
Serial Number

Filing Date

Inventor

408.985

16 March 1995

Albert J. Corda
Michael J. Kuchinski

NOTICE

The above identified patent application is available for licensing. Requests for information
should be addressed to:

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
CODE OOCC
ARLINGTON VA 22217-5660

Dism^A* "STATEMENT A

Kvi—r/.-.---■ *c-~ T--,:hI5c release;
Distribution linnraitea fXZ>

x>na QU^XP

4
,*.

NAVY CASE

NO. 75554

TITLE OF THE INVENTION

IMMERSIVE VISUAL PROGRAMMING SYSTEM

BACKGROUND OF THE INVENTION

The present invention generally relates to a virtual programming system, and more

5 particularly, to an immersive visual programming system wherein execution of a virtual program

is displayed to a user to illustrate the flow and interaction of data and algorithmic components

within the system.

As software complexity continues to increase, our ability to comprehend the architecture

and operation of large software systems correspondingly decreases. Accordingly, we have

10 detected a long-felt need in the software industry for providing tools to programmers which

further increase their ability to comprehend and synthesize large scale software systems. Some

efforts toward fulfilling this need have been recently attempted. One such effort is disclosed in

U.S. Patent 5,325,533 entitled Engineering System For Modeling Computer Programs issued to

Mclnerney et al. on 28 June 1994. This system provides a human oriented object programming

15 system which provides interactive and dynamic modeling to assist in the development of

computer programs. While this invention may be useful in its own right, we believe it can be

improved on to provide the programmer with more intuitive clues regarding program assembly,

execution and errors.

NAVY CASE

NO. 75554

Another recent attempt is disclosed in U.S. Patent 5313,575 entitled Processing Method

For An Iconic Programming System issued to Beethe on 17 May 1994. This invention is based

on an iconic programming system which enables a programmer to create programs by

connecting various icons into a network representative of the program. Execution of the network

5 is accomplished by processing each icon and performing any programming functions

represented by the icon. Again, we recognize potential benefits from this invention, but believe

that it can be improved upon to provide the programmer with better feedback regarding program

flow and data interaction during execution.

Yet another attempt is disclosed in U.S. Patent 5,301,336 entitled Graphical Method For

10 Programming A Virtual Instrument issued to Kodosky et al. on 5 April 1994. Here, a computer

programming method is disclosed wherein a graphical interface utilizes data flow diagrams to

represent a given procedure. Data flow diagrams are assembled in response to user input

utilizing icons which correspond to respective executable functions, scheduling functions, and

data types which are interconnected by arcs on the screen. It has been our experience, however,

15 that this type of graphics can be improved to provide better visual information regarding data

interaction.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide an improved virtual

programming system.

20 It is another object to provide a virtual programming system that optimally increases a user's

comprehensibility of program structures.

NAVY CASE

NO. 75554

It is still another object to provide a virtual programming system that is useful for defining

the high-level flow control and data pathways within a program.

It is yet another object to provide a virtual programming system that allows for dynamic

interaction of data objects within a program.

5 It is still yet another object to provide a virtual programming system that allows a user to

define how data objects within the system interact with each other.

These and other objects may be achieved according to the principles of the present

invention by providing an immersive visual programming system which enables a programmer

to visualize and interact with program elements as though they were physical objects. The

10 objects represent either algorithmic components or data structures. Their size, shape, color and

position provide visual clues as to their current state and/or purpose. Programming in the system

includes assembling the components into detailed program structures. Many of the components

have moving parts, and a completed program is machine-like in appearance. Execution sets the

program into motion, and data components flow through it to provide the programmer with an

15 intuitive understanding of program flow and data interaction.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of this invention, and many of the attendant advantages

thereof, will be readily apparent as the same becomes better understood by reference to the

following detailed description when considered in conjunction with the accompanying drawings

20 in which like reference symbols indicate the same or similar components, wherein:

FIG. 1 illustrates how an execution pointer moves through an algorithmic component during

execution of a computer program in the present invention:

NAVY CASE

NO. 75554

FIG. 2A illustrates a generic example of a data glove used in the present invention;

FIG. 2B illustrates two sequential algorithmic components in an assembled state according

to the present invention;

FIG. 3 illustrates data variables and constants according to the present invention;

5 FIG. 4 illustrates a one-dimensional array of data variables according to the present

invention;

FIG. 5 illustrates a single instruction according to the present invention;

FIG. 6 illustrates a program module structure according to the present invention;

FIG. 7 illustrates a conditional branching structure according to the present invention;

10 FIG. 8 illustrates the inside of a conditional branching structure during program execution;

FIG. 9 illustrates repetitive structures according to the present invention;

