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TECENICAL NOTE NO. 1218

EFFECT OF COMPRESSIBILITY AT HIGH SUBSONIC VELOCITIES
O THE MOMENT ACTING ON AN‘EIIJTTIC.CYLINﬁER

By Carl Keplan

5 :

An extended form of the Ackeret iteration process is wutilized
galculate the compressible flow at high subsonic velocities

past an elliptic cylinder. The angle of attack with respect %o
the direction of the undisturbed stream is assumed small and- the "
circulation is fixed by the condition that the tralling end of the
major axis be a stagnatlon point. The expression for the moment
acting on the elliptic cylinder 1s derlved and shows & first-step
lmprovement of the Prandtl-Glauert approximation. In addition, a.
second-step improvement is obtained in the Prandtl-Glauert approxi-
mation for the lifting force. acting on 'thé elliptic cylinder. - By
means of ;these two results it is possible to calculate the effect
of compressibility on the position of the center of pressure as '’
a function of the thickness coefficient and of the stream Mach
number. Tables and corresponding graphs are included to illustrate
numerically the theoretical results derived. For example, it is
found that, for an elliptic profile of thicknese coefficient 0.15
and stream.Mach aumber 0.80, the center of pressure moves rearward
a distance 2.6 vpercent of the chord from 1ts position in the
Incompressible flow. )

. INFRODUCTION

The present paper is concerned mainly with the calculation of
the effect of compressibility at high subsonic velocities on the
moment acting on an elliptic cylinder. The method used is an
iteration procedure, credited to Ackeret, which proceeds from the
Prandtl-Glauert approximetion as the first step and successively
improves it in a systematic manner. . The details of the Ackeret
iteration process have been described in reference 1 and, -therefors,.
only material essentlal to the present paper will be repeated.

The main purpose of the Ackeret iteration method is %o
linearize the nonlinear partial differential equation {for the
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velocity potential or the stredn function) that governs the steady
two-dimensional flow of a perfect compressible fluld. This
linesrization is accomplished by essuming the development of the
strean i‘u.nction \!l, say, to be of"the form

\lf = 0¥ + \I;l(X,Y) + We{X;Y) + \lf3(X,Y) F s e s (1)

wvhere U is the wveloclty of the undisturbed stream and X and Y
are the rectangular Cartesian coordinates of the physical flow
plane. Equation (1) is essentially a development of the stresn
function arommd a uniform stream In the negatlve dlrectlion of—+the
X-axis. For the purpose of defining or controlling the lteratlon
proced.ure, the function \y 41 is regarded as small compared with

the preceding function \;n. and the derivatives have a similar *
relationship‘ Then the total index decldes 'bhe order of the Berm;
for examgle, \1;3 is of the same order es \L(l or '4/1\,-2 The

accuracy of this iteration method clearly depends.on the degree to o
which the assumpblons are satisfied. In the case of slender bodies :

without stagnation points, the first few steps may be expected- to

Jield a good result. In the case of bodles with sbagnation points, .
the acouracy of the calonlatlions obviously Gepends on the number '
of terms v, - derived, cach new torm reducing the extent of tho

region of inacouracy in tHe neighborhood -of' the stagnation point

" In the trea.tment of the veribus. equations that result. :f'rcm
the “linebrization of the fuhdsmental differential equation bty
means’ of ths Ackeret: itéra'hion process, it is convenient to iptro- . _ _
duce an affine tranBformation of +the physical Flow plane.. '.[nis
affine transformaticn reduces the differential equations to be
solved to a Laplace sguation and to Paisson equations. In the
performance of this simplification, the statement of the bourdsry
condition at tho so0lid ¥y moans of the velocity potontial bocumes
very complicated. Fortunately, howover, thoe stabtement oftho
boundary coniition by moans of the gtream funcbion, namely, ¥ = 0
at the solid, 1s invariant for the affine. transformation; thoro= .
fore, the use Of the stream function throughout the ‘gnalysis of
the present paper is +6 be pu:'eferroa.u Tho choics of the ellipso
as thé 80lid boundary ls dictated by, tho proporty | that ar affinc .
distortion of an ellipse leadse to anothcr ellipsoe; thore.;ore.thc . "
analysis- can be conduohed entirely 'in the affinely distorted ‘plane - -
-and the résults thus obtained’ 11:11:9& to the ac’oual olliptic profllo
by means of simple correspond.ence relations.
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MOMENT FORMULA

Specifically, the problem treated herein is to obtain an
improvement of the Prandtl-Glauert approximation of the effect of
compressibility on the moment acting on an elliptic cylinder set
at a small angle of attack in a uniform stream. Iet Z denote
the physical flow plane, 2z the affinely transformed planse,
and z' the plane of the circle into which the affinely dlstorted
profile is mapped by a conformal transformation. (See fig. 1.)

As in the calculation of the resultant 1lifting force given in
reference 1, it is a great labor saving device to choose a large
circle in the z'-plane to correspond to the combrol. contour in the
physical Z-plane during the calculation of the moment and also to

choose as independent variables the polar coordinates Req -
of the z'~plane, with

z' = Re S (2)

where § = &+ in and R is the radius of the conformal circle.
(See fig. 1(c).)

Since the large circle in the z'-plane corresponds to a large
control ellipse in the physical flow plane 2%, +the expression for
the moment mmst contain, in addition to the usual momentum integral,
a term Involving the integration of the presswres around the conbrol
ellipse. This esdditional term is necessaxry because the normal
vector to an elllipse does not pass through its center. The genseral
vector expression for the moment im a compressible Ffluid M, with

respect to the origin, obtained from reference 2, 1s

?Q [Fa}(as) as +SE e (3)

where brackets and parentheses denote vector and scalar products,
respectively, and

r radius vector from origin
n unit normal vector :
q velocity vector of fluid
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ds element of length along control contour
he] pressure of fluld
p density of fluid

The positive direction of the unit normal vector n is from the
control contour towerd the orlgin, and the line integrals are taken
rositively cownterclockwise around the control contour In the
physical flow plane. The unit tangent vector + and the unit
normal vector T thus form a right-hand frame; hence, a positive
value for the moment corresponde to a counterclockwise rotation
(fig. 1(a)).

