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ABSTRACT (U)

(U) Acoustic transmission loss data were acquired during
Cruise 1 of the CHURCH STROKE III Exercise of July 1979. Ini-
tial comparisons of observed transmission loss data, with pre-
exercise model predictions made using the ASTRAL model with
historical environmental data inputs indicated a considerable
degree of disagreement. A series of post-exercise model runs
were undertaken to isolate the environmental factors contributing
to the obs2rved disagreement. Model runs using a 'arge-
dependent normal maode model (SNAP) were made using a geoacoustic
description of the seafloor. Good agreement was attained for
detailed structure comparisons. Estimates made using thE model
ASTRAL, together with a bottom loss description derived from the
same geoacoustic description ef the seafloor, matched the ob-
served levels quite well in an average sense. Since the at-
tenuation estimates were derived from those resulting from the
BEARING STAKE Exercise, some implications as to the validity of
geoacoustic parameter extrapolation are apparent. Auditional
implications arise with respect to the degree to which pre-
exercise ambient noise estimates agree with observations m3de
during CHURCH STROKE Il1.
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I. INTRODUCTION (U)

(C) During the summer of 1979 an environmental acoustic measurement exercise
known as CHURCH STROKE III was conducted in the eastern Gulf of Mexico. The
exercise, sponsored by the Long Range Acoustic Propagation Project, resulted in
measurements of transmission loss and ambient noise directionality being obtained
at a aite located near a bathymetric feature known as the Catoche Tongue (23.620N,
86.00 W; point E of Fig. 1).

(C) This particular site offered the opportunity to observe two acousti-
cally important effects. The presence of steep slopes and shallow banks in the
southeast, southwest, and northwest quadrants offered the potential for signif-
icant bathymetric blockage of ship-radiated noise produced by ships located in
these sectors. It was hypothesized that the bathymetry would serve to diminish
the ambient noise contributions to the side-lobes and ambiguous beams of a mid-
water line array located in the Catoche Tongue, with its near-broadside beams
steered into the northeast quadrant. Additionally, the presence of a steep
basin-slope-shelf transition in the bathymetry at a moderate distance from the
array location afforded the opportunity to obtain transmission loss data which
could be used to determine the degree to which up-slope enhancement affected the
received level of a low-frequency source being towed over a highly range depen-
dent track. The data, together with the supporting environmental observations,
were to serve in a test of the ability of numerical models to correctly estimate
ambient noise directionality in a complex environment, as well as their ability
to handle up-slope enhancement effects on transmission loss.

(U) An extensive modeling effort was undertaken prior to the exercise.
Predictions were made of transmission loss, directional noise, and omnidirec-
tional noise for scveral combinations of source depth, receiver depth, and
frequency. The study was centered around the Catoche Tongue site. The track
of greatest interest, from a transmission loss point of view, was to the north-
east along a bearing of 0520 from the array location in the Catoche Tongue.
This track has been designatea CTPOI. The array location and this principal
transmission loss track are depicted in Figure 1.

(U) Post-exercise comparisons between model predictions and measurements
indicated that the pre-exercise data inputs to the moeels were probably inaccurate
representations of the actual environment. The most probable environmentally
related causes of observed discrepancies b-etween model results and measurement
results were thought to be the bottom loss istimates e i the historical shippino
distribution. In order to determine the deree to wh-.1 -*- i'chival environmental
data differed from those environmental data observed during the exercise, and to
assess the resultant impact on transmission loss (TL) model results, the post-
exercise analysis effort described in this reiort was undertaken. No attempt
has been made to reconcile observed shipping with historical shipping distribu-
tions.

II. TRANSMISSION LOSS COMPARISONS (PRE-EXERCISE) (U)

(U) The plots of Figure 2 allow comparisons to be made between the measured
TL values and the TL estimates derived from archival sound speed profiles,
bathymetry, and bottom loss estimates extrapolated from the sparse bottom loss
data available in the reoion. A range dependent transmission loss model (ASTRAL)
was exercised to obtain the 30-40 nm range-averaged estimates shown in the plots.
While one should not expect detailed agreement for this type of comparison, it
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appears that the model has overestimated the average TL and may have failed to
accurately predict the onset of bathymetric enhancement.

