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1 Navy Case No. 77849 

2 SYSTEM FOR BEARINGS-ONLY CONTACT STATE 

3 ESTIMATION USING RECURRENT NEURAL NETWORKS 

4 

5 STATEMENT OF GOVERNMENT INTEREST 

6 The invention described herein may be manufactured by or for 

7 the Government of the United States of America for Governmental 

8 purposes without the payment of any royalties thereon or 

9 therefor. 

10 

11 BACKGROUND OF THE INVENTION 

12 (1) Field of the Invention 

13 The invention relates generally to the field of estimation 

14 and tracking, and more particularly to systems and methods for 

15 bearings-only contact state estimation and target motion analysis 

16 for marine applications. 

17 (2) Description of the Prior Art 

18 In the ocean environment, localization and tracking of an 

19 acoustic contact from sonar measurements are of considerable 

20 interest.  The two-dimensional contact state estimation, or 

21 target motion analysis, problem captures the fundamental 

22 essentials of tracking.  Here a moving observer ("ownship") 

23 monitors sonar bearings from an acoustic contact ("target") 

24 assumed to have constant velocity, ane processes those 

25 measurements to estimate contact location and velocity. 



1 A fundamental property of a bearings-only target motion 

2 analysis is that the process is not completely observable for any 

3 single leg of ownship motion.  This is clear from the fact that 

4 several target trajectories will generate the same bearing- 

5 measurement history for a constant velocity observer. The range 

6 to the target becomes observable only following a maneuver by the 

7 observer.  Several estimation techniques have been applied to the 

8 bearings-only target motion analysis, with varying results.  The 

9 differences in methods involve the modeling of the process and 

10 the selection of the estimation algorithm.  The extended Kaiman 

11 filter ("EKF") in a Cartesian state-space exhibits divergence 

12 problems which yield poor estimates with optimistic 

13 uncertainties.  The pseudo-linear estimation technique is known 

14 to produce biased solutions with optimistic covariances; 

15 depending on the scenario geometry, the bias can be severe.  The 

16 maximum likelihood estimator ("MLE") is one of the present 

17 techniques of choice, but it is sensitive to the initialization. 

18 A two-stage hierarchical estimation approach has been proposed, 

19 but this and the other methods are based on linear filtering and 

20 estimation techniques and are approximations to the complex non- 

21 linear nature of the real-world problem. 

22 

23 SUMMARY OF THE INVENTION 

24 It is therefore an object of the invention to provide a new 

25 and improved system and method for bearings-only contact state 

26 estimation and target motion analysis for marine applications. 



1 In brief summary, in one aspect the invention provides a 

2 system for bearings-only contact state estimation in response to 

3 target bearing and ownship speed and course (i.e., velocity) 

4 information provided for a plurality of observation legs at 

5 successive points in time, including a plurality of neural 

6 networks and a data fusion circuit.  Each of the neural networks 

7 generates range-normalized parameter estimate information for one 

8 of the observation legs in response to target bearing and ownship 

9 course information for an associated one of the observation legs, 

10 provided thereto at each point in time and information generated 

11 for the previous point in time.  The data fusion circuit receives 

12 the range-normalized parameter estimate information from the 

13 neural networks and generates the contact state estimation in 

14 response thereto. 

15 In a further aspect, the invention provides a neural network 

16 neural networks for generating range-normalized parameter 

17 estimate information for one of the observation legs in response 

18 to target bearing and ownship speed and course information for an 

19 associated one of the observation legs, provided thereto at each 

20 point in time and information generated for the previous point in 

21 time. The neural network includes an input layer, a hidden layer 

22 and an output layer.  The input layer comprises a plurality of 

23 input nodes, at least some of the input nodes receiving the 

24 bearing information and the ownship speed and course information 

25 for the respective one of the observation legs, at least others 

26 of the input nodes receiving the delayed state information.  The 



1 hidden layer comprises a plurality of hidden nodes, for receiving 

2 the bearing information, the ownship speed and course information 

3 and the delayed state information from the input nodes and 

4 processing it in response to a weight information associated with 

5 each input node and respective hidden node in relation to a 

6 predetermined non-linear function to generate contact state 

7 information.  The contact state information generated at each 

8 point in time comprises the delayed state information for a 

9 subsquent point in time.  The output layer comprises a plurality 

10 of output nodes for generating the range-normalized parameter 

11 estimate information in relation to the contact state information 

12 generated by the hidden layer at each point in time. 

13 

14 BRIEF DESCRIPTION OF THE DRAWINGS 

15 This invention is pointed out with particularity in the 

16 appended claims.  The above and further advantages of this 

17 invention may be better understood by referring to the following 

18 description taken in conjunction with the accompanying drawings, 

19 in which: 

20 FIG. 1 is a functional block diagram of a system for contact 

21 state estimation which incorporates recurrent neural networks 

22 constructed in accordance with the invention; and 

23 FIGS. 2 and 3 are functional block diagrams of neural 

24 networks useful in the system depicted in FIG. 1. 



