UNCLASSIFIED

AD NUMBER

ADC020069

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to DoD only. Other requests shall be referred to Australian Embassy, 1601 Massachusetts Ave., NW, Washington, DC 20036.

AUTHORITY

Australian DoD ltr dtd 25 Nov 1987

THIS PAGE IS UNCLASSIFIED

the second state and the second state and the second state and the second state

Alama my in the Children

THIS PAGE IS UNCLASSIFIED

WSRL-0102-TR

AD C O 2 O 0 6 9

į

ፕ

AR-001-685

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

WEAPONS SYSTEMS RESEARCH LABORATORY

DEFENCE RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA

TECHNICAL REPORT

WSRL-0102-TR

FXPLOSIVE GENERATION OF CHAFF

I.M. NAPIER and I.L. THOMPSON

10

₹+

. ".....

1 + 10 - 3 +

THIS DOCUMENT IS THE PROPERTY OF THE AUSTRALIAN GOVERNMENT. THE INFORMATION IT CONTAINS MUST NOT BE COMMUNICATED, EITHEN DIRECTLY ON INDIRECTLY, YO THE PRESS ON TO ANY PENSON NOT AUTHORISED TO RECEIVE IT. WHEN NOT IN USE THE BECURITY OF THIS DOCUMENT MUST BE ADEQUATELY SAFEGUARDED.

NOTE: This is an accountable document. DO NOT DESTROY. When no longer required, return to Library, Defence Reserved Centre Salisbury.

DISTRIBUTION: US Department of Detense only. Other requests for this document must be referred to: Defence Information Services B anch Department of Defence CAMBETTA A C.T. 2600, AUSTRALIA

LASED BY THE AUSTRALIAN OCCURNMENT TO DEER DEFLICE PURPOSED ONLY T BE ACCORDED THE SAME DEGREE OF THELACCORDED THERETA IN THE AUSTRALIAN INFORMATION IS BELLASUD BY THE : RECIPIENT GOVERNME INFORMATION MUST 11 51 BNNUNT ŵċ INFORMATION MAN HE DISCLOSED ONLY WITHIN THE DEFENCE DIVENTE OF THE RECPTINE GALERAMENT ENDEPT AS OTHERWISE OF STOLDS THE ACSTRALIAN DEFENCE DEPARTMENT INFORMATION MAN BE SCILLET TO PRIVATELY OWNED RIGHTS • • • • INF ORM ALC: AU THUS

The official documents produced by the Laboratories of the Defence Research Centre Salisbury are issued in one of five categories: Reports, Technical Reports, Technical Memoranda, Manuals and Specifications. The purpose of the latter two categories is self-evident, with the other three categories being used for the following purposes:

Reports	:	documents prepared for managerial purposes.	
Technical	:	records of scientific and technical work of a permanent value intended f	for other
Reports		scientists and technologists working in the field.	
Technical Memoranda	:	Intended primarily for disseminating information within the DSTO. The usually sentences in nature and reflect the personal views of the author.	NEY ARO

DEPARTMENT OF DEFENCE

AR-001-685

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION WEAPONS SYSTEMS RESEARCH LABORATORY

CHNICAL RER SRL-0102-TR

EXPLOSIVE GENERATION OF CHAFF I.M./Napier M I.L./Thompson

SUMMARY

A new concept for the explosive generation and rapid dispersal of chaff for electronic countermeasures has been investigated. Promising results were obtained in static tests but these and theoretical estimates of radar cross section conflicted with the very low values actually obtained in experiments monitored by radar. Very short bloom times were realized in these experiments.

RESTRICTED

120 929

Security classification of this page UNC	LASSIFIED		
DOCUMENT NUMBERS	2 SECURITY CLASSIFICATION		
AR Number: AR-001-685	a. Complete Document: Restricted		
Report Number: WSRL-0102-TR	b. Title in Isolation: Unclassified		
Other Numbers:	c. Summary in Isolation: Unclassified		
3 TITLE EXPLOSIVE GENER	RATION OF CHAFF		
4 PERSONAL AUTHOR(S):	5 DOCUMENT DATE:		
	June 1979		
I.M. Napier and I.L. Thompson	6 6.1 TOTAL NUMBER OF PAGES 19		
	6.2 NUMBER OF REFERENCES: 4		
7 7.1 CORPORATE AUTHOR(S):	8 REFERENCE NUMBERS		
	a. Task: DST 76/121		
Weapons Systems Research Laboratory	b. Sponsoring Agency: Defence		
7.2 DOCUMENT SERIES			
Weapons Systems Research Laboratory 0102-TR	330201		
10 IMPRINT (Publishing organisation)	11 COMPUTER PROGRAM(S)		
Defence Research Centre Salisbury			
Distribution Australian Defence De	partment only, other requests for this		
document must be referred to Chief S Laboratory.	uperintendent, Weapon Systems Research		

