UNCLASSIFIED

AD NUMBER

ADB805603

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to DoD only; Administrative/Operational Use; JAN 1948. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only.

AUTHORITY

NASA TR Server website

THIS PAGE IS UNCLASSIFIED

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

NACA

TECHNICAL NOTE

No. 1259

A GRAPHICAL METHOD FOR INTERPOLATION OF HYDRODYNAMIC

CHARACTERISTICS OF SPECIFIC FLYING BOATS FROM

COLLAPSED RESULTS OF GENERAL TESTS

OF FLYING-BOAT-HULL MODELS

By F. W. S. Locke, Jr.

Bureau of Aeronautics, Navy Department

PROFERTY FAIRCHILD Washington DNG I IPP ARY January 1948

CASE FILE COPY

TECHNICAL NOTE NO. 1259

A GRAPHICAL METHOD FOR INTERPOLATION OF HYDRODYNAMIC CHARACTERISTICS

OF SPECIFIC FLYING BOATS FROM COLLAPSED RESULTS

OF GENERAL TESTS OF FLYING-BOAT-HULL MODELS

By F. W. S. Locke, Jr.

SUMMARY

This report presents a simple and rapid method for interpolating the hydrodynamic characteristics of specific flying boats from a chart presenting test results in collapsed form. The method is graphical and will allow interpolation of the hydrodynamic characteristics for any combination of load or aerodynamic characteristics. To obtain the water resistance and porpoising characteristics of one specific case requires about 20 or 30 minutes[®] work. It is believed that the rapidity with which interpolations may be made will open up the way for comprehensive design studies of the influence of various factors on flying-boat performance.

INTRODUCTION

The general type of test to determine the hydrodynamic characteristics of flying-boat-hull models has been in use for some time. It has proved to be an exceedingly powerful tool for comparing the hydrodynamic characteristics of various hulls independently of any assumed air structure. However, the general test has several important disadvantages, which are:

1. A large amount of time is involved in accumulating the necessarily large amount of data.

2. A large number of charts are required to present the results of tests of one model; this makes comparison between different hulls awkward and time consuming.

3. The interpolation of the characteristics of specific designs is so time consuming as to make the cost of thorough design studies of the effect of various factors almost prohibitive. A large amount of effort has been spent in overcoming the first two objections. Methods have been developed (references 1 to 3) so that general tests of resistance, porpoising, and the main spray characteristics can be made almost as quickly as a specific test. The reduced number of results of all three types of tests are presented in collapsed form on a single chart (see fig. 1, for an example) which covers all practicable combinations of load and get-away speed and thus retains the advantages of the general test for comparisons independent of aerodynamic characteristics. A large number of these hydrodynamic summary charts may be found in reference 4.

The third criticism mentioned may well be the most important. A short survey of the literature reveals that only four design studies of the effect of various hydrodynamic factors on the performance of flying boats have been published (references 5 to 8). There are a number of others which give little or no attention to the influence of the hull on performance. Of the four design studies mentioned, only the last, by Olson and Allison, may be considered to be at all comprehensive. This paucity of design studies may be taken as a clear indication of the excessive time required to determine analytically the characteristics of individual hulls as applied to specific aircraft. It is the purpose of the present report to attempt to overcome this difficulty by presenting a simple and rapid method for the interpolation of the hydrodynamic characteristics of any specific flving-boat design from the type of chart previously developed showing the results of general tests in collapsed form.

The proposed method might be considered as an adaptation of slide-rule technique. It consists essentially of plots of constantspeed contours for various aerodynamic characteristics (given in terms of the hull beam) plotted on a chart of trim against the appropriate load-speed relation for the displacement or planing ranges. These plots are scribed on transparent sheets which may be superimposed on charts showing the hydrodynamic characteristics of hulls. The location of the transparent sheet relative to the chart of the hydrodynamic characteristics is controlled only by the setting of the wing relative to the hull. The transparent sheets were designed to cover all practical combinations of gross load and wing design.

