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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE NO. 121.8" 

EFFECT OF COMPRESSIBILITY AT HIGH SUBSONIC VELOCITIES 

ON THE MOMENT ACTING ON AN ELLIPTIC CYLINDER 

By Carl Kaplan 

SUMMARY 

An extended form of the Ackeret iteration process is utilized 
to calculate the compressible flow at high subsonic velocities 
past an elliptic cylinder. The angle of attack with respect to 
the direction of the undisturbed stream is assumed small and the" 
circulation is fixed by the condition that tho trailing end of the 
major axls.be a stagnation point. The expression for the moment 
acting on the elliptic cylinder is derived and shows a first-step' 
improvement of the Prandtl-G-lauert approximation. In addition, a 
second-step improvement is obtained in the Prandtl-G-lauert approxi- 
mation for the lifting force, acting on'the" elliptic cylinder. By 
means of .these two results it'is possible to calculate the effßct 
of compressibility on the position of the center of pressure- as • 
a function of tho thickness coefficient and of the stream Mach 
number. Tables and corresponding graphs are included to illustrate 
numerically the theoretical results derived. For example, It is 
found that, for an elliptic profile of thickness coefficient 0.15 
and stream Mach number 0.8o, the center of pressure moves rearward 
a distance 2.6 percent of the chord from its position in the 
incompressible flow. 

INTRODUCTION 

The present paper is concerned mainly with the calculation of 
the effect of compressibility at high subsonic velocities on the 
moment acting on an elliptic cylinder. The method used is an 
iteration procedure, credited to Ackeret, which proceeds from the 
Prandtl-Glauert approximation as the first step and successively 
improves it in a systematic manner. . The details of the Ackeret 
iteration process have been described in reference- 1 and, therefore,- 
only material essential to the present paper will be repeated. 

The main purpose of the Ackeret iteration method is to 
linearize the nonlinear partial differential equation (for the 
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Telocity potential or the stream function) that governs the steady 
two-dimensional flow of a perfect Gompreseible fluid. This 
linearization is accomplished, hy assuming the development of the 
stream function "ty,    say, to be of"the form 

f = -uy + ^(X,*) + *2(X,Y) + \{f3(X,Y) + . . -        (1) 

where U is the velocity of the undisturbed stream and X and Y 
are the rectangular Cartesian coordinates of the physical flow 
plane. Equation (1) is essentially a development of the stream 
function around a uniform stream in the negative direction of—the 
X-axis. For the purpose of defining or controlling the iteration 
procedure, the function ty , is regarded as amll compared with 

the preceding function \}/ . and the derivatives have a similar *. 

relationship. Then the total index decides the 'order of the term; 

for example, . \]/_    is ,of the same order as   \|/, ^    or   tyvij/o • . The 
accuracy of this iteration method clearly depends .on the degree to 
which the assumptions are satisfied. In the case of slender bodies 
without stagnation points, the first few steps may be expected-to 
yield a good result - In the case of bodies with stagnation points^ 
the accuracy of the calculations obviously depends on the number 
of terms \j; • derived, each new term reducing the extent of the 

region of inaccuracy in the neighborhood of tho stagnation point. 

In the; treatment of the. various, equations that result, frcm . 
the'linearization; of the fundamental differential. equationby' 
means' of the AcjJceret; iteration process, it is cqnyenient to intrp- . 
duce an affine transformation of the'physical flow plane.. Kile 
affine transformation reduces the differential equations tio bo 
solved to a Laplace equation and to Paisson equations. In tho 
performance of this simplification,, the statement of tho boundary 
condition at tho solid $y moans' of the velocity potontial bocomos 
very complicated. Fortunately, howover, tho statement of-^fcho 
boundary condition by moans of the stream function, namely, ^ = 0 
at the-solid,•is invariant for the affine.transformation; there- . 
fore, the 'use of tho stream function throughout tho "analysis of 
the present paper is to be preferred. . Tho choice 'of. the ollipsb 
as the solid'boundary is dictated t?yr the 'property, that an affine... 
distortion öf ah ellipse leads to another ellipse; therefore, the . 
analysis can bo conducted entirely.in the affinely distartod plane : 

•and the results thus obtained 'Halted to the actual olliptlc profilo 
by means of simple correspondence relations. 
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MDMEÜKT FORMULA 

Specifically, the problem treated herein is to obtain an 
improvement of the Erandtl-Glauert approximation of the effect of 
compressibility on the moment acting on an elliptic cylinder set 
at a small angle of attack in a uniform stream. Let Z denote 
the physical flow plane, z the affinely transformed plane, 
and z' the plane of the circle into •which the affinely distorted 
profile is mapped by a conformal transformation. (See fig. 1.) 
As in the calculation of the resultant lifting force given in 
reference 1, it is a great labor saving device to choose a large 
circle in the z'-plane to correspond to the control contour in the 
physical Z-plane during the calculation of the moment and also to 
choose as independent variables the polar coordinates Ee^,-;! 
of the z'-plane, with 

-it 
; -     •••...- .  - z' = Re  * . (2) 

where £ = £ + it] and E is the radius of the conformal circle. 
(See fig. 1(c)0 

Since the large circle in the z'-plane corresponds to a large 
control ellipse in the physical flow plane Z, the expression for 
the moment must contain, in addition to the usual momentum integral, 
a term involving the integration of the pressures around the control 
ellipse. This additional term is necessary because the normal 
vector to an ellipse does not pass through its center* The general 
vector expression for the moment in a compressible fluid Mj, with 
respect to the origin, obtained from reference 2, is 

where brackets and parentheses denote vector and scalar products, 
respectively, and 

r    radius vector from origin 

n    unit normal vector ' 

q. velocity vector of fluid 
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ds   element of length along control contour 

p    pressure of fluid 

p    density of fluid 

The positive direction of the unit normal vector n is from the 
control contour toward the origin, and the line integrals are taken 
positively counterclockwise around the control contour in the 
physical flow plane. The unit tangent vector t and the unit 
normal vector n thus form a right-hand frame; hence, a positive 
valixe for the moment corresponds to a counterclockwise rotation 
(fig. 1(a)). 