1 DESCRIPTION OF THE PREFERRED EMBODIMENT 

2 FIG. 1 is a functional block diagram of a system 10 for 

3 generating a contact state estimate which incorporates recurrent 

4 neural networks.  With reference to FIG. 1, the system 10 

5 generates a contact state estimate using includes two primary 

6 levels of subsystems, including a first level comprising neural 

7 networks 11(1) and 11(2), and a second level comprising a data 

8 fusion system 12.  Each of the neural networks 11(1) and 11(2) 

9 receive bearing measurements and ownship kinematic information 

10 concerning the speed and course of the observer ship during one 

11 of the observation legs required to facilitate generation of a 

12 target state estimate, and generates range-normalized parameter 

13 estimates which are provided to the data fusion system 12.  The 

14 data fusion system, in turn, receives the range-normalized 

15 estimates for the respective observation legs and uses that 

16 information, along with additional scenario information, to 

17 generate a contact state estimate for the target.  Operations 

18 performed by the data fusion system in generating a contact state 

19 estimate for a target in response to the range-normalized 

20 parameter estimates provided by the neural networks 11(1) and 

21 11(2) are conventional, and will not be described herein. 

22 As noted above, each of the neural networks 11(1) and 11(2) 

23 generates range-normalized parameter estimates in response to 

24 bearing measurements and ownship kinematic information (including 

25 speed and course information, that is, ship velocity) received 

26 during a respective one of a series of observation legs (1) and 



1 (2).  In addition, the neural network 11(2), which generates the 

2 range-normalized parameter estimate for the second observation 

3 leg (2), receives initialization information generated by the 

4 neural network 11(1) for the first observation leg (1), which it 

5 uses in generating the range-normalized parameter estimate for 

6 observation leg (2).  The structure and operation of the neural 

7 networks 11(1) and 11(2) will be described in connection with 

8 FIGs. 2 and 3, respectively. 

9 With reference to FIG. 2, neural network 11(1), which 

10 generates the range-normalized parameter estimate for observation 

11 leg (1), comprises a plurality of nodes organized in an input 

12 layer, one hidden layer, and an output layer.  The nodes 

13 comprising the input layer, comprising nodes 20(1) through 20(8) 

14 (generally identified by reference numeral 20(i)) iteratively 

15 receive the bearing and ownship kinematic information, identified 

16 FIG. 2 as BEARING IN, SPEED IN, and COURSE IN inputs, at 

17 individual nodes 20(1) through 20(3).  The BEARING IN input 

18 corresponds to the "Bearing Measurements (Leg 1)" input to the 

19 neural network 11(1) in FIG. 1, and the SPEED IN and COURSE IN 

20 inputs correspond to the "Ownship Kinematics (Leg 1)" input to 

21 the neural network 11(1) in FIG. 1. 

22 The input information is provided to the nodes 20(i) 

23 comprising the input layer at a plurality of successive points in 

24 time tn during the first observation leg (1).  At each point in 

25 time tn, context information, representing information generated 

26 by the nodes 21(1) through 21(5) (generally identified by 



1 reference numeral 21(h)) at the previous point in time tn., is 

2 coupled to the other nodes 20(4) through 20(8) of the input 

3 layer.  The context information is coupled through a delay 

4 element, which may comprise, for example, a register, which 

5 stores the information generated by the hidden layer nodes 21(h) 

6 at each point in time tn and provides it to the input layer for 

7 the subsequent point in time tn+1. 

8 The nodes 20(i) comprising the input layer are connected to 

9 the nodes 21(h) comprising the hidden layer through a plurality 

10 of links 22(i)(h).  The nodes 21(h) are all connected to a 

11 plurality of output nodes 23(1) through 23(3) (generally 

12 identified by reference numeral 23(o)) through a plurality of 

13 links 24(h)(o).  The nodes 23(o) generate respective a BEARING 

14 OUT, BEARING RATE OUT and NORM RANGE-RATE OUT (normalized range- 

15 rate out) value, which comprise the range-normalized parameter 

16 estimates (leg 1) shown as being generated by the neural network 

17 11(1) in FIG. 1. 

18 The neural network 11(1) generates the BEARING OUT, BEARING 

19 RATE OUT and NORM RANGE-RATE OUT (normalized range-rate out) 

20 value from the inputs and context information as follows.  If, at 

21 time tn, B^ represents the bearing in value, Vn represents the 

22 (assumed to be constant) ownship speed in value, and Cn 

23 represents the (also assumed to be constant) course in value, 

24 input state vector u^fB^ Vn CJ
T (where "T" represents the vector 

25 transpose operation), then the output state vector generated by 

26 the hidden output nodes 21(h) is xn=g(W11un+W12x„.1) , where W!=[WU W12] 



1 is the matrix of weights for the links and the function "g" is 

2 selected to be the inverse hyperbolic tangent function 

3 gtz^tanh-^z) . 