It is easy to verify that eq_uation ( 3} can be rewritten in

the form
_-? 3§g(u - 1v)%z az + —{£(p + "'pq (%)

where u and v are the camponents 6£’ the velocity vector along
the X-axis and Y~axls, respectively, and

Z-=X+1Y .
re‘;: Xa Y.2
2 2 2

q =u + v

Note that if the fluid is incompressible
. l . 2 N .' .
P + qu = Congtant

according to Bernoulli's equation; therefore, the second integral _
venishes identically and ylields the usual Blasius formuls for the
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7
moment. By use.of the sdiabatic relation % = (-E-—) , egquation (i)
1 1
becames .
p 2 \-7 .-
-1 NET AP 1 1
M, =-5p) .P.sgp %:plU(u 1v)] Z 47 + 5P, (p
p 2 o .
1 F1l/pa 2 L _
— o b ey dr .. -
55 ("1U> (5)

where the subscript 1 refers to the sterting conditions at infinity
and

U velocity of undlsturbed fluld at infinity

M Mach number of undisturbed stream at infinity (U /cl>

° veloclty of sound 1n undisturbed £luid

7 ratio of speclfic heats at constant pressure and constant
volume, for air 7 = 1.k

For the purpose of calculating the line integrals ilndicated
in equation (5), it is necessary to express the in’cegrands as
functions of the independent variables &,n of the z'-plane.

In the cass of the elliptic profile in the z-plans, the conformal
transformation to a circle of radlue R with center at the origin
is

z = ¢ cos(f + 1A) (6)

where ¢ 13 the semifocal distance and A\ is defined by any omne
of the followlng geometric characterlstics of the ellipse:
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a=o¢ cogh A

b =c¢ ginh A
1
B=-2'ce7"

where a, b, and R are, respectively, semimajor axis of ellipse,
semiminor axis of ellipse, and radius of conformal circle. Now,
the affine transformation used in connectlon with the Ackeret
iteration process is

where

It follows thab

and

where a ber indicates cénjugate-cdnplex guantitles. Since the
control contopr is a large circle in the z’-pla:;e, n = Constant
and df = df = a& Then, by uge of equations (2) and (6) and the
relation R = —%’-ce"’, the expressions for Z end 42 —on the control

ellipse beocome



NACA TN No. 1218 T

n+A i 1 1 z!
_eel S S Y S-S ¢
z = 28 (1 + p) <z B + z) + (1 - p) (z, + nio (Ta)

and

e

cen+% - 1 ; . _ 1 - z'! A
iz = - - (L + ) <5'92ﬂ+2’ Z> + (1 - u) (?r 62q+27\,)
(b}

whore z' = o 15

Similarly,

2 2
- i~ - . 1
rz = Z7 = I E 4? + L M - 22 +

and on the control ellipse, 17 = Constant,

c2 62q+2}»

2
2 /2 1 - 2 _ 1 7!
ar =—3 (4% -1) (z 2 Tl ” >+(” 1) <z 2 elm+1m>

+ 2(,_,'2 + 1)6'271'&<zx2 - .._.]'._) dz’ (8)

7! 7!

Expressions for —P—(u - iv) and @, /p as functliona of the
plU 1

variable = '(: e':‘-g) expanded in powers of 1 /en, are given by
equations (46) and fx-’{), respectively, of reference 1. By the use
of these equations, together with equations (7) amd (8), it is easy
to evaluate the right-hand member of equation {5) by noting that
only texms involving dz'/z' contribute to the line integrals.

The result thus obtsined is
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- mgpelels s 3 -1)@+¢2+1)<a+u>](-—)}

where o 18 the angle of attack in the affinely distorted plane =

and o = (7 + l)(p.2 - l). If the quahtities e, b, ¢, and o

are replaced by a', b', c¢', and o' of the actual profile in

the Z-plane according Lo the corrempondence equatlons of refer-

ence 1, namely, -—

> . (9

the ‘moment about the orlgin on the actual ellipse bscomes

h'-l

M = ﬂplueq,'c"ep, - -léﬂperd,"l;i ‘2(0' + 1E (10)

Wow, for an Incompressible fluild,

Mi:zO'

or

.and, ' . . B i . - . - ' - ——
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Therefore,

M 1 L — :2_ _
M &1(0+h)(u l)l-t'e ()

vhere t' is the thickness coefficient b'/a' of the actual
elliptic profile in the physical flow plans.

BEquation (11) represents a first-step improvement of the
Prandtl-Glauert approximation end reduces to that result in the
limiting case +'-—<>0. This improvement, however, is Incomplete,
for, as can be observed from eguation (105 the second term on the
right~hand side is of the third order (that is, proportional

to a' 2 and terms of that order are comtributed mainly by x|/3.
Since only the first two terms 1[; and 1[:2 were derived in refer-
ence 1, it 1s necessary to d.etermine the third term 1}:3 in order

to obtaln the camplete first-step lmprovement of the Prandtl-Glauert
approximation for Mc /M:L

DETERMINATION OF W 3

In order to obtain the third term \Lr3 in the expansion for the
stream function - -

1[.r=-UI'+\Ul+\lI2+\1r3+... (12)

1t 1s first necessary to obtain the expression for P41 /05 inclusive

of third order terms, in the neighborhood of the umdisturbed stream.
Analogous to equation {19) of reference 1, this expression is



