UNCLASSIFIED

AD NUMBER

ADB805976

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Di stribution authorized to DoD only;

Adm ni strative/ Operational Use; NOV 1944. O her
requests shall be referred to National
Aeronautics and Space Adm nistration,

Washi ngton, DC. Pre-dates formal DoD

di stribution statenents. Treat as DoD only.

AUTHORITY

NASA TR Server website

THISPAGE ISUNCLASSIFIED




ST —- L T =

kT Ay o -

e e

i e e

- e

-
L2 . MR No. LUK30

’ d’% Z
3

“NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS—-gmmien

‘

WARTIME REPO:

ORIGINALLY ISSUED
November 1944 as

Memorandum Report LU4K30
BENDING AND SHEAR STRESSES DEVELOPED BY THE
INSTANTANEOUS ARREST OF THE ROOT OF A
CANTILEVER BEAM WITH A MASS AT ITS TIP
By Elbridge Z. Stowell, Edward B. Schwartz,
John C. Houbolt, and Albert K. Schmieder

Langley Memorial Aeronautical ILaboratory
Langley Field, Va.

WASHINGTON

Toapies

\ “

T

7
el VA

NACA WARTIME REPORTS are reprints of papersoriginally issued Lo provide rapid distribution of
advance researcn results te an authorized group requaring them for the war effort. They were pre-
viously held under a security status but are now unclassified. Some of these reports were not tech-
mcally cdited All have been reproduced without change in order to expedite general distribution.

L - 586




|
[

a

r

3 1176 01357 2657
ME No. FLEK30

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

MEMORANDUM REPORT

for the
Army Air Forces, Air Technical Service Command
BENDING AND SHEAR STRESSES DEVELOPED BY THE
INSTANTANEOUS kRREST OF THE ROOT OF A
CANTILEVER BEAM WITH A MASS AT ITS TIP

By Elbridge Z. Stowell, Edwsrd B. Schwartz,
John C. Houbolt, and Albert K. Schmieder

SUMMARY

A theoretical and experimental 1hvestigatlion has been
made of the behavior of a cantilever beam in transverse
motion with a mass at its tip when the root is suddenly
brought to rest. Equations are given for determining the
stresses, the deflections, and the accelerations that arise
in the beam as a result of the impact. The theoretical
equations, which have been confirmed experimsntally, reveal
that for a beam with a given cross section and velocity at
impact and for a given ratio of tip mass to beam mass, the
bending stresses for a particular mode at a given percentage
of the distance from root to tip are independent of the
length of the beam; whereas, the shear stresses vary
Inversely with the length.

The addition of a mass to the tip of a cantilever
beam increases appreclably the stresses produced by the
first mode of vibration but changes only slightly the
stresses contributed by the higher modes. The tip mass
Increases the maximum bending stress much less than might
be expected on the basis of experience with the static
action of structures. For practical englneering analysis
the maximum bending stress developed In a suddenly arrested
cantilever beam can be found by a simple addition of
stress amplitudes in the first few modes without regard
to phase relations between modes.
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TNTRODUCTI ON

When an 2irplane lands, the vertical component of
the velocity is rapidly reduced to zero. The shock of
the sudden change in motion gives rise to vibratory
stresses in the alrplane. As & beginning in the study
of these stresses a previous report (reference 1) dis-
cussed in detail the bshavior of a cantilever beam in
translational motion when its root is suddenly brought
to rest. 1In that paper equations are given for deter-
mining the stresses, the deflections, and the accelera-
tions that arise throughout the beam as a result of the
impact. The present report extends the baslc problem of
reference 1 to include the effect of a concentrated mass
at the tip of the cantilever beam.

As in reference 1, the present paper is based on the
usual engineering beam theory. In this theory the
deflectlions are considered to be the result of bending
alone, shear deflections neglected. The theory as applied
to ordinary beams gives reasonably good results so long
as the distance between inflection points is greater than
ra few times the depth of the beam. Wwhen this theory for
beam action is used in vibration problsms, such as that
in the present paver, the results are satisfactory for
those modes of vibration for which the nodes are not too
close together.

This report summarizes the results of a theoretical
solution given in appendix A and vresents an experiwmental
verification of these results. A numerical example for
the caliculation of the maximum stresses near the root of
the cantilever beam is given In appendix B.