The most important disadvantage of the chart (fig. 1) showing the results of general resistance, porpoising, and spray tests of c

NACA TN No. 1259

one hull is that the curves are unfamiliar to the designer in both shape and magnitude. This fact will, of course, seriously impede attempted comparisons between hulls. It is believed, however, that the interpolation system presented in this report should aid in overcoming this obstacle. In the past year and a half a fairly large number of complete interpolations have been made, and the time required to get the water resistance and porpoising characteristics of any specific case appears to be about 20 or 30 minutes. In addition to being a rapid method of interpolation, the significance of the shape of the curves and their magnitudes in collapsed form will assume more meaning to the designer through use of the method. In time the collapsed curves will undoubtedly be almost as easy to interpret as the more conventional types of plotting.

SYMBOLS

The following symbols are used throughout this report:

- C_{\star} load coefficient (Δ/wb^3)
- C_{Λ} initial-load coefficient (Δ_0/wb^3)
- C_{p} resistance coefficient (R/wb³)
- C_{vr} speed coefficient (V/\sqrt{gb})
- C_{M} trimming-moment coefficient (M/wb⁴)
- C_{Y} longitudinal-spray coefficient (X/b)
- C_v lateral-spray coefficient (Y/b)
- C_Z vertical-spray coefficient (Z/b)

$$C_{\rm L}$$
 aerodynamic-lift coefficient $\left(L/S \frac{P_{\rm a}}{2} \nabla^2 \right)$

where

Ā

 \triangle load on water, pounds

 \triangle_{0} initial load on water (gross weight), pounds

w specific weight of water, pounds per cubic foot

b beam at main step, feet

- R water resistance, pounds
- V water speed, feet per second
- g acceleration of gravity (32.2 ft/sec^2)
- M trimming moment, pound-feet
- X longitudinal position of main-spray point of tangency with reference to step (positive forward and negative aft of step), feet
- Y lateral position of main-spray point of tangency, measured from hull center line, feet
- Z vertical position of main-spray point of tangency, measured from tangent to forebody keel at main step, feet
- L total aerodynamic lift, pounds

S wing area, square feet

 $\rho_{\rm tr}$ mass density of water, pound-seconds² per foot⁴

 $\rho_{\rm s}$ mass density of air, pound-seconds² per foot⁴

- absolute angle of attack of wing-flap combination when trim is zero (measured from zero lift), degrees
- ^aL=0 angle of zero lift of wing with respect to its own reference line, degrees
- i angle of attack of wing reference line with respect to tangent to forebody keel at main step, degrees

$\mathbf{i}_{\mathbf{w}} = \mathbf{\alpha}_{\mathbf{o}} - \mathbf{\alpha}_{\mathbf{L}=0}$

trim angle (angle between tangent to forebody keel at main step and free-water surface), degrees

DEVELOPMENT OF CHARTS

As already explained, the interpolation process is based on the graphical use of special charts. The development of these charts is based on the fact that at any speed and trim angle during take-off, the water-borne load of a flying boat is given by the relation:

4

NACA TN No. 1259

2

÷

$$\Delta = \Delta_0 - L \tag{1}$$

The lift component of this relation can be put into terms of the aerodynamic characteristics,

$$\Delta = \Delta_0 - \frac{dC_L}{d\alpha} (\tau + \alpha_0) \frac{\rho_a}{2} SV^2$$
 (2)

and if both sides are divided by wb^3 to obtain the usual NACA seaplane coefficients, equation (2) will reduce to:

$$C_{\Delta} = C_{\Delta_0} - \frac{1}{2} \frac{\rho_a}{\rho_w} \frac{dC_L}{d\alpha} \frac{S}{b^2} (\tau + \alpha_0) C_v^2 \qquad (3)$$

This equation is not an approximation, but will give the true load on the water if the true values of the various terms are substituted into it. Thus, the propeller slipstream and ground effect can be accounted for by the proper adjustment to $dC_L/d\alpha$ and α_0 and the effect of the elevators by alteration to α_0 . Other changes of the aerodynamic characteristics can be similarly taken into account.

Displacement Range

In the displacement range, by following the reasoning of reference 2, equation (3) may be transformed to

$$\frac{c_{v}^{2}}{c_{\Delta}^{1/3}} = \frac{c_{v}^{2}}{\sqrt[3]{c_{\Delta_{o}}^{2} - \frac{1}{2} \frac{\rho_{a}}{\rho_{w}} \frac{dC_{L}}{d\alpha} \frac{S}{b^{2}} (\tau + \alpha_{o}) c_{v}^{2}}}$$
(4)

From this relation, contours of constant velocity on a chart of absolute angle of attack against $C_V^2/C_\Delta^{-1/3}$ can be constructed for specific values of the product $\frac{dC_L}{d\alpha} \frac{S}{b^2}$ for any given value of C_{Δ_0} . Such a chart is shown in figure 2, which was constructed for C_{Δ_0} .

equal to unity for simplicity in converting it for use with other values of $\rm C_{\Delta_{-}}$.

