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1 
2 BRIDGE CONFIGURATION FOR A MAGNETO-RESISTIVE 
3 LINEAR-DISPLACEMENT SENSOR 
4 
5 BACKGROUND OF THE INVENTION 

6 The present invention relates to a giant magneto-resistance (GMR) film used, typically, 

7 in a magneto-resistive linear-displacement sensor. 

8 Giant magneto-resistance, or GMR, is a relatively newly discovered phenomenon. Briefly 

9 stated, it has been discovered that a significant change in resistance (AR/R as much as 10% to 

10 20% in some systems) can be obtained when the GMR films are subjected to a magnetic field, 

11 as compared to the AR/R = 2% typical of traditional magneto-resistive films. In general, GMR 

12 films are in a high resistance state when the magnetization in the GMR multilayers are predom- 

13 inately anti-parallel in consecutive magnetic layers, and can then be brought to a low resistance 

14 state by the action of an applied field which rotates each layer's magnetization in a predominately 

15 parallel orientation roughly along the applied field direction. 

16 The known GMR effect (also known as the spin-valve effect) has been observed in a 

17 variety of magnetic multilayered structures, with a typical feature of the structures including at 

18 least two ferromagnetic metal layers separated by a non-ferromagnetic middle layer.   For 

19 example, the GMR effect has been found in arrangements such as Fe/Cr, Co/Cu, or Co/Ru 

20 multilayers which exhibit strong antiferromagnetic coupling of the ferromagnetic layers, as well 

21 as in essentially uncoupled layered structures in which the magnetization orientation in one of the 

22 two ferromagnetic layers is fixed or pinned. The physical origin of the GMR effect is the same 

1 



•i;v 

2 

3 

4 

5 

Inventors: Hoines et al. PATENT APPLICATION 
Navy Case No. 77,142 

1 in all types of structures: the application of an external magnetic field causes a variation in the 

relative orientation of the magnetizations of neighboring ferromagnetic layers. This in turn causes 

a change in the spin-dependent scattering of conduction electrons and thus the electrical resistance 

of the structure. The resistance of the structure thus changes as the relative alignment of the 

magnetizations of the ferromagnetic layers changes. 

6 A known application of the GMR effect can be found in a sandwich, structure or film 

7 comprising two uncoupled ferromagnetic layers separated by a non-magnetic metallic layer in 

8 which the magnetization of one of the ferromagnetic layers is pinned.   The pinning may be 

9 achieved by depositing the layer onto an iron-manganese layer to exchange couple the two layers. 

10 This results in a spin valve magneto-resistive sensor in which only the unpinned or free ferro- 

11 magnetic layer is free to rotate in the presence of an external magnetic field. 

Stated alternatively, the known GMR film consists primarily of three ultra thin layers atop 

a substrate: two ferromagnetic layers separated by a non-magnetic layer. One of the ferromagnet- 

ic layers is biased, which is a condition that causes its magnetization to always point in one 

direction. The other ferromagnetic layer is unbiased, with magnetization that changes direction 

when a small field is applied. The resistance of this trilayer film changes as a magnetic field, 

created for example by two magnets, is moved across it, thus allowing, for example, a position 

18 determination of the film relative to the magnets to be made through a measurement of the 

19 resistance. 
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Biasing of the one ferromagnetic layer can be achieved in several ways. For example, the 

2 layer may be pretreated, i.e., annealed or grown in the presence of a magnetic field, which allows 

3 the crystal structure of the material to orient in such a way that the internal anisotropies encour- 

4 age the magnetization to stay along one direction. The bias would remain in this set direction 

5 as long as the layer is not exposed to magnetic fields greater than the material's coercive fields. 

6 It is therefore advantageous to use high coercivity or "hard" materials for the biased ferromagnet- 

7 ic layer. A material may also be intrinsically hard, and/or have a carefully chosen adjacent layer 

8 that will increase its coercivity.  It is also possible to perform biasing or repair the biasing by 

running appropriate currents in the layer. Conversely, the unbiased layer should be as "soft" as 

10 possible, so that its magnetization will change under the application of small magnetic fields. 