SYMBOLS

E modulus of elasticity
weight density of material

A coefficient of equivalent viscous damping of
material

c velocity of sound in materialy/%:
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" ) g acceleration of gravity
L length of beam
T moment of inertia of cross section of beam about

neutral axls

A cross~-sectlional area of bean
P radius of gyration of cross sectlion of beam (V%)
X coordinate along beam measured from root
v distance from neutral axls of beam to any fiber
t time, zero at lmpact
D overator =—
ot
n integers 1, 2, 3, etc.,designating a particular

mode of vibration

gn nth positive root of equation 1 + cos 6 cosh 8
+ rf (sinh B8 cos 8 - cosh @8 sin 8) =0

M

r ratio of tip mass to beam mass =
W, undamped natural angular freQuency of nth mode,
A 2
ﬁ radians per second ([pc L=
2
i L
A
% w1t damped natural angular frequency of nth mode,
%&
ﬂ radians per second (W
|
1
| A2 2
where 2 >1, the "frequency" is defined
, \ LE
by (.Unv = Q)n
v velocity of beam prior to impact
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w(x,t) Aeflection of bheam at station x and tiame t

wn(x,t) deflection of beam at station x and time t
for the nth mode of vibretion

a{x,t) acceleration of beam at station x and time t

an(x,t) acceleration of beam at station x and time ¢t
for nth mode of vibration

o(x,y,t) bending stress in beam at station x, distance
from neutral axis y, and time t

Gn(x,y,t) bending stress in beam at station x, distance
from neutral axis vy, and time t for nth mode
of vibration

T(x,t) average shear stress over cross section of beam
at station x and time ¢t

T.(x,t) average shear stress over cross section of beam

n at station x and time t for nth mode of
vibration

An bending-stress coefficient for nth mode of
vibration

Bn shear-stress coefficient for nth mode of vibration

Cn deflection coefficient for nth mode of vibration

RESULTS AND CONCLUSIONS

Theoretical

When a cantilever beam with a mass at its tip is under
uni form translation in a direction perpendicular to its
length there is excited a theoretically infinite number
of modes of vibration when its root is instantansously
brought to rest. WwWith each successive mode, damping has
an increasing influence upon the frequencies and amplitudes
of vibration and, for sufficiently high modes, even changes
the type of motion from oscillatory to nonoscillatory
motion. In the lower modes, however, damping has little
effect and only terms of the first order in damping need
be included in the eguations. Only the equations applicable
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- to the lower modes, which alone are of lmportance in any
~practical case, are presented 1In this section of the
paper. For a more complete treatment of damping, see
avpendix A. :

The ahgular frequencies (2w times the frequencies
in cps) are given by the equation

6 2
n
Wy = PC =5 (1)
L
where 6, 1is the nth positive root of the equation
1 + cos 8 cosh 9 + r8 (sinh 8 cos 6 ~ cosh 8 sin 8)=0 . (2)

In this equation r 1s the ratio of the tip mass to the
mass of the beam. The values of Gn for the first three
modes are given in the following table for several values
of r;

v 8, 8, 83
0 1.8751 L.69L1 7.854L8
i 1.5738 L.2250 7.2813
% 1.4200 l,.1105 7.190l
% 1.%3202 L .0602 7.1539
1 1.247 L.0311 7.1%33%9
2 1.077 3.9826 7.1826
.91 . .0859
e | % | 23088 | Lo

Figure 1 shows graphically the variation of 8, with the

mass ratio r for n =1, 2, and 3. For each value of
n the value of 8,, @and consequently the frequency,

decreases with increasing values of the mass ratio r.
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Expressions for the bending stresses, shear stresses,
deflections, and accelerations are the same 2s the expres-
sions given in reference 1 for these gquantities except
that the coefficlients An, B, and C,, which characterize
each mode, are functions of &n additional variable r,
the mass ratio. The bending stress, average shear stress,
and deflection are, respectively, for the nth mode of
vibration:

Aw e
) - t
On(xy,t) = Ay g EE e B sinwy (3)
AW °
-t
— " 5
To(x,t) = By g % Ee 2%  sin w, t (L)
Aw s
12 ZEe
_ v
wn(x,t) = Cp g s e sin W, t (5)

The acceleration for the nth mode, when damping is suffi-
ciently small, is

o (x,t) = ~w,° w_(x,t) (6)