* (u - )(Jlﬂan;vlﬂw 32) (u?‘ )[(7+I;)+(7+ 1)6;2 ])}/134‘21 H\'ﬁZUJ;%Y

-5 - 1)3 {15 e 7 m [(e—,r +15) 4 3(7 + 1(2.- 1)_”——— b (13)

When the expressidns for s ars:l pl}-g; given by equatims':;(lz)' and {13) are substltuted into the
begic differentlsl equation i . S - :

N 3 /o1 e\

?_‘_./ﬂ:‘_‘!i,, 20 | (1)
Si\p ox/ dt\p or /) :

and tq;ms of the third order;in the derivatives cof \!Jn are collected, the fellowing differential
equation for \li3 ic obtained: '

01

gTaT *oN NI VOVN




v + I e
*331 + }Ie*m = 2(”2 - l) ]ﬂm - lxrqra + [%(7 + l)(u.e - l) - K 5 l:l %m
|

ﬂ ¥y¥oxx + *m‘?"zr

( 5-_‘_(7_,.1)"“2-1 —Iw

E 7+l)u -1

+ ﬂE‘lL(uE—l)EI:l:w AR

' + \JI7T+1i- 7’+
\u2 2 -
w2

L(r +4) + (7 4 1)(u - 1)“_5 v 20 + D2 - 1)“)——*111 (15)

This differential equation can be expressed in a convenient form far solution by malking use of the
affine transformaticn

)(“2_ \—1 (2 -1)3 e

{ns 1\..2['1 -1k T
15+ {7+l L:?’-r.l._)-t-:j\i 1)
22

I:zx

y =Y

"

and by introducing a new stream function ¥, where

¥ = Wy

g1eT *ON N4 VOVK

T




Then equation (15) becomss

a1

Pty _e(pa )( Pt m\[I*zx)+\u -l){'1+"(7+1)|.12(p. '1]“'*1;‘1’*13

alatr N
~

+ ('7 + 1)“1 = -')}"if 1x‘|"rly‘i‘*m

. | -
+ %1’2:‘]:(14,%@2_1)&57 +7) =7+ _l)(yﬁ - 1)] +-;-6,2 - 1)2 {15 : (7T+ 12 Ea7+ 15) + 307 + {42 - 1)}

am

, . I - ~\ . . :
dor w0 s D2 - D]+ 2t + DGE - 1) j)ﬂﬂe;wm (26)

Again, ag in reference 1, it will be found that the mathematicel analysis will be considerably
gimplified Dy working with a nonanalytlc camplex potential w*3(_z_,:-.") instead of its imsginary

part \lﬁ* As shown in reference 1, \!.f* is the Imaginary part of am analytic function w¥ (z)

wharasa 1‘1* t8 the imagina»y nart of o nn'nn‘nn'l-v-Hr- function :rh' {-r -7\ T+ gt he mwnhaﬂ'had

that the real parta of these complex functions are notr to be in'berprateél ag velocity potentials bub
only as functiane thet rendsr the emalysis olegant epd simple. The following ldentitles can be
eanlly verlified:

g1IcT " OoM NI VOVN
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Yoy = %(sz - Wop = Yo + Vo)
= I.P.i(w2z - "'22)

1, - -
= o\V2zz T Y2EZ T Yoz * 222)

r;)é.
4

I.P.1 Youg ~ w2§z.'>

1 —_ - —
Voye = Ei(wzzz + BWyyy + Vg = Vpgg T BWppy - Wezi')

= I.P.( ey + EWEZE + WEEZ)
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where the asterisk has been dropped. Then

v, By
le

lxx = '%{(le - -ﬁl'z')g(wlzz - ?122)
1 - \2
""Z(wlz - Wlfz') I'P'lez
U

2 1 —
1y Vige = Ez(wl + le) ( tzz WJEE)

1 : - \2
= E(wlz + wli) I.P.Wlzz

‘I'lx“’zxy + ‘I’laqr“’Ex = ';'I‘P'(“lz - "1v/< czz T ‘*'eitv:)

g(wlzz * ~1£E)I'P'("2z + Wez)

1 -
leWExx + “’lxx}l’Ey = E(wlz + wl.'z')I‘P '<w’£zz T BWpyg + wEE.'z')

- /
“I P (ipz ~ Tizz) (Ve - ¥3)

\!f\h\lf (lz lz)
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By means of these identitles and by substituting for Vo, from
sequation (29) of reference 1, equation (16) cen be written as

28 1328 ~(6+2) (i, = o) (Vigz ~ Fazz) * 2 (Vs woz)(Vizz + V173)
'_L - .

7

(o R) (Wt w2££> <wlz * ﬁl’z’) +2 (WQZZ ) Wﬁz) (wlz' i 1“\;:LE)
+ .‘.ll.d [:;(ug + l) +{o+ 3)(!12 - 1)]W1z2W1zz
. .i*: {8(o'+ 1) + 2.2+ 1)+(;.E - o+ (0 +2) (o 1%)]} ﬁ122"':|.zz

+ -;-' [(cr +'2)2(|.L2 - l) +alo+3) (@2 + l)]wlzﬁl'z'wlzz (17)

where \!f3 is the imaginary part of wp. From eguation (33) of

reference 1
ll L . l doe [
LA =*§(l~12 - 1)[—0’2' zx-rlz2 + (o + l‘)wlwlz + F(z)]

where F(z) is a .fumction, the form of which is decided by the
boundary conditions but need not be given éxplicitly at Shis point.
When the expressions for the derivetives of Wy are inserted lnto

equation (17), then



8 =
" _l3zz 3

(u lz) 36‘2 1ze) U(“h)c“e wl\lz lzz)

+E(0;L)(2'l/ Y1z -l ‘:) Ugh@z—l);l'- l) iz zz

+

4+

.
a(n+h)(ﬂg l)z 1z( “'1zz +(a;6h) Q_‘a (——2)_ Virzs

rg 7 |.\2—I, A - 7 vy g . N
EE"‘ U+84} Fe_l}whzﬁﬁi_gzguj @2'1)(5“31 (122) u{6+3) E—lz wlzg)