It will be noted that when the absolute angle of attack $(\tau + \alpha_{o})$ is zero there is no wing lift, and hence at any speed the load on the water must then be the static displacement. The values of C_V corresponding to any value of C_{Δ} other than that for which figure 2 was constructed can be determined by multiplying the values of C_V shown by the sixth root of the particular C_{Δ_o} under consideration.

Further, it will be seen that if the definitions of the coefficients are substituted in equation (4) the beam will drop out completely. Thus, for the chart in figure 2, it becomes necessary to use $\frac{S}{b^2}$ also on the basis of $C_{\Delta_0} = 1.00$. This may be done by calculating the beam which would give a value of C_{Δ_0} of unity for the weight under consideration. A simpler step is to remove the beam and substitute $S/(\Delta_0/w)^{2/3}$ for use in the parameter; this has been done in figure 2.

A study of reference 9 showed that $\frac{S}{b^2}$ was usually between 15 and 25 for most flying boats, with a few as low as 10 and as high as 40. Since $dC_L/d\alpha$ will be somewhere near 0.100 for most modern

designs, the charts were constructed for a range of the product $\frac{dC_L}{d\alpha} = \frac{S}{(\Delta_0/w)^{2/3}}$ of from 1.0 to 4.0.

Planing Range

In the planing range, again by following reference 2, equation (3) becomes

$$\frac{\sqrt{C_{\Delta}}}{C_{V}} - \frac{\sqrt{C_{\Delta_{O}}} = \frac{1}{2} \frac{\rho_{a}}{\rho_{W}} \frac{dC_{L}}{d\alpha} \frac{S}{b^{2}} (\tau + \alpha_{O})C_{V}^{2}}{C_{V}}}{C_{V}}$$
(5)

Again, contours of constant velocity on a chart of absolute angle of attack against $\sqrt{C_{\Delta}/C_{V}}$ may be prepared for specific values of the product $\frac{dC_{L}}{d\alpha} \frac{S}{b^{2}}$ and $C_{\Delta_{O}}$. Figures 3 to 5 show such charts constructed for $C_{\Delta_{O}} = 1.00$. The reason more than one chart was prepared for the planing range was to prevent too much overlapping of the various contours. If the definitions of the coefficients are substituted

contours. If the definitions of the coefficients are substituted into equation (5), it will be found that the beam will not drop out as it did from equation (4). Hence, the values of S/b^2 used in reading the charts will be the specific ones under consideration.

If a value of C_{Δ_0} other than unity is under consideration, it is again necessary to convert the scale of C_{∇} at the bottom of each of these charts by multiplying by the square root of the particular C_{Δ_0} . This accomplishes conversion because at zero absolute angle of attack the water-borne load is the static gross weight, and is, of course, known.

Before either of the charts for the displacement of planing ranges may be conveniently used for interpolation, transparent copies should be prepared. This is most simple to do by making a photographic film positive.

· USE OF CHARTS

The charts just described can be used to interpolate the hydrodynamic characteristics of any proposed seaplane or flying boat from a chart showing the collapsed results of general tests of a particular model. Each type of interpolation will be described separately, but certain steps apply to all types.

In the displacement range, the trim track is fixed by the assumption that the sum of the available moments is not large enough to allow deviation from the free-to-trim track. Hence, the first step will always be to find the trim intersection with the constant-speed contour, at which point the value of $C_V^2/C_{\Delta}^{-1/3}$ may be found. Since C_V is known, C_{Δ} can be found.

In the planing range, the available moments are usually large enough so that any trim track within reason may be assumed. However, it is necessary to assume some trim track. Whenever stability limits are given, it will naturally be desirable to keep the assumed trim track within the range of stable trim. Basically, there are four different applications in which these charts may be used, and each application will be described individually in detail.