The variation of the dimensionless coefficients A,
By, and C, with position along the beam x/L is given
in figures 2, 3, and L, resvectively, for the first three
modes, n = 1, 2, and 3 and for values of r from O to 6.
Figures 2 and 3 indicate that for all values of the mass
ratlo r the highest values of A, and B, and hence the
highest stresses occur at the root of the beam. These
highest or root values of A, and B, are shown for
r=0sand r =6 in figure 5 for the first 5 modes. Root
values of A, and B, for mass ratios between O and 6 are
given in figure 6 for the first 3 modes. Both figures 5
and 6 show that the addition of a mass at the tip of the
beam (r > 0) increases appreciably the values of the stress
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coefficients A, and B, for the first mode (n = 1) but
has a very small effect upon these coefficients for the
second and higher modes.

The tip mass increases the maximum bending stress
much less than might be expected on the: basis of statle
considerations. For example the addition of a tip mass
6 times the mass of the beam increases the mass moment
about the root 1200 percent whereas the first mode
bending stress coefficient Al is increased only 18l per-

cent (from 1.566 to L.L50). (8ee. fig. 5.)

The maximum values with respect to time of On(x,y,t)
and ?h(x,t) associated with the nth mode of vibration,
when the effects of damping are neglected, are

Ql«

on(%,¥) = A, %E . (7)

(8)

o<
o
=

Equations (3) and (l;) for bending and shear stress,
from which equaetions (7) and (&) are obtained, and equa-
tions-(5) and (6) for deflections and accelerations give
the values assoclated with the nth mode of vibration.
Since all modes of vibration occur simultaneously the net
results are the superposition of the effects of .all modes.
This superposition gives the followlng eguations:

olx,¥,t) | = R

ol
ofd
=
'._l
(0]
n
I—J-
o
e
-
ct

+ Ay e & sin Wy £ + .../ ”{9)
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For average shear stress,

2
_kwl
— v .
T(x,t) = E-% E B1 e 2E sin w, t
Aw e
i
2E .
+ B, e sin wy t+... (10)
For deflection,
5 Awla
v L = t
= = = 2y
wix,t) s p C1 ¢ sin @, t
Kwaa
"2m °
+ C, e sin w, t+ ... (11)

For acceleratlon, when damping is sufficiently small,

Aw z
v L2 2 —5—t
a(x,t)==-g ry Ciwy"e 2E sin N t
ANw 2
——l ¢

For a beam with a glven cross sectlon and velocity
at impact, the equations for bending stress reveal that
at a gilven percentage of the distance from root to tip
and for a glven mass ratlo, the bending stress for a
particular mode is lndependent of the length of the beam.
The equatlons for shear stress reveal that the shear
stress at any station varies inversely with the length
of the beam.
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Experimental

The apparatus which was used to provide for the
instantaneous arrest of a cantilever beam is shown in
figure 7. 1In this apparatus two cantilever beams are ,
formed by centrally clamping a steel tube in a heavy split
block. The block is attached to & carriage which is
permitted to run with known velocity over a horlzontal
track. The carriage 1s accelerated by o weight acted
upon by gravity in the initisal portion of the run and 1is
kept in a state of uniform translation by an additional
small weight used to overcome friction in the latter
portion of the run. Instantanecus arrest is achieved
by permitting a tapered plug projecting from the
carriage to ram into a fixed chuck. The effect of a tip
mass was studied by increasing the weights on the tips
of the beams in successive tests. The velocity at impact
and the dimensions of the cantilever beams are given in
sprendix B.

The apparatus described herein provides for a much
more rigid clamping of the tube and gives a better control
over the instantaneous arrest than the apparatus described
in reference 1. With the more rigid clamping, less
oscillatory energy was lost by the cantilever beams to
adjacent parts o1 the avparatus. The damping present,
therefore, more nearly approached the damping of the
material of the beam.

Extreme fiber bending stresses near the root of each
cantilever beam were measured by means of electrical
strain gages and a recording oscillograph as described
in reference 1. A typical record of the bending strains
at the roots of the two cantlilever beams with the mass

ratio r = = 1is shown in figure 8. No measurements were

made of the shear stresses since their values were too
small to be measured accurately in the presence of the
vibrations set up by the rolling of the carriage.