(U) The degree of disagreement is sufficient to indicate that significant
inaccuracies may exist in the environmental input data. Since the track is bottom
limited, the bottom loss is an important parameter. An inaccurate representation
of the loss due to bottom interaction could account for a substantial portion of
the differences between observations and model estimates. Other environmental
factors which could account for some of the TL differences include inaccurate
representation of the effect of the Gulf of Mexico Loop Current on the sound
speed fieid, and improper location of the basin-slope transition region in the
archival bathywetry. These potential effects have been tested with regard to
their impact on the estimated TL by comparison with actual environmental data in
the cases of the sound speed and bathymetry, and by the use of various bottom
loss descriptions derived from geophysical observations in the investigation of
bottom interaction effects.

III. SOUND SPEED AND BATHYMETRY COMPARISONS (U)

(U) The archival environmental data used in the pre-exercise model runs
are depicted in Figure 3. The bathyietry is essentially flat out to 110 nm and
has an average depth of 3394 m. The slope begins at 110 nm and extends to 125 nm

v where the water depth is 350 m. The shelf extends from the 125 nm point,
reaching land at 280 nm. One may observe a representation of the measured
bathymetry along CTPO1 in Figure 4. The basin floor is seen to be essentially
flat with the exception of a small rise at 17 nm. Along the source track, the
average depth in the basin is 3298 m, about 100 m less than the archival data
indicate. The actual bathymetry indicates a basin-slope break at Ill nm, with
the slope extendina to 127 nm and reaching a depth of 386 m. These values are
very similar to the archival bathymetry values. A visual comparison of the
bathymetry depicted in Figures 3 and 4 reveals a difference in the fine detail,
with the actual bathymetry showing a few features which do not appear in the
archival data. The agreement between the two representations appears to be
sufficient to preclude any major impact on the transmission loss estimates,

4 particularly at low frequency.

(C) If one were looking for the effects of the Gulf Loop Current in the
sound speed profiles, one would look for a subsurface sound speed maximum between
100 to and 200 m in depth. This manifestation of the salinity maximum is
enerally found at this depth in waters associated with the Gulf Loop Current
Nowlin and Hubertz, 1972). The archival SVPs displayed in Figure 3 show only

a hint of a maximum. The only effect observed is a decreased gradient between
30 m and ?00 m in the first profile. In contrast the first three profiles of
Fioure 4 indicate the presence of a sound speed maximum at 150 m - 160 m forminq
a weak channel centered about 110 m - 130 m. The fourth and fifth profiles show
a weakened effect manifested as a decreased sound speed aradient between 70 m

v and 120 m. The sixth profile shows little indication af a salinity maximum in
the 100 m to 200 m depth range. Another apparent difference between the archival
and observed SVP field is the presence of a layer in the archival data. The
layer depth increases from 30 m in the first profile to 75 m in the second pro-
file located 72 tin away. The towed source was located at an average depth of
91 m; thus, it is possible that the subsurface maxir•am could affect the propaga-

* tion since the source could be located in the resultant upper sound channel.
However, it is not felt that the presence or absence of a shallow surface layer
is a sinnificant factor in the propagation.
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(U) A feature common to both the archival and actual SVP field is the gradual
shoaling of the deep sound channel axis from about 1150 m at the beginning of the
track to about 950 m at the iasin-slope break.

(C) Since the actual SVP field and bathymetry were similar to their archival
representations, little effort has been expended to isolate their effects. The
only observable effect in the mode' estimates which may be related to SVP differ-
ences is a slight decrease (1-5 dBg in average TL between 67 nm and 87 nm, possibly
due to the disappearance of the 150 m subsurface maximumn in the actual SVP field at
67 rnm. This may be an artifact, since there is little indication in the TL data of
such a decrease in TL in this region of the track. Other than this region, the
model results from ASTRAL using a single archival profile and a flat bottom (refer-
red to as the I-D case) compare very well with the ASTRAL results using the full
measured environment, as displayed in Figure 4 (referred to as the 2-D case) out to
the basin-slope bathyetry break. This effect indicates that the differences in
basin bathymetry aid 3VPs are minimal for average TL calculations. More detailed
calculations using a normal mode model (SNAP), which is capable of utilizing range
dependent environmiental inputs, indicate that SVP differences affect the detailed
structure, but have li-itle effect upon the average TL levels. This conclusion is
borne out by comparisons made between 1-D SNAP results, 2-D SNAP results and TL
observations along the basin portion of the sour;e track.

