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5        TITLE OF THE INVENTION 

A CHEMICAL SENSOR PATTERN RECOGNITION SYSTEM USING A SELF- 

TRAINING NEURAL NETWORK CLASSIFIER WITH AUTOMATED OUTLIER 

DETECTION. 

10 BACKGROUND OF THE INVENTION 

1.       Field of the Invention 

The present invention relates to a system and method for self-training a neural 

network classifier with automated outlier detection. More particularly, the present 

invention relates to a chemical sensor pattern recognition system and method for 

detecting and identifying the presence of chemical agents using a self-training neural 

network classifier employing a probabilistic neural network with a built in outlier 

rejection algorithm and a mechanism to reduce the size of the probabilistic neural 

network. 

20        2.        Description of the Related Art 

In the industrial and the military environments a need has existed for a 

mechanism to identify a wide variety of chemical substances on a real-time basis. 

These substances often include compounds which are extremely dangerous. In the 

industrial environment these substances may include known carcinogens and other 

25        toxins. In the military environment these substances would include blistering agents 
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such as mustard gas and neurotoxins such as nerve gas. Therefore, It is critical for 

the safety of personal to quickly and accurately detect and alert employees and troops 

when such substances are present. Just as critical a function is the avoidance of 

issuing false alarms by any chemical detection apparatus. 

FIG. 1 is a diagram showing a configuration of a chemical detection apparatus 

known in the prior art which includes a sensor 10 and a pattern recognition unit 20. 

The pattern recognition unit 20 would include a computer system and software to 

analyze data received from the sensor 10 in order to identify the substance detected. 

Referring to FIG. 1, traditional chemical detection methods have relied on the 

inherent selectivity of the sensor 10 to provide the pattern recognition unit 20 with the 

necessary information required to determine the presence or absence of target 

analytes. Advancements in chemical sensor technology have allowed the chemical 

detection apparatus shown in FIG. 1 to move from the laboratory to the field. 

However, field measurements offer additional challenges not seen in laboratory, 

or controlled environments. The detection of target analytes may be required in the 

presence of large concentrations of interfering species.  The ideal chemical sensor 

10 responds only to the targeted analyte(s).   However, many sensor technologies, 

such as polymer-coated surface acoustic wave (SAW) chemical sensors, cannot 

achieve this measure of selectivity. Progress has been made and researchers have 

been able to overcome this potential drawback by utilizing arrays of partially selective 

sensors for sensor 10. Pattern recognition algorithms, in the pattern recognition unit 

20, are then employed to interpret the sensor signals to provide an automated 



decision concerning the presence or absence of the targeted analyte(s).    This 

approach has been employed successfully for semi-conducting gas oxide sensors, 

Taguchigas sensors, MOSFET sensors, electrochemical sensors, and polymer-coated 

SAWs for the analysis of both liquid and gas phase species. 

5 The underlying foundations for applying pattern recognition methods to 

chemical sensor arrays 10 are that the sensor signals numerically encode chemical 

information (i.e., a chemical signature) about the target analytes and the interfering 

species.  In addition, pattern recognition methods assume that sufficient differences 

in the chemical signatures for the target analyte(s) and the interfering species exists 

10        for the methods to exploit, and that the differences remain consistent over time. For 

chemical sensor array pattern recognition, the responses for the number of sensors 

(represented by m) in the array form an m-dimensional vector ("vector pattern") in the 

data space.   Recognition of the signature of the target compound(s) (analyte(s)) is 

based on the clustering of the patterns in the m-dimensional space.  Analytes that 

15        have similar chemical features will cluster near each other in the data space, which 

allows them to be distinguished from other compounds mathematically. 

FIG. 2 is a diagram showing a pattern space comprising a sensor array with 

three sensors (1, 2, 3) and three chemical analytes (A, B, C). Since three sensors 

are used, the data space is a three dimensional data space. The three chemical 

20 analytes (A, B, C) form three different and easily distinguishable clusters of patterns 

(chemical signatures) in the three dimensional space. However, when attempting to 

detect chemicals in an environment outside the laboratory, frequently chemicals that 
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closely chemically match the chemical to be identified are present. The closely 

related chemical is referred to as an interfering species and creates a pattern which 

partly overlaps with the cluster of the chemical to be detected. 