Effect of Wing and Flap Setting

Suppose the hull beam, gross weight, and wing characteristics have been selected by the designer from other considerations. The effect of the setting of the wing relative to the hull and the flap relative to the wing can be determined as follows:

In equation (3) the only term that will be affected if the angle of the wing or the flap setting is altered is $(\tau + \alpha_0)$. Changing the flap setting only will change the angle of zero lift of the wing-flap combination and the value of C_L but will max not affect the lift rate $dC_L/d\alpha$, at least to a very good first approximation. Hence the first step is to determine the value of α_0 for the assumed aerodynamic characteristics.

In the displacement range, the speed scale at the bottom of the chart must be converted by multiplying the values of $C_{\rm vr}$ shown by the particular values of $C_{\Delta_0}^{1/6}$. Next, the value $(dC_1/d\alpha)(S/\Delta_0/w)^{2/3}$ must be calculated. The transparent of displacement-range chart is now laid on top of the chart of the hull characteristics so that the value of α_0 corresponds to zero Start with the lowest speed and find the value of $C_V^2/C_{\Delta}^{1/3}$ trim. at the intersection of the appropriate constant-speed curve on the transparent chart with the free-to-trim track having the same load coefficient as the chosen C_{Δ} . Next, calculate the value of C_{Δ} ; it should be very slightly less than $C_{\Delta_{c}}$ but close enough to it so that a second trial will not be worth while. Use the next speed, and determine the value of $C_V^2/C_{\Delta}^{-1/3}$ at the intersection of the constant-speed contour with the free-to-trim track for the value of C_{Λ} found at the previous speed. Again, the new value of C_{Λ} should be slightly lower than the assumed value. Repeat at increasing speeds by using at each speed the value of C_{Δ} found at the preceding ۲

speed for interpolation purposes. It will only rarely be necessary to make a second trial at any speed. Finally, for the various values of $C_V^2/C_{\Delta}^{1/3}$ find the values of $C_R^2/C_{\Delta}^{2/3}$ at the proper value of C_{Δ} . Since both C_V and C_{Δ} are known, C_R can be found.

In the planing range, multiply the values of C_V shown at the bottom of the appropriate chart by the specific $C_{\Delta}^{1/2}$. After using the specific value of S/b^2 to find the parameter $\frac{dC_L}{d\alpha}\frac{S}{b^2}$, lay the transparent chart on top of the chart of the hull characteristics in the planing range so that the chosen value of α_0 corresponds with the zero-trim angle. Find the intersection of the appropriate constantspeed contour with the trim track under consideration and read the value of $\sqrt{C_R}/C_V$ occurring at the intersection. Since C_V is known, the value of C_R can be found, and it should especially be noted that it is not necessary to find C_{Δ} . If general stability limits are given, the intersection of the constant-speed contours will allow the construction of the specific limits.

The entire process may be repeated for other values of the wing or flap setting by merely shifting the relation of the transparent chart having the constant-speed contours to the chart of the collapsed results of general tests. At any given value of α_0 , the curve of C_R against C_V represents a large number of wing-flap-setting combinations. However, the total air-plus-water resistance will depend to a large extent on the flap setting. Thus, if the water resistance is calculated for several values of α_0 , it may be used in conjunction with quite a

large variety of flap settings, provided, of course, that the stall is not exceeded in any case.

Effect of Hull Size

If the weight, the wing area, and the wing setting are assumed, then the effect of various over-all hull sizes (that is, with constant length-beam ratio) can be found in the following manner:

In the displacement range, find $S/(\Delta_0/w)^{2/3}$ and retain this value for all hull sizes under investigation. Each value of C_{Δ_0}

will alter the values of C_V appearing at the bottom of the transparent sheet of constant-speed contours, since they must be multiplied by the particular values of $C_{\Delta_0}^{1/6}$. However, the actual speed in feet per second for a given nominal value of C_V will not be altered by this process. In the planing range, on the other hand, the specific values of S/b^2 must be calculated for each hull size. The nominal values of C_V should be multiplied by the specific $C_{\Delta_0}^{1/2}$ for each hull size, as previously explained, and the actual speed at each nominal value of C_V will be altered.

Place the appropriate transparent chart of constant-speed contours on top of the chart of collapsed hydrodynamic characteristics so that the assumed value of α_0 coincides with zero-trim angle. From there on, the interpolation is just the same as under Effect of Wing and Flap Setting.