FIG. 10 illustrates stages of a pre-test loop repetitive structure during program execution;

FIG. 11 illustrates stages of a post-test loop repetitive structure during program execution;

FIG. 12 illustrates an initial state of a process server construct in the present invention;

15 FIG. 13 illustrates process interactions in the present invention;

FIG. 14 illustrates data object structure according to the present invention;

FIG. 15 illustrates a data object sorting construct according to the present invention; and

FIG. 16 illustrates another data object sorting construct according to the present invention:

DETAILED DESCRIPTION OF THE INVENTION

20 A program constructed according to the principles of the present invention encompasses

both geometric and interactive attributes of its component parts. Object geometry and object

interactions complement each other in defining a complete program/construct, just as they do in

NAVY CASE

NO. 75554

a real-world machine. The present invention provides both dynamic data/process flow control

and object-interactive views of the programs it encompasses via a multi-dimensional approach.

The present invention comprises two dimensions, the Flow dimension and the Interaction

dimension.

5 FLOW DIMENSION

The Flow dimension is probably one which the average programmer is able to relate to most

easily. In this dimension, a programmer developing software assembles both data and algorithms

from elemental, pre-fabricated virtual components. Each algorithmic component has an ingress

surface through which it is entered. This typically is at the top of the component. Likewise, each

10 component also has an egress surface through which it can be exited. The egress surface(s) will

typically be at the bottom of the component. Labels and/or color coding signify the nature of a

surface (i.e. either ingress or egress), and changes in a surface's transparency denotes changes in

its permeability, or its ability to allow data to pass through it. Thus, opaque surfaces are

impermeable. Translucent ones are only semi-permeable, allowing penetration of certain types

15 of data but not others. Transparent ones are unconditionally permeable. No more than one egress

path at a time is permeable, thus insuring that the component has but a single entry and a single

exit.

Program and module structures are assembled from algorithmic components. A thread of

execution through a component or structure flows in general from top to bottom, with other

20 movement possible under certain conditions. A visible execution pointer moves through the

structure at run time. The location of this execution pointer in the structure will indicate the

instruction currently being carried out. FIG. 1 illustrates a basic example of such a component.

NAVY CASE

NO. 75554

In FIG. 1, the execution pointer 11, enters the component through ingress surface 13 and exits

through egress surface 17. Arrows indicating direction of flow are represented by reference

numerals 15a and 15b.

Similarly, data structures are assembled from elemental data components. At any particular

5 instant during execution, the execution pointer contains physical representations of any and all

data structures accessible at that particular instant. The pointer therefore always contains global

data. Local data exists within the execution pointer only while traversing the structure of the

program module with which that local data is associated. Thus, the virtual representations of

these local data come into existence only upon entry of the module by the execution pointer.

10 They subsequently disappear once the pointer has exited the module.

Within the development environment a programmer is immersed in what is basically a

virtual reality ("VR") editor. The programmer is surrounded by the development space and is

able to move around, having access to a set of elemental, pre-fabricated components as

mentioned before. These are used as program building blocks, and essentially amount to the

15 syntax of the system. Components for the specification of both data structures and functional

flow (algorithmic) structures are included. Individual components have physical characteristics

that provide clues as to their current state or purpose. The supply of new components is

theoretically inexhaustible, and it is possible to make them appear or disappear as needed,

through either hand gestures interpreted by a data glove or voice commands. Programming

20 according to the present invention involves grasping these components (by using one or more

data gloves) and assembling them into more complex structures by physically placing the

components within the programming environment. The data glove(s) can provide tactile

NAVY CASE

NO. 75554

feedback depending on the placement of the virtual components. FIG. 2A illustrates a generic

example of such a data glove as reference numeral 21.

Referring to FIG. 2B. two sequential algorithmic components 23 and 25 are illustrated in an

assembled state. Data objects enter the sequence through an ingress surface 27 of first

5 algorithmic component 23, and exit the sequence through egress surface 29 of second

algorithmic component 25. The components must be assembled such that an egress surface of

first algorithmic component 23 is directly above the ingress surface of second algorithmic

component 25. Arrows indicating direction of flow are depicted as reference numerals 28a and

28b. Syntax rules are enforced by having the two components behave like magnets. Correct

10 assembly cause the two to attract, and some resistance has to be overcome in order to separate

them. Conversely, attempts to assemble two components together incorrectly cause them to

repel one another.

It is also possible to nest components and structures. Thus it is possible to build an

algorithmic structure to represent a system at any level of detail or specificity. This ranges from

15 the most rudimentary design to a fully implemented, executable system. In this way the

environment supports the concept of top-down design and step-wise refinement.