In supervised pattern recognition methods, training patterns (i.e., chemical 

signatures) from known analytes and potential interfering species representative of the 

environment the sensors being deployed are used to develop classification rules by 

the pattern recognition unit 20.   These classification rules are used to predict the 

classification of future sensor array data.   The training patterns are obtained by 

exposing the sensor array to both the target analyte(s) and potential interfering 

analytes under a wide variety of conditions (e.g., varying concentrations and 

environments).  The potential outcomes of the measurement (e.g., the presence or 

absence of the target analyte(s)) are considered the data classes.   The number of 

data classes is application specific. 

Supervised pattern recognition algorithms used in pattern recognition unit 20 

are known in the art and used to analyze chemical sensor 10 array data. The two 

most popular pattern recognition approaches are linear discriminant analysis (LDA) 

and artificial neural networks (ANN). LDA is computationally simpler and easier to 

train than an ANN, but has trouble with multi-modal and overlapping class 

distributions. ANNs have become the de facto standard for chemical sensor pattern 

recognition due to the increasing power of personal computers and their inherent 

advantages in modeling complex data spaces. 

The typical ANN for chemical sensor array pattern recognition uses the back- 



propagation (BP) method for learning the classification rules. The conventional ANN 

comprises of an input layer, one or two hidden layers, and an output layer of neurons. 

A neuron is simply a processing unit that outputs a linear or nonlinear transformation 

of its inputs (i.e., a weighted sum).  For chemical sensor arrays, the neurons, as a 

5        group, serve to map the input pattern vectors to the desired outputs (data class). 

Using BP, the weights and biases associated with the neurons are modified to 

minimize the mapping error (i.e., the training set classification error). Upon repeated 

presentation of the training patterns to the ANN, the weights and biases of the 

neurons become stable and the ANN is said to be trained. The weights and biases 

10        for the neurons are then downloaded to the chemical sensor system for use in 

predicting the data classification of new sensor signals. 

Despite their popularity, the BP-ANN methodology has at least five major 

disadvantages for application to chemical sensor arrays. 

First, no known method exists for determining the optimal number of hidden 

15        layers and hidden layer neurons (i.e., the neural topology). This results in having to 

train many ANNs before finding one that is best for the application at hand. 

Second, the iterative BP training algorithm is extremely slow, sometimes 

requiring several thousand presentations of the training patterns before convergence 

occurs. Other ANN training methods, such as Levenberg-Marquardt and QuickProp 

0 method, claim to achieve faster convergence, but their use is not widespread. Also, 

any learning algorithm based on incremental modifications to the weights and biases 

of the neurons runs the risk of falling prey to false minima and thereby requiring 
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multiple training runs which further slow the process. 

Third, the theoretical operation of how the ANN is able to map the inputs to the 

outputs is not clearly understood. There is no simple method of interrogating an ANN 

to discover why it classifies patterns correctly, or more importantly, why it fails to 

classify some patterns correctly. 

Fourth, the outputs from a conventional ANN do not feature a statistical 

measure of certainty. For critical applications using chemical sensor arrays, the 

pattern recognition algorithm needs to produce some measure of confidence that it 

has correctly identified a particular classification. It is possible to obtain a confidence 

measurement by defining a probability density function comprising all possible 

outcomes of the ANN, but this method requires a large number of training patterns to 

be statistically valid and this further slows the training process. 

Fifth, existing ANNs are unable to reject ambiguous or unfamiliar patterns (e.g., 

a compound that the ANN has not been trained to recognize), and thus misclassify 

them as being a member of the data class with which they are familiar.  This often 

limits the applications of ANNs to controlled environments where all possible data 

classes are known in advance.   Methods have been developed to overcome this 

problem by employing an ad hoc threshold to decide whether to accept or reject a 

new pattern. Another approach used to overcome this problem employs a dual ANN 

system where the first ANN decides whether to accept or reject the pattern and the 

second performs the actual classification. However, these solutions have not proven 

practical for application to chemical sensor arrays. 

