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Navy Case 77387 

WAVELET PROJECTION TRANSFORM FEATURES 
APPLIED TO REAL TIME PATTERN RECOGNITION 

STATEMENT OF GOVERNMENT INTEREST 

The invention described herein was made by employees of the 

United States Government and may be manufactured and used by or for 

the Government "for governmental purposes without the payment of any 

royalties thereon or therefor. 

5 FTTCT.n   OF   THE   INVENTION 

This invention relates generally to computer vision systems 

applicable to pattern recognition, automatic target recognition 

and, more particularly to a computer vision system having improved 

means for characterizing the images of unknown objects by 

10 decomposing them into their constituent multiple scale edge (MSE) 

features so as to reduce the processing requirements for the 

computer vision system for recognizing unknown objects and to 



provide for the recognition of an unknown object by relating their 

constituent edge features to each other. 

BACKGROUND OF THE INVENTION 

Computer vision systems find many applications in various 

5   fields such as automatic target recognition for military purposes, 

medical systems for the detection of tumors, and security and law 

enforcement systems for finger print identification and more 

recently face recognition of wanted criminals.  Computer vision 

systems commonly employ representations which are associated with 

10   the creation and management of pictures, commonly referred to as 

images.  The computer vision system typically has a digital camera 

that detects an unknown object having edges and converts the 

detected unknown object into an image represented by digital 

quantities  that  are  extensively processed by known pattern 

15   recognition techniques so that the unknown object can be classified 

as being a known object.  Biological research has influenced the 

development of computer vision systems for analysis and detection 

purposes and in doing so has considerably advanced pattern 

recognition techniques.   An example of this is the field of 

20   Artificial Neural Networks.  However, currently all computer vision 



systems, whether biologically influenced or not, are still limited 

to very restricted applications requiring controlled lighting and 

precise viewing aspects.  These restrictions make computer vision 

systems impractical for numerous real world applications such as 

5   automatic target recognition (ATR).   It is the object of this 

invention  to perform a biologically motivated edge  feature 

decomposition that significantly improves the robustness of a 

computer vision system to real world conditions characterized by 

uncontrolled viewing aspects and lighting conditions. 

10        Research seems to indicate that, in the process of determining 

patterns, the brains of people and animals decompose images into 

constituent features.  Biological vision systems that pursue this 

decomposition process are good at detecting outlines and boundaries 

of shapes which are some of the most basic features for pattern 

15   recognition processes as more fully described in the book of J.G. 

Nicholls and A.R. Martin, From Neuron to Brain, 3rd ed., Sinauer 

Associates Inc., Sunderland MA, ch. 17, 1992, which is herein 

incorporated by reference.  Hubel and Wiesel who are researchers in 

the neuro-biological field have shown that certain neurons involved 

20   in visual processing are orientation sensitive as more fully 

described in the technical article "Receptive Field of Single 



Neurons in the Cat's Striate Cortex," JL EhysAol^ (Lond.), Vol. 

148, pp. 574-591, 1959 and as also described in the already- 

mentioned technical article of Kuffler et al, as well as the 

textbook of E.R. Kandel, J.H. Schwartz and T.M. Jessell, Erinciplas 

5 of Np.nral Sripnr:pf 3rd, ed., Elsevier, New York, chs. 29-30, 1991, 

all of which are herein incorporated by reference. 

As is known, any edge has the properties of orientation and 

position (in at least two dimensions).  Less obvious is that any 

edge has the property of scale.  Scale is an important property of 

10   edges that biological systems seem to be better at characterizing 

than artificial vision systems.  Scale pertains to the "sharpness" 

of a boundary section.  For example, the boundary between the wing 

and fuselage of a blended wing style aircraft appears gradual at 

close range but sharper at longer range.  An exterior edge, e.g., 

15   the edge between the wing and background, appears sharp at any 

range.  The sharpness of interior edge segments is a function of 

the viewing distance.  We use the term scale herein to characterize 

the size and sharpness of some edge feature due to viewing 

distance.  The edge segment of an object with regard to its scale 

20    is referred to as being a multi-scale edge segment (MSES). 



Edge segments are difficult to quantify.  For one reason an 

edge segment defines two different levels of position resolution, 

i.e., the lengthwise and the transverse lengthwise.  The positional 

resolution along the former is much less than that of the latter. 

5   For example, relative to a fixed background, minute shifts in the 

transverse lengthwise direction are perceptible, whereas equivalent 

shifts in the lengthwise direction are imperceptible.  Therefore, 

the location precision along the length of an edge segment is much 

less than across the edge segment.  Furthermore, the more precise 

10   the measurement of the orientation, the less precise the lengthwise 

position.    This  is  because  orientation  measurement  is  an 

integration process whereas the transverse lengthwise position 

measurement is a differentiation process.   In other words, to 

measure the orientation of an edge segment, one does a series of 

15   integrations over a range of directions, the direction parallel to 

the edge segment will output the largest integral value.   The 

directional increments and integration length depend on how the 

edge segment is defined.  This has to do with how one defines the 

ratio of the edge segment's length to its width.  The integration 

2 0    length will be  a multiple of  the edge  segment width.  The 

integration process destroys the resolution within this region. 

This means that the positional uncertainty along the lengthwise 



direction is some multiple of the scale. The width is 

proportional to the scale. Therefore the integration length is a 

function of scale. 

5 On the other hand, to measure the transverse lengthwise 

position one performs differentiation along a range of directions. 

Along these directions there will be a transient corresponding to 

the edge. The transient along the direction perpendicular to the 

lengthwise direction will generate the largest output of the 

10 differentiation operator for the various directions of 

differentiation. The resolution of the transverse lengthwise 

position is ultimately limited by the pixel resolution, i.e., the 

digital camera pixel's instantaneous field of view (IFOV). A 

transform that gives good resolution of an edge's orientation will 

15 give poor resolution of its position along the lengthwise 

direction. This is analogous to the case in time series signal 

processing where a filter that has good frequency resolution has 

poor time resolution. Because of this imprecision, the exact 

position of an edge segment along its lengthwise direction may be 

completely arbitrary within some range of resolution corresponding 

to its scale. The inability to effectively characterize the 

constituent edge segments of an image with regard to the widely 

6 
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varying scales and directional resolutions renders difficult the 

ability to determine the parameters of the image which, in turn, 

hinders  the  ability  to  identify  the  unknown  object  under 

consideration, thereby, preventing the related computer vision 

5   system from performing its desired task of pattern recognition.  It 

is desired that  improved means be provided for effectively 

characterizing multi-scale  edge  segments  (MSESs)  of  unknown 

objects.  Recent wavelet approaches developed in the last decade 

may embody the above described aspect of biological systems, 

10   namely, the ability to characterize multi-scale edge segments 

(MSESs)  which have properties such as scale orientation and 

position. 

SUMMARY OF THE INVENTTOW 

15 It is therefore a primary object of the present invention to 

decompose an image of some object into its multi-scale edge segment 

(MSES) components, MSESs applying to both exterior (outline) and 

interior edge components. 

It is another object of the present invention to provide a 

2 0   computer vision system having means for effectively determining the 



position, orientation and scale of the edge segments of objects 

within the respective resolution limits imposed by the nature of 

multi-scale edge segment (MSES) measurement process. 

It is another object of the present invention to provide 

5    improved means for determining multi-scale edge segments of images 

of objects and to do so without unduly burdening the processing 

requirements  of  conventional  computer  architectures  used  in 

computer vision systems. 

Another object of the present invention is to provide improved 

10   pattern recognition of unknown objects having multi-scale edge 

segments by utilizing biological aspects invoked by human brains in 

what is commonly known as the early vision system while performing 

pattern recognition of unknown objects. 

It is still a further object of this invention to utilize a 

15 transform, herein referred to as the wavelet projection transform 

(WPT), that maps a two dimensional image of an object into a four 

dimensional transform domain, and consists of a Cartesian 

rotational transform, a recursively applied digital low pass filter 

and a continuous wavelet transform (CWT) for the improved means for 



representing MSESs with their orientations, scales, and positions 

during the performance of pattern recognition by a computer vision 

system. 