It is easy to verify that equation (3) can "be rewritten in 
the form 

Mc = -^.P.tpp(u - iv)2Z dZ + ffp(p + |pq.2) or2 (h) 

where u and v are the components of the velocity vector along 
the X-axis and Y-axis, respectively, and 

Z = X :+ iY 

Y2-=-ZZ-*l£' + Y2
- 

2   2   2 q.    = U + v 

Note that if the fluid is incompressible 

12 P + rf*l « Constant 

according to Bernoulli 's equation; therefore, the second integral 
vanishes identically and yields the usual Blasius formula for the 
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*y 

moment. By use.of the a&iabatic relation "— = (—) ,    equation (h) 
Pl     \P1/ 

becomes 

Mc = •hi^pRX. 
plfp  t 

IT) z az + gP^ 
-m^ 

1 fi/pO 
+ 2 p fcu, 

dr (5) 

•where the subscript 1 refers to the starting conditions at infinity 
and 

IT    velocity of undisturbed fluid at infinity 

M,    Mach number of undisturbed stream at infinity V3fc^S 

c    velocity of sound in undisturbed fluid 

7    ratio of specific heats at constant pressure and constant 
volume, for air 7 = 1.4 

For the purpose of calculating the line integrals indicated 
in equation (5), it is necessary to express the integrands as 
functions of the independent variables ^,T[    of the z'-plane. 
In the case of the elliptic profile in the z-plane, the conformal 
transformation to a circle of radius B with center at the origin 
is 

z = c cos(£ + iX) (6) 

•where c ia the semifocal distance and X is defined by any one 
of the following geometric characteristics of the ellipse; 
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a as o cosh \ 

"b = o sinh X 

E - ~ceX 
2 

where a, "b, and E are, respectively, semimajor axis of ellipse, 
semiminor axis of ellipse, and radius of conformal circle. Now, 
the affine transformation iised in connection with the Ackeret 
iteration process is 

X m   X 

where 

1 

It follows that 

and 

sF? 

1 + n 1 - ji- 

1 + u    1 - u _ 
dZ = —^=dz + — — dz 

where a "bar indicates conjugate-complex quantities. Since the 
control contour is a large circle in the z'-plane, TI =* Constant 
and d£ = d£ » dg. Then, by use of equations (2) and (6) and the 

relation R = -ce , the expressions for Z and dZ . on the control 
d 

ellipse "beoome 
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Z = ce r\+X 
(1 + H) 

. 'e2,l+2X 
+ *'    +(l-(i) 2n+2X, 

(7a) 

and 

dZ = 
cs ,T)+X 

(i + n) 
2.e

2n+2x + (1 - n) C)J z'    \    dz_ 
2TJ+2X )    z' 

•where    z ' = e    = 

Similarly, 

2   - 
r = ZZ 

1 - n2 2  1 - u2-2  1 + n2 _ -j—,. + —JL, + -£—zz 

(7b) 

and on the control ellipse, i\ = Constant, 

2 oV"^ dr ._  / 2 
-<^=->^->(^- 

,2 

4T)H4\ 

• ^•i).-W-e--iX dz' 

z' 

the 

(8) 

p 
Expressions for ——(u - iv) and p. /p as functions of 

variable z '{= e~^J,    expanded in powers of l/e1*, are given by 
equations (^6) and (47), respectively, of reference 1. By the use 
of these equations, together with equations (7) and (8), it is easy 
to evaluate the right-hand member of equation (5) by noting that 
only terms involving dz' /z ' contribute to the line integrals. 
The result thus obtained is 
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M. Is. f. . ^j^i- [^ - „v -1) u* •!)<.• «i(^y 
•where a is the angle of attack in the affinely distorted plane z 

and ö = (7 + l)(n - l)« If the q.uaiitities e,    "b,    0,    and- a 
are replaced "by a ', V, c% and a* of the actual profile in 
the Z-plane according to the correspondence equations of refer- 
ence 1,  namely. 

a » a' 

b « iv 

2 
C      at c>2 •t- 

2      , 
U     "  1    .2 V2 

a = 

(9) 

the moment about the origin on the aotual ellipse "becomes 

M, = rtp-.A'c'^ - ijtp.T^a'b ,2(cr + i^)ii— 
n  - 1 

(10) 

How, for an incompressible fluid, 

K- » 0 *£ 
or 

and 

H = 1 

Hj, = np^a'c'' 
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Therefore, 

M -    -  • «2 

- = n  - i-(0 + h)(]xk  - l) t' 0 (H) 
M.  "   8n"    ' "    *1 - t*2 

where t' is the thiclmess coefficient b'/a' of 'ttle actual 
elliptic profile in the physical flow plane. 

Equation (11) represents a first-step improvement of the 
Prandtl-G-lauert approximation and reduces to that result in- the 
limiting case t'—»-0. This improvement, however, is incomplete, 
for, as can he observed from equation (10), the second term on the 
right-hand side is of the third order (that is, proportional 

to a'b' )    and terms of that order are contributed mainly by i|/_. 