6 



One variety of ANN which has been studied for application to chemical sensor 

array pattern recognition is the probabilistic neural network (PNN). For application to 

sensor arrays, PNNs overcome many of the disadvantages found with their more 

conventional counterparts discussed above.    The PNN operates by defining a 

5        probability density function (PDF) for each data class based on the training data set 

and the optimized kernel width (a) parameter.  Each PDF is estimated by placing a 

Gaussian shaped kernel at the location of each pattern in the training set.   A 

multivariate estimate of the underlying PDF for each class can be expressed as the 

sum of the individual Gaussian kernels.  The PDF defines the boundaries (i.e., the 

10        classification rules) for each data class.  The optimized kernel width (a) parameter 

determines the amount of interpolation that occurs between data classes that lie near 

each other in the data space.   For classifying new patterns, the PDF is used to 

estimate the probability that the new pattern belongs to each data class. 

FIG. 3 is a diagram showing the topology of a probabilistic neural network 

15        (PNN) in which the inputs are the responses from the three-sensor array of FIG. 2, 

and the PNN outputs are the predicted classification for the given pattern in the prior 

art. 

Referring to FIG. 3, PNN training is accomplished by simply copying each 

pattern in a training set (input layer) 30 to hidden layer neurons 40 and optimizing a 

20        for each neuron. Cross-validation and univariate optimization are most commonly 

employed to choose the best a for each neuron.  The hidden layer neurons 40 and 

a values can then be downloaded to the chemical sensor array system for use in the 
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field. The classification of new patterns is performed by propagating the pattern 

vector through the PNN. The input layer 30 is used to store the new pattern while it 

is serially passed through the hidden layer neurons 40. At each neuron in the hidden 

layer 40, the distance (either dot product or Euclidean distance) is computed between 

the new pattern and the input layer 30 pattern stored in that particular hidden neuron 

40. The distance, d, is processed through a nonlinear transfer function as shown in 

equation 1. 

J  d) <1> output=exa --- 

A summation layer 50 comprises of one neuron for each data class 70 and 

sums the outputs from all hidden neurons of each respective data class 70. The 

products of the summation layer 50 are forwarded to an output layer 60 (one neuron 

for each data class) and the estimated probability of the new pattern being a member 

of that data class 70 is computed. In the case of this example, since three chemical 

analytes (A, B, and C in FIG. 2) were supplied to the chemical detection apparatus 

(shown in FIG. 1) three different data classes 70 resulted from the PNN of FIG. 3. 

Compared to conventional ANNs, the PNN offers extremely fast training times 

and provides mathematically sound confidence levels for each classification decision. 

However, the application of PNNs for chemical sensor array pattern recognition has 

been hindered by at least four major problems. 

First, to predict the classification of new patterns, the distance between the new 

pattern and each pattern in the training set must be computed.   For stand-alone 
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sensor systems, the entire training se, of patterns (i.e., the hidden layer) must be 

stored on board the microprocessor embedded in the sensor system. Since each and 

even, training pattern must be stored, for many appiications, this would require more 

memory than is available. 

Second, as discussed above, the distance between the new pattern and each 

pattern in the training set (i.e., hidden iayer) must be computed. For iarge training 

sets and sensor arrays, the number of caicuiations becomes prohibit requiring more 

processing time than a rea. time appiication couid perm«.  For certain appiications, 

an embedded microprocessor could no, process the sensor signals fas, enough to 

operate in real-time without a significant reduction in the size of the hidden layer. 

Third, a method is known in the art for detecting ambiguous patterns by setting 

a rejection threshold.  ,f the outputs from the summation neuron for a„ classes are 

less than the rejection threshold, the new pattern is considered an outtier and no 

classification is performed. However, no generally accepted criteria for determining 

me best rejection threshold has ever been established.    Setting an appropriate 

rejection threshold using «he method described by Bartal e. al. in »Nuclear Power 

Plan,  Transient  Diagnostic  Using  Artificial   Ne«works  ,ha,  Allow  'Dom-Know' 

Classifications» would require extensive experimentation or knowledge of the pattern 

space for each application. 

Fourth, although PNN training is much faster than BP-ANN, «he cross-validation 

and univariate optimization procedure (i.e., a op«imiza«ion) ^ be prone (Q ^ 

minima.   Thus, several «raining runs mus« be performed to determine . a, the 

9 
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global-minimum training classification error. 

Therefore, a need exists in the prior art for a pattern recognition system and 

method which is highly accurate, executes fast enough for real-time applications, is 

simple to train, has low memory requirements, is robust to outliers and thereby 

5        reduces the potential for false alarms, and provides a statistical confidence level for 

sensor patterns recognized. 

