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BENDING AND SHEAR STRESSES DEVELOPED BY THE 

INSTANTANEOUS ARREST OF THE ROOT OF A 

CANTILEVER BEAM WITH A   MASS AT ITS TIP 

By Elbridge Z. S Lowell., Edward B. Schwartz, 
John C. Houbolt, and Albert K. Schmieder 

SUMMARY 

A theoretical and experimental investigation has been 
made of the behavior of a cantilever beam in transverse 
motion with a mass at its tip when the root is suddenly 
brought to rest.  Equations are given for determining the 
stresses, the deflections, and the accelerations that arise 
in the beam as a result of the impact.  The theoretical 
equations, which have been confirmed experimentally, reveal 
that for a beam with a given cross section and velocity at 
impact and for a given ratio of tip mass to beam mass, the 
bending stresses for a particular mode at a given percentage 
of the distance from root to tip are independent of the 
length of the beam; whereas, the shear stresses vary 
inversely with the length. 

The addition of a mass to the tip of a cantilever 
beam increases appreciably the stresses produced by the 
first mode of vibration but changes only slightly the 
stresses contributed by the higher modes.  The tip mass 
increases the maximum bending stress much less than might 
be expected on the basis of experience with the static 
action of structures.  For practical engineering analysis 
the maximum bending stress developed in a suddenly arrested 
cantilever beam can be found by a simple addition of 
stress amplitudes in the first few modes without regard 
to phase relations between modes. 
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INTRODUCTION 

When an airplane lands, the vertical component of 
the velocity is rapidly reduced to zero.  The shock of 
the sudden change in motion gives rise to vibratory 
stresses in the airplane.  As a beginning in the study 
of these stresses a previous report (reference 1) dis- 
cussed In detail the behavior of a cantilever beam in 
translational motion when its root is suddenly brought 
to rest.  In that paper equations are given for deter- 
mining the stressess the deflections, and the accelera- 
tions that arise throughout the beam as a result of the 
impact.  The present report extends the basic problem of 
reference 1 to include the effect of a concentrated mass 
at the tip of the cantilever beam. 

As in reference 1, the present paper is based on the 
usual engineering beam theory.  In this theory the 
deflections are considered to be the result of bending 
alone, shear deflections neglected.  The theory as applied 
to ordinary beams gives reasonably good results so long 
as the distance between inflection points is greater than 

•a few times the depth of the beam.  When this theory for 
beam action is used In vibration problems, such as that 
in the present paper, the results are satisfactory for 
those modes of vibration for which the nodes are not too 
close together. 

This report   summarizes the results of a theoretical 
solution  gi/en in appendix A and presents an experimental 
verification of these results.  A numerical example for 
the calculation of the maximum stresses near the root of 
the cantilever beam is given in appendix B. 

SYM30LS 

E    modulus of elasticity 

Y    weight density of material 

X    coefficient of equivalent viscous damping of 
material 

/Eg 
velocity of sound in materiali/-52 



MR  No.   LI4.K3O 

„g acceleration  of  gravity 

L length  of beam 

I moment   of inertia  of  cross   section of  beam  about 
neutral   axis 

A cross-sectional   area  of  beam 

p radius   of gyration of  cross   section of beam [\ T) 

x coordinate   along   beam measured  from  roob 

y distance   from neutral  axis  of beam to   any fiber 

t time,   zero  at  impact 

p ooerator    -— 
ot 

n    integers 1, 2, 5> etc., designating a particular 
mode of vibration 

n nth positive root of equation 1 + cos 9 cosh 
+ r8 (sinh 8 cos 8 - cosh 8 sin 8) = 0 

w 
r    ratio of tip mass to beam mass — m 

co    undamped natural angular frequency of nth mode, 
/  Q„2\ radians oer second [pc ll~ ] 

\  L / 
^n

r       damped natural angular frequency of nth mode, 

radians per second (to 

(wi 

n 

A 2 

where  —-  >1, the "frequency" is defined 
\ ItE2 

velocity  of  beam prior  to impact 
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w(x,t)  deflection of beam at station x  and time  t 

wn(x,t) deflection of beam at station x  and time  t 
for the nth mode of vibration 

a(x,t)  acceleration of beam at station  x and time  t 

an(x,t) acceleration of beam at station  x and time  t 
for nth mode of vibration 