"I'I' 2 fadn - -
-———'—(‘UB) (p.g l)( wlz) 3 2+1+ {55’0‘+1)+ 2(,2 } [ (}c-z—h]k-—d—rla)](up-l)}“__

1{3 3
g-.-ig{—d-&h}(ge - _) ,g(l__l, +l};l (u_ .‘z (18)

This diffcrential equation can be integrated by inspection without difficulty. Thus the general

polution is

9T

QTST 'ON NI VOVN




28 = "37 16 l) 12; 1zz '—("’_'2_' 1) 2y Py +E(U_—3t&')_ 6“2 - l)iﬁlwlzvlzz * 9_(:%&')'(“2 i l)":l.-‘;l:'i.f3

~U+b'612-l)1?-3'+6+;@3-1)w3‘ (arh)e(ug 1) 2. U§a+h (2 1)'z"' 2

1lzz

g-g-g-g—:'-)-pe 2 -(g—i'—l-’t—-(p -l)wlw ARTRET {* +11) m -l

+ tr.r(|.12 + l)]z':wl; - %é .8(0 +2)% 4 I;E +2(30 4 8) (v +2)] (p.e - l)} Wz fwlze dz
¢ (z) + Gp(E)

vhere 0,(z) and Gu(Z) are arbitrery anslytic functions, respectively, of only = and %

to be determined by the boundary conditione. The boundary conditione to be satlsfled are thad
at the eurface of the ellipse, 5 = O,

gT2T *ON NI VOVK

(19)

{20a)

It
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and at infinidy, 1 = w,

a¢3 U
2.3 a0 20(D)
ox oy

and that the trailing end of the major axis be a sbtagnation point.
It may be noted that the result represented by equation (19) is

not restricted to an elliptic profile but ls valid for an arbitrary
80lid boundary.

Agein, as in reference 1, the most direct way to impose the

boundery condition, V¥, = I.P.w, = O at the surface of the solid
i 3 3 2

18 to utilize the “polar" varisble § of the z'-plane. Thus, for
the elliptic profile according to equation (39) of reference 1,

W) = ¢ cos (€ + 1)) - 2R cos { - 2R (sin § + {) ]

s (21)
v oo Eﬁ__ _ 2R sin § _,__2_3;,, cos § + 1
1z 1laz ¢ sin ({+1) ¢ sin(l+1) |

where, from equation (6)

z=ccos ({ + 1)
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Just as in reference 1, it is a simple matber to supply the
functions of { needed to satisfy the boundary condition at the
gurface of 'bhe ellipse in the z-plane. For exsmple, at the surface
where 7 cos (Pf i) = cos {€ - 1\)+ By use of equations (21)
equation (195 then becomes

+ (p ~1)e [cos (£-10) - cos (¢ = )}y, F,

. ﬂlatﬁ(p?- 1}02 {c.os (£ - 1) [cos (- 1) - 28 cos
--2§m (sin§_+§)] - cos (§-1)~).[cos (t - ) -2% cos {
] e%; (sin ¢ « g)] } V1

¥ %—c{h(cw 3) + (30 + 8)(;:2-1)] [cos (¢ - 1) '? cos {

- i—R-a, (sin ﬁ-}j) -cos (- ik.)+-§3 cos ¢ +-§3;z (‘ein §+§)]wlz2

+0’+1L6_Lg l\l sin _iﬂ_a_;xlcos_z-i;i_
c sin (E-40) ©  min (¢ - 1)
_ =R sin ¢ +-2-§u. coes§+l]F

¢ gin (¢-40) ¢ sin (- iA)

(equation continued on next page)
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+ cg—u(gz- l)c [cos(f"i)\.) -? cos f-%éco (sin £+ )

- coe (¢~ 1)+ cos ¢ +§§; (sin ¢ + §)JFZ

" _(_v.i%i)f(f- 1)c? {[coq (F - 1) -?i cos f-%ﬁg (sin 54-5)]2
- foos (- 23+ cos g--?i; <si_n'g ;'g)]e}wm

+ 9-(-;’?6”—1"—(” -l)c {cos (f - n)f 1+ ———E—El-z—v—

" pin (_t, - 12)

2R cos {+ 1 : } ‘ &R sin ¢
e o <£-£>]'°°s « ”“’[ T ot (T- 1)

__Z_R@ cos £ + 1 }Pw 2 §0‘+k) (2_ l)[' sinf

¢ sin ({-1) ¢ gin (f - 1)

L R cosE+l LR sin £ 2R, cos § + 1 Wy,
¢ gin({-1) ¢ sin ({-1A) ¢ sin ({-1r)

+ %—g[&+ (7q+ 8) (p.2 - 1)] [cog (£ -.n) - cos (¢ - i)")]wlz3

4
16 ¢ sin (£ - 1)

1 r8(r:r+2)2+ 02+2(c+2)(3c+8)](“2-1)} FE_..EE_L__

-Q—R-or. cos §+-l SR sin {
¢ gln (E-10) ¢ s;n({’,-ik)

e -
"R cos { + 1 2 dz
* % (_t,-n)]JS e g™ 22



where

4
2 ) -
[ wlza%zzd't choﬂ(§+n) B“(Bin§+§)-—-cos§+——amh%.1 cos (f+ 1x)
ds.p. ol 2 cos {f + D) + 1
IR® 1Re i cos (§+ﬂ.5-1
+ 5T 0B (¢ - ) +——al2 ein (£ - 1A) +28 cosh A - sinh 24 log
- 3 2 cos (L+1)+1
2
. . c o2 cosh A * 1
o
+—l@—-2conhl——h§-m21 ginh ) + 21 coshh--?'— Binhexlog-——-——-mh)”l
of . 2 cosh A -1