SUMMARY OF THE INVENTION 

An object of the present invention is to provide a device and method for 

10        self-training a neural network classifier with automated outlier detection for use in 

chemical sensor array systems. 

The present invention has as a further object of providing a complete off-line 

software system for developing automated classification algorithms for field-portable 

chemical sensor array systems. To accomplish this objective the present invention 

includes a self-training algorithm for probabilistic neural networks (PNN) that 

dramatically reduces the memory and computational requirements, and a device and 

method for decreasing the probability that false alarms will occur through an 

automated outlier rejection scheme. 

Objects and advantages of the present invention are achieved by a neural 

network pattern classifier using a probabilistic neural network. This device uses a 

dead neuron elimination unit to identify which neurons in a hidden layer of the 

probabilistic neural network are the nearest to a series of pattern vectors based on 

10 
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Euclidean distance and eliminates those neurons which have not been identified as 

nearest to any pattern vectors in the pattern vectors from the probabilistic neural 

network. 

Further objects of the present invention are achieved by a neural network 

5 pattern classifier using a probabilistic neural network in which a <r optimization unit 

determines an optimal global a value for all neurons in the probabilistic neural 

network. The optimal global a value is computed from the summation of the dot 

product distance between each neuron and its nearest neighbor. Then a threshold 

determination unit calculates an outlier rejection threshold value based on the optimal 

10        global a value. 

Still further objects of the present invention are achieved by a neural network 

pattern classifier using a Monte Carlo simulation unit to generate a set of random 

pattern vectors, and a threshold determination unit to adjust an outlier threshold 

rejection value which rejects a predetermined percentage of the set of random 

patterns, wherein the outlier threshold rejection value is initially based on a global a 

value. 

Further objects and advantages of the present invention are achieved in 

accordance with embodiments by a PNN training computer system used to identify 

chemical analytes. This device uses a series of partially selective sensors to generate 

a set of sensory data when exposed to the chemical analytes. A pattern extraction 

unit connected to the partially selective sensors is used to extract a set of pattern 

vectors from the set of sensory data which form a set of initial hidden layer neurons 

11 
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of an initial probabilistic neural network. Then an LVQ classifier unit, connected to the 

pattern extraction unit, is used to reduce the number of neurons in the set of hidden 

layer neurons using learning vector quantization. Once the LVQ classifier completes 

processing, a dead neuron elimination unit connected to the LVQ classifier unit 

identifies neurons in the set of hidden layer neurons which have the shortest 

Euclidean distance to the pattern vectors and eliminates neurons in the set of hidden 

layer neurons which have not been identified as having the shortest Euclidean 

distance to any pattern vectors of the set of pattern vectors.  A a optimization unit 

connected to the dead neuron elimination unit then determines an optimal global a 

value for all neurons in the probabilistic neural network. The optimal global a value 

is computed from the summation of the dot product distances between each neuron 

and its nearest neighbor.    A threshold determination unit connected to the a 

optimization unit calculates an outlier rejection threshold value based on the optimal 

global a value.   Then a Monte Carlo simulation unit connected to the threshold 

determination unit generates a set of random pattern vectors using a Monte Carlo 

simulation. The threshold determination unit adjusts the outlier threshold value so that 

a predetermined percentage of the random pattern vectors are rejected as outliers. 

Using the embodiments of the present invention described above and further 

detailed below, a self-training a neural network classifier may be quickly trained to 

identify chemical analytes detected by a chemical sensor array and to identify and 

reject analytes not seen during the training session as outliers. 

12 
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BRIEF DESCRIPTION OF THE DRAWINGS 

These and other objects and advantages of the invention wiir become apparent 

and more readily appreciated for the following description of the preferred 

embodiments, taken in conjunction with the accompanying drawings of which: 

FIG. 1 is a diagram showing a configuration of chemical detection apparatus 

known in the prior art; 

FIG. 2 is a diagram showing a pattern space comprising a three-sensor array 

(1, 2 and 3) and three classes of compounds (A, B, and C) used to form the pattern 

vectors in the prior art; 

FIG. 3 is a diagram showing a probabilistic neural network (PNN) in which the 

inputs are the responses from the three-sensor array of FIG. 2, and the PNN outputs 

are the predicted classification for the given pattern in the prior art; 

FIG. 4 is a diagram showing the overall hardware configuration of the present 

invention; 

FIG. 5 is a diagram showing the configuration of the PNN training computer 

shown in FIG. 4 of the present invention; and 

FIG. 6 is a diagram showing the process used in the present invention to 

generate the probabilistic neural network (PNN), global <r optimization and threshold 

value determination. 