It is still another object of this invention to apply a peak 

5   detection process to the WPT domain (or the transform domain of a 

similar transform) for the purpose of determining the locations of 

peaks  along  the  direction  corresponding  to  the  transverse 

lengthwise direction of MSESs. 

It is still another object of this invention to analyze the 

10   pattern of peaks from the aforementioned peak detection process in 

order to determined the positions and types of multi-scale edge 

segments  (MSESs)  along  the  direction  corresponding  to  the 

transverse lengthwise direction of MSESs. 

It is still another object of this invention to compare-multi- 

15   scale edge segments based on their peak intensity over multiple 

orientations in the WPT domain (or the transform domain of a 

similar transform) for the purpose of determining the "best" MSES 

representative quantities to represent a particular MSES. 



It is still another object of this invention to take the 

efficient edge characterization of the processed WPT (or processed 

transform domain of a similar transform) and derive shift, scale 

and rotationally invariant relations among two or three MSES 

5 representative quantities in the form of ratios or differences in 

the various WPT parameters. 

It is still another object of this invention to characterize 

a known object, from herein referred to as the prototype object, by 

applying the above described processes to images of all aspect 

views of the prototype and forming a library of derived invariants 

representing the above prototype. 

10 

It is still another object of this invention to apply the 

above to the image of an unknown object and detect matches between 

the derived invariants derived from the unknown object and those of 

15   the library dervied from the prototype objects. 

It is still another object of this invention to apply a 

process to the above matches so that if the input image of the 

unknown object contains a pattern that corresponds to the prototype 

object represented in the library, the matches of the derived 

10 



invariants are found to be coherent with respect to each other in 

a manner that signals representing the matches superpose coherently 

and through a match filtering operation, the coherence may be 

detected in a manner indicating the recognition of the unknown 

object. 

BRIEF DESCRIPTION OF TTTTC DRAWINGS 

Fig. 1 is a block diagram of a computer vision system 

generally illustrating the operation thereof in accordance with the 

practice of the present invention. 

Fig. 2 is composed of Figs. 2(A) and 2(B) respectively 

illustrating an image of an F-18 aircraft being rotated over a 

range of angles and the images resulting from bi-orthogonal wavelet 

applied along the columns of the various rotations used to 

implement the transform processing of the F-18 image of Fig. 2(a). 

15        Fi9- 3 illustrates a Mexican hat wavelet. 

Fig. 4 is composed of Figs. 4(A), 4(B), 4(C), 4(D), 4(E) and 

4 (F)  illustrating related parameters derived by the wavelet 

11 
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projection transform (WPT) of the present invention. 

Fig. 5 illustrates various scales of the wavelet projection 

transform (WPT) related to the present invention. 

Fig. 6 is composed of Figs. 6(A) and 6(B) that illustrates 

5   peaks associated with lines and edges of the transform image of 

Fig. 1. 

Fig. 7 is composed of Figs. 7(A) and 7(B) that respectively 

illustrate an image of a F-16 fighter and a chordal invariant 

representation of the image of Fig. 7(A). 

10 

15 

Fig. 8 is composed of Figs. 8(A) and 8(B) that respectively 

illustrate the F-16 fighter image of Fig. 7(A) rotated 45 degrees 

and dilated 25%, and a chordal invariant representation 

demonstrating the rotation and scale invariance of the image of 

Fig. 8 (A) . 

Fig. 9 is composed of Figs. 9(A) and 9(B) that respectively 

illustrate separated multi-scale edge features and a multi-scale 

edge feature interconnected to form a triangle. 

12 



Fig. 10 illustrates a chordal triangle (CT) quantity having a 

prime vertex associated with the practice of the present invention. 

Fig.  11  is  composed  of  Fig.  11(A),  11(B)  and  11(C) 

illustrating three phases associated with the noise coding of the 

5   present invention. 

Fig. 12 is composed of Figs. 12(A), 12(B), 12(C), 12(D), 12(E) 

and 12 (F) illustrating selected aspects of a Ml tank and noise 

coding stages. 

Fig. 13 illustrates a block diagram of circuit means for 

10   performing the processing associated with the present invention. 

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 

With reference to the drawings, wherein the same reference 

numbers indicate the same elements throughout, there is shown in 

Fig. 1 a block diagram of a computer vision system 10 whose 

15   operation is in accordance with a method of the present invention. 

13 



In general, the computer vision system 10 may find application 

in various fields, such as automatic target recognition for 

military purposes, medical systems for the detection of tumors, or 

security and law enforcement systems for identification of wanted 

5 criminals. Computer vision systems are well known, such as that 

disclosed in U.S. Patent 4,573,197 teaching the implementation of 

Fourier coefficients to define the boundaries of an unknown object, 

or U.S. Patent 5,220,614 disclosing a method and system for 

automatically grading the quality of coins, both of which are 

10   herein incorporated by reference. 

The principles of the present invention primarily concerned 

with the computer vision system 10 can be practiced in the form of 

methods and apparatuses for practicing those methods. The present 

invention can also be embodied in the form of program code embodied 

15 in tangible media, such as floppy diskettes, CD-ROMs, hard drives, 

or any other machine-readable storage medium, wherein, when the 

program code is loaded into and executed by a machine, such as a 

computer, the machine becomes an apparatus for practicing the 

invention. The present invention can also be embodied in the form 

of program code, for example, whether stored in a storage medium, 

loaded into and/or executed by a machine, or transmitted over some 

14 
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10 

transmission medium, such as over electrical wiring or cabling, 

through fiber optics, or via electromagnetic radiation, wherein, 

when the program code is loaded into and executed by a machine, 

such as a computer, the machine becomes an apparatus for practicing 

the invention. When implemented on a general-purpose processor, 

the program code segments combine with the processor to provide a 

unique device that operates analogously to specific logic circuits. 

As will be described, the principles of the present invention 

provide for a simplification of the representation of edge 

information giving rise to lower processing requirements and thus 

permitting the automatic pattern recognition of the present 

invention to be practiced on conventional computer architectures. 

The principles of the present invention are particularly 

suited to provide a method of operating a computer vision system, 

15 having a digital camera outputting a digital image, for recognizing 

an unknown object having multi-scale edge segment components by 

converting the digital image into a particular representation. In 

one embodiment, the method comprises the steps of: (a) transforming 

by a wavelet projection transform (WPT) the digital image into a 

first four (4) dimensional transform having transform domain space 

dimensions corresponding to position (two dimensions), scale and 

15 
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orientation; (b) processing the four dimensional transform to find 

a set of points most representative of the image's constituent 

MSESs so as to yield an efficient edge feature decomposition of the 

digital image;  (c) grouping at least two MSES representative 

5   quantities into groups whereby a particular group is referable to 

as a location of a particular MSES representative quantity; (d) 

deriving a set of invariant relations having associated parameters 

between at least two MSES representative quantities of the  group 

of step (c), the derived set having specific invariances which 

10    include shift, scale and rotation invariance within an aspect view; 

(e) applying steps (a), (b), (c), and (d) to multiple aspect views 

of a prototype object and deriving a set of invariants having 

associated parameters for the multiple aspect views and forming a 

library of invariants corresponding to the prototype objects and 

15   applying the steps (a) , (b) , (c) and (d) to the image of an unknown 

object; (f) correlating the set of invariant relations of said step 

(d) to the set of invariant relations of step (e) and for the 

matches, generating least four dimensional digital signals which 

are representative of a particular class of prototype objects and 

20   have phases which are functions of MSES representative quantities 

corresponding to invariants derived from the unknown image and 

parameters  associated with  the  invariants  derived  from  the 

16 



prototype object; and (g) superposing the representative signals of 

step (f) and storing the results such that if a pattern in the 

input image corresponds to a pattern represented in the library, 

the generated signals will superpose coherently with the coherent 

5   superposition detectable by a matched filtering operation using a 

reference signal derived from the representative class signal, the 

matched filtering operation yielding a correlation peak indicating 

the recognition of the unknown object,  the position of the 

correlation peak indicating the position of the recognized unknown 

10   object. 