Effect of Wing Size

If the weight, beam, and wing setting are known, the effect of the wing size (that is, wing loading) can be determined as follows:

In the displacement range, find the value of $(\Delta_0/w)^{2/3}$. Use this value in each particular $S/(\Delta_0/w)^{2/3}$ to be investigated. Since the value of C_{Δ_0} will not change from case to case, the speed scale on the transparent chart need be altered only once by multiplying by the particular value of $C_{\Delta_1}^{1/6}$.

In the planing range each specific value of S/b^2 must be calculated for each wing. The speed scale, however, requires only one conversion, depending on the initial choice of hull beam. Otherwise, the interpolation procedure in both the displacement and the planing ranges is the same as before.

The effect of wing aspect ratio alone may be investigated by altering $dC_L/d\alpha$ alone. All the other constants remain unchanged.

s

Effect of Weight

With hull size, wing area, and wing setting fixed, the designer can investigate the effect of changes of gross weight in the following manner:

Find $S/(\Delta_0/w)^{2/3}$ for each case under consideration, and each time the weight is altered, convert the speed scale by multiplying by $C_{\Delta_0}^{1/6}$ in the displacement range. In the planing range, the value of S/b^2 will not change with changes of C_{Δ_0} , though the scale of C_V must be altered each time by multiplying by the square root of the particular value of $C_{\Delta_0}^{-}$. Except for these differences, the interpolation procedure is the same as previously under Effect of Wing and Flap Setting.

Miscellaneous

Each of the important items was considered as being altered independently of the others. There is, of course, no reason any desired combinations of these items may not be used. Further, if it is desired to assume that the flap angle changes with speed, as apparently has been found desirable in some previous calculations, it may be accomplished quite simply by shifting the relation between the transparent constant-speed-contour chart and the chart showing the collapsed results of the general tests as the speed changes.

The constant-speed-contour charts have been drawn with the assumption that the wing does not stall. Naturally, this is never the case, though usually the wing setting will be chosen so that the stall does not occur at possible trim angles while the flving boat is on the water. If it should become necessary to consider the effect of a stalled wing. one rather simple type of stall can be easily considered. The following sketch shows the lift curve having a "flat-top" stall. The charts were constructed with the assumption that the lift continued along the dashed line. The apparent value of α at $C_{L_{max}}$ can be determined

Absolute angle of attack

in the manner indicated. At absolute angles of attack greater than this value, the constant-speed contours will be vertical straight lines, since the load on the water does not change with increasing trim. It seems possible that a good many types of stall can at least be approximated in this manner.

The effect of power and the propeller slipstream can also be included if their influence on the aerodynamic lift characteristics is known. From the results presented in reference 10, power has quite a large effect on C_L , $dC_L/d\alpha$, and the angle of attack max for zero lift. If at all possible, an effort should be made to

allow for its influence on the aerodynamic characteristics.

In the planing range, it is possible to perceive readily the "best" trim on the charts showing the collapsed results of general tests. The point of tangency of a vertical straight line (constant load at constant speed) to a $\sqrt{C_R/C_V}$ contour will be the best trim as commonly used in NACA publications. The trim of lowest water resistance of a hull and airplane combination will be higher than the best trim of the hull alone because of the decreasing load on the water with increasing trim due to the wing lift. It should be noted that the trim of lowest water resistance for a specific

ъ

design will be found at the tangency of the appropriate specific constant-speed contour. The "optimum" trim, at which the sum of

the air and water resistance of a specific design is minimum, will be somewhere between these two. It seems likely that for most cases the optimum trim will be close to the best trim. This will, of course, depend on both the assumed aerodynamic characteristics and on the shape of the constant $\sqrt{C_R}/C_V$ contours.

Finally, in the displacement range, extrapolation to loads outside the ranges tested can lead into serious errors unless done very carefully. It is likely to be more critical to extrapolate to loads greater than to loads less than those investigated. Because of this danger, the curves in the displacement range are labeled for the values of the load coefficients at which the tests were made. In the planing range, the values of C_{Δ} investigated are not shown because extrapolation is much less likely to introduce

are not shown because extrapolation is much less likely to introduce discrepancies.

SAMPLE CALCULATIONS

In order to aid in understanding the interpolation process, two sample calculations of the water resistance have been prepared. They have not been carried through to find take-off times and distances since this report is not concerned with a design study.