13 



DESCRIPTION OF THE PREFERRED EMBODIMENTS 

Reference will now be made In detail to the preferred embodiments of the 

present invention, examples of which are illustrated in the accompanying drawings, 

wherein like reference numerals refer to like elements throughout. 

5 The present invention contains a complete set of algorithms designed to 

overcome the aforementioned problems encountered with the conventional ANN and 

PNN approaches to chemical sensor array pattern recognition.   In the preferred 

embodiment, the present invention comprises a suite of MATLAB™ module files from 

Mathworks, Inc. and a Visual Basic™ subroutine.   However, any suitable computer 

10        language may be used to implement the present invention.    In the preferred 

embodiment, the user simply supplies the training patterns with known class 

identifications.  The present invention uses a self-training (i.e., no user intervention 

necessary) PNN algorithm to automatically produce an optimally sized hidden layer 

and optimal global a value. The optimal global a value is the width associated with 

the Gaussian kernels which make up the PDF for each class of the summation layer 

50 and the output layer 60, as previously discussed, and shown in FIG. 3. An outlier 

rejection threshold algorithm is then employed to develop an appropriate rejection 

threshold using the optimized PNN.   The optimized PNN and the outlier rejection 

scheme can be downloaded to the ChemID plug-in module for use in a chemical 

20        sensor field unit.  A detailed description will now be given of the algorithms in the 

present invention with reference the appropriate figures. 

15 
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SENSORY INPUT 

FIG. 4 is a diagram showing the overall hardware configuration of the present 

invention. The present invention includes: a partially selective sensor array 100; an 

A/D converter 110; communications interface 120; PNN training computer system 130; 

and a chemical sensor field unit 140. 

Referring to FIG. 4, a training session for the present invention starts by 

exposing the partially selective sensor array 100 to one or more chemical analytes. 

The type of chemical sensors used are of a variety which are partially selective 

sensors.   Examples of these types of partially selective chemical sensors include: 

polymer-coated surface acoustic wave (SAW) sensors; semi-conducting gas oxide 

sensors; Taguchi gas sensors; MOSFET sensors; and electrochemical sensors.  In 

the presence of chemical analytes the partially selective sensor array 100 responds 

by generating an analog signal for each sensor. 

Not only is the selection of the type of partially selective sensors 100 

application driven, but so is the number of these sensors used in the present 

invention.   In most applications of the present invention between ten and twenty 

partially selective sensors (i.e., a ten or twenty dimensional pattern vector) is the 

maximum number of sensors that are needed. However, in many applications, less 

than five sensors is all that is required to obtain the necessary chemical information 

(i.e., good clustering in multidimensional space).   The desire to use the minimum 

number of sensors in a system is driven by the need to keep the instrumentation 

simple and reduce the size and cost of the system. The optimal number of sensors 

15 
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in the array is also determined by the specificity of the sensors themselves and the 

types of applications in which the sensors will be used. 

The analog signals from the partially selective sensor array 100 are then 

passed through an analog to digital (A/D) converter 110 and transformed from an 

analog format to a digita. format. The A/D converter 110 is connected to a 

communications interface 120 which can directly place the raw data from the partially 

selective sensors 100 into the memory of the PNN training computer system 130. 

PATTERN EXTRACTION 

FIG. 5 is a diagram showing the configuration of the PNN training computer 

130 shown in FIG. 4 of the present invention. The PNN training computer 130 

includes: a sensory data file 200; a pattern extraction unit 210; a pattern vector file 

220; an LVQ classifier un«; a dead neuron elimination unit 240; a a optimization unit 

250; a threshold determination unit 260; a Monte Carlo simulation unit 270; and PNN 

Plug-.n module 280. Once the PNN plug-in module 280 is created it can be placed 

15        in chemical sensor field unit 140. 

FIG. 6 is a diagram showing the process used in the present invention to 

generate the probabilistic neural network (PNN), global a optimization and threshold 

value determination using the hardware configuration shown in FIG. 6. Both FIG. 5 

and 6 will be referred to in the description of the present invention. 