1! Typically, the harder magnetic layer includes hard ferromagnetic materials such as Co, Fe, 

12 and alloys thereof, and antiferromagnetically-pinned materials. The harder magnetic layer will 

13 typically have a thickness of about 20 A to about 1,000 A, and preferably about 45 A. 

Preferred materials for the softer magnetic layer will include Ni, Fe, permalloy, Co, and 

combinations thereof (such as alloys and multilayer sandwiches). Typically, the softer magnetic 

16 layer will be between 20 A and about 1,000 A thick, and preferably about 45 A. 

17 Preferred materials for the intermediate layer includes Cu, Pt, Ag, Au, and combinations 

18 thereof.  Typically, the intermediate layer will be between 20 A and about 1,000 A thick, and 

19 preferably about 45 A. 
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Preferably, layers are deposited with the greatest uniformity practicable, to maximize the 

linearity of the device. If, e.g., an NiO layer is used as a pinning layer, this NiO layer preferably 

would be deposited as an outside layer, without depositing any of the other magnetic layers on 

4 top of it. 

5 The substrate may be a substance such as glass, ceramic or a semiconductor upon which 

the trilayer film is deposited. However, preferably the substrate will be a silicon or quartz 

material. The properties of the substrate material should include non-conductivity. Further, the 

selected substrate material should have a low coefficient of thermal expansion, and be rigid and 

non-flexing. The material should also be capable of presenting a flat surface, and should allow 

10 the other layers to be grown on it. 

11 As noted, the GMR film can be used in various applications, for example, linear and 

12 angular displacement sensors, such as disclosed in U.S. Patent 5,475,304 to Prinz, the subject 

13 matter of which is incorporated herein by reference. As disclosed by this reference, the magneto- 

14 resistive linear-displacement sensor measures the relative position of two workpieces by fixing 

15 the first workpiece to a GMR film, and fixing the second workpiece to, for example, indexing 

16 magnets whose movement relative to the GMR film will cause a change in resistance in the GMR 

17 film, thus allowing a precise determination of the positions of the first and second workpieces. 

One problem associated with the above described magneto-resistive linear-displacement 

sensor is its sensitivity to changes in operating temperatures and the resulting decrease in its 

measurement accuracy. It is known to compensate for changes in temperatures by providing a 
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thermobridge consisting of two strips of GMR film placed in line, and end-to-end with each 

2 other, and in as close proximity as possible to one another to ensure both strips are at the same 

3 temperature. These known bridge configurations use one strip of the GMR film as the sensor, 

4 and the other strip as a reference, which allows the resistance changes due to material thermal 

effects to be compensated for, as long as the reference strip is isolated from the magnetic fields 

6 that will surround its neighboring sensor strip. However, to perform this magnetic shielding of 

7 the reference strip, special material must be included between the two adjacent strips.   This 

8 results in an added length and further processing steps for the final device. 

9 Temperature compensation of the above sensor is necessary because as the magnets are 

10 moved across the strips, the resistance of the strips is directly related to any change in tempera- 

11 ture that may occur since the magnets are first moved.   However, this known temperature 

12 compensation arrangement is problematic, i.e., requiring a device in which the GMR strips are 

13 placed end-to-end, since the temperature of the reference strip may not be at the same tempera- 

14 ture as the sensor strip. 

15 

16 SUMMARY OF THE INVENTION 

17 It is an object of the present invention to provide a new bridge configuration which will 

18 overcome the deficiencies of the prior art GMR arrangements. 
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It is a further object of the present invention to provide a bridge configuration that reduces 

2 the fluctuations and drift in the resistance measurement that can arise from changes in the 

3 temperature of the device. 
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6 

It is a further object of the present invention to provide a bridge configuration that 

compensates for thermal deviations using a smaller package. 

It is yet a further object of the present invention to provide a bridge configuration that will 

7 provide an increased signal strength over the prior art devices. 

8 It is yet a further object of the present invention to provide a GMR device that will reduce 

9 the impact of small inhomogeneities in the material. 

The above and other objects are accomplished according to the invention by the provision 

of a thermal bridge that includes a first Giant Magneto Resistance film having a layer with a 

fixed bias pointing in a first direction, and a second Giant Magneto Resistance film superposed 

on, and in thermal engagement with, the first Giant Magneto Resistance film. The second Giant 

Magneto Resistance film has a layer with a fixed bias pointing in a second direction opposite to 
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15 the first direction. 