IV. BOTTOM LOSS COMPARISONS (U)

(C) As a result ot the environmental comparisons discussed in the previous
sections, the major portion of the effort tc isolate significant environmental
factors was concentrated on the bottom loss description. It was known before the
exer-ise that an adequate bottom description was not available. In an attempt to
improve the state of understanding of the bottom loss in the exercise area, a pair
of independent studies were undertaken. The first study, conducted by Science
Applications, Inc. (SI), concentrated on assessing the availability and quality ef
measurements of bottom loss in the Gulf of Mexico. Only two sites (indicated by
asterisks in Fig. 5) were found to be suitable sources of directly measured bottomit
loss data. One was located near the Catoche Tongue and the other was located south
of Cuba. Clearly this data was considered insufficient to characterize the bottom-
loss characteristics of the Gulf. Using geological and geophysical data derived
from. Naval Air Development Center bottom-loss stdtions, an attempt was made to
supplement the sparse measurements with bottom loss estimates derived frcm geoacous-
tic rodels of the seafloor. Based on these analyses, the bottoom-loss in the deep
areas of the Gulf of Mexico and Caribbean Sea were characterized bjy three sets of
curves', and additional sets were defined for the slope and shelf regions. Figure 5
indicates the geographic distribution of the five bottom types (A through E)- These
bottom types were used in the pre-exercise modeling efforts. A second study, con-
ducted by the Applied Research Laboratory (ARL), University of Texas, concentrated
on the basin regions of the Gulf/Caribbean area. This study was wholly based upon
geol3gical and geophysical data available from surveys in the Gulf/Caribbean area.
Geoacoustic descriptions of the seafloor were constructed for each of four ,
as displayed in Figure 6. These geoacoustic descriptions, consisting, of sound
speed profiles, density, and attenuation profiles, could be used directly by cer-
tain TL models, including SNAP. Their use by certain other TL a•odels, Nuch ai
ASTRAL, required the production of bottom-loss curves prior to application. Both

w types of bottom description where provided.

(U) The choice of the SAT description for pre-exercise rmodelinq was based upon
the availability of bottom-loss curves for slope and shelf renions, in addition to
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the basin descriptions. This element was essential, particularly in the produc-
tion of TL inputs to ambient noise models, since large numbers of noise sources are
located in these shelf and slope regions.

(U) Of primary interest to this study are those bottom types which would be
encountered along the source track CTPC1. The SAT descriptions show the basin seg-
ment to be a type C, the siope segment to be a type E, and the shelf segment to be
a type D. The ARL description, having no slope or shelf descriptions, indicates
that-the track-falls within the Lower Mississippi Fan (LMF) region. Figures 7, 8,
and 9 show the SAI bottom-loss curves, while Figure 10 is a graphical representa-
tion of the ARL geoacoustic model for the LMF region. The figure includes two pos-
sible acoustic attenuation profiles. They are labeled as L (low loss) and M
(medium loss). These profiles were derived from data taken during the BEARING
STAKE exercise in an area of similar geological structure (Mitchell et al., 1978).