Since only the first two terms ty     and ty2 were derived in refer- 

ence 1, it is necessary to determine the third term ty~    in order 

to obtain the complete first-step improvement of the Prandtl-G-lauert 
approximation for MQ/M^. 

DETERMINATION OF \|/ 

In order to obtain the third term \{r.~ in the expansion for the 

stream function 

ty =  - UT + tyx +^2 +ty3 + . . . (12) 

it is first necessary to obtain the expression for p-, /p, inclusive 

of third order terms, in the neighborhood of the undisturbed stream. 
Analogous to equation (19) of reference 1, this expression is 



-,., *_  3 

,-|(,x2 - l)3 |l5 + (7 + «H2[(27 + 15) "+ 3(7-+ l)t2-- l)Jf-*|- +  •   •   • d3) 

Vhen tne errpressldtos far   TJ/ easl   p./p   giveoa "by equations".;{12) and (13) are substituted into the 
"basic differential equation 

s 

^      /o,    >,lA •      ^      /Pn    >nlA 

dx\pox/   öY\P   öiy sj 

a: 
and tejrtiis of the tbira order In the dorl-ratlTos of ty     are collected, the following differential s: 
equation for   >L    ie obtained: 

3 to 
H ... o> 

» >• 



• 1 

+3XX + •*' v - 4* - ip*3LL!2**+[i(7+4*. $. JM 
U2 'ITS 

- [aä - ly |2 + (7 +1)(i/ -1)| 2^2 - y 1+ (7 + 1% - y I 

 ~~~'— "W * v/ - • • 
^2        |_ 

•L-iY- 

xl^MlY+lSJ 
/I           ^o 
'-*         TP- 

0 

I-1 

to 
M 
CD 

A *._2 
|(r + if) + (r + i)(,x2 - i)j [5 + 2(7 + i)(n2 - 1)   IV-^ "+1XS (15) 

This differential equation, can be expressed la a convenient form for solution by malting use of the 
affine transformation 

y « h 

and by introducing a nev stream function ^*, where 
i-1 



Then equation (15) "becomes 

^3x*+^3yys2k£-i)(n^^^ 

/ 2 _ ^ . • /*.n\f..2.Vl Ali» »I*    . ifr*   il*t  \  «/ 2  ,\ •*£.    -I**    -I 1 

^•.^l^.-i}^ +7) - (7 + i)(n2-1)] +|^2"i)S £5 +^ + DiiaE27 +15) + 3(7 + x)(n2-1)] 

-,-»\ 

j{7 + k)  +'(7 + l)(n2 - l)] |? + 2(7 + l)(n2 - l)]))**^8**^ (16) 

Again, as in reference 1. it -Hill "bo found that the mathematical analysis -will "be considerably 
einplified "by working -with a nonanalytic complex potential V*„(E,Z) instead of its imaginary 

part i|f* . Aa shown in reference 1, i|f*  is the imaginary part of an analytic function v*,(z); 

vHaTeäS     Vj*_      is  thS   ^tnacrlna-^nr TWJ+   nf  n  -nnrianFil •q-M n. -f linfftltyn     •£/&-(%%}. T+. irmprh TIB   ffflmhnfl"ty.flfl 

that the real parts of these complex functions are notl to "be interpreted as Telocity potentials "but 
only as fiaictionß that render the analysis elegant and .simple. Ihe following identities can "be 
easily verified: 

as 
o 

ÜO 
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*ix=iiK" viz) 

1/ 
*L7 = ifa + **) 

•lay-äfrl««**^) 

^2x = ^-(w£z + W2Z  - *2z  " ^2z) 

-I.P.(v2B + V^) 

V = i(W2z  - w2i " *2z + ^2z) 

- I*P-i(W22  " W2z) 

^2^7 = i(W2ZZ  " W2ZZ  " *2ZZ 
+ ^2iz) 

= I.P.i^2zz   - W>i£) 

*2xx = tl(V£zZ 
+ 2^zi + w2zz  ~ ^22Z  - 2*2Zz  " *SZz) 

= I.P.(v2zz + 2v2zz- + vggz) 
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where the asterisk has 136011 dropped.    rJ?hen 

V^xx + *ln&y = |(W1Z 
+ »Lä)1-?-^« + 2w2zz + v£5z) 

+ ^^'^lzz  " *LM)(
W

2B  " v2z) 

VVW = t^lzzfl/ " %2) 
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By means of these identities and "by substituting for w2z- from 

equation (2<?) of reference 1, equation (l6) can "be "written as 

8 

H2 
~V3Z2 = "(cf 4 2) fez " w2z) (vlzz " *lzz) + 2(w2z + v2z)(vlzz + *lzz) 

' (a + 2) (V2zz + W2zz)(Vlz + *lz) + 2(w2zz " w2iz)(«iz " %l) 

+ ia [a(n2+ l) + (a + 3>(n2 - l)KzSzz 
4 

+ i |8(or+ 1) +a2(n2 + l)+(|x2 - l) [cr + (cr+ 2)(a + 4)]J v,/^ 

+ 
2 
£ ['a +• 2)2(^2 - l) + a(a + 3) fc2 + ^Kz*lzvlzz (17) 

where   ty      is the imaginary part of    w.,.    ITrom equation (33)  of 
reference 1 

v2 = ~|(ix2  - l)[^\z
2 + (»•+ ^Vlz +3p(z)J 

where F(z) is a .function, the form of which is decided "by the 
"boundary conditions "but need not he given explicitly at this point. 
When the expressions for the derivatives of Wp are inserted into 

equation (17), then 



£?**•& • lK-u80/f^ - 4 (v.). ^t2 - >-kfc,« i^)z 
H 

cr(ö +!)•)/ e     \ 

8 ^^I-^M^.*2^-^» 

ff(PjfJO / 2 
8 t2 - #4^),+l5^H2 - *) fe2 )L^ 

/ l   \    J    ^ 

+ Ui&+iM'u2-iWiis
+iV 

i2j2\2 y\- -y v  / Viz /„ 
fl8^ u * — '  a; 

•3 
S3 

This differential equation can "be integrated by inspection "Without difficulty. Thus the gpneral    ? 