In general, the computer vision system 10 has a digital camera 

12 that detects an unknown object 14 having edges 16. The digital 

camera 12 converts the detected object into an image 18 represented 

by digital quantities 20 that are directed into improved edge 

15 characterization means 22 that, along with an illustrated pattern 

recognition means 24, is of importance to the present invention. 

The computer vision system 10 may be a stand alone machine having 

a conventional central processor unit (CPU) or it may be treated as 

a terminal in the form of its digital camera 12 that routes its 

20    image 18 to a conventional central processor unit (CPU) .   The 

improved edge characterization means 22 comprises routines that are 

17 



resident in the computer vision system 10 that transform the image, 

by means of a wavelet projection transform (WPT), to provide at 

least a four (4) dimensional (D) signal 28.  The signal 28 is 

further processed by WPT post-processor segment 27 and invariant 

5   generation 29 so as to derive invariants on signal path 31 that is 

routed to matching segment 33.  The system contains a library of 

stored invariants 30 generated from multiple aspect views of 

prototype objects in which the prototype views are devoid of 

background objects.  The matching segment correlates the set of 

10    invariant relations derived from the input image of the unknown 

object  to  the  stored invariants of  3 0  with a correlation 

therebetween identifying the relations between MSESs in the unknown 

object 14.  Upon positive correlations or matches, representative 

four (4) dimensional signals on signal path 37 are generated for 

15   the matches between the invariants derived from the input and the 

stored invariants derived from the prototype objects of interest. 

The 4D signals undergo a superposition process in superposition 

segment 39, the output of which is conveyed to the correlator 41. 

The superposition is correlated with four (4) dimensional signals 

20   representative of classes of the prototypes of which a strong 

correlation signal indicates the recognition of the unknown object, 

18 



i.e., the unknown object being in the same class as a particular 

prototype object 43. 

10 

U.S. Patent 5,262,958, herein incorporated by reference, 

discloses the use of an integral wavelet transform (IWT) in signal 

procession applications that has computational benefits relative to 

the techniques involving Fourier transformations.   Projection 

transforms, such as a Hough transform, have been developed for 

computer vision systems and are more fully described in the text of 

D.H. Ballard,  and CM. Brown,  Computer Vision,  Prentice-Hall, 

Englewood Cliffs, NJ, 1982 with the applicable sections thereof 

being incorporated by reference.   The Hough transform maps or 

transforms a line of a particular orientation into a point.  For 

example, consider the discretized image /z(x,y) where x,ye [-n/2, 

(n-l)/2], the Hough transform of p  is of the form: 

(n^U/2 
^   (0,x7)   =     2^      li(x',y') , 

y'=-n/2 

y'j 
integer cos (<pn/m)        sin ($n/in) 

-sin(<t>n/jn)       cos($n/jn) 

/ x 

(i) 

19 



where  the primed coordinates  represent  the body-center 

rotation at orientations indexed by $ e [-m/2, (m-1)/2] in which x' 

is the transverse integration direction position of the edge of an 

object, such as object 14 of Fig. 1, and y' is the integration 

5   direction along the length dimension of the edge of object 14 with 

both the length and transverse properties being those described in 

the "Background" section.  The above (expression (1)) transform is 

a global transform along the parameter $.  This means that the 

information represented by expression (1) is distributed over the 

10   entire transform,  thereby effectively losing the positional 

resolution along the segment in the y' integration direction.  In 

practice a local projection transform would map an edge segment 

into a point in the transform space, but would maintain some 

position resolution in the y' integration direction that would be 

15   on the order of the edge segment's length.  If the integration 

length were to be controlled by a scale factor, it would be a 

scalable local projection transform.  This sets the stage for the 

Wavelet Projection Transform. 

The transform implemented by the present  invention,  in 

20   particular, the improved edge characterization means 22 of Fig. 1 

is a scalable local projection transform having a wavelet based 

20 



edge detection and is herein termed "wavelet projection transform 

(WPT)" having the form of a 2-D convolution product given as 

follows: 

(2) 

(n-n/2  (n-1^/2 

A (0,a,X, Y)   =22 L,      )i{x',y')f[s{a)ks,s(a)ksY-y']ty[s(a)Ks,X-x']. 
x'=-n/2  y'=-n/2 

5        where f and i\i  are scalable kernels each taking two arguments, 

one argument determining the scale, the other determining the 

position.  The function f  is a low pass filter function such as 

gaussian or square weighting function with s(a)ks  being the scale 

argument, itself the product of a scaling function s(a) and scale 

10    factor ks where a e    Z*    is the scale index.   The index Y 

corresponding to the integration direction is weighted by s(a)k3  so 

that the number of indices is inversely proportional to scale, 

i.e., fewer indices are required for coarse scales than for fine 

scales.  This scaled kernel approach is chosen so that information 

15 is concisely represented by the number of indices. Because there 

is uncertainty of position property of the edge segment along the 

integration direction and because this uncertainty increases with 

scale, this scaled kernel approach applied to f is an efficient 

method of characterizing MSESs to the resolution limits of their 

21 



components. To detect edges intersecting the x' direction, that 

is, the transverse integration direction, we apply the continuous 

wavelet transform (CWT) where ¥ (.) is a wavelet and is a function 

of a as f is. The continuous wavelet transform (CWT) is more fully 

5 described in the technical article of Y. Sheng, D. Roberge, H. Szu, 

and T. Lu "Optical Wavelet Matched Filters for Shift-Invariant 

Pattern Recognition," Opt Lett., Vol. 18, No. 4, pp. 299-302, Feb 

15, 1993 and which is herein incorporated by reference. 

In general, and as to be further described hereinafter, the 

10   method of the present invention, in one embodiment, treats a 

digital image 18 as an ordered list of digital values being 

representative of a two dimensional field of intensities or pixels, 

having two canonical axes corresponding to the directions along the 

rows and columns of pixels.  The digital image 18 is transformed by 

15   a wavelet projection transform (WPT) by: 1) generating rotated 

copies of the input digital image via a Cartesian rotational 

transform, incrementating over a range of orientations; 2) for the 

rotated  copies,  integrating  about  the  columns  for  each 

instantaneous orientation by recursively applying a digital low 

20   pass (LP) filter with downsampling, generating multiple levels of 

22 



output quantities, the level a function of the row number, the 

digital low pass filter having filter coefficients selected from a 

known low pass section of a discrete wavelet transform filter bank; 

3) upon the rotated copies of step 2, differentiating along the 

5   rows using the CWT, the scale of the CWT a function of the level of 

the DWT,  the level a function of the row number.   In the 

application of the above steps, columns and rows of the rotated 

copies may be interchanged in steps 2 and 3 as long as consistency 

is maintained over the entire transform. The scaling is most 

10    efficient when the scaling function is logarithmic.  Furthermore, 

the scaling incorporated into f and ft,    is most convenient for 

digital computer implementation when it explicitly takes the value 

of two (2) to some positive integer power. 

15 Returning to step 2 for the rotated copies, recursion refers 

to the successive reapplication of the LP filter to its own output 

signal. The number of times a signal has proceeded through the LP 

filter is referred to as its level. Downsampling refers to 

throwing out every other sample, also known as decimation by two. 