V. TRANSMISSION LOSS COMPARISONS (POST-EXERCISE) (U)

A. One-Dimensional Model Comparisons (U)

(U) The initial test of bottom loss effects on TL were conducted using
ASTRAL with the 1-D environment and bottom loss curves derived from both the low
and medium loss ARL geoacoustic models. The resultant curves were graphically
compared with pre-exercise ASTRAL runs made with 2-D archival environmental inputs
using the SAl bottom, and TL data collected during the exercise. The bottom-loss
curves used in the basin segment of CTPO1 are shown as Figure 11. The principal
differences are to be found in the low angle ( 200) loss. Both ARL curves are
significantly lower. The medium loss ARL curve reaches the level of the SAI curve
at 40 , while the low loss curve remains below 4 dB per bounce out to 550. This
low curve most nearly approximates the actual basin bottom conditions, as may be
observed from the TL comparison plots of Figure 12. One may observe the gradual
divergence of the ASTRAL curves as bottom interactions accumulate. The low angle
differences between the ARL and SAI curves lead to a difference between 2.5 and
6.0 dB at a range of 100 nm. The effect of this difference on the ambient noise
predictions could be significant for nearby noise sources. Any comparisons beyond
110 nm are invalid due to the presence of the basin-slope break at that range.

(U) Further evidence-that the ARL low loss geoacoustic model is the most
representative is apparent from Figures 13 and 14, which show comparisons of TL
predictions and data over two 40 nm range intervals of CTP 01. One may see the
degree of agreement between the TL data and I-D SNAP model predictions. The ab-
sence of any range dependence in the SVPs and bathymetry indicates that a proper
representation of the bottom is sufficient to resolve most of the discrepancies
between the observed TL and the pre-exercise model estimates. The agreement obser-
vable in Figure 13 indicates that the presence of the Loop Current over this range
interval, as indicated by the actual SVP field of Figure 4, may not have much
effect on the TL for the source depth, receiver depth, and frequency configuration
of this'exercis6. The average level is matched quite well, and one may say that
the structure is reasonably well-reproduced. The agreement in structure may be
fortuitous and any final conclusions on this matter are better left to more detailed
analysis. The comparison plots of Figure 14 continue to show good agreement between
the 1-D SNAP estimates and the observed TL data. The two diverge beyond 110 nm,
but that is to be expected in light of the onset of the slope at this range.

(U) The curves and data plotted in Figure 15 allow one to make a direct
visual comparison between the 1-D model estimates of ASTRAL and SNAP using the ARL
low loss bottom, the pre-exercise 2-D model estimates using archival environmental
data and the SAT range dependent. bottom descriotion, and the observed TL data. The
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data and the SAI range dependent bottom description, and the observed TL data.
.*~ The good agreement among the 1-D ASTRAL, 1-D SNAP, and observed TL data is apparent

as long as the 1-0 assumption is valid. Yet to be resolved is the apparent
discrepancy between the data and model results beyond 110 nm.

* .B. Two-Dimensional Model Comparisons (U)

(U) Once it was determined, through 1-D model comparisons, that the ARL
low loss bottom description was adequate to resolve the apparent discrepancies
between the pre-exercise model estimates and observed data for the basin, several
model runs were made using all available environmental data, including SVPs ard
bathymetry along the source track. These actual environmental data were combined
with the ARL low loss bottom description to provide the inputs for ASTRAL and SNAP.

(U) Due to input difficulties when handling rapidly varying environments
such as steep slopes, SNAP was exercised only in the basin. The range dependent
SVP string, alono with the ARL oeoacoustic bottom description, was input to SNAP in
an attempt to assess the impact of the Gulf Loop Current on the TL estimates.
Figures 16 and 17 show comparison plots of the 2-D SNAP estimates and the observed
TL data. As with the 1-D SNAP results, the agreement is good. The detailed

* fluctuations do not show exceptional agreement, especially between 105 nm and
"110 nmn on Figure 17. The cause of this increase in TL in the model estimates
cannot be related to any particular feature in the environment.

(U) Figure 18 is a composite comparison plot of the 2-D SNAP, 2-D ASTRAL,
* •and observed TL data. The inter-model comparison shows good agreement between the

SNAP and ASTRAL estimates for the basin segment (0-110 nm). An interestino
feature is the small increase in the ASTRAL TL at 108 nm. This may be similar to
the TL increase exhibited by SNAP at 107 nm, but is diminished and offset by the
ASTRAL interval averaging. ASTRAL appears to pick up the onset of slope enhancement
quite well and reproduces the rate and degree of the TL decrease as the source
encounters the slope. The rapidly increasing TL beyond 127 nm is not consistent
with the TL data. However, other 2-D model runs, including the Parabolic Equation
model, exhibit the same rapid increase at the same range; thus, the disagreement
does not appear to be unique to the ASTRAL model. Examination of the TL data
reveals that the values beyond 127 nm were obtained under low signal-to-noise
conditions, leading to a degree of suspicion regarding their validity.