solution, is ,_, 

to 
H 
CD 

• I      I 



• I 

2 
8 C  (2    AJ2.      2 fl/a   ,V     _     (T(CT + 1<-) /S     \_~ tr(cf + ^)/2    ,^    -   2 

/-I* l6 

^-i)^+^-i)v.^^-^S,,-^^^«s^a g + ^/2 
8 

p 

Jo 
00 

cr(tf + 3) 2_      2   (a + h)2/2   -V - 1   £&,   i,\/2   ^ 

+ cr(^ + l)]zwle3-^ |8(a + 2)e+ [a£ + 2(3a + 8)(tr + fi)](n2-l}Jv^ 2 - vlz dz 

+ G^z) + G-E(z) (19) 

where (^(z) and G^,(ä) are arbitrary analytic functions, respectively, of only s and £ 

to "be determined by the boundary conditions. The boundary conditions to be satisfied are that 
at the surface of the ellipse, TJ « 0, 

V° (20a) 

** 
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and at Infinity, t]  = co, 

3 __      3 

"dx       ay 
£0(1») 

and that the trailing end of the major axLs "be a stagnation point. 
It may be noted that the result represented "by equation (19) is 
not restricted to an elliptic profile "but is valid for an arbitrary 
solid "boundary. 

Again, as in reference 1, the most direct "way to impose the 
boundary condition, ty = I.P.v = 0 at the surface of the solid, 

is to utilize the "polar" variable £ of the z1-plane. Thus, for 
the elliptic profile according to equation (39) of reference 1, 

w = c cos (£ + IX) - 2R cos £ - 2Bcc (sin £ + £) 

vr 
lz 

w 
i£ 
4.1 
dz 

sin £ 2B   

c sin (£ + IX) 

2E cos £ +i 

>  (21) 

c  sin (£ + IX) 

•where, from equation (6) 

z = c cos (£ + i\) 
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Just as in reference 1, it is a simple matter to supply the 
functions of t    needed to satisfy the "boundary condition at the 
surface of the ellipse in the z-plane. For example, at the surface 
where r\  = 0. cos ( £ ~  IX) = cos (£ - iX). By use of equations (21) 
equation (19; then "becomes 

+ |(n2 - l)c [cos (£ - iX) - cos (£ - iX)}vl2Fz 

i2|^l(Jx2 - l)c2 <cos (£ - iX) [cos (£ - iX) - s£ cos £ 

2^a (sin £ + £)] - cos (£ - iX) {cos (£ - iX) - s£ cos £ 

2|a(sin ^ + t)]}vlzvlzz 

|£Ji(cr+3) + (3(J+8)(n2-l)]|Ios (£-iX)-fp cos £ 

2B- (ein j+f) -cos (£-iX)+~ cos £ +%x, (sin £+£)]vlz' 

a + kf 2   ,\ 2B        sin £       _ 2R      cos   £ + 1 
c    sin(£-iX)    c      sin(£-iX) 

2R        sin £ 
o    sin (£ - IX)       c ~ sin (£ - iX)_ 

2R      cos £ + 1 + —a   P 

(equation continued on next page) 
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8 
±2t(n2-l)c LsU-iX) ~ cos f-^a (sin £ + £) 

2K 2S cos (£ - iX) +— cos £ +—a (sin 
c       c £+£>] F. 

IH^V-I)^ cos (£-iX) • cos f-~a (sin £+£)]2 

!2E       2R ~12 "j 
cos (£ - IX) cos £ a (sin £ + £)  bv Izz 

+ soz-^2 - i),, LoeCf-^f-x^—^i g(cr+ *Q /].2 
16 "'" " 

2R  cos £ + 1 
 a _  

c  sin (£- IX) 

2R  cos £ + 1 

cos 

[   • c sin (£ - iX) 

£R   sin £ 
(£- iX)|-l + - 

c sin (£ - IX) 

c  sin (£-iX)_ k^^^2-1)^--1 0

 sin (£ - iX) 

2R  cos £+ 1  2R   sin £    2R 
—a ^ + —2  —, —ct, 

cos £ + i 

°  ein(£-lX) c Bin (S-IX) c  sin (£ - IX) 
wlvlz 

crc j&j + (7cr + 8)(n2 - l)j [cos (£ - iX) - cos (£ - iX)]vlz
3 

~ <j~8(o- + 2)2 + [a2 + 2(a + 2) (3o + 8)] (n2 - l) j *2R   sin£ 

,c sin (£ - iX) 

2K  cos £ + 1  2E   sin £ 

c  sin (£- iX) c sin (£ -iX) 

2R  cos £ + 1 

c  sin ( £ - iX) 
viz T:4£ 

Us.P. U 
(22) 



nbere 

l£R 0R 2 cosh \ + 3. 
- 21 einh X log sin (£ + iX) 1 }> +c .«{cosh X + —-(«<*" 1) —-- sinh X log )   ?+c <<n 

c c2 cosh X * 1 

+ ~ ooBhX-^-o|2I 0inaX + 2it coshX-- Blüh 2X log •ooah X * ?" 
(* 02 c2    I . d coshX-1 

2i sixth X log (-1 Binh X) ]} 

o 
*i*   — d£=c 4cos (£ + 3*)---« (ein £ + £) — cos £+—ainliX log y- ~~  

ffe.P. d£ L c cos " +    ' * 

|o 

+ iß* coa ft -iX)Ä[2 sin (£ -IX) +2£ cosh X-l sinh 2X log COS ff * *) " 1 S 

. c2 c2    L COB (t + 3X) + 1 

and 3.'S., the lover limit of integration, denotes the stagnation point.   By means of the following 
fcasBUla (eq"uation (WO of reference 1) for the complex velocity (with regard to ijr.,   only) in the 

physical Z-plane; 

^->3) = 2^J=äk*3-*3) <*> 
H 
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equation (22) can "be shown to fulfill the "boundary conditions, not 
only at the solid surface, r\  = 0, hut also at infinity, r\ = »; 
moreover, the trailing end of the major axis (g= JC, r\  = 0) is a 
stagnation point. In order to satisfy the boundary conditions, 