2 0 A copy of the decimated output is saved for each level of the LP 

filter before sending it to the next level. Performing this 

operation is mathematically equivalent to integrating across 

23 
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multiple rows (along columns) where the number of rows in the 

integration is determined by the scale variable a as is the case 

for f in the previous expression (2) for A.   For the example 

embodiment of the invention, the LP filter performing the digital 

5   convolution uses the same filter coefficients from the LP section 

of a digital wavelet transform (DWT) filter bank.  This is because 

the filters used in the DWT have certain mathematical properties 

that make them invertible.  The invertability property is desirable 

for reconstructing an image from its corresponding WPT.   The 

discrete wavelet transform (DWT) is more fully disclosed in the 

text by I. Daubechies, Ten_^ectures nn wareWa,  siAM Press, 

Philadelphia, PA, 1992, with the applicable sections thereof being 

herein incorporated by reference.  The implementation of the DWT 

involving digital filter banks using recursion and downsampling, 

15    sometimes referred to as the quadrature mirror filter (QMF), is 

more fully described in the following three (3) technical articles 

of the given authors all of which articles are herein incorporated 

by references:  1) M. Vetterli and C. Herley, »Wavelets and Filter 

Banks: Theory and Design," lEEEJErana^lmage-Broc^, Vol. 40, No. 9, 

pp 2207-2232, Sept. 1992; 2) M. Antonini et al, »Image Coding Using 

Wavelet Transform," IEEE Jrans_Image^Proc_., Vol. 1, No. 2, pp. 

20 
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205-220, Apr 1992; and 3) G. Strang and T. Nguyen, Waveleis^and 

Eiltfir_Banka, Wellesley-Cambridge Press, Wellesley, MA, 1996. 

The above starting with the description related to expression 

(2) completes the general description of the wavelet projection 

transform (WPT), and following the application of the above method 

of the present invention, the next stage is to generate a limited 

number of MSES representative quantities corresponding to the 

"best" points in WPT space, i.e., the points in WPT space most 

representative of various MSESs. The output of this stage, to be 

further described hereinafter, is referred to as the Processed WPT. 

The purpose of this stage is to foster computational efficiency. 

In the practice of the present invention, a wavelet projection 

transform (WPT) was performed on an image of an F-18 fighter plane 

serving as the unknown object 14 of Fig. 1, and the results of the 

performance may be described with reference to Fig. 2 composed of 

Fig. 2(A) illustrating an image of the F-18 rotated over a range of 

angles, and of Fig. 2(B) illustrating a multi-scale local 

projection corresponding to the image of Fig. 2(A).  The rotation 

25 



of the F-18 image of Fig. 2(A) is illustrated in a series of 

frames. Fig 2(B) shows the application to the above rotations of 

the 9-7 coefficient bi-orthogonal wavelet that is more fully 

disclosed in the aforementioned technical article of M. Antonini. 

A Mexican hat wavelet illustrated in Fig. 3 is applied in the in 

the transverse integration direction with functional form: 

(3) 

1> [2a Ks,x] 
4x: 

(2aK ) 
-2 exp x 

[2aK  ] 

10 

Any type of function for ¥ may be used provided it satisfies 

the mathematical requirements for wavelets. These requirements are 

further detailed in the text of Daubechies previously mentioned. 

Other examples of wavelets are the Morelet wavelet, the first 

derivative of a gaussian and all such wavelets being known in the 

art. 

15 

In the further practice of the present invention a test image 

was implemented in the wavelet projection transform (WPT) 

processing and the results are illustrated in Fig. 4 comprising 

Fig. 4(A), 4(B), 4(C), 4(D), 4(E) and 4 (F) .  Fig. 4(A) represents 

26 



a test image containing edges at three different scales indicated 

thereon as three sequentially increasing scales 38, 40 and 42. 

Fig. 4(B) is the F-18 fighter image previously shown rotated in 

Fig. 2(A). Fig. 4(C) is the wavelet projection transform (WPT) of 

5 the test image, while Fig. 4(D) is the wavelet projection transform 

(WPT) of the F-18 image of Fig. 4(B). Figs 4(E) and 4(F) represent 

the processed WPT of the respective images. Each point in these 

two Figs. 4(E,F) represents "the best" MSES for a local region. 

The wavelet projection transform (WPT) processing performed by 

10   the computer vision system 10 of Fig. l has various regions denoted 

levell, level2 and level3 corresponding to scales , alf a2 and % 

and  various  subregions  denoted  orienl,  orien2,...,  orien8 

corresponding to d>lf <j)2 ... ^ all illustrated in Fig. 5.  Fig. 5 

illustrates  a  wavelet  projection  transform   (WPT)   space 

15   representation having three (3) spatial scales (levels 1, 2 and 3) 

and eight orientations.  In each orienl, orien2,...,orien8 there is 

two dimensions corresponding to the X    and Y    directions and 

indicated in Fig. 5 by rectangular box 44.  Both wavelet projection 

transforms (WPTs), as well as the discrete wavelet transform (DWT) 

and the continuous wavelet transform (CWT), are over three spatial 

scales (3-5 levels down), with the lowest resolution (e.g., level 
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3) on the top and the highest (e.g., level 1) on the bottom as 

generally indicated in Fig. 5. For each scale (a1# a2 or a3 of Fig. 

5) the horizontal direction represents the transverse segment 

length position, while the vertical direction represents the 

5   orientation between 0-180 degrees of the image under consideration. 

The post wavelet projection transform (WPT) processing is used 

to identify «the best" MSES representative quantities shown in 

Figs. 4(E) and 4(F). For such post (WPT) processing, the first 

step involves application of peak detection along the X direction 

of the WPT to find both positive and negative peaks. This is 

related to Marr's work on zero crossings which is further described 

in the book YjLsion authored by D. Marr and published by Freeman, 

San Francisco, 1982, with the applicable sections thereof being 

incorporated herein by reference. The peak detection process 

itself is well understood and is not considered part of this 

invention. Upon determining a number of peaks along the X 

direction in a particular orientation, in a particular row, the 

next aspect is to find a MSES representative quantities from a 

group of contiguous peaks and in so doing it is necessary to 

describe the distinction between two types of MSESs.  In the WPT of 

10 

15 

20 
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some arbitrary shape, consider the X direction in the fine scale 

region of the WPT orientation corresponding to the shape's 

orientation which may be further described with reference to Fig. 

6. 

5        Fig.  6 is composed of Figs.  6(A)  and 6(B)  respectively 

illustrating an outline image 14A and solid image 14B both of which 

are captured by rows and columns of an overlaid grid representing 

the instantaneous orientation of the WPT whereby the grid elements 

along the length represent the integration of pixels for the fine 

10   scale.  The rows are defined along the directions perpendicular to 

the long direction of the grid elements.  The integration along a 

single row corresponding to the fine scale is shown respectively 

for Figs. 6(A and B) by the upper  arrows.  The integration along 

all four rows corresponding to the coarse scale is shown by the 

15   lower arrow in Fig 6 (B) .  Here the output corresponds to the 

columnwise summation represented by ME" for each position along the 

row direction. The fine scale outputs for the single rows for the 

respective shapes are shown in convolution operations 46 and 48 

where "*" is the convolution operator and the function to the 

20   immediate right of the convolution operator is the fine scale of 

the Mexican hat wavelet.  The convolution output on the righthand 
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side of the equal sign ( = ) is the fine scale output for the 

instantaneous orientation of the WPT represented by the overlaid 

grid in 14A and 14B.  At each transient point corresponding to the 

integration, there are multiple peaks on the convolution output. 

5   This is referred to as ringing.   To resolve distances between 

transients, peaks from  distinct transients must be separated 

beyond the separation of the ringing peaks associated with the 

particular transients.  This is the case for 48.  As with the fine 

scale,  the coarse scale integration in 14B is shown in a 

10    convolution operation 50 with the coarse scale of the Mexican hat 

wavelet shown right of the convolution operator.  The output of the 

convolution  is  the  coarse  scale  output  the  instantaneous 

orientation of the coarse scale WPT.  Here there is a ringing 

pattern associated with only one transient because the scale of the 

15   wavelet is on the order of the scale of the width and thus it is 

not possible to resolve the separation between the transients 

defined by the left and right sides of the integration of image 

14B. 