- 21 pinh A log (-1 sinh x)]}

and 8.P., the lower limit of integretion, denotes the stagpation point. By means of the followlng
Pormila {6..“&451 on (44) of referemce 1) for the complox velacity (with regerd to ﬁf only) in the

physical Z-plane:

o d
LI A at 3 _ar .=
pl“éa - 3) o a af  ax 3!‘,(" %) _(E“)

gTer ‘ON &L VOVN
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equation (22) can be shown to fulfill the boundary conditions, not
only at the solild surface, 7 = 0, but also at Infinlty, n = m;
moreover, the trailing end of the majJor axis (&= =z, n=0) 18 a
stagnation point. In order to satlsfy the boundary conditlons,
however, a number of singularities of the nature of doublets have
been Introduced into the fleld of flow. These unwelcame singu-
larities are ceused by the factor 1/sin ({ - iI\N) and are located

at the exterior points z' = Re"” or Cl =1r and {, = x4+ Ir.

They are removed by the addition of doublets in such & mammer that
the sut of the reslidues at a pole is Zeroc. The lmages, moreover,
of these superimposed. singularities in the conformal circle of
redius R must be included in order to insure that the boundary
conditions are preserved. As en example, consider the expression

24 | (25)
gin (¢ - 1In)

where the function H({) is regular everyvhere in the finite region
extorior to the circle of radius R (y=0). Then; In order to cancel
the resldues at the poles _f,l = i} and §2 = g +IL and to preserve

the boundery conditions at the solid and at infinlty, the following
oxpression must be added to the right-hand slde of eguation {22):

- %‘H(ik) (cot -t‘—-m;l)“- cot gi#)-ég(ﬂ+ 1) (ban ¢ ;‘ix - tan E -ej_x (26)

By means of thie eoxpression the additional terms can be caslly
obteined In order thet W3 be reguler everywheore in the finite

reglon exterior to the conformal circle of .radius R in the z'+plane
or to the elliptic profiles in the z-plane and Z-planc. An
exemination of squation (22)immediatoly yields the following equsa-
tion for H(E)s : '
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E(L) = g—g—)i(pe - 1)6)" [— sin ¢ +<'1, (cos ¢ + l)] fﬁ'(g) +%9- cos (¢ - i)\.)wlzé

- (o l*)"l‘"'lz]‘f%g {8(‘” 2)2+ [P+ 20+ 2) (304 8)_](u2 - 1)}[— sin ¢

¢
+ & (cos _t,+l)]e)'
S.P.

Vlze 'Ez'g af (27)

whore, from equation (43) of reference 1,

F(E) = --ac cos (¢ - i)\.)w -2(0+k)ic sinh A sin {wy, - {0+ b)w w,
+ 2b(g+4)e (sin £+§) (28)

Now, the introduction of the foregolng singularities induces
a finite velocity at the tralling ond of the majJor axis of the
elliptic boundary. This velocity, obtailned by means of equation (2k)
and expression (26), is

613 "VB) hic sinh )\ [ﬁ(n) - B =g lh 22
2

+ [H(:: + 1) + H(x - nﬂ;—i—:—;—i

Then, by means of equations (27) and (28), with terms of higher
order ‘than the third neglected
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Lo L e 2f2 _.\2_ b
50 ug ?3)5_3 = 2h(a+h) (p l>a+b

- 150%(3 - log h)(ne - l) {8(0 + 2)%

+ [c2 + 20 + 2)(30 + 8)}(;;2 - 1)} b

a4+ b

In order to maintain (&= x, n = 0) a stagnation point, the
followlng expression, the imaginary part of which vanishes
for =0 and for 17 = o,

(%(o‘ + WE(2 - 1) - =(3 - Log b) {8(0' ¥ 2)?

2
b
3 af (30)

a

+ [0'2 + 2(o + 2)(39' + 8)_](;42 - l)})

must be added to the right-hand side of equation (22). Finally

then, the complete expression for —re-—e--—'w3 1s given by the right-

: . N
hend side of equation (22) and the expressions (26) and (30).

’,

2
EQUATIONS FOR (E—%) AND pl/p
plU

The oompconents u3 and v3 of the wveloclty of the com-

Prossible fluld in the physical flow plane Z are calculated by
means of equation (24). Since, for. the purpose of the present
paper, celculations ere performed along an ultimately infinitely
large contour, the developmenta for U3, and V3 in the neighbor-

hood of infinity are sufficlent. Thus, by use of the complete
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expression for w3, the development of the complex velocity

L u3 - -i-v in the meighborhood of infinity is glven by
plU ] 3

= ~ich +5.;LB +Bp logg‘) b ‘2—‘:-’-"”—
u3 3 3 z tall 1 &/\a+b z’2een
= laCf—— —-—-+1orD ga{———-—-

a+b , a+b Z.lL c.r; \a+b

AT
6(54‘1‘).:2:2 2'q+ ‘e e {(31)

2= 20041202 1) 13- 208 12 - 1) {o(o+2)2
« 16® (o + 2)(30 + 8)]03"_ 1)}

By =20 - 2) oo + 70 4 0) (@ - 1) (130"’. + M 32)]
282=-- z-l){8(0+2) + o' +2(0‘+2)(30'+8)J(p. -.:.)}

0= 2o+ 1o + (2 - 1)
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g
]

%(0’ + h)(pg'- 1)2

I
f

Lo + 0202 - 1)

From equation (31), it follows easily that

e G 1 b\ N2/ » 1\ 1
2—u—3-=1aA z‘-}--—'—-iccB +By log —+C L z'a-—-;—;—
plU a+ z'/ N 1 a a+b 7 1€ ea'fl,

r(32)

/ e/ ,
-ior.Bl+Belog-]2-C b z"'+-—];,.;--,31-
a a+ b z - e‘:n
' 2
-iaD(b 2t )L
\a+'b Zl}-l- ea'rl