however, a number of singularities of the nature of doublets have 
been introduced into the field of flow. These unwelcome singu- 
larities are caused by the factor l/sin (£ - iX) and are located 

at the exterior points z' = üRe  or £. = ±K    and to = rt + i^i 

They are removed by the addition of doublets in such a manner that 
the sum of the residues at a pole is zero. The images, moreover, 
of these superimposed singularities in the conformal circle of 
radius R must be included in order to insure that the boundary 
conditions are preserved» As an example, consider the expression 

^— (25) 
sin (£ - 1\) 

where the function E(£) is regular everywhere in the finite region 
exterior to the circle of radius E (^ = 0)-. Then, in order to cancel 
the residues at the poles £, = Ik    and £2 

= Ä +i^ an(i to Preserve 
the boundary conditions at the solid and at infinity, the following 
expression must be added to the right-hand side of equation (22): 

cot t'J* - cot ^~J- |sU+ i*) .(tea £-~ " tan £-^J (26) 

By means of this expression the additional terms can be easily 
obtained in order that v, be regular everywhere in the finite 

region exterior to the conformal circle of.radius I? in the z'-piano 
or to the elliptic profiles in the z-plane and Z-plano. An 
examination of equation (22) immediately yields the following equa- 
tion for H(£) :• 
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H(D=£~(n2- l)eX[- sin £ + a (cos f+l)][^)+~ cos (£-iX.)wl2
2 

in 
I dz 

+ a (coe £ + l)je^   I w.      — d£ 
(js.P. d^ 

(27) 

vhere,  from equation (I4-3)  of reference 1, 

1 2 
£(£) = ~^crc cos (£ - iX)wl2   - 2(of + if-)ic Binh \ sin £wlz - (cr + k)w^v-^ 

+ 2b(<j + l)-)a (sin t+£) (28) 

Now, the introduction of the foregoing singularities induces 
a finite velocity at the trailing end of the major axis of the 
elliptic "boundary. This velocity, obtained, "by moans of equation (24) 
and expression (26), is 

£_/        i \      1 
sinh \ 

[H(1X) +l(-iX)]— 
.2X 

cosh —• 2 

+ [H(K + iX)  + 1(« - lxjj—i- 
sinh -j 

(29) 

Then, by means of equations (27) and (28), -with terms of higher 
order than the third neglected 
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\2    b Sb-hL.-fr-'W-f a + b 

>(ü2 " l) (8(a ^g(3 - log 4)(n2 - l) \B(a + 2)2 

+ [cr2 + 2(c + 2)(30 + 8)K2 - i)"l _L_ 
J   a + b 

In order to maintain. (g s at, r| = 0) a stagnation point, the 
following expression, the imaginary part of -which vanishes 
for T) « 0 and for r\ = », 

(j(* + U)2(n2  - l)   - ~(3 " log 10  [e(ff + 2)2 

+  [cr2 + 2(a + 2)(3cr + 8)J(^2 - 1)])^7^ ^ (30) 

must be added to the right-hand side of equation (22). Finally 

then, the complete expression for -i w, is given "by the right- 
2  , -' 

|J- " 1 
hand side of equation (22) and the expressions (26) and (30)« 

EQUATIONS FOE f —j}  AHD p-Jp 

The components xu and v, of the velocity of the com- 

pressible fluid in the physical flow plane Z are calculated by 
means of equation (2lt). Since, for-the purpose of the present 
paper, calculations are performed along an ultimately infinitely 
large contour, the developments for Uo and v, in the neighbor- 

hood of infinity are sufficient. Thus, by use of the complete 
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expression for   w?}    the development of the complex velocity 

——(ix~ ~ —v, 1    in the neighborhood of infinity is given by 
Piu\3      n 3J 

P2U\p   \i y \* + 0}   z«eT}        \1     *      faa/\a + hy   z.2e ?1\ 

iaC A Y *£+ w_*_\2   1   +B L/*\2 

\a+ViE-2
a
2i 

•where 

E'-e-iS 

and 

A . |_(0 + ^2(^2 . i)2 +|-(3 - log k)(v? - l) (8(a + '2)2 

+  [a2 + 2(0- + 2)(3cr + 6)j(n2"- l)}    '" 

Bi= —U*" $ h(2*2 + 7c + k)+ 6*2 -x) t^2 + ^+ 32)! 16 / "• 

*-* 
{ji2 -'l) |8(o + 2)2 + [cr2 + 2(a + 2) (3a + 8)] (/ - i)| 

C = ^(0 + U)(«r + 8)(n2 - 1)' 
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D -i(a + k)(/ •- l)' 

16       N     J 

"Ercm equation (31), It follows easily that 

>PU3 2—si-loA. 11 
Z'-—j ia(Bn+Bo log-+C 

e p,U Va + l>/ V       zVfi1! V1     *      ~a      Aa + bj 

*      \/b   ^/.S^J^. 

Z'
£7«2n 

i\ l 

<^)Y-M 
+ Elna - 6 Y -J fz'    + —r]-r- +  •   • 

JA PlU \a + -bj \        z yer\ 

-^•^Hfe)af8+Ä£ 
laD 

•-th)tr*)a(1,e-^? 

>(32) 
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Then 

^3--3)=K^)2[(1-^'-(1+^fe 