The invention will now be described below in greater detail in connection with an 

embodiment thereof that is illustrated in the drawing figures. 
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1 Figure 1 is a cross-sectional view of a trilayer element with layers having aligned 

2 magnetic fields. 

3 Figure 2 is a cross-sectional view of a trilayer element with layers having opposing 

4 magnetic fields. 

5 Figure 3 is a cross-sectional side view of a trilayer element with a domain wall in one of 

6 *   the magnetic layers, separating the regions of opposing magnetic fields in this layer. 

7 Figure 3 A is a cross-sectional side view of a trilayer element with a domain wall in one 

8 of the magnetic layers, separating the regions of opposing magnetic fields in this layer, and with 

9 an antiferromagnetically-pinned layer having a fixed magnetic state. 

10 Figure 4 illustrates an enlarged sectional view of a GMR film atop a substrate. 

11 Figure 5 is a cross-sectional side view of two trilayer GMR films arranged in accordance 

12 with the present invention. 

13 Figure 6isan expanded view of the GMR bridge configuration according to the present 

14 invention. 

15 Figure 7 is an illustration of the bridge configuration shown in Figure 6 being passed 

16 between two magnets. 

17 Fig^e 8 is a graphical illustration of the change in the resistance of the two GMR strips 

18 shown in Figure 7 relative to a position of the magnets. 

19 Figure 9 is a schematic illustration of a known whetstone bridge circuit diagram. 
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Figure 10 is an illustration of the sensor using the bridge configuration shown in Figure 

Figure 11 is a further schematic view of the circuit used in the bridge shown in Figure 

5 Figure 12 is an alternative sensor configuration according to the present invention. 

6 Figure 13 is a schematic of the circuit for the sensor shown in Figure 12. 

Figure 14 is a schematic illustration of two bridges wired together according to the present 
7 

8 invention. 

DETAILED DESCRIPTION OF THF INVTnsmnN 

Giant Magneto Resistance, or GMR, is a relatively newly discovered phenomenon. 

Briefly stated, it has been discovered that there is a significant difference (on the order of 

13 between 8% and about 20%) in electrical resistance between the structure shown in Fig. 1 and 

14 the structure shown in Fig. 2. 

Figure 1 shows a known trilayer element 10 having ferromagnetic layers 12, 14 which 

have aligned magnetic fields. Layers 12, 14 are separated by and in contact with a non-magnetic 

conductive layer 13.  As carriers (generally electrons) are injected from a contact 16 into, for 

18 example, the top ferromagnetic layer 12, the carriers are spin-polarized.   The spin-polarized 

carriers are free to travel through this ferromagnetic layer and the other conductive layer 13, 14 
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in trilayer 10. Consequently, the electrical resistance experienced by the current associated with 

2 the flow of these carriers will be related to the thickness of the trilayer 10. 

3* In contrast, Fig. 2 shows a trilayer element 20 with ferromagnetic layers 22, 24 having 

4 opposing magnetic fields, separated by and in contact with a non-magnetic conductive layer 23. 

5 As carriers are injected from contact 16 into, for example, the top ferromagnetic layer 22, the 

6 carriers are spin-polarized.     The spin-polarized carriers are free to travel through this 

7 ferromagnetic layer 22 and the adjacent non-magnetic layer 23.   However, when the spin- 

8 polarized carrier strikes the interface with ferromagnetic layer 24 having a non-aligned magnetic 

9 field, the carriers are scattered back, away from this layer, according to the GMR (i.e., spin- 

10 valve) effect. 

11 GMR is a function of the angle between the magnetic fields in the two layers. Scattering 

12 is minimized when the fields are parallel (Fig. 1), and maximized when the fields are anti-parallel 

13 (opposing) (Fig. 2). When the fields are opposing, the current associated with the flow of these 

14 carriers is impeded from traveling through the entire thickness of trilayer 20, and thus the 

15 electrical resistance experienced by this current will be higher, related to the thickness of only 

16 the top two layers 22, 23 of trilayer 20. 