2
+Em-6b (b)zle'—];;;-—]-;-+...
a+bfya+d 2,46211

s
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Then _
-—E—( - iv \=-5£A———b ) r(l-p.)z -(l+p.)}—]}-
P03~ 3jT 27 | z'|on

2

i EATAR) 2 1i1l
5={By + 3B, log )(a_+b) [( Bz ( +p)z‘2]e‘ﬂ
1a /b \2 2 1

2 ° (a+b) [l+u)z (1 - p)—s ]271

e b NE 12 - (1 e )2
2 2+ b i B z!h‘__ezﬂ

' 1
%ﬂ? oL, - a+'b} — 'b) [(l wz! +(l+p.)-z-—-];-é-;l-+. . s

(33)

From equation (48) of reference 1 and equation (33), therefors, tho
development in the nelghborhood of infindty of the complete complex
veloclty, inclusive of terms of the third order, is gliven by

s 325 -

ot o )b e

—éc]{:ilbdrb)h}gl-u)z‘z-(uu) 1}%}“[(2 ab+b
2

CGE'D)]G'E .2/ [(2 a+b

A S

&(,ﬁ - (o + ¥)

EE(ﬁm-%;);[<ab+b>2} [(1 wlz! +(l+“)z‘2] + 0 v e

{34)

+

;T(u iv)=-1=- igco+-;—5¥i.+h(u -l>(c+h)

+

+

+

N

4

+
'_l
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From equation (34),

0
(Bi‘-ﬁ) (plU) (u- iv)(u+iv)

o O
21|l 2 b (b ) Yy 1\ _2iapf b
== -1 D . -
+e:£n [(“ )a 572 “la+b z z:h_ _621-]” a+b

+-(,;2-1)(0'+l|-)(———) j( z'2>- ; ab+b+ r%(1.:,?'-1)(cr+k)

+]Eﬂm 6;—1—_5 a+b }( z|2 F s e e (35)

Now, by definltion

pu_ _ 1
plU—U\'!fY

and . : . . L
1y

(o
(o
b4
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Hence

2 2
! !
Yy +V¥y _{ra 2
e p,U
)

and. by means of equation {17) of reference.l for -E-}: and. egua-
tion (35),

o} 2
-—l-=l-52 u.2- )[l+- 2. l)(c'{.h)aib*.:dﬂ(azb) }(z' -%—,-)

o)

" 2
.F% 2-1)(“1;)(;%_1))](2,2_;%)_;% 2.2 -a_b+b
- e -l)(cr+h)+lEGta- 2 aib)2}<z'2+;%-)+ RNES

CATCULATTION OF THE LIFT

In a comprossible flow as in an incompressible flow, the lift
is glven by i

L, = plUPc
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where I‘c is the circulation round the profile and vhere, by

definition,
. oo
pc =9§(u aX + v aY) = R.P.gﬁ(u - iv) az
)

Now, 47 is glven by equation (7b), and from equations (34) end (36)

1 et 2 b
E<u iV)= ki 1|J.G+ qu'{'h-(l.l _l)(0'+)+)a.+.b

+ %A(ali_b)e] [(l-p.)z'-(l+u)%,;(u2~l>(z'-gz'—;)]+ PP

Then, because only terms that-involve dz'/z' contribute to the
line integrel, it follows that

2 1 /Y
I‘c = LaRUW a,E. + -Jé(pe - l)(o + 11-)% + rgA(g)]

or if A 1is replaced by its definition (see equation (31)), it
follows that

T, = b0 cr,[l+ ([4 -1)(c+lp)R 64( o+ 1%)2(;&

/ 2
+ l(3 - log 4) \ue - l) {8(0 +2)% 4 to® +2(0 +2) (30 + 8)] (;_;2 - 1)}) P_:]
8 RZ
(37)
If, according to the correspondence equations (9), b, @, and R

1 -
are replaced by -]—‘b’, -};a.', and R' + l—g-—'*b’, respectively, then
B B
for the actual ellipse in the physlcal flow plans,

-
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. i 0
I‘c-.-. LR Wa'y + 210D ! [(l- B +%6.\2 - l)(cr-t- L) +}3-2-(13'(6 +’+)2(p.2 - l)

+ -38=(3 -log k) (u2 - l) {8(o'+2)2+ E52+?(c+2)(3o+ 8)] (ue - l)}) Pp-l%-;]

Since the circulation in the case of incompressible flow 1s

I‘i = bR 'Ua

the ratio T, fPi or- Lc]I'i 1s given by

L, Lo L g{ - ]
-1—'1-=‘:j‘:|;=u+1+ (P- l)+l{_(7+l)(|~" l) i

+ —P'——_-th' )(l(p. -1)(o‘+1+)2 —(3 log L) {8(o‘+2)
+ (ue-l) E2+2(o+2)(36+8)]}) (38)

vhere t' ie the thickness coefficient b'/a' of the actual
elliptic profile in the physical flow plane. Equation (38)
represents a sSecond-step improvement of the Prandil-Glauert
approximation and reduces to that result when +'=-20. In refer-
ence 1 a first-step improvement of the Prandtl-Glauert approxi-
mation for the ratio I'c F"i was calculated and is represented by

the first two terms on the right-hand side of eguation (38).
Table I shows values of the ratio L IL:!. for the first-step and

second~step improvements, for various values of the thickness
coefficient +' and the stream Mach number My (with 7 = 1.4

for air). Figure 2 shows the corresponding gr_aphs with M, as
absclssa and Lc fI‘i as ordinate. An examination of these graphs
shows that below the critical stream Mach number M., the main
effect of compressibility is already given by the Prandtl-Glauert
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term and the first-step improvement and that large differences
between the first-step and second-gtep improvements do not appear
until well above the critical stream Mach number. :