Once the programmer is satisfied that the program as constructed is complete, compilation

provides visual and/or audio clues as to the nature and location of compiler errors. Once

compiled, execution of the program sets the structure into motion and causes data flow to begin.

20 Movement of data through an assembled structure characterizes the structure's logical flow of

control. Moreover, as the structure is set in motion, the environment ceases to be merely an

editor and becomes a virtual reality debugger since the flow of data through the algorithmic

NAVY CASE

NO. 75554

components of the structure is displayed to the programmer in a visual format. Semantic error

detection is enhanced through observation of the flow of data and the motion of the structure

itself.

In this way, the virtual programming environment of the present invention supports

5 verification and validation. Run-time error messages in the form of sight and sound alerts are

provided, with the offending component highlighted in some way. As for identification of more

subtle logic errors, selection of different observation perspectives is also possible. These include

different perspectives relative to the system's top-down structure. That is, the environment that

surrounds the user variously represents an entire system, or a single thread of execution therein,

10 or a sub-structure such as a module or the body of a loop. The user is able to maneuver around in

this environment, changing position and perspective instantaneously if desired, as well as

manipulating individual objects or entire structures. Motion is made to go forward or backward

at fast or slow speed, or can be made to stop altogether once the system achieves a certain state.

It is also possible to examine data structures and their contents. The development environment

15 described above can arguably be regarded as the ultimate object-oriented programming

environment, inasmuch as the program components literally have the physical properties of

objects in the real world.

Data representation in the present invention focuses on two areas. The first is the

specification of the data structures themselves, and the second addresses scoping rules.

20 Referring to FIG. 3, the simplest data components, single identifiers, are represented as

three-dimensional, cylindrical, disk-like objects. In FIG. 3, disk 30 represents a constant, while

disk 35 represents a variable. The identifier's name is specified on the disk's outer surface with

NAVY CASE

NO. 75554

its value specified inside. Disk 30 is identified by reference numeral 32 as "Y" having a

constant value of "7". as indicated by reference numeral 34. Disk 35 is identified by reference

numeral 37 as "X" having a variable value of "1", as indicated by reference numeral 39. Disk 35.

which represents a variable, is able to be opened and have its contents changed during execution

5 (as indicated in FIG. 3). Disk 30, however, which represents a constant is not able to be opened,

and therefore maintains its constant value. Both object's contents are capable of being copied,

however, as when assigning one identifier's value to another, or when writing a value as part of

an output stream, or when passing a value as a parameter. Uninitialized variables are therefore

empty. Determination of a variable's value at any time during execution is simply a matter of

10 examining the contents of its disk. An identifier's numeric type (integer, real, boolean etc.), is

specified by the color of the disk. Furthermore, constants are translucent and variables are

transparent. As with other programming languages, more complicated data structures including

arrays and records, are fashioned from different arrangements and combinations of these simple

components.

15 A single dimensional array is represented as a column of the simple data components

described above, a two-dimensional array is represented as rows of these columns, and a

three-dimensional array is represented as multiple rows of columns. Referring to FIG. 4, a single

dimensional array 40 comprised of individual data components 4L 43, 45, 47 and 49 is depicted.

As the elements of an array are homogeneous, each simple data component disk in a given array

20 is of the same color. Records on the other hand are constructed in a manner similar to

single-dimensional arrays, but without the constraint that each individual disk be of the same

color. With these two building conventions, it is possible to manufacture more complicated

NAVY CASE

NO. 75554

structures, nesting and combining them in various ways to create arrays of arrays, arrays of

records, and so forth.

It might seem that the physical representations of some of the more complicated data

structures will be too large to be contained within the execution pointer described earlier.

5 However it is important to remember that in VR, objects need not conform to the same physical

constraints as objects in the real world. Thus a multi-dimensional array according to the present

invention need not have a physical representation any larger than that of a single variable. In

order for one object to nest within another, either or both of the objects are scaled as required.

This is true not only for data structures, but for algorithmic components as well.

10 Finally, there is the issue of the scope offne data structures. The term scope refers to

whether a data item is global or local. The present invention approaches the issue of scoping in a

manner similar to that used in other languages, notably C. Data structures are either global

throughout a program or local to a single module. In the discussion of ingress and egress

surfaces (see above), it was noted that certain of these surfaces have limited permeability. The

15 extent ofthat limitation is a function of the scope of the data items attempting to penetrate the

surface. Thus an egress surface for a module permits the passage of global data items, but

inhibit the passage of data items declared local to that module. Parameter arguments to the

module that are call-by-value are similarly constrained, while call-by-address arguments are not

inhibited upon exit.