17 • Fig"1"6 3 shows another known trilayer element 30, which has a bottom layer 34 with a 

18 fixed magnetic state, and a (relatively) soft magnetic top layer 32, with regions 35, 36 having 

19 opposing magnetic fields. These regions 35,36 are separated by a domain wall 37. Between and 

20 contacting these two layers 32, 34 is a nonmagnetic conductive middle layer 33 for preventing 
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exchange coupling between the two magnetic layers 32,34. As carriers are injected from contact 

16 into, for example, the top ferromagnetic layer 32, the carriers are spin-polarized The spin- 

polarized carriers are free to travel through the ferromagnetic layer 32, the nonmagnetic layer 33 

and the bottom ferromagnetic layer 34.   Because the effective thickness of the conductor is 

relatively large, electrical resistance will be relatively low on this side of the domain wall 37 (i.e., 

on the right hand side of the domain wall, as shown in the figure). 

As the spin-polarized carriers travel further down this trilayer 30, to the far (left) side of 

the domain wall 37, they will be confined to the bottom two layers 33, 34 of the trilayer element 

30, in accordance with the GMR effect. Electrical resistance will be relatively high on this side 

of the domain wall. Consequently, the overall e,ectrical resistance of the trilayer element 30 will 

be a linear function of the location of the domain wall 37.   Positioning the domain wall 37 

toward the left of the structure, away from the contact 16 injecting the carriers, will result in a 

relatively low electrical resistance for the trilayer element 30.  Positioning the domain wall 37 

toward the right of the trilayer element 30, near the contact 16 injecting the carriers, will result 

in a relatively high resistance for the trilayer element 30. 

Figure 3A shows another embodiment of the known trilayer element 30', where the 

bottom magnetic layer is fixed in its magnetic state using an antiferromagnetic pinning layer 81. 

19 As shown, the spin-polarized carriers travel a non-reciprocal path.   If the carriers are 

injected from the left side of the domain wall 37, the spin-polarized carriers will be confined to 

10 
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the top two layers 32,33 of the trilayer element 30, 30' on the near side of the domain wall 37, 

but will be fiee to travel through the entire thickness of the trilayer element 30, 30« on the far 

side of the domain wall 37. In this case, moving the domain wall 37 to the left will decrease 

electrical resistance, while moving it to the right will increase electrical resistance. 

Accordingly, a magneto-resistive linear-displacement sensor can be used to measure the 

relative position of two workpieces by fixing the first workpiece to a GMR film, and fixing the 

second workpiece to means for inducing the domain wall in a relatively soft ferromagnetic layer 

in the GMR film. The electrical resistance of the GMR film can thus be measured as a function 

of the relative positions of the two workpieces. As used herein, workpieces are elements having 

a relative displacement measured by the sensor.  Examples of workpieces, as the term is used 

herein, are machine parts having positions that need to be known with great accuracy and 

12 precision. 

Figure 4 shows a cross-sectional view of a known sensor 38 that uses the GMR effect. 

In this known sensor, the trilayer element 30 is coupled to a first workpiece 40.  The layer 34 

with the fixed magnetic state (i.e., the magnetically harder layer) is disposed over the workpiece, 

with the magnetic field lines oriented W the drawing sheet. Over, and contacted to, layer 34 

is the non-magnetic metal buffer layer 33.   Over and contacted to the buffer layer 33 is the 

magnetically softer layer 32, with the magnetic field lines on one side 35 of the domain wall 37 

oriented »into» the drawing sheet, and with the magnetic field lines on the other side 36 of the 

domain wall 37 oriented »out or the drawing sheet.   A standard four probe configuration 
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connects the trilayer element 30 to a device 50 (for example, an ohmmeter that comprises a 

constant current source 52 and a volt meter 54, connected in parallel) which provides the 

operating current and measures the electrical resistance to the trilayer element 30. 

Referring briefly to Fig. 7, a pair of indexing magnets 56, 58 with preferably opposing 

magnetic moments are positioned to induce the domain wall 37 in the softer magnetic layer 32 

where this domain wall 37 is perpendicular to the opposing magnetic moments. Magnets 56, 58 

are coupled to the second workpiece (not shown), so that as the second workpiece is moved 

relative to the first workpiece, the magnets will move along the element 30, thus changing its 

resistance in a detectable manner. Skilled practitioners will recognize, however, that many 

configurations for inducing a domain wall are known. In selecting a particular device for 

inducing a domain wall, skilled practitioners will consider minimizing hysteresis and maximizing 

domain wall definition, following known principles of ferromagnetism.    It is preferred to 

13 minimize hysteresis in the domain wall to improve two-way precision in the sensor. 