Flying Boat A

It is assumed that the designer has specified, for one reason or another, the following information:

$$\Delta_{0} = 15,000 \text{ pounds}$$

$$S = 906 \text{ square feet}$$

$$b = 7.77 \text{ feet}$$

$$dC_{L}/d\alpha = 0.068$$

and wishes to know the effect of the wing setting on the take-off performance of the flying boat when using a hull having the lines of NACA Model No. 84-EF-3 (reference 11). The aerodynamic characteristics of the assumed wing are shown in figure 6. This flying boat has characteristics similar to seaplane "A" in reference 5.

In order to avoid confusion, <u>specific</u> interpolation charts were prepared for this flying boat and are shown in figure 7. They may be used only when all the characteristics are as given in the preceding paragraph. The use of the general interpolation charts will be described in the next calculation.

For the beam and load specified, the static load coefficient is 0.500. For $\alpha_0 = 10^\circ$, the calculations shown in table I were made as follows:

Displacement range .-

1. A transparent copy of figure 7(a) is laid on top of the displacement-range curves for NACA Model No. 84-EF-3 in figure 8 (in order that the process can be more easily followed, the constant-speed contours were traced off and appear as dashed lines), so that the absolute angle of attack of the wing-flap combination is 10° when the hull trim is zero.

2. At zero speed the trim angle is found to be 2.4° for $C_{\Lambda} = 0.500$.

3. At the intersection of the constant-speed contour at 10 feet per second with the free-to-trim track for $C_{\Delta} = 0.5$, the trim is found to be 2.5° and $C_{V}^{2}/C_{\Delta}^{-1/3} = 0.50$.

NACA TN No. 1259

Y

4. Since C_{∇} is known, solving for C_{\wedge} gives 0.496.

5. At the intersection of the constant-speed contour at 20 feet per second with the free-to-trim curve for $C_{\Delta} = 0.496$, the trim is found to be 6.0° and $C_{V}^{2}/C_{\Delta}^{1/3} = 2.04$.

6. Since C_{v} is known, solving for C_{Λ} yields 0.481.

7. Repeat this process at each speed, finding the load coefficient and the trim angle. The trim curve shown in figure 9 was found by the interpolation process just described.

8. At 10 feet per second, $C_V^2/C_\Delta^{1/3} = 0.50$ and at that value the unique value of $C_R/C_V^2C_\Delta^{2/3}$ is found to be 0.0345.

9. Since both C_V and C_{\triangle} are known, C_R may be found to be 0.008.

10. At 20 feet per second, $C_V^2/C_{\Delta}^{1/3} = 2.04$ and $C_R^2/C_V^2C_{\Delta}^{2/3} = 0.062$. 11. As both C_V and C_{Δ} are known, solving for C_R gives 0.062. 12. At 35 feet per second and higher, $C_R^2/C_V^2C_{\Delta}^{2/3}$ must be interpolated for use of the previously found value of the load coefficient.

Planing range .-

1. A transparent copy of figure 7(b) is laid on top of the collapsed planing-range curves for NACA Model No. $84 \pm EF = 3$ of figure 8, so that the absolute angle of attack of the wing-flap combination is 10° when the hull trim is zero. (Again, the speed contours were traced off and appear as dashed lines.)

2. Before proceeding, some arbitrary trim track must be assumed. The one shown in figure 8 was selected on the basis of the following considerations:

- (a) Even though stability limits are not available, it would probably lie in the range of stable trims.
- (b) It is at trims which are within the range of available control moments.

3. At the intersection of the constant-speed contour at 35 feet per second with the assumed trim curve, read $\sqrt{C_{\rm R}/C_{\rm V}}$ equal to 0.148.

4. Since C_v is known, solving for C_R yields 0.106.

5. Repeat at as many speeds as desired.

Finally, a plot of the interpolated values of trim and resistance coefficients is shown in figure 9. The values of trim and C_R below 50 feet per second, which were interpolated from the planing range, are considerably higher than those interpolated from the displacement range. The former should be abandoned, and the reason for this lies in the manner in which the collapsed curves in planing-range charts were prepared. The two charts in figure 10 are auxiliary charts used in preparing the final chart. It will be seen that at large values of $\sqrt{C_A/C_V}$ (that is, low speeds and

high loads) the curves used in preparing the final chart are really envelopes. It will further be noted that there is a small region in which neither type of collapsing criterion works well. The extent and the location of this region depend to a very large degree on both the hull lines and the trim angle. However, the difficulty it introduces may be overcome by ignoring the interpolation from the planing range when it gives a higher trim or resistance than the interpolation from the displacement range at the same speed.