Security classification of t	this page:	UNCLAS	SSIFIED		
13 ANNOUNCEMENT	LIMITATION	S (of the information	n on these pages):		
Specific Timitati NZ and Canada.	on - shall	only be annot	mod to Aust	ter Nia USA	Le_UK
14 DESCRIPTORS: a. EJC Thesaurus Terms	Chaff Electroni Radar dec False tar Radar dec Dipoles	ic countermeas ception rget generator coys	Radar ec ures Radar si False ta s Radar re	choes ignals irgets eflectors	15 COSATI CODES
b. Non-Thesaurus Terms					1704
6 LIBRARY LOCAT	ION CODES (f	or libraries listed in t	he distribution):		
A new dispersa investig tests bu section in expen were rea	w concept f al of chaff gated. Pr ut these ar conflicted riments mor alized in t	for the explos f for electron romising resul nd theoretical i with the ver nitored by rad these experime	ive generation ic counterment ts were obtain estimates of y low values ar. Very sints.	on and rap asures has ined in sta f radar cro actually o hort bloom	id been atic oss obtained times

Ξu

TABLE OF CONTENTS

		Page	No.
1.	INTRODUCTION	1	
2.	EXPERIMENTAL	1 -	3
	2.1 The multifluted linear shaped charge	1	
	2.2 Dipole material	1 -	2
	2.3 Static firings	2	
	2.4 Radar observed experiments	2	
	2.4.1 Helicopter suspended chaff generator	2	
	2.4.2 Rocket launched chaff generator	2 -	3
	2.4.3 Radar	3	5
3.	RESULTS AND DISCUSSION	3 -	5
	3.1 Cutting tests	2	5
	3.2 Static firings	4	ļ
	3.3 Radar observed experiments	4	ļ
	3.3.1 Helicopter suspended chaff generator	4	
	3.3.2 Rocket launched chaff generation	4 -	- 5
4.	CONCLUSIONS	5	;
5.	ACKNOWLEDGEMENTS	5	5
	REFERENCES	e	6
TAP	BLE 1. DETAILS OF ROCKET LAUNCHED CHAFF GENERATORS	5	5

LIST OF FIGURES

Basic elements of the chaff generator
Chaff generator used in rocket launched experiments
Chaff generator used suspended from helicopter
Chaff generator mounted on rocket
Cut ends of aluminium coated glass fibre
Example of birdnesting of stainless steel wire
Distribution of dipoles from static firing

	Acce	Spien Yer	
	NIIS	Abr	
	Unang	ionneed	
	Justi	fication L	
	By		••
j-	Distr	ibut for/	
-	Avai	lability is is,	
1)ist.	Avaller J/cr Special	
	14		1
	[]]		İ

- 1 -

1. INTRODUCTION

"Chaff" has been in use as an electronic countermeasure since the early 1940's and still maintains a very important position despite significant advances which have since been made with other devices such as microwave transponders.

Various techniques are in use for dispensing chaff. These include ejection of pre-cut material from aircraft, rockets and shells, and aircraft borne high speed cutters fed with rovings of aluminium coated glass filaments or aluminium foil. Dispersal ("blooming") in most cases relies on aerodynamic forces.

Very rapid blooming is an essential feature required for aircraft defence when sophisticated radar sets are involved which can discriminate between the target and its chaff decoy if they are separated by more than a few tens of metres. Such chaff is known as track break chaff and is usually bloomed by a combination of the effects of a small dispersal charge and aerodynamic forces. An alternative technique, which promised very rapid blooming through explosive cutting and subsequent dispersal of chaff by the blast wave, was considered at WSRL. The basis of the technique is an explosive filled multifluted linear shaped charge located within a spool of fine wire which is cut into dipoles on initiation of the charge. In this work the dimensions of the cutter and of the spool were chosen to produce dipoles with an average length of 25 mm. This is the near optimum length for the L-band radar at Woomera which had been chosen for use in effectiveness tests. The technique and its assessment are described in detail in this report.