14 Referring now to Figs. 5 and 6, a preferred embodiment of the present invention is 

15 illustrated.   In these figures, it is shown that two, preferably identically configured, trilayer 

16 elements or films 30, 30" are arranged atop a substrate 60. As shown, the two trilayer elements 

17 30, 30" form two equal size strips placed back to back, with the bias directions 62, 62' of their 

18 biased layers 34, 34' opposing. In particular, the bias of the hard layer 34' of the upper trilayer 

19 element 30' is in one direction 62', and the bias of the hard layer 34 of the other trilayer element 

20 30 is in the opposite direction 62.  Further, as is shown, the soft layers 32, 32' of each trilayer 
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element are essentially adjacent to one another and are separated only by the substrate 60, so that 

2 soft layers abut against respective opposite surfaces of the substrate. The two trilayer elements 

3 are in thermal engagement with one another, so that any thermal influence that may occur to one 

4 of the trilayers, will equally occur to the other of the trilayers. Preferably, each trilayer element 

5 is connected to device 50, for providing the operating current and measuring the electrical 

6 resistance to the respective trilayer elements 30, 30". 

7 As shown in Fig. 7, as the magnets 56, 58 are moved across the strips (constituted by 

8 the respective trilayer elements 30, 30"), the resistance of the two trilayers will exhibit opposite 

9 behavior patterns, because the biases of the hard layers are arranged in opposite directions. Thus, 

10 as the magnets 56, 58 are moved from the left to the right in the direction of the arrow 64 in Fig. 

11 7, the resistance of the upper trilayer element 30" will go, for example, from low to high, and 

12 the resistance of the lower trilayer element 30 will go from high to low. 

13 As shown in Fig. 8, the ideal resistance of the two elements 30, 30", which is shown 

14 graphically, changes in a linear relationship, with the resistance of each trilayer element behaving 

15 in a manner inverse to the behavior of the other trilayer element.  However, as magnets 56, 58 

16 are moved across the two strips, in the direction of arrow 64 shown in Fig. 7, the total resistance 

17 of each strip is actually made of up three primary components. In particular, each strip includes 

18 the resistance R<„ which is the material resistance of the strips measured when the magnets are 

19 in their starting position, and which is a constant value. Further, each strip includes the resistance 

20 RT, which is the change in the resistance of the trilayer elements 30, 30" that occurs due to a 

13 
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change in the temperature since the beginning of the movement of the magnets. Because the two 

2 strips are arranged one above the other in thermal engagement with one another, this value is the 

3 same for both strips. Further, each strip includes the resistance R-, which is a proportionality 

4 constant for the change in resistance created by the new position of the magnets. 

5 The total resistance of each trilayer element 30,30' can be determined in a known manner 

6 by way of the following formulas: 

7 R. = Roi + (x/Xo)^ + RT 

R2 = Ro2 - O-X/XOJRQ + R^ 

wherein x is the magnets' position, and x, is the length of the resistor, as measured in a long 

dimension of the strips. When these two total resistances are subtracted from one another (using 

for example a known difference circuit 66), i.e., R, - R2, RT is eliminated, thus eliminating any 

effect that the change in resistance due to a change in temperature may have on the two strips. 

Further, the measured effect due to moving the magnets, i.e., (x/xJRc, is doubled, thus increasing 

14 the total signal strength. 

This configuration provides several distinct advantages over the prior art bridge 

configurations. First, the particular geometry of the bridge does not require magnetic shielding 

17 between two end-to-end strips, which results in a smaller package. Furthermore, the two double 

strips provide twice as much signal.  Moreover, the strips are much more certain to be at the 

same temperature, since they are in physical contact with one another. Moreover, the averaging 
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of the signal from the two strips instead of one strip will reduce the impact of smaU inhomogene- 

2 ities that may be present in the material. 

In order to maximize the sensitivity and reduce the effects of temperature dependence, the 

sensor can utilize a bridge configuration as shown in Figure 9, which illustrates a known 

5 wheatstone bridge. 

