios, thereby preventing the corruption of the exemplar set by adding a degree

of resistance to clusters of noisy data the system may encounter.
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Noise allowed to enter the system may also have a cumulative effect, causing the
endmembers generated from a noisy exemplar to be inaccurate in the sense that noise contained
in the exemplar becomes a substantial part of the mixture defined by the endmembers rather
than the information signal the exemplar contains. Degradation in the accuracy of the
information described by the endmembers causes a reduction in the systems resolution. One
way to minimize this effect is to Place a limit on the life span of the exemplars, however this
necessitates the systems relearning of exemplars periodically because of the shorter exemplar
lifespan. This necessarily causes a reduction of the Systems on station time in a real time
environment.

The exemplars used in a system employing SERENE may be assigned a longer lifespan
thereby necessarily extending the systems on station time. A further benefit of reducing the
noise in the exemplars S allowed in the exemplar set {S}is the gener;'ation of endmembers which

more accurately describe each pixel, thus improving systems resolution.

Obviously, many modifications and variations of the present invention are possible in
light of the above teachings. For example this invention may be practiced without the use of
a parallel processing architecture, or the SERENE technique may be applied to the Prescreener,
Gram-Schmldt and Shrink Wrap operations, or combinations of the nonlinear scaled ¢ test,
scaled € and the derivative test may be combined with the autocorrelation test within the
SERENE technique.

It is therefore understood that, ' : the invention

i ifi ibed.
may be practiced otherwise than 8e‘;s specifically descri
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ABSTRACT
The Intelligent Hypersensor Processing System (IHPS) is a‘system for the rapid detection of
small, weak, or hidden objects, substancgs, or patterns embedded in complex backgrounds,
providing fast adaptive processing for demixing and recognizing patterns or signatures in
data provided by certain types of "hypersensors". SERENE introduces an improved noise
reduction algorithm .useful on systems which use hypersensors such as IHPS, or other
systems which use sensors which are hyper or multi spectral. The SERENE technique may
be employed through out the Learning Module Processor pipelining and further processes
the data stream to filter intrinsic and extrinsic noise, and minimize exemplar noise effects in
the exemplar set. This system represents an alternative to prior systems for hidden object

detection by solving the problems encountered when attempting to detect hidden

objects/targets in dynamic scenarios at real-time.