In reference 2 the ratio L, /L:L was calculated for an elliptic

cylinder by the method of Poggl. This result, restated in the nota-
tion of the present paper, is

L = 1 3 C -' o2
L A Tl R R AW LT
Ly 24 i1-%' 1-% l+% (1 -1 t
1+t%' 2 V1 +t' + V1 - ¢’
-\ ; ; log - oo e (39)
1 -1 1-% Vl‘i-t' ‘Jl't'

and must agres with equation ( 38) insofar as the terms common to
the two developments are concerned.. If; then, equation (38) is
expanded according to powers of Ml and equatlon- (39) ls expanded

according to powers of %', +the two oxpansions are found_to agree
and yleld

Lo 2 2., 1, 2 2
i—;:l+%Ml %‘Ml'b +E(.l-logll-)Mlt + oo

CAICULATION OF THE MOMENT

For the purpose of calculating 'bhe moment the following two
equations are needed. From eguations (7)

2
c 23 2

- iy - —_——g e} .
8( w)TE Z
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and from equations (34) and (36)

2}
2iq {2 .\ D (b- ) }( 2 1
+ —=pjlp -1 +C 2! G ——
9211 [ /a+b a+b g 12

T 2 *
Jieo /2 (V[ b 12 7 b [ 2
?T—]p 32 l)[a+-b+)+(u l)(0‘+}-l-)<a+b}](l+u)z

N I 1=
+ (l ulz'e] eanr"-[a_i_b
2 b 2 b 2
-l)(0'+14-)—-—— (L-w)2z2 -
a+bd _

+(l+u)—2-]+. .

By means of these squations and equations (8), (35), and (36),
equation (5) for the moment M, about the origin ylelds the

following result:

u%f-s—> 62 222202 ) o (2 +l,(a+m]

plfD 2)
+ 4B, + 4By log Z}(&Hb);




3k NACA TN No. 1218

Again, replacin ¢, and o according to the correspond~

ence equatloas %9) yields

. }4_ N 2
2 ) -1 o 1. o~ 1 2
M, = ﬂpana'c' B %“pl at " (o +4)p'" = 357 at " {8(0’ +2)

+ E:'2+2(c+2)(36+ 8)}(;;2-1)} Jl.og -Eé-,w 1:8(2.024;7U+l+)

+ 6.30'2 + kllq + 32} (pg - l)])b e

where B; and Bg have been replaced by their definitions.
equation 31.) Now, for an incompressible fluid,

(See

My = noy

The ratio Mc!Mi for the actual elliptic profile in the physicsl
Flow plane therefore becomss :

M 2_ . ,. T
oy - B 1(16(0 +2)% 4 (92:- .l') E,z-* 12(g +_:2)‘2] - {8(0 +2)2
M, 32w S . ! .

l'b'

(u -1) (o2 +2(c+2)(3a+8)]} 1ogli-> i | (40)

Rguation (40) represents  the ccmplete first-step improvement
of the Prandtl-Glavert approximation for the ratio of moments Mc /Mi

and reduces to that result in the limiting case +t'~—> 0. Agailn,
as In the case of the 1ift, the ratlo Mc/Mi was calculated for

an elliptic cylinder-by the method of Poggi (reference 2). This
result, restated in the notation of the present paper, is

|2 t . r
1+1M 19 /l+tlog-l-,-2Md+... (h1)
(l-t:)E\l-t' A et

l-’-zlo
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Just as in the case of the 1ift, equations (40) and (L1) must agree
insofar as the terms common to the two results are concgrned. Thus ’
if equation (40) is expended according to powers of M;“ and equa-

tion (41) is expanded according to powers of t', <the expansions
are found to agree and yield

M
— l+‘:!;412 "EM:LEt'Q +M12t'2 log}-—+ . s @

My 2 TR : -

Table IT shows velues of the ratio M - lMi calculated by means

of equation (40) for various values of the thickness coefficlent '
and the stream Mach number M,, and figure 2 shows the corresponding

graphs with M; as abscissa and Mc lMi as ordinate.

Contrary to the 1ift, which i1s a locallzed vector, the moment
is a nonlocallzed vector, the magnitude of which depends on the
point about which it 1s teken. In the present paper, this point
is the origin of coordinates. If, now, the moment about the
origin 0 is denoted. by M,., the moment about any other point P

in the plane of flow is then glven by
MCP = MGO - r:[llc

vhere r 1s the length of the pérpendlcular dropped from the
origin 0 %o thg 1ine of action of the 1lift vechor Lc through

the point P. If this expression for the moment 18 examined in
relation to the moment sbout the same point P in an Incompressible
fluid, it will be seen that the ratio of moments MCP/MiP again

begins with the Prandtl-Glauert approximation but that the higher

terms of the approximation depend on the point P about which -
‘the moments are taken. Figure 2, cansequently, should not be

used to compare the various momsnt, curves with the Prandtl-Glauert
approximation; rather, the significant result is the compressibility
effect on the movement of the center of pressure from its position

in en incompressible fluid - a gquantity that is independent of the

point about which moments are taken. -
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EFFECT. OF COMPRESSIBTLITY ON POSITION OF CENTER OF PRESSURE

If'-"cc' and Gi' denote the distance of the center of pressure

from the center of the ellipse in the compresslble and lncompressible
fluids, respectively, then

cc Mc L:L
————— oy —— ———
6y My L,

Also, C4 = .—g—(l - t')3 therefore,

Cc - C 1-tﬁfc_1._1_ L ()
2a 4 \Mj_ L. '

By means of this formula and equations (38) and (40) it is possidle
to calculate the effect of compressibility on the positlon of the
center of pressure for various thilickness coefficlents and stresm
_ : . . C. = C
Mach nuwbers. Table ITT shows values of the iatlo —9-2———-:1-', the
: a

negative values indicating movement toward the center of the elliptic
proflle. Figure 2.shows the corresponding graphs with the stream