The three quantities that were obtalined from the
tests - the frequencies of the first three modes, the
maximum contribution of the first mode to the total
extreme fiber bending stress at the root, and the
maximum extreme fiber bending stress at the root -
are vlotted against the mass ratio r in figures 9
and 10 for comparison with the theoretically computed
values. Since inherent local variations in the beam
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properties do not appreciably affect the frequencies,
which are associated with the over-all action of the
beam, and since frequencies are easy to measure, it is
reasonable to exnect the ohserved good sgreement between
theoretical and experimental frequencies. (See fig. 9.)
When consideration is given to the fact that stresses are
directly affected by the local variations in the beam
properties and are not readily susceptible to instantaneous
accurate measuresment thie observed agreement between the
experimental and theoretical stresses is also considered
to be satisfactory. !See fig. 10.)

The contribution of tine first mode to the total
stress was estimated fromr the records. (See fig E.)
It is clear from {igure 10 thet the first mode contributes
more than half of the total stress. It is also clear from
figure 10 that for practical engineering analysis the
maximim bending stress developed in a suddenly arrested
cantilever beam can be found by a2 simople addition of
stress amplitudes in the first few modes (in this case 3)
without regard to phase relations between the modes.

Langley Memorial Aeronautical Laboratory
National Advisory Gommittee for Aeronautics
Langley Field, Va., November 30, 19lL
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APPENDIX A
THEORETICAL DERIVATION

General analysis.- Consider in equilibrium a uniform
cantilever beam with @ mass at its free end. If the root
of the beam is suddenly disturbed, as by a shock, in a
direction perpendicular to its length, the beam wlill be
set into damped bending oscillations. The equation of
motion for these bending oscillations is gilven by the
differential equation (reference 1)

n 2
BpP QY 4 )\ P > w + XO¥ - (A1)
éxh 6xhbt & 5t2

With the use of the notation c2 = %? equation (Al) may
be written

62
N

=0 (A2)
2

This partial differential equation is reduced to an
ordinary differential equation of the Lith order by

writing p = o ; thus,

ot

N 2
Q+2)Er, B ow=o0 (43)
E d 2

+
xLL pc2

The general solution of equation (A3) is

w = P cosh e% + @ sinh 9% + R cos e% + S sin 9% (al)

-
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where

e:L/ =2 —

V pc b 1+ p%

The coefficients P, 3, R, and S are to be determined
from the boundary conditions. The case under considera-
tion is that of a cantilever with a wmass at its free end
moving with uniform velocity v and having its root
brought instentaneously to rest. The boundary conditions
for this care are

oW = , —
©t>X:O = oWl o=V - VL
oW - (@fﬂ\, =0
\O X x=0 bxa/'x:L
Z 2
r})/h - M/c\) W) M 2/
EI = =2 = = p=(w)__
o Pt }&_L
bx3/x=L ”\ét P

The fourth boundary condition, which is an applica-
tion of Newton's third law, equates the shear force at
the tip of the beam to the inertia force of the tip mass.
The velocity of the root as gliven by the first boundary
condition is represented grapnically in figure 11.
Tollowing the pnrocedure adopted in reference 1, the
solution will be obtained for the boundary condition

(Qﬂ) = plw) g = e

and to the resulting velocity will be added the constant
velocity wv.
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With the application of the boundary conditions to
equation (Al), the operational solution for the velocity
(that induced by -vi ) 1is found to be

x
) pw = A’ f<é§> -
L 2 1+cos68cosh 8+ re(sinh §cos e-coshesiry

(45)

where

£(p= = (1 + cos B h 9)( osh9£+cos z
@i“) coSs cos Jie i GL

\
sin 9 sinh© (cosh Gzc- - cOSs ei )
L L /

+

+

X . x
(sinh 6 cos B + cosh @ sin @g){sin 0y - sinh 9i‘>

+

2ro [sinh O cos g cosh e?— - cosh § sin @ cos 9%—.

+

/. X . %N
cos O cosh 9K81n GL - sinh GL):]

. . ¥ Tip mass
and r 1s the ratio = = —~—£~—-——.