0"(x,y,t)  bending stress in beam at station x, distance 
from neutral axis y, and time t 

on(x,y,t) bending stress in beam at station x, distance 
from neutral axis  y, and time t for nth mode 
of vibration 

T~(x,t)  average shear stress over cross section of beam 
at station x  and time  t 

~n(x,t) average shear stress over cross section of beam 
at station x  and time  t  for nth mode of 
vibrati on 

An     bending-stress coefficient for nth mode of 
vibration 

B      shear-stress coefficient for nth mode of vibration 

C      deflection coefficient for nth mode of vibration 

RESULTS AND CONCLUSIONS 

Theoretical 

When a cantilever beam with a mass at its tip is under 
uniform translation in a direction perpendicular to its 
length there is excited a theoretically infinite number 
of modes of vibration when its root is instantaneously 
brought to rest.  With each successive mode, damping has 
an Increasing influence upon the frequencies and amplitudes 
of vibration  and, for sufficiently high modes, even changes 
the type of motion from oscillatory to nonoscillatory 
motion.  In the lower modes, however, damping has little 
effect and only terms of the first order in damping need 
be included in the equations.  Only the equations applicable 



MR No. Üj.K30 

to the lower modes, which alone are of Importance in any 
-practical case, are presented In this section of the 
paper.  For a more complete treatment of damping, see ' 
appendix A. 

The angular frequencies (2TT times the frequencies 
in cps) are given by the equation 

6 
CO n PC n 

(1) 

where  9n  is the nth positive root of the equation 

1 + cos 9 cosh 0 + r9 (sinh 9 cos 9 - cosh 9 sin 8 )=0 (2) 

In this equation  r  is the ratio of the tip mass to the 
mass of the beam.  The values of 9^  for the first three n 
modes are given in the following table for several values 
of  r: 

r 91 02 83 
0 1.8751 4- 69I4-I 7.8548 
1 

4 1.5738 U.225O 7.2813 

1 
2 1-4200 4.IIO5 7.1904 

3 
4 

1.3202 I4.O602 7.1539 

l 
2 

o 

1.21+79 
1.077k 

.8328 

1|..0311 
3.9826 
3-9,557 
3.946O 

7.1339 
7.1026 
7.0859 
7.0802 

Figure 1 shows graphically the variation of  9n  with the 
mass ratio  r  for n = 1, 2, and 3«  For each value of 
n  the value of  9n,  and consequently the frequency, 
decreases with increasing values of the mass ratio  r. 
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Expressions for the bending stresses, shear stresses, 
deflections, and accelerations are the same as the expres- 
sions given in reference 1 for these quantities except 
that the coefficients  An , Bn, and Cn, which characterize 
each mode, are functions of an additional variable  r, 
the mass ratio.  The bending stress, average shear stress, 
and deflection are, respectively, for the nth mode of 
vibration; 

,  2 
A. CO 

n t 
ön!^'t)=AnHEe 2E   s5n con t      (3) 

A, to n 
2 

t 
Tn(x,t) = Bn ~  £ E e  2E   sin ton t        (k) 

,      2 
A. CO 

2 2_t 
wn(x,t) = Cn 2. L_ e  2E   sln ^ t (5) 

The acceleration for the nth mode, when damping is suffi- 
ciently small, is 

a^x^t) - -wn
2 wn(x,t) (6) 

The variation of the dimensionless coefficients  An, 
Bn, and Cn  with position along the beam x/L is given 
in figures 2, 3> and U> respectively, for the first three 
modes, n = 1, 2, and 3 and for values of  r  from 0 to 6. 
Figures 2 and 3 Indicate that for all values of the mass 
ratio  r the highest values of  An and Bn  and hence the 
highest stresses occur at the root of the beam.  These 
highest, or root values of  An and Bn  are shown for 
r = 0 end r = 6  in figure 5 f°r the first 5 modes.  Root 
values of  An and Bn  for mass ratios between 0 and 6 are 
given in figure 6 for the first 3 modes. Both figures 5 
and 6 show that the addition of a mass at the tip of the 
beam (r > 0) increases appreciably the values of the stress 



MR No. Ü4.K3O 7 

coefficients An and B^ for the first mode (n = 1) but 
Has a very small effect upon these coefficients for the 
second and higher modes. 