- Ci
28
chord as ordinate. Note that in each case at same high sufbsonic
gtream Mach mmbez-, the movement of the center of pressure roverses.
(See table IIT whers sign changes from negative to positive.) This
Peculliar bshavior of the center of pressurs 1s probably caused by

Mach number . Ml ag abacissa and the ratlo in percent

the term log -‘-;—;- in the equaetion for the moment M, and indicates
the need for additional terms In the expansion for the streanm



function 1 %o insure greater accuracy in the range of high sub-
sonic gtream Mach mumbers.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronaubice
Laengley Field, Va., October 2L, 1946
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L, F’i {second-step improvement)

Q
BREISFIRBGELES

t' =0.20 {6 = 0.05 %' = 0.0 {4' = 0.15 {%* = 0.20
0057 1.0059 1.0053 § 1.0056 1..0058 1..0060
0235 1.0243 1.0217 1.0228 1.0238 1.0248
0557 1.0577 1.0511 1.0539 1.0566 1.0592
.1 1.1113 1.0972 1.1032 1.1093 1.1152
1.148 1.1285 1.1373 1.1460 1.1547
1.1956 1.1672 1.1799 1.1926 1.2052
1.2556 1.2153 1.2337 1.252% 1.2711
1.3337 1.2760 1.3033 1.3312 1.359%
1.4388 1.35k6 1.3961 1.43g2 1.x831
1.5860 1.14600 1.5259 1.5957 1.6677
1.8k6 1.609k 1.7212 1.8427 1.970k
2.1679 1.8407 2.0524 2.2901 2.5455
2.8605 2.261h 2.7hh0 3.3121 3.9397
k. 6064 3.3327 14.930% 6.9353 9.2308 .
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TABLE II

39

RATTO OF MOMENTS FOR COMPRESSIELE AND INCOMFRESSIBLE FLOWS

M, j Mb,Mi
t'=0.05 | t'=0.10 | t'=0.15 | t'=0.20
0.10 1.0050 1.0051 1.0051 1.0050 1.0049
.20 1.0206 1.0207 1.0208 1.0206 1.0202
.30 1.0483 1.0486 1.0488 1.0478 1.0467
4o 1.0911 1.0920 1.0925 1.091k 1.088
45 1.1198 1.1212 1,1222 1.1208 1.1158
<50 1.1547 1.1570 1.1587 1.1570 1.1499
.55 1.1974 1.2012 1.204h 1.2023 1.1923
60 1.2500 1.256L 1.2625 1.2605 1.2461
.65 1.3159 1.327% 1.3392 1.3385 1.3177
.70 1.k003 1.4222 1.4469 1.4511 1.k211
5 1.5119 1.5580 1.6147 6358 1.5946
.8 1.6667 1.778 1.9294 2.0135 1.9707
.8 1.8983 2.2438 2.7499 3.1211 3.1895
.90 2.2942 3.9315 6.5741 8.9709 10.4271
TABIE IIT
MOVEMENT OF CENTER OF PRESSURE AS FUNCTION OF STREAM
MACH KUMBER AND THICKNESS COEFFICIENT
c.~-C
c 1
¥ B =
'b':OsO‘j 'b'=OnlO 'b'=0-15 t1=0020
0.10 1 -0050 -0.0001 =0.0001 -0.0002 -0.0002
.20 1.0206 -.0002 -.000k4 -.000 -.0009
.30 1.0483 -.0006 -.0011 -,001 -.0024
Te) 1.0911 -.001L -.0022 -.003% -.00k9
A5 1.1108 -.0015 -.0030 -.00k7 -.0067
.50 1.1547 -.0021 -.00L40 -.0063 -.0092
.55 1.197h4 -.0028 -.0054 -.0085 -.0124
.60 1.2500 -.0039 -.0071 -.0113 -.0167
.65 1.3159 -.0048 -.0092 -.01k9 -.0223
.70 1.4003 -.0062 -.0117 ~.0193 -.0296
S5 1.5119 -.0076 -.0139 -.0239 -,0382
.80 1.6667 -.0080 -.0135 -.0257 -.0452
.8 1 8913 -.0019 .0005 -.0123 -.0381
.90 2.20h2 Ooh27 0750 0624 0259

NATTONAL ADVISORY

COMMITTEE FOR AERONAUTICS
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(a) Z-plane, {(b) z-plane.
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i | I ! !
Second-step lmprovement
2.5. I | i | {
First-step 1mprovement.—ﬂ

Prandtl=Glauert approxima tion%f
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Q
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/ A 2
//:r/ - Mer Ol
1.0 e L 0 g~
0 4 . . .
2 M, 6 8 1.0

NATIONAL ADVISORY
(a) t' = 0,05, COMMITTEE FOR AERONAUTICS

Figure 2,= Ratio of 1lifts and ratio of moments ln compresslble
and incompreesible flows and movement of center of pressure
in percent chord as functions of stream Mach number, Center
of pressure movement rearward with lncreaslng stream Mach
number, }
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2.3

$Second-8tep imi:oveinent.-

F:Lrs%-steto im vement

Prendtl-Glauert approximation] ,I >

2.0

Lo/La

G

LC/L/ or MC/M/

15— - Mo/My

co = ci
2a

/%7 Mer
1.0 e ] L
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- M, NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS
(b) t' = o. 10.
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Figure 2,- Continued.

Fig. 2b
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2.5 econd-step improvement
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Figure 2,- Continued,
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Figure 2,- Concluded,
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i addition, a second-stsp improvement is obtained 1n tha Prandtl-Glsusrt spproximation for

y ths 1ifting force acting on slliptic cylindsrs., By means of thsss two rssults, it is

. posaibls to calculate the sffect of comprassibility on tha position of cantsr of pressurs
ss s function of ths stream Mach numbsr. s
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