Retuning to the fine scales, consider the distinction between 

20   46 and 48.  The output of the fine scales 46 and 48 has two groups 

of peaks,  however the output of 46  represents  two spatial 
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structures, i.e., two fine lines, while the output 48 represents 

one spatial structure, i.e., one thick line with sharp edges. For 

an individual fine line of Fig 6(A), it is not possible to resolve 

the width for the same reason that applies to the example of 50. 

5 The case of the fine scale Mexican hat wavelet applied to 14B in 

convolution 48 where it is possible to resolve the separation of 

transients corresponding to a single spatial structure is referred 

to as an resolved MSES or RMSES; the case of the coarse scale 

convolution 50 and the fine scale convolution 46 of the outline 

10 where for a single spatial structure it is not possible to resolve 

the separation between the transients is referred to as an 

unresolved MSES or UMSES. 

Both RMSESs and UMSESs have a sign. For RMSESs, going from 

left to right in the WPT domain along the X direction corresponding 

15 to the transverse integration direction with respect to the rotated 

image, a negative peak immediately followed by a positive peak 

defines a positive RMSESs while a positive peak immediately 

followed by a negative peak defines a negative RMSESs. The 

■ direction refers to the direction on a photo-detector row such as 

associated with a digital camera. For UMSESs a positive peak 

immediately between two negative peaks defines a positive UMSESs 
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while a negative peak immediately between two positive peaks 

defines a negative line. 

As described in the previous example whether a MSES is 

resolved or unresolved may be determined by the peak responses of 

5 the continuous wavelet transform (CWT) applied to the transverse 

integration direction in the WPT. As in the example of Fig. 6, for 

the appropriate scale of a Mexican hat wavelet in the WPT, the 

response to a UMSES generates three peaks, while the response to a 

pair of RMSESs generates four peaks. An UMSES at a coarse scale 

10    can be a pair of RMSESs at a finer scale. 

In the practice of the present invention for detecting a UMSES 

1) test for a peak; 2) along a range of distances corresponding to 

the scale, before and after the peak, determine if there are two 

peaks of one-half magnitude and opposite sign; and 3) represent the 

15 UMSES in the UMSES representative data stream by a single peak at 

the position of 1), having magnitude and sign of the center peak. 

The magnitude will be the weighted average of the three peaks, 

i.e., the sum of absolute value of the three peaks divided by two. 
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In the practice of the present invention for detecting an 

RMSES: 1) test for a peak; 2) along the range of distances 

corresponding to the scale, test for one other peak having roughly 

the same magnitude and opposite sign in front of or behind the 

5 current peak; 3) in the opposite direction at the same distance 

test for the absence of a peak; and 4) in the RMSES representative 

data stream at the point corresponding to the midpoint between the 

two WPT domain peaks, insert a peak having the magnitude of the 

average of the two peaks. The sign will be determined by 

10 convention, i.e., if for the pair of peaks the negative is in front 

of the positive so let the sign be positive, otherwise let the sign 

be negative. 

In the practice of the present invention, once we have RMSES 

and UMSES representative data streams we can now treat them 

15    separately in the subsequent post-processing. 

In the practice of the present invention for finding a peak 

orientation for MSESs over a particular scale: 1) select a given 

peak in a RMSES or UMSES in the respective data stream; 2) at a 

corresponding X and Y position at different orientations as 

2 0    determined by a rotational transform compare the peak intensities; 
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and 3) if the selected peak is greater and/or the values of the 

other peaks are symmetrically arranged about the selected peak, 

zero out all other peaks; 4) repeat this proceedure for other 

peaks. 

5        In the practice of the present invention, the peak detection 

and peak orientation detection stages greatly reduce the amount of 

data needed to represent an image.  It is believed that a key 

attribute of biological .vision systems is their ability to throw 

out redundant information.  The application of the peak detection 

10    stage, the MSES type (UMSES or RMSES) detection stages, and the 

peak orientation detection stage applied to the WPT domain is 

herein referred to as the processed WPT.   The processed WPT 

consists of a data stream of MSES representative quantities, being 

a sparse representation, it will be smaller in size than the 

15   original digital image. 

In the practice of the present invention, the processed WPT 

defines a space where each MSES representative quantity (MSESRQ) 

has the following dimensions:  position X,    Y;   orientation <p;   and 

scale a.  Relationships between pairs of these multi-scale edge 
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segment representative quantities (MSESRQs) can be defined that are 

approximatly  invariant  over  scale,   shift  and  rotation 

manipulations.  For such a definition, let the ith MSESRQ point in 

the processed WPT, represent the ith point in the space of the 

5   processed WPT domain.  Any two points in the processed WPT define 

a chord in wavelet projection transform (WPT) space. This has some 

relation to the chords in Hough transform space more fully 

described in the technical article of D. Casasent, "Optical Feature 

Extraction," Optical Signal Processing, J.L. Horner, ed., Academic 

10   Press, pp. 75-95, 1987 which is herein incorporated by reference. 

The chords defined by the ith & jth  points in processed wavelet 

projection  transform  (WPT)  space  are  given  by  the  below 

relationships: 

(4) 

AX..= X.-X., AY..=  Y.-Y., W13=  $.-$.,   and       Aa...= a.-a. 
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The WPT domain location of the ijth chord may be referenced by the 

ith MSES. Let this particular MSESRQ be referred to as the prime 

MSES. 

The quantity c±i = (g, ij, 0 c£j ,a c7' ) , having tangential, 

azimuthal and scalar components, is referred to as the ijth chordal 

invariant (CI), where the below relationships exist: 

(5) 

ct
1

a
J

n=AY../&X.., c^ = &<$>.., ca
ij = Aa 

tan ij ij' <P -ij a J 

This quantity c^    is approximately a position,  scale and 

rotation invariant representation of the geometric relation between 

10 any thresholded wavelet projection transform (WPT) feature pair and 

may be further described with reference to Figs. 7 and 8 

respectively composed of Figs. 7(A) and 7(B), 8(A) and 8(B). Fig. 

7(A) shows the image of an F-16 aircraft and Fig. 7(B) shows a 

chordal invariant (CI) representation for the F-16 fighter.  Fig. 

15 8(A) shows the image of the F-16 aircraft rotated 45 deg. and 

dilated 25% relative to Fig. 7(A), and Fig. 8(B) shows the chordal 

invariant (CI) representation for the rotated and dilated F-16. 
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For general aspect invariance, chordal invariants (CIs) are 

calculated for all aspect views of a prototype object, such as the 

F-16 fighter.  The CI allows spatial relations between MSESRQs to 

be efficiently expressed as sets of integers.   This allows 

5   recognition of MSESRQs on a circuit based on conventional computer 

bus architecture which, in turn, allows the principles of the 

present invention to be practiced in a conventional computer making 

the invention more readily accepted into commerce.   As to be 

described hereinafter,  sets  of  addresses  on  a  bus  of  the 

10    aforementioned circuit can serve as the reference library of the 

sets of. chordal invariants (CI) corresponding to the prototypes, 

each address representing an individual chordal invariant (CI).  A 

100 MHZ 32 bit bus commonly available in conventional computers 

would perform 100 million correlations  (to be described) per 

15   address per second, i.e., 100 million input CIs could be processed 

in 1 sec.  The use of busses for serving as a reference library in 

an apparatus aspect of the present invention is to be further 

described hereinafter with reference to Fig. 13. 

For recognizing the unknown object  it  is essential to 

2 0   characterize how large numbers of input MSESRQs associated with the 

correlated CIs relate to each other.  These MSESRQs can be related 
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to each other indirectly if they can be related to some fiducial 

point with respect to the prototype object.  From a particular 

aspect view of the prototype object used to generate the library, 

we can define a fiducial point in the WPT domain of the image of 

5   the prototype object.   All other points will have a unique 

relationship with this fiducial point.  For convenience, we can 

make this point the center point of the prototype's WPT domain. 