The tip mass increases the maximum bending stress 
much less than might be expected oh the; basis, of static 
considerations.  For example the addition of a tip mass 
6 times the mass of the beam increases the mass moment 
about the root 1200 percent whereas the first mode 
bending stress coefficient  A-,   is increased only l31|. per- 

cent (from I.566 to I+.I45O). (See-fig. 5.) 

• The maximum'values with respect bo time of 0"n(x,y,t) 
and  T" (x,t) associated with the nth mode of vibration, 
when the effects of damping are neglected,'are 

Vw) = An HE (7) 

T n<*>   =   Bn77E      • <8> C     XJ 

Equations (3) and (I4.) for bending and shear stress, 
from which equations (7) and (8) are obtained, and equa^- 
tions(5) and (6) for deflections and accelerations give 
the values associated with the nth mode of vibration. 
Since all modes of vibration occur simultaneously the net 
results are the superposition of the effects of .all modes, 
This superposition gives the following equations: 

X.Ü1 
 i— f 

o(x,y,t) ^ = - «5 E ,\A1  e       a       sin (1^ t  , 

2 

--^-t 
+ 'A2 e   a     sin u>2   t +   . . . . J    " (9) 
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For average  shear  stress, 

X.CO-, 

T(x,t)   = - £ E   W   e     2E       sin c^  t 

,      2 

+   B2   e     2E       sin <i>2 t + . . ./ (10) 

For deflection, 

.2   f ..^if 
/     ^       v  L     \ "'"PF"* w(x,t)   = - -—  \n1  e     ^       sin w    t 

\<o. 2 

2-t 
+  C2  e     2E       sin w    t +   . , ./ (11) 

For  acceleration,   when damping is   sufficiently  small, 

,      2 
A. GO 

2   I -—=—t 
i(xft) =-^ ^-  \C1w1

2e    2E    ' sin w1  t 

\CD   2 

.    2   t 
+ C2 ci>2     e    "       sin a>2  t +   . ../ (12) 

For a beam with a given cross section and velocity 
at impact, the equations for bending stress reveal that 
at a given percentage of the distance from root to tip 
and for a given mass ratio, the bending stress for a 
particular mode is independent of the length of the beam. 
The equations for shear stress reveal that the shear 
stress at any station varies inversely with the length 
of the beam. 
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Experimental 

The apparatus which was used to provide for the 
instantaneous arrest of a cantilever beam is shown in 
figure 7«  In this apparatus two cantilever beams are 
formed by centrally clamping a steel tube in a heavy split 
block.  The block is attached to a carriage which is 
permitted to run with known velocity over a horizontal 
track.  The carriage is accelerated by a  weight acted 
upon by gravity in the initial portion of the run and is 
kept in a state of uniform translation by an additional 
small weight used to overcome friction in the latter 
portion of the run.  Instantaneous arrest is achieved 
by permitting a tapered plug projecting from the 
carriage to ram into a fixed chuck.  The effect of a tip 
mass was studied by increasing the weights on the tips 
of the beams in successive tests.  The velocity at impact 
and the dimensions of the cantilever beams are given in 
appendix B. 

The apparatus described herein provides for a much 
more rigid clamping of the tube and gives a better control 
over the instantaneous arrest than the apparatus described 
in reference 1.  With the more rigid clamping, less 
oscillatory energy was lost by the cantilever beams to 
adjacent parts of the apparatus.  The damping present, 
therefore, more nearly approached the damping of the 
material of the beam. 

Extreme fiber bending stresses near the root of each 
cantilever beam were measured by means of electrical 
strain gages and a recording oscillograph as described 
in reference 1.  A typical record of the bending strains 
at the roots of the two cantilever beams with the mass 

ratio  r = — is shown in figure 8.  No measurements were 
k 

made of the shear stresses since their values were too 
small to be measured accurately in the presence of the 
vibrations set up by the rolling of the carriage. 

The three quantities that were obtained from the 
tests - the frequencies of the first three modes, the 
maximum contribution of the first mode to the total 
extreme fiber bending stress at the root, and the 
maximum extreme fiber bending stress at the root - 
are plotted against the mass ratio  r in figures 9 
and 10 for comparison with the theoretically computed 
values.  Since inherent local variations in the beam 
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properties do not appreciably affect the frequencies, 
which are associated with the over-all action of the 
beam, and since frequencies are easy to measure, it is 
reasonable to expect the observed good agreement between 
theoretical and experimental frequencies,  (See fig. 9-) 
When consideration is given to the fact that stresses are 
directly affected by the local variations in the beam 
properties and are not readily susceptible to instantaneous 
accurate measurement the observed agreement between the 
experimental and theoretical stresses is also considered 
to be satisfactory.  'See fig. 10.) 