V1. CONCLUSIONS (U)

(0) The objective of this limited examination of apparent disaoreements
* etween pre-exercist TL model estimates and observed transmission loss data was to
determine the degree to which the archival environmental data differed from those
envirormnental data observed during the measurement exercise and to assess the
resultant impact on the TL model estimates. That objective has been met. The

"w archival bathymetry has been shown to be little different from the bathymetry
-measured alono the source track. While the historical SVP field does not indicate
the strong presence of the Gulf Loop Current in contrast to the measured SVP field,
the effects of this environmental difference have been shown to be somewhat insig-
nificant for the source depth, receiver depth, and frequency configuration used in
the measurements. The key factor has been shown to be the bottom description.

u• While no direct measurements of bottom-loss were made, qeoacoustic models of the
seafloor were available for use in resolvino discrepancies between model est!":,ates
of TL and experimental ovservations. Sensiti'ity studies conducted durino this
study led to the selection of a particular oeacoustic model consisting of a sound
speed profile for the sediment, a sediment density, and an estimate of attenuation
based upon previous experimental obse,-vations in a region with a similar Qeclopical
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(U) Figure 18. Comparison of transmission loss estimates using ARL LMF
region low attenuation bottom, measured sound speed and
bathymetry in 2-D SNAP and ASTRAL model runs; and CHURCH
STROKE III measurements
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history. The use of this geoacoustic model and its bottom-loss derivative in TL
.. model estimates led to good agreement between the observed levels and the model

estimates. There was some indication of agreement with regard to the more detailed
structures of the observations and model estimates for track segments in the basin,
but additional investigations must be pursued to resolve certain significant
structure differences observed for other track segments, includina portions over
the slope and shelf. ASTRAL was shown to reproduce the average TL, the onset of
slope enhancement, and the degree of slope enhancement fairly well, but disagree-
men. remains between ASTRAL estimates and observations at the extreme range of the
source track. The observations indicate sustained propacation beyond 127 nin, while
ASTRAL indicates a rapidly increasino TL beyond this ranve, a result consistent
with a PE model result for the same environment. However, low signal-to-noise
ratios in the TL data at this extreme range cause the validity of these data to
be suspect.

* VI!. RECOMMENDATIONS (U)

(C) While there is now a degree of confidence in the bottom-loss description
for the basin regions, some questions still remain as to the reflectivity of the
slope and shelf regions. Additional investigations of bottom properties in these
areas might shed some light on the validity of the SAI bottom descriptions. A
model study to assess the sensitivity cf TL to slope and shelf reflectivity should
be conducted. Once confidence is gained in the ability to properly estimate TL for
this region, investigations should proceed to resolve differences between predicted
and observed ambient noise levels and directionality. This will entail examination
of the actual versus archival ship counts and some investigation of the validilty of
assumptions made during the aerial shipping surveys. The conditions and assumptions
under which the ambient noise directionality was determined should be examir: d with
respect to the probability that similar conditions can be simulated during ambient
noise model calculations. In particular, the averaoino intervals, the array con-
figuration, the degree of array tilt, and the noise deconvolution method should be
examined. Once confidence is gained in thv quality of model 'nput data and exeri-
mental observations, appropriate ambient noise model runs shoultd then proceed. The
resullt of these model runs should then be compared with experimental observations
with an interest in identifying remaining discrepancies and, if possible, pointinn
out re-nainina data and model deficiencies.

(0) The final result of any further post-analysis should he an identification
0.f key data base and model deficiencies and a set of rc t-onumdations for collectint,
thow appropriate data or upgradina and modifyino the current modelinn capability.
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