Referring to FIG. 5, once the raw sensor data is in the memory of the PNN 

training computer system 130, rt can then be placed in a sensory data file 200 on a 

mass storage device as shown in FIG. 4. As shown in FIG. 5 and step S10 of FIG. 

20 
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6, a pattern extraction unit 210 is provided which is an application specific module 

supplied by the user comprising software routines for converting raw sensor signals 

stored in the sensory data file into pattern vectors amenable for data analysis. A 

simple example of the pattern vectors created by three analytes using three sensors 

was previously discussed with reference to FIG. 1. A similar pattern extraction unit 

210 is required in the field portable sensor unit for real-time analysis of the chemical 

analytes seen in the field. 

In the PNN training computer system 130, the pattern vectors generated by the 

pattern extraction unit 210 form the initial training pattern 30 and hidden layer 

neurons (initial pattern vectors) 40, shown in FIG. 3, which will be used in generating 

the probabilistic neural network (PNN), described in detail later in this document. 

Once the extraction unit 130 places the pattern vectors into the hidden layer neurons 

40 these hidden layer neurons may be thought of as initial hidden layer neurons 40 

(or pattern vectors) and the initial PNN since they will undergo further processing to 

15        reduce their number. 

HIDDEN LAYER REDUCTION USING LEARNING VECTOR QUANTIZATION 

Referring to FIG. 5, an LVQ classifier unit 230 is executed in step S20 of FIG. 

6. Learning vector quantization (LVQ), originally developed by Kohonen and 

disclosed in an article entitled "Learning Vector Quantization for the Probabilistic 

Neural Network", is a competitive learning algorithm employed here to define a 

smaller set of pattern vectors that span the same space as the initial training pattern 

vectors stored in the pattern vector file.   The resulting set of pattern vectors are 

20 
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substantially reduced In number from the original training pattern neurons and form 

the hidden layer of the PNN. 

Using the LVQ classifier unit 230 shown in FIG. 5 and executed in step S20 of 

FIG. 6, the pattern vectors are considered hidden neurons and are forced to compete 

against each other to learn the structure of the pattern data space. The patterns in 

the training set are repeatedly presented many times (e.g., 10,000) to the LVQ 

classifier in random order.   At each step, the neuron closest (based on Euclidean 

distance) to the current pattern vector (i.e., the «winning neuron") is moved toward the 

pattern if the classification for the winning neuron matches the classification of the 

pattern.   Otherwise, if the classification for the winning neuron does not match the 

classification of the pattern vector, the neuron is moved away from the pattern. The 

distance that the winning neuron is moved is determined by the learning rate, which 

is slowly lowered over the course of training to decrease the likelihood of finding a 

local minima. 

An important parameter for correct implementation of the LVQ classifier unit 

230 executed in step S20 of FIG. 6 is the initial number of neurons (pattern vectors). 

Prior to the present invention this was determined by the user. To make the entire 

training operation autonomous, this user decision has been removed by initially 

employing a larger than necessary number of hidden neurons. 

Once the LVQ classifier unit 230 completes processing in step S20 of FIG. 6, 

the number of neurons is substantially reduced and the size of the PNN is significantly 

smaller. 

18 
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HIDDEN LAYER REDUCTION THROUGH DEAD NEURON ELIMINATION 

Referring to FIG. 5, after the LVQ classifier unit 230 completes processing, the 

network structure is interrogated by passing each pattern in the training set through 

the hidden layer of the LVQ once and storing each winning neuron. The neurons in 

the hidden layer which never become a winning neuron are considered "dead 

neurons" and are removed from the hidden layer by a dead neuron elimination unit 

240. This allows the hidden layer reduction step to proceed without user intervention 

and further decreases the size of the hidden layer to be passed to the PNN. 

The identification and elimination of dead neurons by the dead neuron 

elimination unit 240 of FIG. 5 (executed in step S30 of FIG. 6) proceeds by creating 

a two dimensional array in which the columns represent the neurons after the LVQ 

classifier unit completes processing (from step S20 of FIG. 6) and the rows represent 

the initial pattern vectors from the pattern extraction unit (from step S10 of FIG. 6). 