The interpolations just described were repeated for $\alpha_{_{O}}$ equal

to 8° and 12° by first shifting the transparent chart downward 2° relative to the chart of collapsed hydrodynamic characteristics and then raising it 2°. The results are also shown in table I. The planing range was not interpolated from 35 to 45 feet per second for these two additional wing settings because of the reasoning given in the preceding paragraph. From table I it will be seen that a_0

has its largest effect at high planing speeds. However, without adding in the air drag, it is impossible to predict the value of a_0

that will give the best take-off time. The chart in figure 6 showing the aerodynamic characteristics of this flying boat indicates that a flap angle of 15° is likely to give the best take-off time because of the high C_{L} in combination with low drag. It would probably max

be sufficient to calculate the take-off time for three flap angles at one value of α_0 and the best for the other values. These steps were not taken because the designer is already quite familiar with them.

Flying Boat B

A flying-boat-hull designer is given the following specifications (which are similar to those of the XPB2M-1):

$$\Delta_{0} = 140,000 \text{ pounds}$$

$$S = 3,500 \text{ square feet}$$

$$\alpha_{0} = 8^{0}$$

$$dC_{I}/d\alpha = 0.100$$

and wishes to find the effect of hull size, when using SIT Model No. 339-1, on the resistance, porpoising, and main spray blister characteristics, with the aid of the general interpolation charts.

Displacement range .-

1. The first step is to calculate $S/(\Delta_0/w)^{2/3}$, which for the assumed particulars will be 20.75. Multiplying by the lift rate, $dC_L/d\alpha = 0.100$, gives 2.08, and this value will be used for the interpolation of all hull sizes in the displacement range. The entire calculation may be found in table II.

2. Assume that the beam equals 11.83 feet, which will make $C_{\Delta_0} = 1.331$ and $C_{\Delta_0}^{1/6} = 1.050$.

3. Tabulate C_V for $C_{\Delta_0} = 1.00$ from the bottom of the chart

in figure 2 and multiply each value by 1.050 to obtain the second column in table II. The second column represents the true value of C_V for the selected beam.

4. Set a transparent copy of the general chart of constantspeed contours in the displacement range (fig. 2) on top of the collapsed displacement-range curves for SIT Model No. 339-1 in figure 1 so that the absolute angle of attack of the wing-flap combination is 8° when the hull trim is zero.

5. The interpolation of the trim and resistance is then just the same as for Flying Boat A described under SAMPLE CALCULATIONS care being emphasized to interpolate for a constant-speed contour of $\left(dC_{\rm L}/d\alpha \right) \left[3/(\Delta_0/w)^{2/3} \right] = 2.08$. 6. Since $C_V^2/C_{\Delta}^{1/3}$ is known, from the collapsed spray curves read $C_X^2/C_{\Delta}^{1/3}$ and C_Z^2/C_{Δ} . Because it is probably of less interest $C_X^2/C_{\Delta}^{1/3}$ has been omitted in the present instance.

7. Since $\mathrm{C}_{\!\!\Delta}$ is known for each speed, $\mathrm{C}_{\!X}$ and $\mathrm{C}_{\!Z}$ may be determined.

Planing range .-

1. Calculate S/b^2 and multiply it by $dC_1/d\alpha$. The result is 2.50 for the assumed beam of 11.83.

2. Tabulate C_V for $C_{\Delta_0} = 1.00$ and multiply each value by $C_{\Delta_0}^{1/2}$, which is 1.155, to get the specific values of C_V for the selected beam.

3. Take a transparent copy of the appropriate general chart of constant-speed contours in the planing range (fig. 4) and set it on top of the collapsed planing-range curves for SIT Model No. 339-1 so that α_0 is 8° .

4. After selecting the trim track for zero applied moment, since it lies between the stability limits, read the value of $\sqrt{C_{\rm R}}/C_{\rm V}$ and the trim at the intersection of the assumed trim curve with the constant-speed contour $(dC_{\rm L}/d\alpha)(S/b^2) = 2.50$. At the same time, the intersection of the general stability limits with the same constant-speed contour will give the trims for the specific upper and lower limits.