6 The output of such a bridge is given by: 

V0=Vi[R1/(R1+R4)-R2/(R2+R3)] 

This bridge will give a maximum and linear output if all four resistors are subject to 

9 variation by a factor x.  Here, x represents a fractional deviation of about zero. 

10 R,=R3=R(l+x) 

11 R2=R4=R(l-x) 

12 For simplicity, it is assumed that all resistors are equal at x = 0. The output of the bridge 

13 is then 

15 In order t0 make Poetical use of a GMR-based linear displacement sensor, the temperature 

16 dependence of both the resistance and the magnetoresistance cannot be ignored. If the form of 

17 the overall resistance is taken to be: 

18 R=Ro(T)[l+a(T)x/x0] 

15 
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where <x(T) is the GMR coefficient and typically is on the order of 0.01 to 0.05. Rp(T) is the 

resistance and «(WO is the magnetoresistance. The temperature dependence of a is roughly 

3 linear varying by about 1%/K. 

If the temperature of the device is fixed, then the absolute sensitivity of the sensor is 

determined solely by the precision of the resistance measurement. However, absent temperature 

control, the sensor output will be a function of temperature both in the resistance and the 

magnetoresistance. To eliminate these effects a bridge circuit can be used. 

Arranging two sensors biased in the opposite sense with respect to two other sensors 

9 results in 
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Ri=R3=R„(T)[l+a(T)x/x0J 

R2=R4=R0(T)[l+a(T)(x0-x)/xo] 

since for x=0, R, and R3 are in the low resistance (parallel) state, and R2 and R, are in the high 

13 resistance (antiparallel) state.  The bridge then yields: 

14 Vx(x,T)=[a(T)(2x/Vl)/(2+a(T))]V, 

The output of the bridge is linear in displacement, but has temperature dependence 

through the GMR term, a(T). Consequently, any temperature change that results in a 1% change 

in a will result in an approximately 1% change in the bridge output, thereby producing a 1% 

error. To eliminate this temperature dependence, the GMR temperature dependence should be 

19 ratioed out 

16 
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By using a secondary bridge in which two elements are always biased in the high state 

and the other two are always biased in the low «rtat*» i» nnf.„^~    fJ-   i j    i«cu m me iow state, i.e., no function of displacement, the output 

as a function of temperature for this bridge will be 

VT<T)=a(T)/(2+a(T)). 

Note that this secondary bridge should be magnetically shielded from the indexing magnets. 

By ratioing the first bridge output by the second, the following results: 

V,(x,T)/V2(T>2x/vl 

This ratio is now absolutely linear in displacement and independent of temperature. 

The V, bridge can be fabricated by placing pairs of GMR elements back-to-back (Fig. 10) 

such that the pairs are biased in an antiparallel configuration. The appropriate interconnects for 

the bridge are then made to complete the circuit shown in Fig. 11. 

The VT bridge consists of elements R, and R7 biased in the high resistive state while R, 

and R8 are biased in the low state (no magnetoresistance). Tne biasing could be accomplished 

by placing permanent magnets 70 as shown in Fig. ,2. The appropriate interconnects for the 

bridge are then made to complete the circuit shown in Fig. 13. In this case, the variable resistors 

Rj and R7 vary with temperature and not displacement 

The two bridges are typically wired together as shown in Fig. 14. In this case the bridges 

are in parallel and share the same excitation voltage V, The outputs of the two bridges can then 

be ratioed by digital processing or some other means. 

17 
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1 Although the present invention has been discussed in relation to trilayer elements, multiple 

2 layer strips having more than three layers may also be used, which may further increase the 

3 signal. 

4 The invention now being full described, it will be apparent to one of ordinary skill in the 

5 art that any changes and modifications can be made thereto without departing from the spirit or 

6 the scope of the invention. 

18 
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ABSTRACT OF THE DISCLOSITPF 

A thermal bridge includes a first Giant Magneto Resistance film having a layer with a 

fixed bias pointing in a first direction, and a second Giant Magneto Resistance film superposed 

on, and in thermal engagement with, the first Giant Magneto Resistance film. The second Giant 

Magneto Resistance film has a layer with a fixed bias pointing in a second direction opposite to 

the first direction. 
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