The contribution of the first mode to the total 
stress was estimated from the records.  (See fig. 8.) 
It is clear from figure 10 that the first mode contributes 
more than half of the total stress.  It is also clear from 
figure 10 that for practical engineering analysis the 
maximum bending stress developed In a suddenly arrested 
cantilever beam can be found by a simple addition of 
stress amplitudes in the first few modes (in this case 3) 
without regard to phase relations between the modes. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va. , November JO, 19 hh 
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APPENDIX A 

THEORETICAL DERIVATION 

General analysis.- Consider in equilibrium a uniform 
cantilever beam with, a mass at its free end.  If the root 
of the beam Is suddenly disturbed, as by a shock, In a 
direction perpendicular to its length, the beam will be 
set into damped bending oscillations.  The equation of 
motion for these bending oscillations is given by the 
differential equation (reference 1) 

D2^w +  2 _ö5w_ + X öf» = 0 
öx^      öx^öt  S dt2 

With the  use   of  the  notation     c     = ^—    equation   (Al)   may 
be written 

öx4      E öÄJb       f£c2  St* 

This   partial  differential   equation  is   reduced   to   an 
ordinary differential equation of the l+th  order by 

writing    p = ~- ; thus, 
ct 

(^^) ^ + -ELW = 0       (A3) 
E ' dx^   p2c2 

The general solution of equation (A3) Is 

w = P cosh 8- + Q.  sinh 6- + R cos 8- + S sin 8T   (Ak) L L L L    v~* 
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where 

9 = L 
ID 

1/ p° \A+ pt 
The coefficients  P, Q,, R, and S  are to "be determined 
from the boundary conditions.  The case under considera- 
tion is that of a cantilever with a mass at its free end 
moving with uniform velocity v  and having its root 
brought instantaneously to rest.  The boundary conditions 
for this care are 

0 It) n = e
(w>x=o = v " v/ 

d w \ 
Vox dx/ x=Q 

g y        'x=L 

The fourth boundary condition, which is an applica- 
tion of Newton's third law, equates the shear force at 
the tip of the beam to the inertia force of the tip mass 
The velocity of the root as given by the first boundary 
condition is represented graphically in figure 11. 
yellowing the procedure adopted in reference 1, the 
solution will be obtained for the boundary condition 

(oT)^0"
E p(w)-0 = -Vi 

and to the resulting velocity will be added the constant 
velocity  v. 
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With the application of the boundary conditions to 
equation (A!+), the operational solution for the velocity 
(that induced by -vi.  ) is found to be 

pw = -vJ •(?£) 
2     1 + cos 8 cosh 0 + r0 ( sinh 8 cos   8 -cosh 8 sine) 

(A5) 

where 

ffe^ =  (1  +  cos  8 cosh 8)((cosh Q— +  cos 0^ j 

+   sin  9* sinh 8 (cosh 8 cos 0 —  ) 

+   (sinh 8   cos   8 +  cosh   0 sin   0) f sin 0~ sinh 9— ) 

+ 2r0 sinh 8 cos 0 cosh 0-— cosh 0 sin 0 cos Qj- 

f X X \ 
+ cos 8 cosh 8 (sin Sr-- sinh 0-^ j 

J       i-i-    x.'        ^   Tip mass   _       . , . and r  is the ratio  — = —-— . Interpretation of m Beam mass 
this operational expression and addition of the con- 
stant velocity  v gives for the total velocity 

X.0) 

6w(x,t) 
dt 

OS n 

v - vjt + 2v\      Ffe^Je             I cos üV t -- 
n-1 

x\      2E 
Jn. 