2. EXPERIMENTAL

2.1 The multifluted linear shaped charge

Shaped charges were fabricated from 1 mm thick copper strips 20 mm long. bent through 90° and soldered together at the edges to produce a six fluted linear shaped charge as shown in figure 1. Individual charges of lengths 20 mm and 40 mm were made in this manner and filled with explosive. The explosive used in most cases was PE4 but in some experiments a polymer bonded explosive containing 88% RDX was used. There was little difference in performance with either explosive. Charges were stacked to the required length and in some instances successive charges were staggered slightly to yield either a 30° or 60° twist over the total length of 150 mm. This was done to investigate the effect of changing the cutting pattern on the extent of birdnesting. Initiation was with a No. 8 detonator in conjunction with a tetryl booster (10 mm long x 10 mm diameter). For the static experiments and the first Woomera trial, an electric detonator was used but in the second Woomera trial a plain detonator was used crimped around a length of Bickford fuze to give a 20 s delay after initiation of the fuze. This is shown in figure 2. Initiation of the fuze was by an F53 match head wired in series with the rocket motor firing circuit. The assessment of cutting ability was carried out using single fluted charges 20 mm long with the same liner dimensions as those above. Assessments were carried out on 25 mm thick tightly packed bundles of steel wire and of glass filaments coated with aluminium, representing the two materials used in this investigation.

2.2 Dipole material

Experiments were carried out with piano wire (0.2 mm diameter), stainless steel wire (0.1 mm diameter, medium hard) and glass filaments coated with aluminium (0.02 mm diameter). For experiments other than those mentioned in Section 2.1 designed solely to assess cutter performance, the dipole material was wound onto a spool of fibre reinforced plastic as shown in

figure 1. The spool was 100 mm long, the 10 was 35 mm (with a 2 mm wall) and the overall diameter was 60 mm. The end plates, which were 2 mm thick, were attached to the central tube using epoxy resin. With a six fluted cutting charge and a spool of wire of these dimensions, dipoles ranging in length from 20 mm (core windings) to 30 mm (peripheral windings) were obtained.

2.3 Static firings

Static firings were carried out both in an enclosed detonation chamber and unconfined in a field. In all cases the cutter protruded 40 mm at the initiated end (and 10 mm at the other) to allow for the forward throw of the cutting blade and to establish steady detonation. The weight of explosive was 210 g. The device was set vertically 0.5 m above the floor in the detonation chamber and on a post 1 m high in the field. In the latter experiment a quadrant of the circle surrounding it on the ground was covered with hessian to facilitate the assessment of chaff dispersal. The chaff was collected from marked areas of the hessian with a strong permanent magnet.

2.4 Radar observed experiments

2.4.1 Helicopter suspended chaff generator

The firing was conducted at Woomera to Trials Instruction No. CA24 (ref.1). Several generators were prepared - some with 30° twists in the cutter and some straight. The length of each cutter was the same as in 2.3 above. Each generator was inserted into a cellulose acetate tube (2 mm thick) fitted with wooden end plugs and a large stabilizing plastic fin (as shown in figure 3). The generator was then attached to one end of a 600 m cable which served both for lifting and for passage of a firing current from a portable firing box in the helicopter. Initiation took place with the generator suspended 900 m above the ground.

2.4.2 Rocket launched chaff generator

These experiments were also carried out at Woomera. Sighter rockets (3 in) were used and were fitted with heavy heads (27 kg) into which the generators were bolted (figure 4). They were launched from a mobile launcher with an elevation of 75° . Full details are given in Trials instruction No. CA30(ref.2). The generators used were essentially the same as in 2.4.1 but of the six cutters used only were twisted and the twist angle was limited to 30° . One spool contained piano wire (0.2 mm diameter) while the remainder contained stainless steel wire (0.1 mm diameter). Two spools (stainless steel wire) were only partially filled in order to assess the effect of reducing the thickness of steel to be cut (from 12 mm to 9 mm). Details of the generators used are shown in Table 1.

- 3 -

Identification	Wire type	Wire quantity		Number of	
number		Mass (g)	Length (m)	dipoles* (appr ox imate)	Cutter design
1	Stainless steel	570	8,413	336,500	straight
2	Piano wire	900	3,600	144,000	straight
3	Stainless steel	880	13,000	520,000	straight
4	Stainless steel	880	13,000	520,000	straight
5	Stainless steel	880	13,000	520,000	twisted (30 ⁰)
6	Stainless steel	570	8,413	336,500	twisted (30 ⁰)

TABLE 1. DETAILS OF ROCKET LAUNCHED CHAFF GENERATORS

(* based on an average length of 25 mm)

Each generator was fitted with a 20 s delay as described in 2.1. It was predicted, from data in reference 3, that initiation would occur at an altitude of abcut 4 km.