20 The algorithmic components used in the present invention include the three commonly

associated with structured programming. These are the sequential, conditional branching and

repetitive structures. At the same time, however, single instructions need to have a

10

NAVY CASE

NO. 75554

representation, as they constitute the most fundamental functional building block in any

language.

According to the present invention, a single instruction is defined as one of the following:

an assignment statement, a read or write statement, or a call to a module. Referring now to FIG.

5 5, a single instruction is visually represented as a cube 50. Ingress path 51 and egress path 53 are

unconditionally permeable. Its lateral surfaces are opaque to signify that it is indivisible and

representative of the lowest level of functional detail.

Upon execution, an assignment statement in the present invention behaves as follows. The

execution pointer includes the variable or data structure to which the instruction is about to

10 assign a value. This must of necessity be true, since failing to do so would violate the scoping

rules of the present invention, producing a compiler error. Upon entering the assignment through

its ingress surface, the data structure in question opens, and has its contents visibly changed as a

result of the assignment.

Execution of a read statement in the present invention is somewhat similar. Again, the

15 execution pointer has to contain the variable or data structure into which the value is about to be

read. Upon the pointer entering the read through its ingress surface, an opening appears on a

lateral side of the read instruction cube. This opening represents a window on the input stream,

and the value(s) being read flow through this opening. Then, as with the assignment statement

above, the data structure opens and has its contents visibly changed as a consequence of the

20 read.

Execution of a write statement in the present invention also causes an opening to appear on

a lateral side of the instruction cube. This opening represents a window on the output stream. (It

NAVY CASE

NO. 75554

seems logical to have it appear on the lateral surface opposite from that of a read.) The output

stream, which includes combinations of literal character stings, literal numeric or boolean

values, or values of data structures flow out through this opening.

A call to a module in the present invention causes the execution pointer to change position

5 instantaneously from the single instruction cube in the calling module. It moves to the ingress

surface of the sequential structure representing the called module, located elsewhere in the

environment. Local data items, including call-by-value parameters at this point appear in the

execution pointer, and remain there for the duration ofthat module's execution. This is true even

if a call to another sub-module is made within the body of the first sub-module. (Call-by-address

10 values on the other hand already exist, perhaps under a different name, in the execution pointer.)

Upon leaving the module (via its egress surface), local data disappears from the execution

pointer. The execution pointer again changes position instantaneously back to the single

instruction in the calling module, and from there the flow of control of the main program is

resumed.

15 When one sub-module calls another, the local data items from the first sub-module remains

in the execution pointer as it moves to the second sub-module. Thus local data items

incrementally appear (or disappear) from the pointer as the calls to their corresponding modules

are initiated (or completed). Similarly, recursive calls are visualized by having a duplicate copy

of a module appear each time a recursive call is made. Each duplicate exists only for the

20 duration of the corresponding recursive call.

Some form of the sequential structure exists in most programming languages. In Pascal

and Ada, there is the "begin-end" structure. Similarly, C has the { } notation. In Lisp, the

NAVY CASE

NO. 75554

"progn" function is one of several ways to group together multiple instructions that are to be

executed in sequence. In the present invention, a sequential processing structure is represented

visually as a cube. It is different from a single instruction in that it is able to contain more

elaborate structures. Thus, its lateral surfaces are transparent, signifying the presence of a greater

5 level of detail within. These sequential structures do not have any moving parts (although they

may contain sub-structures that do). At run time, the execution pointer simply descends through

them from top to bottom. In addition to representing a simple sequence of instructions, these

structures are also used to represent the body of a loop, or the body of a decision option in a

conditional branching structure.

10 Most programming languages also allow for some type of sub-module. "Functions" and

"procedures" in Pascal and Ada, as well as "tasks" in Ada and "functions" in C are examples.

The Fortran language has the "subroutine", and Lisp the "defun". Referring to FIG. 6, a

sub-module in the form of a sequential structure cube 60 is illustrated. In this role, the sequential

structure is isolated from the rest of the program structure, existing by itself in a separate region

15 of the environment. Arguments to these sub-modules are either of the call-by-value or

call-by-reference variety, as with "value" and "variable" parameters respectively, in Pascal.