For a particular aspect view of the prototype object, we can 

imagine the input image belonging to the same class and being a 

10   shifted scaled or rotated view of the prototype object view.  This 

means that the center point of the input view will be shifted 

scaled and rotated with respect to the prototype's center point. 

We refer to this point in the WPT domain of the input image as the 

relative center  (RC) .   For a particular aspect view of the 

15   prototype object, the ith prime MSESRQ associated with the ith  CI 

is some distance in WPT space from the defined center (subscripted 

c).  Let this distance be referred to as the chordal radius having 

components given below: 

(6) 

AX. =X.-X ,   Ar. =y,-y,   A(J) ^r^c'      and     Aaic =ai~ac 
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The practice of the present invention defines a new quantity- 

called the ijth  center relation factor (CRF) with respect to the 

jth (unknown image) from the center n±j =   {nx
ij,   ny

ij,  n/j,   na
ij)   having 

the respective positional, azimuthal and scalar components where 

5   the following relationships exist: 

(7) 

ij = AX    /AX    .     nij = AY. /AY... ru^Affi.  , and n1J = Aa,_. ■n;jHAXIc/AXiJf     n/^YjLY^, n, ^Aölc, 1C 

Every CI will have at least one and possibly many CRFs associated 

with it. 

The practice of the present invention redefines the indices so 

10 that, ck, represents the kth chordal invariant (CI) of an input 

image, such as object 14 of Fig. 1, and c±i, represents the jth 

chordal invariant (CI) in the processed WPT domain of the ith 

aspect view of the prototype object. The latter has just one of 

many like elements in the reference library of chordal invariants 

15 (CIs) , stored in the computer vision system 10 in a manner as 

hereinbefore described. In regard to CIs, a correlation or match 

is said to occur where ck   =   q4  .       For a given correlation, the 
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center relation factor (CRF) associated with the reference chordal 

invariant (CI) stored in the library, is used to find the relative 

center (RC) corresponding to the input (unknown image) associated 

with the input kth chordal invariant (CI) of the unknown image of 

5 the object 14 provided by the camera 12 of Fig. 1. For the lth 

correlation for an unknown image, let there exist some lth relative 

center (RC) (Xr
2, Yj-, <pr

x, ar
x) having the respective components for 

position, azimuth and scale where the below relationship exists: 

(8) 

X^X^n^AX^ Y* = Yk+n^LYk, ^r=^k+n^        and a^a^n^, 

10 where AXk is the kth chordal invariant (CI) distance between 

two points in wavelet projection transform (WPT) space along the X 

direction, Xk is the X component of the position .in wavelet 

projection transform (WPT) space of the prime MSESRQ with the kth 

chordal invariant (CI) , and likewise AYk   and Y ,0     is the kth 

15 azimuthal component of the relative center (RC) and ak is the kth 

scalar component. 
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20 

It should now be appreciated that the wavelet projection 

transform (WPT) processing essentially consists of the 

transformation of image 18 of Fig. 1 into wavelet projection 

transform (WPT) transformation representation, a chordal invariant 

(CI) representation, chordal invariant (CI) correlation, and the 

performance of a relative center (RC) ■ determination. These 

transformation, derivations and manipulations comprise the stages 

of the improved edge characterization means 22 generally 

illustrated in Fig. 1. 

As seen in Fig. 1, after the performance of the improved edge 

characterization means process 22 the present invention sequences 

to the pattern recognition means 24 so as to recognize the target 

of interest 14 such as the unknown object 14 of Fig. 1. Matched 

filters for chordal invariant (CI) constellations representing 

15 various aspect views of the target of interest 14 of Fig. 1 might 

be defined in the practice of the present invention but it is 

preferred that a more advantageous utilization of the 

simplification the chordal invariants (CIs) representations 

provided by the improved edge detection means 22 of Fig. 1 be 

accomplished. It is preferred that an approach utilizes the 

hereinbefore given descriptions of expressions  (2)  -  (8)  to 
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establish coherence among the input MSESRQs corresponding to 

correlated chordal invariants (CIs), to be further described 

hereinafter. 

f!hnrdal Triangle (CT) and Chordal Irianql_e_Iiraarlant (CTIX 

5 The above invariant representation uses two chords which may- 

cause it to suffer from an error problem due to the quantization 

error from coarse scale integration direction component of the 

above chordal invariant (CI), in the Y direction. An alternative 

approach uses three MSESRQs to derive invariant characterizations. 

10 From the processed WPT of an image consider any three MSES features 

which may be further described with reference to Fig. 9 composed of 

Figs. 9(A) and 9(B) each illustrating three separate multi-scale 

edge segment (MSES) features 74, 76 and 78. 

Fig. 9 shows graphically the positions, orientations and 

15 scales of three MSESRQs features 74, 76 and 78 projected back into 

Cartesion space. These three features 74, 76 and 78 correspond to 

three points in the processed WPT domain which, in turn, define 

three chords 80, 82, and 84 which, in turn, define a triangle 86. 

We refer to this triangle 86 as a chordal triangle (CT). One may 

2 0    form an equivalent triangle by the intersections of the long axes 
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through the graphical MSESRQs features 74, 76 and 78 as shown in 

Fig. 9(B). Except for special cases, each side of the triangle 86 

will have different lengths, i.e., long side, middle side and short 

side respectively, shown as chords 80 (Sx) , chord 82 (Sm) and chord 

5 84 (Ss) . The chords 80, 82 and 84 are interchangeably referred to 

herein as the long side, the middle side and the short side. Since 

the CT is defined by intersections, the positions of these 

intersections are better determined along two dimensions than the 

equivalent positions of the solitary chord. 

10        In the practice of the invention, we can refer to a particular 

chordal triangle's (CT's) position by the position in Cartesian 

coordinates of the intersection of a particular pair of sides, 

e.g., middle side and long side.   In doing this, it is only 

necessary to maintain consistency in which two sides are used.  The 

15    intersection by which the location of the CT is referenced is 

referred to as the prime vertex 88 of the chordal triangle (CT) 

which is shown in Fig. 10.   Fig. 10 further illustrates the 

distance D 90, extending from the prime vertex 88 to the fiducial 

point Cen.  The chord 90 extends from the origin 88.  Fig. 10 still 

20    further illustrates angles AOCen, A(J)is and A$ms as shown therein. 
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In the practice of this invention,  we can refer to a 

particular CT's orientation by the orientation of a particular 

side, e.g., the middle side 82.   Henceforth, we will use the 

notation CT.phi for the orientation of the CT.  We can refer to a 

5   particular CT's length by the length of a particular side, e.g., 

(82) the middle length.  Henceforth, we will use the notation CT.r 

for the length of the CT.  We can refer to the scale of a triangle 

by the scale of a particular side, e.g.,  the middle scale. 

Henceforth we will use the notation CT.a for the scale of the CT. 

10   For the above CT properties derived from one particular side, it is 

only necessary to maintain consistency in which side is used. 

The chordal triangle (CT) of the present invention has a 

number of invariant geometric relations. For any change in 

position orientation and scale, the relations are maintained. This 

15 invariance property is referred to as shift scale and rotation 

invariance. We henceforth refer to the set of invariant relations 

of a CT as the CT Invariant (CTI). 

In the practice of the present invention the components of the 

CTI may be listed as follows: 
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The angle between two sides, e.g., long side and middle side, 

(CTI.A<)>) . 

The ratio lengths between two sides, e.g., long side and 

middle side, (CTI.rat). 

5        In the practice of the present invention other CTI components 

may be listed as follows: 

The difference in scale from the long side to short side (CTI.Aals) 

The difference in scale from the long side to middle side (CTI.Aa:J 

The difference in scale from the middle side to short side (CTI. 

10   Aams) 

The difference in sign from the long side to the short side (CTI. 

Asignls) ] 

The difference  in sign from the  long side to middle  side 

(CTI. Asigrn2J 
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The difference in sign from the middle side to short side 

(CTI.AsigO 

The above three listed other components will have either two 

values, zero for no change or one for positive to negative or 

5   negative to positive. 