4 The values generated for the present state xn is thus a 

5 function of the present input u„ and the values for the previous 

6 state xn_!.  Since the previous state Xn.x depends on the previous 

7 input un.i and the prior state xn_2, the effect of the feedback is 

8 recursive; that is, at any time tn, the state xn depends on the 

9 sequence of past values (xn., xn.2 ...) for the scenario under 

10 consideration.  Thus, the neural network 11(1) captures the 

11 context of the present measurement by consideration of the past 

12 history back to the beginning of the leg. 

13 The output vector generated by the output nodes 23(o) is 

14 generated in a similar fashion by yn=g(W2xn) where W2 is the matrix 

15 of neural network weights for the links 24(h)(o) interconnecting 

16 the nodes 21(h) comprising the hidden layer and the nodes 23(o) 

17 comprising the output layer. The output vector generated by the 

18 nodes 23(o) comprising the output layer is given by yn=[BOT Bm 

19 R//RJ / where BOT represents the bearing on leg (1), Bra represents 

20 the bearing rate on leg (1), and R//Rn represents the normalized 

21 range rate on leg (1) at time tn. 

22 The neural network 11(1) continues to receive bearing 

23 measurements and ownship kinematic information for successive 

24 points in time until the observation ship changes to a second 

25 observation leg (2).  At that point, the last state estimate 

26 generated by the neural network 11(1) is coupled as an initial 

8 



1 input state feedback to neural network 11(2) and subsequent 

2 bearing measurements and ownship kinematic information is coupled 

3 to that neural network 11(2). The neural network 11(2), which is 

4 shown in FIG. 3, is constructed in a similar manner as neural 

5 network 11(1), with the additional input to delay 37 providing 

6 the initial input state feedback, xo2.  The particular initial 

7 state provided by neural network 11(1) to 11(2), through delay 

8 37, is provided by X"m = W2
+G_1(YN1), where W

+
2 is the pseudo-inverse 

Y 
9 of the weight matrix W2 and 

N1 is the final state estimate 

10 generated by neural network 11(1) at the end of observation leg 

11 (1). 

12 The neural networks 11(1) and 11(2) can be trained using the 

13 well-known conventional back-propagation method of training 

14 neural networks, using data generated from simulated underwater 

15 tracking scenarios in which trajectory information on the target 

16 and ownship vehicles is recorded, and synthetic bearing 

17 measurements are collected. 

18 As indicated above, the data fusion system 12 may comprise a 

19 neural network or any other suitable mechanism for performing 

20 data fusion.  The system 12 integrates the information from the 

21 neural networks 11(1) and 11(2) to provide a range estimate and 

22 update the bearing rate, normalized range-rate and bearing 

23 estimates using information from the various observation legs. 

24 The invention provides a number of advantages.  In 

25 particular, it provides an arrangement for readily processing 



1 possibly noisy information in real time, thereby providing a 

2 timely response to dynamically evolving scenarios.  Since the 

3 neural networks 11(1) and 11(2) have recurrent structures, 

4 through delays 27 and 37, they can process information through 

5 sliding time windows, while maintaining the history of the 

6 processing. 

7 The preceding description has been limited to a specific 

8 embodiment of this invention.  It will be apparent, however, that 

9 variations and modifications may be made to the invention, with 

10 the attainment of some or all of the advantages of the invention. 

11 For example, more than two neural networks can be utilized in the 

12 first level if more than two observation legs will be performed, 

13 or alternatively a single neural network may be used which has 

14 the characteristics of the combination of the two neural networks 

15 11(1) and 11(2) described above.  Therefore, it is the object 

16 to cover all such variations and 

17 modifications as come within the true spirit and scope of the 

18 invention. 

10 



1 Navy Case No. 77849 

2 

3 SYSTEM FOR BEARINGS-ONLY CONTACT STATE 

4 ESTIMATION USING RECURRENT NEURAL NETWORKS 

5 

6 ABSTRACT OF THE DISCLOSURE 

7 A system for bearings-only contact state estimation in 

8 response to target bearing and ownship speed and course 

9 information provided for a plurality of observation legs at 

10 successive points in time, includes a plurality of neural 

11 networks and a data fusion circuit.  Each of the neural networks 

12 generates range-normalized parameter estimate information for one 

13 of the observation legs in response to target bearing and ownship 

14 speed and course information for an associated one of the 

15 observation legs, provided thereto at each point in time and 

16 information generated for the previous point in time.  The data 

17 fusion system receives the range-normalized parameter estimate 

18 information from the neural networks and generates the contact 

19 state estimate in response thereto. 
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