Most programming languages permit conditional branching. One or more conditions are

evaluated in turn to determine which execution path should be followed. This path is determined

by the first condition that is found to be true. Once a condition is found true, no further

20 conditions are examined. If none of the conditions are true, there is often an "else" option

representing a default path to follow. It is worthy of note that even' conditional branching

structure (even the simplest "if statement), has an implicit, if not explicit "else" option. It may

NAVY CASE

NO. 75554

represent nothing more than otherwise, do nothing or otherwise cause a run-time error, as with

"case" statements in standard Pascal. Conditional branching in Ada and Pascal is accomplished

by the "if structure as well as the "case" structure. Similarly, C has the "if-else" and "switch"

notations. The "cond" function of Lisp is only one of several ways in which conditional

5 branching can be done in that language.

Referring to FIG. 7, a conditional branching structure 70 is illustrated. The top surface of

structure 70 includes an ingress surface 72 through which data enters. FIG. 8 illustrates the

environment within structure 70. A sentinel 82 responsible for monitoring the boolean

conditions for each decision option is positioned within structure 70. According to the present

10 invention, all conditional branching structures have an "else" option, even if null. Associated

with each decision option are regions of the cylinder's bottom surface. These regions, shown as

reference numerals 84 and 86, are designated as egress paths. Their permeability is contingent

upon the status of the boolean conditions. Beneath each egress path (except possibly the "else"

option) there is a "begin-end" block or a single instruction block which represents the body of

15 that option.

During execution, the execution pointer traverses a conditional branching structure by first

entering the cylindrical chamber via the top surface. Ingress path 72 is always permeable. Once

within the chamber, each boolean condition is evaluated in turn. As soon as a boolean evaluates

true, sentinel 82 points to the corresponding egress path. This causes the entire structure to rotate

20 around the center of the cylindrical chamber, so that the correct egress path and its

corresponding body aligns with the program's linear execution path. At this time the egress path

also becomes permeable and the execution pointer passes through it. If none of the booleans

14

NAVY CASE

NO. 75554

evaluate to true, sentinel 82 points to the "else" option, and the corresponding egress path aligns

with the execution path and becomes permeable. No more than one egress path is ever made

permeable on a given pass through the structure. This ensures adherence to the single entry,

single exit constraint of structured programming.

5 Most programming languages allow for both pre- and post-test loops. Generally speaking,

in a pre-testioop a boolean condition is evaluated before the loop body is executed. The loop

body is then repeatedly executed as long as the boolean condition remains true. By contrast, the

body of a post-test loop is always executed once before the loop's boolean condition is tested.

The loop body is then repeatedly executed as long an the boolean condition remains false. In

10 Pascal there are the "for" and "while-do" pre-test loop structures and the "repeat-until" post-test

loop structure. In Ada there are the "for" and "while" pre-test loop structures. The loop command

in Ada combined with the "exit" instruction can be used to create a post-test loop. In C there are

the "for" and "while" pre-test loop structure. In Lisp the "do" function can be combined with the

"return" function to produce either pre- or post-test loops.

15 Referring to FIG. 9, syntax for repetitive structures consists of cylindrical chambers 91 and

93, each having a vertical orientation. There also are "begin-end" blocks 92 and 94 which

represent the loop's body. The top-most surface of each cylinder 91 and 93 represents the ingress

path, and the bottom-most surface represents the egress path. The permeability of blocks 92 and

94 are contingent upon the status of the boolean conditions and the relative positions of

20 cylinders 91 and 93 and blocks 92 and 94, respectively. In a post-test loop, the loop body is

initially above the cylinder, as depicted by cylinder 93 and block 94: while in a pre-test loop, the

loop body is initially below the cylinder, as depicted by cylinder 91 and block 92.

NAVY CASE

NO. 75554

Referring now to FIG. 10, execution of a pre-test loop is depicted. In FIG. 10, a pointer 100

first enters cylinder 102 through the top surface. This ingress path is always be permeable. Once

within, the boolean condition is evaluated. Provided the condition is true, the egress path

becomes permeable at that time. Pointer 100 then enters block 101, which represents the body

5 loop. While pointer 100 is within block 101, cylinder 102 and block 101 rotate about each other

180 degrees, effectively exchanging places. Thus, upon egress from block 101, pointer 100 once

again enters cylinder 102 and the boolean once again is evaluated. If the boolean condition again

evaluates to true, block 101 and cylinder 102 undergo a second rotation phase, rotating another

180 degrees. This completes a 360 degree rotation and effectively returns each to its original

10 position. Only then does the cylinder's egress surface become permeable. The cycle repeats itself

as long as the boolean condition is true. When the boolean condition finally becomes false, the

second phase of the rotation does not take place, but the egress path still becomes permeable.

Pointer 100 passes through and rejoins the program's linear thread of execution. This once again

ensures a single entry, single exit model.