In the practice of the present invention, still other CTI 

components may be listed as follows: 

The difference in type from long side to short side (CTI. Atypels) 

10   The difference in type from long side middle side (CTI. AtypeIm) 

The difference in type from middle side to short side (CTI. Atypems) 

The above three listed other components will have either two 

values, zero for no change or one for edge to line or line to edge. 

The above invariantly characterizes the relations between 
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MSESRQs 74, 76 and 78 as shown in Fig. 10. In other words, for all 

the MSESRQs, relations between groups of three MSESs (74, 76 and 

78) are reduced to a list of numbers. As with the aforementioned 

CI approach, a CTI library is formed from the processed WPT of all 

5   aspect views of the prototype object. 

Every input CT associated with every input will have a 

position corresponding to its prime vertex. As with the case of 

the aforementioned CI approach, for a given aspect view, the CTs 

associated with their respective CTIs are related to a fiducial 

10 point of a prototype object view by a center relation factor (CRF). 

For the CTI approach, the CRF is defined with components: 1) ratio 

of chordal triangle radius distance D to the triangle's length, 

defined by middle side length 82, symbolized as CRF.rat; 2) angular 

difference between the triangles (86) orientation and the direction 

15 to the center, symbolized as CRF.A0; 3) the orientation difference 

between the triangle's orientation and the defined center 

orientation, symbolized CRF.A0; 4) the difference between the 

triangles (86) scale and a defined center scale, symbolized CRF.Aa; 

and 5) the difference between triangle (86) edge type to defined 

20   center edge type, symbolized CRF.Atype. 
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As with the aforementioned CI, every CTI will have at least 

one and possibly many CRFs associated with it. 

As with the aforementioned CI approach, upon correlating an 

input CTI, associated with an input image, such as image 18 of Fig. 

5    1, with a library CTI, the CRF associated with a library CTI will 

be used to map the position of the triangle (86) associated with 

the input chordal triangle invariant (CTI) to a Relative Center 

(RC) . 

In the practice of the present invention for the CT, the 

10   components of the RC are defined by the following formulas: 

Distance to the center, symbolized by RC.r, is the product 

CRF.rat * CT.r; 

Direction  to  the  center,  symbolized RC.O,  is  the  sum 

CRF . AO+CT . <p ; 

15        Orientation, symbolized RC.$, is the sum CRF. A<J)+CT • 0; 

x direction position,  symbolized RC.x,  is  the product 

RC.r*cos(RC.AQ); 

y direction position, symbolized RC.y, is the product RC.r * 
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sin(RC.A^) ; 

Scale, symbolized RC.a, is the sum CRF.Aa + CT.a; 

Edge type, symbolized RC.type, is the sum CRF.Atype + CT.type. 

The pattern recognition approach used in this invention has 

5 been to reduce an image into its constituent features, in this case 

MSESs, and detect simple invariant relationships between these 

features, in this case CIs or CTIs, a kind of "divide and conquer" 

strategy. The next task that needs addressing is how the features 

associated with the detected invariants are brought together into 

10    the recognition of the unknown object. 

To recognize the image of the unknown object, it is necessary 

to bind all the features together into a coherent pattern. Another 

way of thinking about this implementation is to search for a way to 

examine the feature of space of the image so that the coherence 

15   between the features is readily discernable.  Some brain scientists 

theorize that pattern recognition in people and animals is 

characterized by patterns of coherent oscillation as more fully 

disclosed in two technical articles, the first being of CM. Gray, 

P. Koenig, M. Engle and W. Singer, "Oscillatory Responses in Cat 
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Visual Cortex Exhibit Inter-Columnar Synchronization which Reflects 

Stimulus Properties," Nature, v. 338, p. 334, 1989 and the second 

being of R. Eckhorn et al., "Coherent Oscillation:  A Mechanism of 

Feature Linking in the Visual Cortex?," Bio_L__Cyber_, v. 60, p. 

121, 1989, both of which technical articles are herein incorporated 

by reference.  It has been theorized that patterns of coherent 

oscillation is somehow the basis of what is referred to as feature 

binding.  Based on the practice of the present invention, it is 

believed that the. purpose of learning is to associate a particular 

local feature of a given pattern with a corresponding code or 

reference signal such that, when the given pattern is observed, 

coherent superposition of the code signal occurs.   Coherent 

superposition permits the amplitude of the code signal to rise 

above the background of incoherently superpositioned code signals 

15   permitting easy detection of the superposition.  This detection 

results in recognition.  The possibility that brains perform this 

process  is  an  interesting  alternative  to  the  widely  held 

"grandmother cell" hypothesis more fully disclosed in the already 

incorporated by reference technical article of S.W. Kuffler,. J.G. 

20   Nicholls and A.R. Martin. 
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In the practice of the invention, it is preferred to use a 

method called noise coding to make many input MSESRQs coherent with 

respect to one another.  Noise coding is very compatable with 

conventional computer pseudo-random number generation.  The noise 

5   coding preferably used in the practice of this invention may be 

further described with reference to Fig. 11 composed of Figs. 

11(A), 11(B) and 11(C) respectively illustrating representations of 

a pseudo-random signal, a small number of coherent superpositions 

and a much larger number of incoherent superpositions of the 

10   pseudo-random signal of Fig.  11(A),  and a correlation signal 

yielded by the correlation of the original pseudo-random signal of 

Fig. 11 (A) and the superposition of Fig. 11 (B). 

In general, and as to be further described hereinafter, the 

method of the present invention for operating a computer vision 

15 system 10 derives the set of invariant relations previously 

described including a relative center (RC) quantity of the chordal 

invariants of the prototype objects forming the stored invariants 

30 of Fig. 1. The derivation first generates at least a four (4) 

dimensional (D) pseudo-random sequence signals each having a phase 

2 0   parameter and with the corresponding coordinates equal to the 

wavelet projection transform (WPT) space dimensions of the at least 
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first four (4) dimensional (D) signal representing the digital 

image 18.  The method then lets the phases or wrap-around offsets 

along the respective dimensions of the dimensional-pseudo-random 

signals correspond to components of the relative center (RC) 

5   specifically Xr, Yr, <pTI ar for the CI approach or RC.x, RC.y, RC.cJ) and 

RC.a for the CTI approach.  A quantity known as the seed value is 

used in conjunction with a pseudo-random sequence generation 

algorithm to generate a specific pseudo-random sequence.  This is 

well known in the art of random number generation.   The method 

10   associates a unique seed with each -library chordal invariants (CIs) 

or chordal  triangle  invariants  (CTIs)  corresponding to  the 

prototype object from which they were derived. 

The noise coding process generally involves the following five 

(5) steps some of which are visually correlatable to Fig. 11:  1) 

15 generate 4-D pseudo random sequence signals with dimensions equal 

to the wavelet projection transform (WPT) space dimensions (Fig. 

11(A)) using seed values associated with the classes of library 

chordal invariants (CIs) (or CTIs) matched with the input CIs (or 

CTIs)  and let an RC that is a function of an input MSESRQ 

20   associated with a correlated CI or CTI and corresponding library 

CRF determine the phases or offset values for all dimensions for a 
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given pseudo-random sequence, where for any dimension, sections of 

the pseudo-random sequence that exceed the dimensional size limit 

are "wrapped around"; 2) generate  correlation reference functions 

for the pseudo-random sequences corresponding to the various 

5   classes;  3)  superpose the random sequences derived from all 

correlations or matches between library and input CIs (or CTIs) of 

which superposition is  illustrated in Fig.  11(B),  in which 

targets, that is, unknown objects 14 of Fig. 1, corresponding to 

the chordal invariant (CI) (or CTIs) library stored in the computer 

10   vision  system  10  produce  coherent  superposition,  whereas 

nonmatching  targets,  noise  or  clutter    produce  incoherent 

superposition;  5)  correlate the superpositioned pseudo-random 

signals of step 3) above with the correlation functions of 2), if 

a pattern of a particular class is in the input, there will be a 

15   coherent superposition of pseudo-random sequences corresponding to 

the particular class resulting in a well defined correlation peak 

in the correlation domain for that particular class, the position 

of the correlation peak will be determined by the pattern's 

positions in the WPT domain. 