^^:)^»)8[<1-'*)*'8-(1*^ iaj 

2 
1 

^)>->-2 - <-^ 
^ 

•  *  « 

(33) 

From equation (Ito) of reference 1 and equation (33) > therefore, the 
development in the neighborhood of infinity of the complete complex 
velocity, inclusive of terms of the third order, is given "by 

P2U 
(u-iv) = -1 

f + vJV    «'V a2T,L a + "b 

2  ^. + "b/ 
(1-H)z^-(1 + H). _1_1 + JL f h 

L^ 

K--^)]feft[(i-^+(i+^] + --- 
<3*) 
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Prom equation (3*0» 

(%$•$)**•»"">*>. 

^•3)(.*«fe)'](.*-^)-^^^^(-« 

+ -33/net- 6— 
2  \ a> 

Now, by definition 

^xw^y (35) 

and 

= -.%t 
pv 
p-jU   U X 
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Hence 

*X2+.*Y2   MV 
U2 

fBSLl 
V 

and "by means of equation (IT)  of reference 1 for   —-   and equa- 

tion (35), 

*¥ 

]>  
a + "b 

+  .   .   .     (36) 

CALCULATION OF THE LIBT 

In a camprossi'fale flow as  in an incompressible flow, the lift 
is given by 

Lc - PlUrc 
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where V     is the circulation round the profile and where, by c 
definition, 

T =WU dX + v dY) = R.P 'f - iv} dZ 
Now, dZ is given "by equation (7b), and from equations (3U) and (36) 

+ |A( 

Then, because only terms that-involve dz'/z* contribute to the 
line integral, it follows that 

T   = kiffij\i a i*t(*2-^ + ^H£fi 
or if A is replaced by its definition (see equation (31)), it 
follows that 

T = hitSUyL2^ ̂ ^-l)Ca + M| + ^(o + wV-l)S 

|(3 - log it) (n2 - l) |8(a + 2)2 + [a2 +-2(a + 2) (3a + 8)] {(i: 2-l)M^ 
E^J 

(37) 

If,  according to the correspondence equations (9) >    b,    a,    and   E 

are replaced by   -V,    -a',    and   E' +     •"••*XV,    respectively,  then 

for the actual ellipse in the physical flow plane, 
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Tc= lntR •UaV + S^Ja'b' 1(1- n) +^2 - l)(cx + k) + ^(ko+ k)2(»2 - if 

+ |(3 - los h) (n2 - l) ^(c + 2)2+\E
2 + 2{a + 2){3o + Q)](^-l)]j^ 

Since the circulation in the case of incompressible flow is 

r   = ^JtR'Ua1 

the ratio    T0fT^    or-  kg/l^    is given "by 

2 
x t 

+ (n2-l)|r2 + 2(a + 2)(3a + 8)]}j (38) 

•where t' is the thickness coefficient b '/a' of the actual 
elliptic profile in the physical flow plane. Equation (38) 
represents a second-step improvement of the Prandtl-G-lauert 
approximation and reduces to that result when t' —»0. In refer- 
ence 1 a first-step improvement of the Prandtl-G-lauert approxi- 
mation for the ratio Lc|3^, was calculated and is represented by 

the first two terms on the right-hand side of equation (38)• 
Table I shows values of the ratio I»c/I>4 for the first-step and 

second-step improvements, for various values of the thickness 
coefficient t' and the stream Mach number M. (with 7 = 1.^ 

for air). Figure 2 shows the corresponding graphs with M, as 

abscissa and I«c/Ljr as ordinate. An examination of these graphs 

shows that below the critical stream Mach number M^ the main 

effect of compressibility is already given by the Prandtl-G-lauert 
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term and the first-step improvement and that lar&e differences 
between the first-step and second-step improvements do not appear 
•until well above the critical stream Mach number. 

In reference 2 the ratio I«c/I<i was calculated for an elliptic 

cylinder by the method of Poggi. This result, restated in the nota- 
tion of the present paper, is 

h 
L., 

'c       -,       1„ 2 jl + 2t'     -01 + t1  ,           2               2  - t'2    T       1 — = 1 + =H,      -t- 2 log  + —- log — 
1 2^i_i-t'        1 - t'      öl + t*      (i-t')2 * 

i 
K8^ 2t' 

- t' 

!l + f 2 
1 - t* 1 - t1 log 

Vi + t' + Vi - t' 
jlHJ» !•*• »» JJV^H  • » 

yi + t • - \p. - t * _ 
(39) 

and must agree with equation (38) insofar as the terms common to 
the two developments are concerned. If^ then, equation (38) is 
expanded according to.powers of M-,  and equation (39) is expanded 

according to powers of t1, the two expansions are found-to agree 
and yield 

is = 1 +1^2 + IMJV + hi - log lj-j^t-2 + . . 

CALCULATION OP TEE MOMENT 

For the purpose of calculating the moment, the following two 
equations are needed. Prom equations (7) 

ZdZ 
C   c) ,2T)+2X 

16 

2 

(i + u): i—- ^r\+k}> 
z'2 U(l *g/ l z'2 \" 

U*2    eV^i. 
dz 
z1 