15 Referring now to FIG. 11, execution of a post-test loop is depicted. In FIG. 11, pointer 110

first enters block 111, which represents the loop body, and completes its processing. Then

pointer 110 leaves block 111 and enters cylinder 112 through the top (ingress) surface. As

before, this ingress path is always permeable. Once within, the boolean condition is evaluated.

Provided the condition is false, block 111 and cylinder 112 rotate about each other 180 degrees.

20 so that each exchanges place with the other. Only then does the egress surface become

permeable, and pointer 110 again enters block 111. While pointer 110 is within block 111.

cvlinder 112 and block 111 again rotate another 180 degrees. This completes a 360 degree

NAVY CASE

NO. 75554

rotation and effectively returns each to its original position. After completing the loop body

again, pointer 110 again enters cylinder 112 and the boolean once again is evaluated. The cycle

repeats itself as long as the boolean is false. When the boolean finally becomes true, the second

phase of the rotation does not take place, but the egress path still becomes permeable. Pointer

5 110 then rejoins the program's linear thread of execution.

INTERACTION DIMENSION

The Interaction dimension of the present invention will probably be less familiar to the

average programmer than the Flow dimension. Within the Interaction dimension, processes and

algorithms are represented via objects and object interactions, and are constrained to obey a

10 specified set of "pseudo-physical" laws. The first step in the Interaction dimension is to define

how objects within the virtual environment interact with each other. That is, one must construct

a mathematical model or a virtual world of physics to define object interactions within the

virtual environment. In order to increase the human comprehensibility of the program structures

created, it is important to ensure that the virtual world of physics constructed does not stray too

15 far from the physics of reality as we know it. Since humans operate in a classical "Newtonian"

world, and do so in an instinctive and almost reflexive manner, deviating greatly from

Newtonian law in a virtual environment might cloud a programmer's understanding more than

clarify it. What can be done, however, is to loosen the restrictions and boundary conditions

which nature forces upon us, and generalize the model of object interactions in an easily

20 comprehensible way. For instance, it is quite easy for us to picture an object sliding on a

frictionless surface, even though such surfaces do not occur naturally. Another example is the

17

NAVY CASE

NO. 75554

perfectly elastic collision. While non-existent in nature, it defines a type of fictional interaction

which is nevertheless easy for us to envision.

In order to illustrate how object interactions embody an algorithm, we use a process server

"algorithm" within the virtual environment. Referring to FIG. 12, an initial state of the process

5 server construct is illustrated. In FIG. 12, a closed boundary surface or shell, S, encloses a

number of process objects, pn. Each process object, pn, is a closed surface which "encapsulates"

the program/constructs which make up that particular process. Process server objects, Pn,

comprise a set of bounded surfaces the union of which constitutes a closed surface, and within

which is contained the process server program/construct. Note that each of these process server

10 objects P„ contains a bounded surface In which is tangent to the boundary surface S. This

"interface surface" is vested with certain attributes which define its interaction with the process

objects pn. Similarly, the closed surfaces which encapsulate each of the process objects pn are

also vested with certain attributes which define their interaction with the interface surfaces In, the

boundary surface S, and with each other.

15 In addition to objects and boundary/interaction surfaces, the present invention also provides

"action at a distance" interactions via the creation of pseudo-fields and pseudo-charges.

Interaction surfaces can possess a pseudo-charge, the value of which is dependent upon the

current state ofthat object. Moreover, field equations for such interactions are defined

specifically for the program/construct being created. We assume a coulomb-like interaction

20 between the process server objects Pn and the process objects pn.

Preferring now to FIG. 13, we see what happens when we let the system evolve in time.

Process objects pn in need of service acquire a pseudo-charge of+1. As a result, they experience

18

NAVY CASE

NO. 75554

a force defined by their interaction with the pseudo-field generated by the combined

pseudo-charges of all the other objects in the system. The net reaction is that process objects pn

are attracted to and bind with process server objects Pn. When a process object pn no longer

needs service, its state change is reflected by a reversal of its surface pseudo-charge, thus

5 releasing it from its bound state with the respective process server object Pn. Upon separation,

the process object pn again changes state, acquiring a neutral pseudo-charge until it is ready for

further servicing. It is important to keep in mind that this entire process occurs within a virtual

environment. Accordingly, a user is easily able to modify an object's attributes and immediately

observe how such changes would affect the operation of the entire system.