2.4.3 Radar

The radars used for the rocket borne experiments were the Adour(R1) and the AN/FPS-16(R38). These sets were approximately 2.6 km and 34 km (slant range) respectively from the point of burst. R1 was used alone in the experiment involving the helicopter borne charf generator. In this experiment the slant range was 3.5 km.

3. RESULTS AND DISCUSSION

3.1 Cutting tests

Single linear shaped charges (L.S.C.'s) were fired against 25 mm thick bundles of piano wire and aluminized glass filaments (both tightly packed). The stand-off was 4 mm (approximating to the stand-off to be used in the later experiments). Cutting through the full 25 mm thickness was achieved in each case. Although the steel wire was cut cleanly the cut ends of the glass filaments were welded together, presumably due to the flowing of the aluminium coating under pressure. This is illustrated in figure 5. From these experiments it was obvious that only a hard metal would be suitable so attention was concentrated on steel wires. Carbon filaments may also be suitable (although shattering could be a problem) but no experiments were carried out with them.

- 4 -RESTRICTED

3.2 Static firing_

Several static firings were carried out in an enclosed firing site. Only the 0.2 mm diameter piano wire was represented but multifluted L.S.C.s with a twist from top to bottom of 0° , 30° and 60° were used. Cutting in all cases was satisfactory with about 10% birdsnesting from the untwisted L.S.C.'s and about 3 to 5% from the twisted ones. The dipoles were badly deformed but this was due to them being projected against the concrete walls about 1.5 m In contrast to this, the dipoles collected from the free field distant. test were quite straight and the percentage of birdsnesting was about 3%. The birdsnesting in this case was caused by welding of the cut ends together as shown in figure 6 and the length of the dipoles indicates that this sample originated close to the centre of the spool. The L.S.C. used in the free field test was a twisted one (30°) and the wire was 0.1 mm stainless steel. The dipoles were collected from a 30° sector which was divided into four radial zones as shown in figure 7. The total weight collected in this sector was 45 g and an estimated 10 g remained embedded in the hessian. This is about 75% of that expected for even distribution over the full 360° . The was 45 g and an estimated 10 g remained embedded in the hessian. numbers of dipoles/ m^2 in the four radial zones (derived from the weight collected and assuming a length of 25 mm) are shown in figure 7, and this shows that the bulk of the material fell within a 30 m diameter circle around the point of initiation. These figures also indicate that the cloud is torus shaped since the distribution of dipoles in the first three zones is 300, 600, and 400 per m^2 respectively.

3.3 Radar observed experiments

3.3.1 Helicopter suspended chaff generator

Problems with the suspension cable severely limited this series of experiments and only one firing was carried out. This involved a chaff generator with a 30° twisted L.S.C. and a spool of stainless steel wire. It was suspended with its axis horizontal but the direction of the axis in relation to that of the radar was not known. The average signal strength increased from +13.7 db to +34 db on detonation and remained at this latter level for 90 s when recording ceased. This corresponds to a radar cross-section of the dipole cloud of 10 m² which is at considerable variance with the expected area of about 70 m². This aspect is discussed in Section 3.3.2.

3.3.2 Rocket launched chaff generation

All except one of the generators detonated satisfactorily. The exception was No. 3 which detonated at launch - probably due to the Bickford fuze being driven back onto the detonator by the acceleration Its loss was relatively unimportant since No. 4 was a loading. duplicate. The radar return from the chaff clouds in all cases was quite consistent from both radar sets and was equivalent to an echoing Theoretical estimates based on the actual dipole area of about 2.5 m². lengths (which vary from 20 mm to 30 mm) and on the distribution shown in figure 7, indicate that the echoing area should have been about 70 m^2 (ref.4). The reason for such a discrepancy is not known. Clumping and birdnesting of the dipoles has been suggested in explanation but this is at variance with all static test results and also at variance with reports of visual observations that the generators produced large and well developed chaff clouds.

The average time to bloom in those experiments was 12 ms. This corresponds to a distance, for a generator ejected from an aircraft travelling at Mach 1, of about 4 m. This assumes that detonation is

- 5 -RESTRICTED

made to occur immediately on ejection which would not be desirable. Several metres would be a more acceptable distance before detonation occurred so a realistic distance to blooming could be up to 10 m.