H-8)^-8)^ 
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and from equations (3*0 and (36) 

fll 
P 

i*^)2}H2*,2-(i+^] 
21a 

la 

7? 

+ (1-R> 
_1_1   la    [_b_ 
:,2J ^nLa+lD 

,2 

•^-^•«fo^-*** 

+ (1 + (j.) *i + . . . 

By means of these equations and equations (8), (35)f  and (36), 
equation (5) for the moment MQ about the origin yields the 

folloving result: 

M0 = «^JS^fe ^-^a -l) [8* (*2 + I)(B + M] 

+ I^-B-L + lffi2 log aj(a + b)y 
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Again, replacing a, b, c, and a according to the correspond- 
ence equations (9) yields 

Mc = «p^a'o'% - iap^a'ü-^o + h)t '2 - ^p^^— U8(a + 2)! 

+  j/ + 2(a + 2)(3<r+8)](,x2-i) j log—7+ J8(2a2+7o + u) 

+  (L3CT
2
 + lAcr + 32) ([i2 - 1)] ft '^ 

where B-j_ and B2 have been replaced "by their'definitions. (See 
equation 31*) Now, for an incompressible fluid, 

Mj « flpJua'c1"- 

The ratio Hc[i^    for the actual elliptic profile in the physical 
flow plane therefore becomes 

+ (p2 - l) [a2 + 2(cr + 2) (30- + 8)] } log f-J-^2 <to> 
,/ 1 ~ t 

Equation (i+0) represents-the complete firstrstep improvement 
of the Erandtl-Glauert approximation for the ratio of moments M /It, 

and reduces to that result in the limiting case t' <—I 0. Again, 
as in the case of the lift, the ratio M /M, was calculated for 

an elliptic cylinder-by the method of Poggi (reference 2). This 
result, restated in the- notation•of the present paper, is 

+^+^N^.-y* JJ£ = 1 + iwf + —-z—~^{r^-T7 1OS 7. - 2)K + • • •  CM) 
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Just as in the case of the lift, equations' (kO)  and (*kL) must agree 
insofar as the terms common to the two results are concerned. Thus, 
if equation (40) is expanded according to powers of M^  and equa- 

tion (il-1) is expanded according to powers of t1, the expansions 
are found to agree and yield 

— = 1 + hl±    - SM^f2 + M-^t'2 log — + . . . 

Table H shows values of the ratio Mc/Mi calculated "by means 

of equation (Mo)  for various values of the thickness coefficient t1 

and the stream Mach number M.p and figure 2.  shows the corresponding 

graphs with M-^ as abscissa and M JM, as ordinate. 

Contrary to the lift, which is a localized vector, the moment, 
is a nonlocalized vector, the magnitude of which depends on the 
point about which it is taken. In the present paper, this point 
is the origin of coordinates. If, now, the moment about the 
origin 0 is denoted.by MQ.., the moment about any other point P 

in the plane of flow is then given "by 

MOo = Mcn " 
rLc 

where r is the length of the perpendicular dropped from the 
origin 0 to the line of action of the lift vector L. through 

the point P. If this expression for the moment is examined in 
relation to the moment about the same point P in an incompressible 
fluid, it will be seen that the ratio of moments M^M^  again 

begins with the Prandtl-G-lauert approximation but that the higher 
terms of the approximation depend on the point P about which 
the moments are taken. Figure 2, consequently, should not be 
used to compare the Various moment curves, with the Prahdtl-Glauert 
approximation^ rather, the significant result is the compressibility 
effect on the movement of the center of pressure from its position 
in an incompressible fluid - a quantity that is independent of the 
point about which moments are taken. • 
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EBFECT..OF COMHSESSIBILIIY. ON POSITION OF CENTER OF EBESSÜEE 

If "C  and 0^' denote the distance of the center of pressure 

from the center of the ellipse in the compressible and incompressible 
fluids, respectively, then 

Also, C±  «=.-(! - t')j therefore, 

2LL2i . iJL^/Sa h - ii • (42) 
2a      h      \& \ 

By means of this formula and equations (38) and (kO)  it is possible 
to calculate the effect of compressibility on the position of the 
center of pressure for various thiciness coefficients and stream 

CG - C± 
Mach numbers. Table HI  shows values of the ratio  , the 

2a 
negative values indicating movement toward the center of the elliptic 
profile• Figure 2.shows the corresponding graphs- with the Btream 

cc " ci Mach number. M-,-' as abscissa and the ratio ——:  in percent 
J- •.. 2a     .   . 

chord as ordinate. . Note that in each case at. some high subsonic 