10 In the context of the above discussion, we are defining an "object" to be a closed surface

possessing a set of attributes which define the interaction ofthat surface with other objects, and

with the virtual environment in which the object exists. Referring to FIG. 14, an example of a

typical object, dN, is illustrated. Note that since the object is a closed or boundary surface SN, it

divides its environment into two volumes, an interior (which, for lack of a better term we will

15 refer to as the object's "domain"), and an exterior (which we similarly call the "range"). Also

note that this particular object is really a compound object, comprised of a predetermined

number of nested boundary surfaces or layers SN. Each boundary surface is in actuality a

separate object, dN, completely defined by the attributes of its particular boundary surface. A

simple object (comprising a single boundary surface) or a compound object may be encapsulated

20 or unencapsulated when it interacts with the boundary surface of another object, and that

interaction allows it to penetrate the boundary surface ofthat object.

NAVY CASE

NO. 75554

In the present invention, objects may have parameters associated with them that, in essence,

represent the value or "purpose" ofthat object. As an example, consider an object defined by a

simple spherical boundary surface. The system user, in creating this object, may assign to it a

single integer parameter to hold its "value". Furthermore, he may also assign a surface attribute

5 such as color to be functionally related to the current value of the object's single integer

parameter, i.e. a parametric value of 1 may be reflected by the boundary surface assuming the

color red. Obviously, since object parameters contain the "meat" of an object, there must be a

way to effect changes or perform operations on an object's parameter set. This is accomplished

by letting the object interact with other objects sharing the same range. Object interactions are

10 regulated by an object's attribute set. When interaction takes place, the attribute sets of the

interacting objects determine the result of the interaction on both the object's attributes and

parameters. It is important to note that while all objects are required to have a specified set of

attributes and interaction conditions, they may not all possess parameters.

The attributes of the boundary surfaces of an object may be modified by interactions of

15 other objects which take place within the object's domain. Conversely, the attributes of the

object's boundary surface completely define its behavior within the object's range. Moreover, the

attributes of the boundary surface of an object may be modified by direct interaction with

another object's boundary surface {i.e. collisions). All interaction surfaces (of which boundary

surfaces are a special subset) possess a number of attributes and interaction conditions which the

20 system user assigns to define how that surface may interact with another surface. These

attributes fall into the following categories:

20

NAVY CASE

NO. 75554

(1) Pseudo-field/ Pseudo-charge: refers to a class of attributes and interaction conditions

which define action-at-a-distance Coulomb-like (field-effect) interactions with other interaction

surfaces, and the resultant Pseudo-forces.

(2) Permeability: refers to a class of attributes and interaction conditions which define the

5 result of a collision between two surfaces (e.g. elastic, inelastic, adhesion, penetration, etc.).

Also included in this class are characteristics such as Pseudo-mass, etc.

(3) Penetration: refers to a class of attributes and interaction conditions which determine if,

upon penetration, the object will be encapsulated within another object, and if so, what the

inherited attributes ofthat new object's boundary surface will be. Also included in this class are

10 the interactions in which both reflection and transmission of an object may occur. In this case,

the object and its "doppelganger" (hereafter referred to as a "doppel") are, in essence still a

single object which now co-exists in two or more ranges. Attribute changes which may occur in

any one of the doppels are mirrored by identical attribute changes to all the remaining doppels

(this class of interaction is analogous to creating multiple pointers to a single data object in a

15 conventional programming system).

(4) Transparency: refers to class of attributes which determine the "transparency" of the

boundary surface of an enclosing object. In some cases, it is advantageous to allow certain

specified attributes of an enclosed object to be visible outside that object's range. In these cases,

the enclosing object's boundary surface takes on the specified attributes of the objects within its

20 domain in a specified manner.

For purposes of example, consider the sorting construct shown in FIG. 15. In this system,

each data object dN has associated with it a pseudo-charge class attribute dnu. the value of which

21

NAVY CASE

NO. 75554

is a fully specified function ofthat data object's set of parameters. It is important to note that dna

can be considered analogous to the "sorting key" used in conventional sorting algorithms. A

second pseudo-charge class attribute dnß (a constant) is also assigned to each data element. When

the system of data objects enclosed by the boundary surface S is subjected to two pseudo-fields

5 Aa and Aß (sourced from the interface surfaces Ia and Iß) each data object will interact with the

two fields in such a way as to produce a resultant pseudo-force Fn (comprised of the vector sum

of the {Aa . dna} and {Aß. dnß} interactions). This resultant force Fn will induce a velocity Vn,

resulting in a shift of the data object's position within the cylindrical boundary surface S. The net

result of all this will be that data objects will, in essence, sort themselves by "floating" to an

10 equilibrium position (|FJ = 0) within the cylindrical boundary surface. The final result is a

spatial ordering of data elements with respect to their associated sorting keys. There are, of

course, other object attributes relating to damping factors and pseudo-mass which would also be

used to smoothly effectuate this process. However, their use and effect are straightforward to

those skilled in the art, and their inclusion here may serve only to cloud the key concepts of the

15 present invention.