= Interpretation of

Beam mass
this operational expression and addition of the con-

stant velocity v gives for the total velocity

kwg
[<4] ....-__n_t )\.(J)n
LY ST waE) P oo ay o Tag stn i) £
ot n-1 1- 1
)-J.EE

(46)
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where

Gn nth positive root of the frequency equation
1 + cos B8 z2oshf+rg(sinh gcos 8 - cosh8sin 6)=0
(all rocts, namely *0,, iiﬁn, have been considered

in the interpretation)

g 2
w. = pc R undamped natural frequency of nth mode,

n -
12 radians/sec

2 2
A (.Op
‘ damped natural angular frequency
uEZ of nth mode, radians/sec

- ~

1, x X
(1 + cos 8, cosh 8,) <oosh 8, T + cos 9, -L—>
. . 2 x
+ sin 6, sinh 8, \cosh Bn T cos on I-,)
+ (sinh 6, cos 6, + cosh 8, sin 6,) (sin 6, %—sinh 0, L£>

+ 2rf, [sinh 8, cos 8, cosh 8y i(- - cosh B, sin 9, cos Gn%

X
L+ cos Oy cosh 8, (sin 8, %C_ - sinh 8, ]T)] ~/

GnElH')(sinhencos O - cosh 8, sin 6,)-2rf, sinh §, sin en]

6D

Integration of equation (A6) with respect to time with
the condition (W)t:o = 0 gives for the deflection

when t 2 O

2
[o2] F(en.— - n t
w({x,t) = ZVE ’——w‘—'l‘e 2E sin w, 't 1
=] =
2
v 12 < 1 —?\wn t
_ Y L_ N S 2K )
= C = o sin w,'tZ (A7)
- Moo ;
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where

is

g —_— v il .
w(x,t) = 5 “5‘ Cn /—"*“'”—}-\zzc——a— e sin w,' t4  (A8)

6]
When ?ﬁ§'> 1 equation (A8) may be put in the form

Aw 2
2 1 ‘“"ﬁ— t
_ Vv L .
wh(x,t) = P Ch e e sinh w 1t/ (A9)
n
— o1
LE®
where now
k?wng
w ' = W, — - 1
U5
Kwn
The form indicated by equation (A3), where Ty <1l, 1is

characteristic of the lower modes and represents damped
oscilla%ory motion. The form indicated by equation (A9),

®
where Tﬁ§'> 1 (damping greater than critical), is

characteristic of the higher modes and represents sub-
sidence motion,

From equation (A6) for the velocity and equation (A7)
for the deflection, the complete behavior of the cantilever
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may be determined. The quantitiss of interest are the
bending stresses, the shear stresses, and to some extent
the accelesrations. Where damping is present, the equa-
tions representing ths contribution of the nlb mode to
these guantities mey be given in *he two forms indiceted
by eguations (A3) and (49). In subsequent equat’ ons,
however, only the form indicated by (AJ) is given, because
it is characteristic of the modes vhizh are of practical
importance.

Bending stresces,~ The bending stresses O0(x,y,t)

at any fiber a distancs y Irom the neutral axis are

Aw 2
é2w vy == ——D_ ¢
olx,y,t) = Ey ”‘E = 5 Y E‘Ey An e <E sin wn'tj
OX n=1
where

X
((1 + cos B, cosh By)(cosh By T - cos Dn%(-

x
+ sin en sinh 6, (cosh 9n E— + cos By f)

< -(sinh en cos en + cosh Gn sin Qn) sinh 8n E + sin Bn %)

+ 2rf, Eim 8y cos B, cosh en——IxT + cosh §, sin B, cos §, %-

(- cos B, cosh enéinh On I“}Ji ¥ sin By I%c>:|l J

A, =2
" eni—(l +r)(sinh 6 cos 6, - cosh §, sing,) -2r6, sin g sinhen]

The contribution to bending stress of the nth mods 1is

Average shear stresses.- The average shear stress
on the cross section 1is
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2
= 2 b§w v P -k:g €
T(x,t) = EfFf = = E = = E B, e sin w, ! t £
be ¢ L = n
where
(~ 0 X + s X M
(1 + cos B, cosh 6,)(sinh 8, T * sin @y £
X . . X . X
+ sin 8, sinh Bn(ﬁnh B £~ sin g, f>
-(sinh B, cos 8, + cosh O, sin 6,)(cosh 8, % + cos B, %) >
+ 2ren sinh 8, cos en sinh On % -~ cosh On sin en sin en%
x x
- cos 6, cosh @, (cosh 8, I * cos By -,—):l .
Bn. =] 2 e