stream Mach number, the movement of the center of pressure reverses. 
(See table III where sign changes from negative to positive.) This 
peculiar behavior of the center of pressure is probably caused by 

the term log 777 in the equation for the moment Mc and indicates 

the need for additional terms in the expansion for the stream 
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function \Jf to insure greater accuracy in the range of high, sub- 
sonic stream Mach numbers. 

Langley Memorial Aeronautical laboratory 
national Advisory Committee for Aeronautics 

Langley Field, Va., October 2k,  l$h6 
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CD 

*L V- Lc/L ̂  (first-step improvement) hfl 
-    • ••          —^ 

(eeconcL-step jü^proYememt) 

, *    r              *s     s\r- .• _ f             n    "1 A -L   f               rt     n tr _i_  1            ä    r\t\ 

0.10 1.0050 

t • = 0.05 t • = 0.10 T;- S 0.x? t' = O.aj "D • = u.u5 "G -   =   U.JJU "D"  = u.x5 ü -   a   U.ÖJ 

1.0053 I.OO55 1,0057 1.0059 1.0053 I.OO56 I.OO58 I.OO6O 
.20 1.0206 1,0217 1.0226 1.0235 1.0243 1.0217 1.022Ö I.O23Ö 1.0248 
•30 1.0483 1.0510 1.0534 I.0557 1.0577 1.0511 1.0539 1.0566 1.0592 
-Ln 1=0911 1=0969 1.1021 1?1069 1.111^ 1.0972 I.IO32 I.IO93 1.1152 
.45 1.1198 1.1280 1-1355 1.1423 1,1485 1.1285 1.1373 1.146Ö 1.1547 
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.60 I.25OO 1.2739 1.2957 1.3155 1.3337 1.2760 1.3033 1-3312 1-3594 

.65 1.3159 1.3510 I.383O 1.4121 1.4388 1.3546 I.396I 1.4392 1.4831 
•70 1.4003 1-4534 1-5016 1.5^56 1.5860 1.4600 1.5259 I.5957    : 1.6677 
•75 1-5U9 1-5955 I.6715. I.7409 1.8o46 1.6094 1.7212 1.8427 1,9704 
.80 1.6667 1.8099 1.9*401 2.0*5$) 2.1679 1.8407 2.0524 2.2901 2.5455 
.85 I.8983 a.17'32 2.1^31 2.6513 2.8605 2.2614 2.7440 3-3121 3-9397 
.90 2.291*2 2.9548 3-5554 4.1042 4.6o64 3-3327 4-9304 6-9353 9.2308 - 
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TABLE II 

RATIO OF M0ME2JTS FOB COMERESSIBLE AMD HJCOMESESSIBIE FLOWS 

39 

«L H Mc/% 

0.10 1.0050 

t' = 0.05 t' = 0.10 t' = 0.15 t'  = 0.20 

1.0051 I.OO5I 1.0050 1.0049 
.20 1.0206 1.0207 1.0208 1.0206 1.0202 
•30 I.0483 1.0486 1.0488 I.0478 1.0467 
.ko 1.0911 I.0920 I.0925 1.0914 1.0880 
.45 1.1198 1.1212 1.1222 1.1208 1.1158 
•50 1.1547 I.I57O I.I587 I.1570 1.1499 
•55 1.197^ 1.2012 1.2044 I.2023 1.1923 
.60 1.2500 1.2564 1.2625 I.2605 1.2461 
.65 1.3159 I.3274 1-3392 I.3385 1.3177 
•70 1.1(003 1.4222 1.4469 1.4511 1.4211 

•7? 1.5119 I.5580 1.6147 I.6358 1.5946 
.80 I.6667 I.7789 I.9294 2.0135 1.9707 
•85 I.8983 2.2438 2.7499 3-1211 3.1895 
• 90 2.2942 3.9315 6.5741 8.9709 10.4271 

TABLE HI 

MOVEMEKD OF CEWTER OF ERESSUEE AS FUNCTION OF STREAM 

MACH NUMBER AND THICKNESS COEFFICIENT 

«L V- 
C    - C, c        i 

2a 

0.10 
.20 
•30 
.40 
•^ 
•50 
•55 
.60 
•65 
•70 
•75 
.80 
.85 
•90 

1.0050 
1.0206 
1.0483 
1.0911 
1.1198 
1.1547 
1.1974 
1.2500 
1.3159 
1.4003 
1.5119 
I.6667 
I.89I3 
2.2942 

t' = 0.05 t1 = 0.10 t1 = 0.15 V = 0.20 

-0.0001 
-.0002 
-.0006 
-.0011 
-.0015 
-.0021 
-.0028 
-.0039 
-.0048 
-.0062 
-.OO76 
-.OO80 
-.0019 

.0427 

-0.0001 
-.0004 
-.0011 
-.0022 
-.0030 
-.0040 
-.0054 
-.0071 
-.OO92 
-.0117 
-.0139 
-.0135 

.0005 

.0750 

-0.0002 
-.0007 
-.0018 
-.0034 
-.0047 
-.OO63 
-.OO85 
-.0113 
-.0149 
-.0193 
-.0239 
-.0257 
-.0123 

.0624 

-0.0002 
-.0009 
-.0024 
-.0049 
-.0067 
-.OO92 
-.0124 
-.0167 
-.0223 
-.0296 
-.0382 
-.0452 
-.0381 

.0259 
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(a) Z-plane. 
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(1)) z-plana. (©) i*-plan». 

Figur« 1.- Flow plane Z   with directions of tangent and noraal on control 
contour; plane z of affinely distorted profile; plane s* of olrole 
oonfonnally related to profile In z(-plane« 
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Figure 2.- Ratio of lifts and ratio of moments in compressible 
and incompressible flows and movement of center of pressure 
in percent chord as functions of stream Mach number.  Center 
of pressure movement rearward with increasing stream Mach 
number. 
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Figure 2.- Continued. 
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Figure 2.- Continued. 
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