4. CONCLUSIONS

These experiments with explosive chaff generators have demonstrated that very rapid blooming can be achieved. The radar echoing areas were considerably less than expected but no satisfactory explanation for this is available. If the theoretical performance could be achieved then the device might be of considerable value. No further investigation of this concept is planned in WSRL.

5. ACKNOWLEDGEMENTS

The authors are grateful for assistance given by Mr K.H.J. Adams, Mr I.R. Johnston, Mr J.H. Holcroft and Mr R.T. Hammond in the experimental work, by staff from Trials Resources Laboratory for the activities at Woomera and by Mr P. Anderson, Mr R.W. Arstall, and Mr J.F. Curtin in analysis of the radar results.

RESTRICTED

and the second
REFERENCES

No.	Author	Title
)		"WRE Trials Instruction No. CA24". Tiials Systems Division, WRE January 1978
2		"TRL Trials Instruction No. CA30". Trials Resources Laboratory, DRCS October 1978
3	Jacoby, A.	"3 U.P. Rocket Performance (QE75 ⁰)". Mathematical Services Group Technical Note No. 4, WRE August 1950
4.	Curtin, J.F. and Arstall, R.W.	"Unpublished Communications".

.;

Figure 1. Basic elements of the chaff generator

Figure 2. Chaff generator used in rocket launched experiments RESTRICTED

WSRL-0102-TR Figure 3 WSRL-0102-TR Figure 4

RESTRICTED

Figure 4. Chaff generator mounted on rocket

Figure 7. Distribution of dipoles from static firing

an herrien million half an and

Copy No.

RESTRICTED
DISTRIBUTION
EXTERNAL
In United Kingdom
Defence Scientific and Technical Representative, London Counsellor, Productivity, London
In United States of America
Counsellor, Defence Science, Washington
In Australia
Chief Defence Scientist
Deputy Chief Defence Scientist
Superintendent, Science and Technology Programmes
Defence Information Services Branch (for microfilming)
Defence Information Services Branch for
United Kingdom, Ministry of Defence, Defence Research Information Centre (DRIC)
United States, Department of Defense, Defense Documentation Center
Canada, Department of National Defence, Defence Science Information Service
New Zealand, Department of Defence
Naval Scientific Officer
Army Scientific Adviser
Air Force Scientific Adviser
Defence Library, Campbell
Library, Aeronautical Research Laboratories
Chief Superintendent, Materials Research Laboratories
Superintendent, Physical Chemistry Division
Head, Explosives and Ammunition Composite
Library, Materials Research Laboratories
Library, Engineering Development Establishment
Director, Joint Intelligence Organisation (DDSTI)
President, Australian Ordnance Council
Director of Electronic Warfare - Navy
Director of Naval Ordnance Inspection
Inspector of Naval Ordnance (Sydney)
Inspector of Naval Ordnance (Melbourne)
Inspector of Naval Ordnance (Adelaide)

ļ,

ć

مردف المراجع

RESTRICTED

A construction was a second with the state of the balance

م الم من مرود الدين معروف م مرود م

an de 1991 - 1992 a companya da antica da

15 2

Shi to be a second by the state in a solution that the Sugar

and the set of the set of a state of the set of the

Director General, Materiel - Army	31
Director of Operational Requirements - Army	32
Director of Military Intelligence - Army	33
Director of Combat Development - Army	34
Director of Weapons Engineering - Air Force	35
Director of Aircraft Requirements - Air Force (for Aircraft Requirements - Electronic Warfare)	36
Superintendent, RAN Research Laboratory	37
Superintendent, Central Studies Establishment	38
WITHIN DRCS	
Chief Superintendent, Weapons Systems Research Laboratory	39
Chief Superintendent, Electronic Research Laboratory	40
Superintendent, Propulsion Division	41
Superintendent, Electronic Warfare Division	42
Senior Principal Research Scientist, Electronic Warfare	43
Principal Officer, Combustion and Explosives Group	44
Principal Officer, Electronic Warfare Studies Group	45
Mr J.F. Curtin, Electronic Warfare Studies Group	46
Mr R.W. Arstall, Electronic Warfare Techniques Group	47
Mr P. Anderson, Instrumentation Systems Group	48
Mr K.H.J. Adams, Combustion and Explosives Group	49
Mr R.H. Weldon, Combustion and Explosives Group	50
Library, PMD	51 - 52
Library, DRCS	53 - 54
Authors	55 - 56
Spares	57 - 65