In step S30 of FIG. 6, the distance between each pattern vector (row) and each 

neuron (column) is determined by Euclidean distance or other suitable metric.  For 

each row (pattern vector), the neuron that was the closest (i.e., has the minimum 

distance) among the neurons in the hidden layer is flagged or a bit is set. All other 

columns along the row corresponding to the pattern vector are left unflagged or their 

bit set to zero. Once this is completed, the columns are checked to see if any of their 

rows had been flagged. Neurons that were flagged once or did not have at least one 

bit set (i.e., none of the rows in a column corresponding to the neuron) are not the 

closest neuron to any one pattern. These neurons are considered dead neurons and 

19 



are eliminated from the hidden layer. 

a OPTIMIZATION 

Referring to FIG. 5 and executed in step S40 of FIG. 6, a a optimization unit 

250 begins execution immediately after hidden layer reduction by the LVQ classifier 

unit 240 and the dead neuron elimination unit 240 have completed processing. At this 

point in processing in the present invention, the hidden layer neurons have been 

reduced in number to a fraction of its original size seen after operation of the pattern 

extraction unit. PNN training proceeds by simply copying the hidden layer created by 

the LVQ classifier unit 230 and dead neuron elimination unit 240 (i.e., the winning 

neurons) to the hidden layer and performing a global a optimization.   The PNN 

optimization unit 250 used in the PNN training computer system 130 employs 

one-step calculation for a optimization which results in a single global a value for all 

neurons in the hidden layer.   The calculation of the optimal global a is based on 

computing the dot product distance between each neuron and its nearest neighbor as 

15        shown in equation 2 below. 

10 
a 

a 

■ '4SN ■ a 

In equation 2, m is the number of sensors in the array, n is the number of neurons in 

the hidden layer of the PNN, and < represents the nearest neighbor of neurons e, 

The 1.44 term in Equation 2 is the correction factor that was found to work well with 

20 



sensor array data. The basic assumption used in this approximation is that because 

the PDF for each class is estimated as the sum of the individual Gaussian kernels, 

the density estimate on a specific location in the pattern space is determined by the 

nearest kernel only.   All other kernels are assumed to be so far away that their 

5       contribution to the density estimate is minimal. Thus, the approximation to the optimal 

kernel width (a) should be based on the mean distance between nearest neighbors 

adjusted for the number of sensors and the number of neurons in the hidden layer. 

This determination of the optimal global a differs from that in the prior art by 

determining a single global a for all neurons in the hidden layer and summation layer 

10        rather than determining a on an individual neuron or class basis. 

OUTLIER REJECTION THRESHOLD DETERMINATION 

Referring to FIG. 5 and step S50 of FIG. 6, a threshold determination unit 260 

determines the best outlier rejection threshold for a particular hidden layer and optimal 

global a value using a Monte Carlo simulation.    By default, the initial rejection 

15        threshold is set to 

r=°4op, 

(3) 

where r is the rejection threshold and a^ was computed in equation 2.   A large 

number (i.e., 10,000) random pattern vectors are presented to the PNN in the Monte 

Carlo simulation.  The strength of the summation layer neurons 50 (see FIG. 2) are 

20        tested. If the aggregate score for the summation layer neurons 50 is less than r then 

21 
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the pattern is considered an outlier. Thus, that particular pattern is not similar to any 

of the patterns in the original training data set. A Monte Carlo simulation unit 270 

shown in FIG. 5 and executed in step S60 of FIG. 6, generates a large series of 

random pattern vectors against which the computed threshold value may be tested. 

Under Monte Carlo simulation, the premise is that the PNN should reject somewhere 

between 80 and 90% of the randomly generated patterns.  In step S70 of FIG. 6, if 

less than 80% (the predetermined number) of the random patterns are rejected then 

in step S80 of FIG. 6, r is increased by 20% and another Monte Carlo simulation is 

executed in step S60.   If greater than 90% of the patterns are rejected, then r is 

reduced by 20% and in step S80 and another simulation is performed in step S60. 

However, in the case where more sensitivity of the present invention to 

chemical analytes is important and there is less concern for possible false alarms, a 

rejection rate of random patterns as low as 50% may be used. 

ChemID PLUG-IN MODULE 

The optimized PNN hidden layer, a, and rare downloaded to a PNN plug-in 

module 280 that can be read into a chemical sensor field unit 140, as shown in FIG. 