Referring to FIG. 16, we see how the aforementioned sorting construct can be applied to a

more complex structure. Here, the previous sorting construct's boundary surface Ss is distorted

into a toroidal shape (this distortion, however, is not perceived by the objects within the domain

of S). The boundary' surface Ss is also modified in two other ways. It is now allowed to appear

20 "transparent" to a third pseudo-field A., and it is allowed to become permeable to data objects

within its domain that are in critically damped equilibrium (]Vj = 0). The central core of the

structure in FIG. 16 is an object which interacts with data objects in such a way as to allow each

->-)

NAVY CASE

NO. 75554

data object to penetrate into its domain. When a data object penetrates the boundary surface Sd,

it is encapsulated by another boundary surface (in essence, it is encased within another object)

which possesses a surface attribute analogous to a polarization dne defined by the angle of entry,

9, into Sd. Moreover, the surface Sd possesses a pseudo-field class attribute Ax which allows it to

5 act as the field source which draws sorted data objects (i.e. data objects in equilibrium) out of

the domain of Ss and into its own domain (we must, of course, vest the data objects with an

additional pseudo-charge class attribute dn> in order to allow an interaction with the externally

sourced field A^ to occur).

As this process proceeds, data objects possessing a polarization dne are allowed to

10 accumulate within the domain of Sd. Extraction of a sorted data object from the storage object Sd

can be accomplished in a number of ways. One approach is to use a pseudo-field to draw the

data objects through an interface surface If which would only become permeable to data objects

matching the interface surface's polarization attribute <j). In this case, data objects so extracted

would no longer be accessible to other constructs performing extractions from the same storage

15 object Sd. until they were once again returned to the domain of Sd. Another approach to data

object extraction would be to allow the creation of a "doppel" of the data object matching the

interface surface's polarization, rather than actually allowing the data object to leave the storage

object's domain. In this case, the same data object would still be available for extraction by other

constructs. Using this latter approach, doppels of the matching data object would function in a

20 manner analogous to pointers in a conventional algorithm.

As described above, it is possible to build a program/construct in a VR environment that

operates within a multiprocessing architecture. In certain respects, the present invention is

NAVY CASE

NO. 75554

analogous to a catalytically aided chemical reaction. That is, the present invention allows for the

creation of "catalytic" objects which are associated with processing nodes, further allowing these

objects to intermix and interact with data objects within the same domain, wherein attributes of

both the catalytic and data objects define what types of interactions are permissible.

5 The graphic requirements of the present invention, being largely abstract and not requiring

photo-realistic detail, are well within the capability of current graphics engines, and accordingly

can be created and utilized by those skilled in the art. Likewise, data gloves and

six-degree-of-freedom sensing devices are components of most immersive VR systems currently

known. Therefore, actual implementation of a programming system constructed according to the

10 principles of the present invention can be achieved through the use of existing components

well-known to those skilled in the art.

While there have been illustrated and described what are considered to be preferred

embodiments of the present invention, it will be understood by those skilled in the art that

various changes and modifications may be made, and equivalents may be substituted for

15 elements thereof without departing from the true scope of the present invention. In addition,

many modifications may be made to adapt a particular situation or material to the teaching of the

present invention without departing from the central scope thereof. Therefore, it is intended that

the present invention not be limited to the particular embodiment disclosed as the best mode

contemplated for carrying out the present invention, but that the present invention includes all

20 embodiments(

24

NAVY CASE

NO. 75554

IMMERSIVE VISUAL PROGRAMMING SYSTEM

ABSTRACT OF THE DISCLOSURE

An immersive visual programming system enables a programmer to visualize and interact

with program elements as though they were physical objects. These objects represent either

5 algorithmic components or data structures. Their size, shape, color and position provide visual

clues as to their current state and/or purpose. Programming in the system includes assembling

the components into detailed program structures. Many of the components have moving parts,

and a completed program is machine-like in appearance. Execution sets the program into

motion, and data components flow through it to provide the programmer with an intuitive

10 understanding of program flow and data interaction.

X5

15b

FIG. 1

/ -

FIG. 2A

23^
28a

28b

FIG. 2B

FIG. 3

/■N./ m

FIG. 4

m.

FIG. 6

M

a>

5

/,

CM O

/'■ -

• / ■•'

FIG. 12

.^•->

pn

: V ■. * ••.

FIG. 13

FIG. 14

*> *'

I a

Pseudo-force
Interactions

FIG. 15

/.I

/' ' s*

nCe=©

FIG. 16