20        In the practice of the present invention, by thresholding W 

one can extract the wavelet projection transform (WPT) coordinates 
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10 

of the target, that is, the coordinates that define the location of 

the unknown object 14 of Fig. 1. From the wavelet projection 

transform (WPT) location yielded by the extracted coordinates one 

may then transform back to Cartesian space. In the practice of the 

invention, CAD software was used to generate multiple aspect views 

of an Ml Abrams tank. These views were used to make a reference 

library of chordal invariants (CIs) previously discussed and 

prestored in the computer vision system 10. Desert Storm photos of 

the Ml Abrams tank were digitized and their corresponding chordal 

invariants (CIs) were calculated and the results of the digitizing 

quantities were stored in the reference library (shown in Fig. 1 as 

stored invariants 30) of the computer vision system 10, and such 

chordal invariants may be further described with reference to Fig. 

12 composed of Figs. 12(A), 12(B), 12(C), 12(D), 12(E) and 12(F). 

15 Overall, Fig. 12 shows selected aspect views of the Ml tank 

generated by the CAD software, input Ml tank photos, and their 

corresponding noise coding correlation functions. Figs. 12(A) and 

12(B) represent selected aspect views of Ml tank rendered from a 

CAD wireframe model, known in the art, used to generate chordal 

invariant (CI) library; Fig. 12(C) illustrates a Desert Storm photo 

of the Ml tank; Fig. 12(D) illustrates an output of noise coding 
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stage,  to be described,  demonstrating recognition,  that is, 

recognition of an unknown object 14 being the Ml tank determined by- 

being compared against the stored chordal invariant (CI) in the 

reference library of the computer vision system 10; Fig. 12(E) is 

5   a second photo of the Ml tank; and Fig. 12(F) illustrates output of 

noise  coding  stage  for  second  photo  again  demonstration 

recognition.  A review of Figs. 12(D) and 12(F) reveals that the 

correlation peak of each of Figs. 12(D) and 12(F) is aligned with 

the center of the Ml tank (see Figs. 12(C) and 12(E) respectively), 

10   thus showing recognition of the Ml tank. 

It should now be appreciated that the practice of the present 

invention provides correlation between an unknown object 14 (Ml 

tank) and a prototype object (Ml tank digital representation stored 

in the computer vision system 10) by the use of noise coding 

15 techniques that form a stage of the superposition process of the 

present invention. 

It should now be appreciated that the wavelet projection 

transform (WPT) of the present invention provides 4-D correlation 

that may be transferred back to 2-D Cartesian space coordinates in 

2 0   a very precise manner. 
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10 

It should also be appreciated that the present invention 

provides a method of operating a computer vision system having a 

digital camera for detecting an unknown object having edge portions' 

and converting the object into a first image represented by first 

digital quantities. The method comprising the steps of: (a) 

transforming a wavelet projection transform (WPT) of the first 

digital quantities into a first four (4) dimensional (D) signal; 

(b) superpositioning the 4-D signal against a stored pattern 

represented by a second signal also defined by four (4) dimensional 

(D) coordinates with the coherent phase portions therebetween 

serving as a superposition output signal; and (c) matching the 

superposition output signal against a library of prototype objects 

with the match therebetween identifying the unknown object. 

The correlation between the input invariants and derived 

15 invariants may be done on a circuit 92 that uses bus architecture 

as illustrated in Fig. 13. For this example CTs and CTIs are used 

but this may interchanged with the simple chords and CIs. Further, 

as will be described, the library of CTI quantities may be replaced 

with the library of CT with appropriate logic selections. 

Processed WPT data 94 is directed to invariant generator 29 (see 

Fig. 1) for generating data streams containing CTs 96 and CTIs 98 
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directed to respective CT buffer 100 and CTI buffer 102.  The CTI 

data streams being an ordered group of digital parameters can be 

represented as a bit pattern.  Input CTIs from the buffer 102 are 

then directed the register 104 serially according to the bus cycle. 

5   The bit pattern of the CTI contained in register 104 applies a 

corresponding voltage pattern to buslines 106.   A CTI library 

resides in registers  108^  108 ,  ...  ^08  each providing a 

representative  output  of  the  prestored  quantities  (chordal 

triangular invariants), the outputs of which are routed in parallel 

10   to gate arrays 1101#  11Q ,  ... Z^LO      each containing negated 

exclusive or NXOR gates 112, with each array having respective 

outputs directed into AND gates 114^ 1142 ... 114„.  Furthermore, 

the arrays 110lf 110, ,  ... 11^0 , containing two sets of leads, 

simultaneously receive signals from the input register 104 via the 

15   bus 106 so that each NXOR gate 112 in the arrays 110^ 1102, ... 

110N receives input from a bit position of a particular library 

register 108x, 1082, ... 108^ and a corresponding bit position of 

the input register 104.  When the bit value of the bit position in 

a particular library" register 1081# 1082, . . . 108N matches the bit 

20   value of the corresponding bit position in the input register 104, 

then the NXOR gate 112 corresponding to the bit position in the 

array 1101; 110, ,  ... 13^0  and corresponding to the particular 
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library register 108^ 1082/ . . . 108N is qualified. Therefore when 

the contents of the input register 104 equals the contents of any 

of the prestored chordal triangle invariant (CTI) quantities, all 

the NXOR gates of the array are qualified such that the respective 

5 AND gate 11417 1142, ... 114N is qualified such that an activation 

signal is respectively routed to enabling means 116!, 1162 . . . 116N. 

A plurality of register groups 118^ 1182 .. . 118N of a number 

equal to a predetermined number, N, of the AND gates 114!, 1142 . . . 

114N is connected to the enabling means 116,. , 116, . . . 11§, .  Each 

10 of the registers groups 1181# 1182 . . . 118N stores CRFs associated 

with corresponding library CTIs and provide output signals in 

response to a control signal generated by the enabling means 116!, 

1162, . . . 116^ respectively. As previously mentioned, every CTI 

will have at least one and possibly many CRFs associated with it. 

15 Upon being qualified, by an above match, a particular enabling 

means 1161; 1162 . . . 116^ controls the sequential transmission of 

CRFs stored in particular registers 120i ...120H of a particular 

register group 116!, 1162 . . . 116N along bus 122 to a RC computation 

means 124. 
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The arrangement 92 further comprises the buffer register 100 

for holding the chordal triangles, that is, signals 96 (CTs).  The 

buffer register 100 provides output quantities to a CT input 

register 126.  Concurrent with the above CTI correlation and CRF 

5   transmission, the CT stored in the CT input register 126 is routed 

to the RC computation means 124.  The RC computational processor 

124 computes the RC signals 12 8 in a manner as previously- 

described,  and  provides  the  output  signals  12 8  that  are 

subsequently routed to the previously described noise coding 

10   system. 

Numerous other variations and modifications of the present 

invention may be readily apparent to those skilled in the art in 

light of the above teaching. It is, therefore, to be understood 

that   '' " ' the invention may be 

practiced other than as specifically described herein. 
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BTnmnrT nr THE r,Tgi-T,osq£B 

A  computer  vision  system  haying.  improved.  means  for 

characterising the parameters of edge segments" of an unknown object 

is disclosed.  The unknown object is ^ transformed by a digital 

camera into an imsge and transformed by a wavelet projection 

transform S= as to decompose the ; unknown objects into .thelr 

constituent  multi-scale  edge  segment features  and - provide 

I_J«^.V v,« roTatina their constituent recognition of the unknown object by relatxng t 

edge features to each other. 
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