4 and FIG. 5. As shown in FIG. 5 and processed in step S60 of FIG. 6, the PNN 

Plug-in module 280 can be plugged into a chemical sensor field unit 140 which 

contains a copy of the pattern extraction unit 210 discussed above. Once the pattern 

extraction unit 210 determines the pattern vectors in the chemical sensor field unit 

140, these pattern vectors are processed through the hidden layer of the PNN and 

those pattern vectors that exceed the threshold value r are rejected as outliers. 
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Those pattern vectors that remain are presumed to match one of the neurons in the 

hidden layer and a classification decision with an associated confidence factor or 

measure of uncertainty is made based on the computed PDF of the PNN. 

By utilizing the present invention described above, the problems encountered 

in the prior art can be overcome. As elaborated below, the user of the present 

invention will realize high accuracy in chemical analyte identification, fast execution 

speeds, a simple method of system training, low memory requirements, robust outlier 

rejection, and produce a measure of uncertainty. 

High Accuracy 

For application of the chemical sensor system to field measurements, the 

present invention provides a pattern recognition device and method with a low false 

alarm rate and few missed detections. In military applications such as the detection 

of toxic chemical vapors, classification accuracies of greater than 90% are realized 

by the present invention. The present invention accomplishes this through the use 

of a PNN in combination with a LVQ classifier unit, dead neuron elimination unit, a 

optimization unit, and threshold determination unit. 

Fast Execution Speed 

The present invention is suitable for real-time analysis of chemical analytes by 

reducing the size of the PNN required and using a single global a value as well as 

threshold value.    Thus, the algorithms used in the present invention are less 

computationally intense than those seen in the prior art and execute faster. 

Simple to Train 
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The classification rules used by the present invention are learned quickly by the 

use of a PNN. Using the present invention, the database of training patterns can be 

updated as needed in a quick and simple manner. 

Low Memory Requirements 

5 By reducing the number of neurons in the hidden layer using the LVQ classifier 

unit and the dead neuron elimination unit, the present invention creates a PNN which 

is a mere fraction the size seen in the prior art. Thereby, the PNN generated by the 

present   invention   is  suitable  for a  field-portable  sensor  systems  having   a 

microcomputer with limited memory resources. 

iO        Robust to Outliers 

As previously discussed, the environment in which chemical sensor arrays are 

used in the field is uncontrolled (e.g., battlefield). Therefore, a pattern recognition 

system must be able to differentiate between sensor signals on which it was trained 

and those on which it was not. The present invention accomplishes this by use of the 

15 a optimization unit and threshold determination unit which determine the threshold 

value at which outliers should be rejected. 

Produce a Measure of Uncertainty 

The present invention is able to determine a statistical measure of uncertainty 

so that a confidence level of the classification can be determined.    For sensor 

20        applications such as toxic vapor monitoring, such a measure aids in reducing the 

occurrence of false alarms by requiring that the sensor system be greater than 80% 

or 90% certain of a classification decision before a warning is given or an alarm 
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sounded. 

Although a few preferred embodiments of the present invention have been 

shown and described, it will be appreciated by those skilled in the art that changes 

may be made in these embodiments without departing from the principles and spirit 

of the invention, , 
In 

particular, reference has been made to the use of MATLAB™ module files from 

Mathworks, Inc. and a Visual Basic™ subroutine. However, it is also appreciated by 

a person of ordinary skill in the art that the present invention may be implemented in 

any computer language suitable to the task. 
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ABSTRACT OF THE DISCLOSURE 

A device and method for a pattern recognition system using a self-training 

neural network classifier with automated outlier detection for use in chemical sensor 

array systems. The pattern recognition system uses a Probabilistic Neural Network 

5        (PNN) training computer system to develop automated classification algorithms for 

field-portable chemical sensor array systems.   The PNN training computer system 

uses a pattern extraction unit to determine pattern vectors for chemical analytes. 

These pattern vectors form the initial hidden layer of the PNN. The hidden layer of 

the PNN is reduced in size by a learning vector quantization (LVQ) classifier unit. The 

10        hidden layer neurons are further reduced in number by checking them against the 

pattern vectors and further eliminating dead neurons using a dead neuron elimination 

device. Using the remaining neurons in the hidden layer of the PNN, a global «rvalue 

is calculated and a threshold rejection value is determined. The hidden layer, «rvalue 

and the threshold value are then downloaded into a PNN module for use in a 

15        chemical sensor field unit.   Based on the threshold value, outliers seen in the real 

world environment may be rejected and a predicted chemical analyte identification 

with a measure of uncertainty will be provided to the user. 
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