"2"E~ . , .,   , 
"sg^?Bin"° V 

(A6)< 
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v/here 

9n nth positive   root   of the  frequency  equation 
1  +   cos 9 coshS + r9 ( sinh 9 cos  9 - cosh 9 sin   9) = 0 
(all  roots,   namely  ±8n,   HQn,  have been  considered 
in   the  interpretation) 

2 

»n = P= 72- undamped natural frequency of nth mode, 
radians/sec 

X 00 
wr,'   = w

n \/l •—-        damped natural  angular frequency 
i^g2 of nth mode,   radians/sec 

n 

< 

°»?)= 

+  2r9r 

(1  +  cos 9     cosh 8n)fcosh 8n y +  cos 8n ^-J 

+   sin  9n   sinh 9n(cosh 8n ~ -•  cos 9n y J 

+  ( sinh 9r   cos  9n +  cosh  8n  sin 8n) (sin 9n y-sinh  9n —) 

sinh 0n  cos 9n  cosh 9n £ -   cosh 9     sin 0n  cos 8n- 

9n  cosh 9n (sin  8n — -   sinh 0^ yj 

> 

+   cos 

8n|CL+r)(sinh9ncos 0n - cosh 8n   sin 9n)-2r9n  sinh 9n  sin 9nJ 

Integration  of  equation   (A.6)   vith  respect  to   time  with 
the   condition     (w)._p  =  0  gives   for   the  deflection 

when     t   > 0 

w(x,t)   =  2v 
K9nS x^ X 00 

n=l 
wn' 

;J —— t 
^ e    2E       sin  <on» t i 

Xoo. n 

c    P Z 
n=l 

n 
\2a> 2 

0  e 
2E       sin wni ti    (A7) 

1  - 
n 

liE< 
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where 
2P (9n Z) 

c 

is 

n • 2 

The  contribution  of   the   nth mode   to  the   deflection 

\a>.2 

2 n 
wn(x,t)   = - — cn -7=      .?     p   e     2E       sin co   '   ti       (A8) 

 il 

When     —— >   1     equation   (A8)   may be   out  in the   form 
2E 

wn(x,t)   = - -—  Cn -==-—== e     2E       sinh co   < 11 (A9) 
c    p /^2un

2 

1+E< 

where  now 

\(0 
The   form indicated by  equation   (A8),   where     —— <  1,     is 

c:E 
characteristic of the lower modes and represents damped 
oscillatory motion.  The form indicated by equation (A9), 

A. co 
where —~-  > 1  (damping greater than critical), is 

2E 
characteristic of the higher modes and represents sub- 
sidence motion. 

From equation (A6) for the velocity and equation (A7) 
for the deflection, the complete behavior of the cantilever 
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may be determined.  The quantities of interest are the 
bending stresses, the shear stresses, and to some extent 
the accelerations.  Where damping is present, the equa- 
tions representing the contribution of the nib mode to 
these quantities m?y be given in •'•he two forms indicated 
by equations (Aü) and IA9)•  In subsequent equations, 
however,, only the form indicated by (A3) is given, because 
it is characteristic of the modes which are of practical 
importance. 

Bending stresses,- Th?  bending stresses  o(x,y,t) 
at any fiber a distance,  y  from the neutral axis are 

&Z'» oU.y.t) ^~^H^_ 
ox n=l 

An e 
 n_ 
2E sin oon' 11 

where 

'n)(c '1 + cos 8n cosh 0n)(cosh 9n — - cos 9n — 

X X 
+  sin 6n  sinh Bn(cosh 9n =- +  cos 8n =- 

< -( sinh 8n cos Gn +  cosh 0n  sin 8n) (sinh 8n £• +  sin 8n =- > 

+  2r9 

A„  = 2 

sinh  9n cos 9n cosh 8n-— +  cosh 9n  sin 8n cos 9n — 

_-   cos 9n  cosh 8n(einh 9n £ +  sin 8n ~-jj 

8n| (l + r)( sinh 9n cos 6n -  cosh 9n  sin9n)-2r9n sin 0n  sinhgj 

The   contribution  to  bending  stress   of  the  nth mode   is 

A. CO. 

an(x,y,t)   = E J ^ An  e 
n_t 

2E       sin a)n« t 1 

Average   shear  stresses.-   The   average   shear  stress 
on  the   cross   section  is 
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T(x,.t)   = EP
2 & =  E J £^    Bn  e     2E sin con' t i 

where 

^   = 2 

"(1  +  cos 8n cosh 9n)(siiih 9n £ +   sin 9n £.) 