(1 + r) (sinh 8, cos 8, - cosh @, sin By) - 2rf, sin 8, sinh 6y

The contribution to average shear stress of the nth
mode is

Aw 2
P

?n(x,t)=Eg-EBne 2E " sin w, 't 2

Lccelerations.~ From equation (A6), with the aid of
the relation

pF(t)? = F(O)pl + F'(t)Z

the acceleration anywhere on the beam 1s found to be
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2 I
o w(x,t) 2.~ X
a(x,t) = —— =12S F(é - 1llvpZ?
3% L o 2
! 2 2
C . w2(1_h(%k> M%a
vIEN . N 22/ ~mpt ]
- Ch e e sin mn't
© p 1’1=1 | >\'2<'O1'12
\/ bE2 ‘\
— .
Ao, w2 \
S
+ E L"E—i 1
_\2 : 2 cos (J)n t j
n (un
Lo 2
- J

with the atd of the orthogonal properties of the func-
tions Fl@n'%) it is vossible to show that the guantity
o0

2 E F<en % -1 reduces to zero when 0 <
l /
n:

< 1.

(B

[o5]
A

At %. sequal to zero tlhe guantity 2 2;_57@n %) is zero
n=1l

and only the term -vpJ/ remains. This term indicates

that at £t = 0 there is at the root an infinite accelera-
tion of zero duration.

The contribution to acceleration of the nth mode is
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Comparison with the expression for w,(x,t) (equation (A8))
shows that the acceleration of each wmode is out of phase
with the deflection. W¥hen damping is sufficiently small,
however, the relation between the acceleration and the
deflection reduces to the well known result for undamped
vibration

ap(x,t) = -0, w,(x,t)
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APPENDIX B

Numerical Example

Problem.- To calcuiate the theoretical bending and
shear stress at the position of strain gages on the steel
tube beam used in the experimental investigation of the
present paper for a mass at the tip egqual to the mass of
the beam, r» = 1.

Length of beam, L, IN. + + v « + o « o « + « « + . 29.8
Out31de QJamPteL of tuhe, In. .+ . . . S B 0 [0
Distancs to extrewme flher, maximrum value

of v, in. . e e e v e e o s o« e« » 0,502
Wall thickness of tube, in., 0 C e v e e e e s . 0,029
Radius of gyration of cross sectLon, £, in. . . . 0.34F5

Distance from root of beam fo strain

gages, x, in. . T T S e S S S S B %
¥Modulus of elastlc1ty, E (assumed), psi . . . . 29 ¥ lO
Velocity at impact, v, fps . + . « « « « « « + 1.78
Velocity of sound in steel, ¢, fos . . . . . . . 16 600

The effects of damplng will be neglected so that egua-
tions (7) and (8) may be used. From the foregoing data
of this pnroblem

L500 psi

ol
palln
™
n

v Q
S 35.0 psi

=i
=1
11

The values of An and Bn for the different modes are

obtained frow figures 2 and 3 for r = 1 and 2 = 0.0167.

L
The computed stresses are glven in the following table

— —— —— ——————— N— B8 } e m nu
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o kR
LS Bn (psi) (psi)
= e
(L500 x An) | (35.8 x By)

1 .18 | 2.40 9200 ! 86
2 .89 | L.1 1,010 i
zZ 28 1 Lo 2160 143
Sum of first three 15,97 373

stress ampiitudes

An aporoximation of the maximum total stresses can be
obtained by adding the stress amplitudes for the first

several modes

1l

Stowell, Elbridge Z.,

John

~

-
e e

as indicated.
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coefficient Ap with x/L.
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Figure 3. - Variation of shear stress
coefficient B, with x/L .




w

NACA MR No.

1.6

L4K30

/|

.2

r _/

6

i
Ci.e )//,/

L

V%

2
4 //é/ ] |
P il
NATIONAL ADVISPRY
o _é% 1 COMMITIEE ‘ALOR AER(?MUTICS
.2 l
6
-2
.02 '
Cas o _‘\\. __ -
6
-.02 |
© 2 4 6 .8 1.0

Figure 4.-Variation of defiection coefficient C,

with x/l_ i



NACA MR No. L4K30

5 -
4 +
3 -
An
at 2
root
| -
o lﬂﬂ il m_ m
1 2 3 a4 S
Mode , n
5k NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
4 -
3 L
Bn
at 2 -
root
, -
(o)
! 4 5
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Figure 6.- Variation of bending - stress
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at root of cantilever beam with mass ratio r.
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Figure 7.- Impact apparatus used in tests,

Figure 8.- Typical record of bending strains at the

roots of the cantilever beams, mass ratio r
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Figure 9.- Comparison of theoretical with
experimental frequencies as mass ratio r increases.
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