+  sin 9n   sinh 9n(sinh 9n f- -  sin 9n £•) 

-( sinh 9n  cos 9n  +  cosh 8n  sin 9n)(cosh 8n j- + cos  8n ?-) 

+ 2r8n sinh 9n cos 0n  sinh 9n ~ -  cosh 9n  sin 0n sin 9n£- 

8n cosh 9n(oosh 9n I + cos 9n g)j - 

> 

cos 

(1  + r)   ( sinh 9n cos 0n  -  cosh 9n  sin 0n) - 2r9n sin 9n  sinh 9n 

The  contribution to   average   shear  stress   of  the  nth 
mode  i s 

\co  2 

n   ^ 
Tn(x,t)   =  E   J -   ^   e     2E        sin  "v, ' t 1 n 

Accelerations.-  From equation  (A6),   with  the   aid  of 
the   relation 

pF(t)i    =  F(0)pi    +  F'(t)^ 

the acceleration anywhere on the beam is found to be 
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a(x,t)   = 
_  a w (x , t) 

dt< (?n i) - 

.1IL 
c    p 

c6 

CO 

2 Y     p 

n=l 

/ 2     PN 

0 / ?.   0)   ^ 

«u2li-      n 

vp_f 

~n    C    2E2 
Xco/ 

n=l A.2<a 2 
il 

Z.e     2E 

JJE' 

\üV     /        \2ü>„2 
n n 

* r; to2        , 
i\.CO. n 

2E / 

sin  'JO   ' t 

with the aid of the orthogonal properties of the func- 

tions  F (6n -j-,)    i* is possible to show that the quantity 

n=l 
2 \      F(ön T ) ~ 1     reduces   to  zero when    0 < — S.  1. 

CO 

equal to zero the quantity 2 ^_ F (en j)  ls zer0 At     £ 
Li 

n=l 
and  only the   term    -vp_/    remains.     This   term indicates 
that  at     t  = 0     there   is   at   the  root  an infinite   accelera- 
tion of   zero  duration. 

The contribution  to   acceleration  of   the  nth mode  is 

A 2 

1 - n Xco 
v  L 2 "*" PT?2 

an(x,t)   =  - - "p- «„     Cn -_=^|~ e 

n 

sin con' t 

f-^t 
\(JÜ. n a - 

Ä2 
n 

+ JiEf 

1   - 
\ZcoZ 

n 

cos  Cü   ' t ) 1 

2E 2 
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Comparison with the expression for wn(x,t)  (equation (A8)) 
shows that the acceleration of each mode is out of phase 
with the deflection.  When damping is sufficiently small, 
however, the relation between the acceleration and the 
deflection reduces to the well known result for undamped 
vibration 

an(x,t) = -wn
2 wn(x,t) 
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APPENDIX B 

Numerical Example 

Problem, - To calculate the theoretical bending and 
shear stres's at the position cf  strain gages on the steel 
tube beam used in the experimental Investigation of the 
present paper for a mass at the tip equal to the mass of 
the beam, r = 1. 

Length of beam, L, in. . . .  29.8I4- 
Outside   diameter   of  tube,   in.        1.003 
Distance   to   extreme   fiber,   maximum  value 

of  v,   in.           O.502 
Wall thickness of tube, in,  0.029 
Radius of gyration of cross section, p, in.  . . . G.345 
Distance from root of beam to strain 

gages, x, in » . . O.5Q 
Modulus of elasticity, E (assumed), psi ....  29 x 10 b 

Velocity at impact, v, fps .  I.78 
Velocity of sound in steel, c, fps l6,600 

The effects of damping will be neglected so that equa- 
tions (7) and (8) may be used.  From the foregoing data 
of this oroblem 

2 Z  E = IJ^OO psi 
c P 

- 7- E = 35-8 psi 
c L 

The values of  A   end  E^  for the different modes are 
obtained from figures 2 and 3 for r = 1  and — = O.OI67. 

The computed stresses are given in the following table 
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Mode,   n An Bn 
a 

(pal) (psl) 

(ii500   X   An) (35-8 x Bp_) 

1 2.18 2 .I4.O 9800 86 

2 .89 U.l h.010 lUU 
X s J4.3 U.o 2l60 1J+3 

Sum of  first  three 
stress   amplitudes 

15,970 373 

An  approximation  of  the  maximum  total  stresses   can  be 
obtained by  adding  the   stress   amplitudes  for   the   first 
several modes   as   indicated. 
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