5. Proceed as for Flying Boat A.

Tables III and IV show the calculations for two increased hull sizes. In the displacement range $S/(\Delta_0/w)^{2/3}$ was not changed with changes of hull size. However, C_{Δ_0} does change and hence the specific values of C_V also change. In the planing range, the value of S/b^2 must be calculated for each hull size investigated. The specific values of C_V must be altered because of the changes

of $\mathbf{C}_{\underline{\Delta}}$. Otherwise, the interpolation procedure in both the

displacement and the planing ranges is just the same as previously outlined. To find the beam which will give the best take-off time will require the addition of the aerodynamic drag and then a conventional take-off-time calculation. The spray information may be used to find the necessary hull height to allow proper clearance of the wing and the propellers. After the height has been found, the aerodynamic drag of the hull may be calculated. In order to find optimums, it may be necessary to investigate additional sizes between those shown.

Sample calculations to show the effect of alterations of wing size or the effect of changes of gross weight have not been prepared. It is hoped that the notes under USE OF CHARTS, in combination with the two calculations already shown, will be sufficient to make the process of these other interpolations clear.

CONCLUDING REMARKS

A simple and rapid method for the interpolation of the characteristics of specific flying boats from the collapsed results of general tests has been developed. The method should aid considerably in making detailed design studies to determine the influence of the hull on flying-boat performance. Through use of the interpolation method, the shapes and the magnitudes of the collapsed curves of general tests should acquire more meaning to the designer.

Design Research Division Bureau of Aeronautics, Navy Department Washington, D. C., September 25, 1946

REFERENCES

- 1. Locke, F. W. S., Jr.: General Porpoising Tests of Flying-Boat-Hull Models. NACA ARR No. 3117, 1943.
- 2. Locke, F. W. S., Jr.: General Resistance Tests of Flying-Boat-Hull Models. NACA ARR No. 4B19, 1944.
- 3. Locke, F. W. S., Jr.: "General" Main-Spray Tests of Flying-Boat Models in the Displacement Range. NACA ARR No. 5A02, 1945.
- 4. Locks, F. W. S., Jr.: A Collection of the Collapsed Results of General Tank Tests of Miscellaneous Flying-Boat-Hull Models. NACA TN No. 1182, 1947.
- 5. Shoemaker, James, and Dawson, John R.: The Effect of Trim Angle on the Take-Off Performance of a Flying Boat. NACA TN No. 486, 1934.
- 6. Parkinson, John B., and Bell, J. W.: The Calculated Effects of Trailing-Edge Flaps on the Take-Off of Flying Boats. NACA TN No. 510, 1934.
- 7. Thiel, H.: The Influence of Shape and Load on the Water Resistance of Flotation Gear. British Air Ministry Translation No. 913, 1939.
- 8. Olson, R. E., and Allison, J. M.: The Calculated Effect of Various Hydrodynamic and Aerodynamic Factors on the Take-Off of a Large Flying Boat. NACA Rep. No. 702, 1940.
- 9. Locke, F. W. S., Jr.: A Correlation of the Dimensions, Proportions, and Loadings of Existing Seaplane Floats and Flying-Boat Hulls. NACA ARR, March 1943.
- 10. Parkinson, John B., and Olson, Roland E.: Tank Tests of a 1/5 Full-Size Dynamically Similar Model of the Army OA-9 Amphibian with Motor-Driven Propellers. NACA Model 117. NACA ARR, Dec. 1941.
- 11. Parkinson, John B., Olson, Roland E., Draley, Eugene C., and Luoma, Arvo A.: Aerodynamic and Hydrodynamic Tests of a Family of Models of Flying-Boat Hulls Derived from a Streamline Body. NACA Model 84 Series. NACA ARR No. 3115, 1943.

NACA TN No. 1259

.040 .052 1545 6.5 .038 .048 1440 .037 .054 1635 6.5 .034 .045 1350	.032 .050 1485
.040 .052 1545 6.5 .038 .048 14 .037 .054 1635 6.5 .034 .045 13	.032 .050 1485
.040 .052 1545 6.5 .038 .046 .037 .054 1635 6.5 .034 .045	.032 .050 1485
.040 .052 1545 6.5 .038 .037 .054 1635 6.5 .034	.032 .050 1485
.040 .052 1.545 6.5 .037 .054 1.635 6.5	.032 .050 1485
.040 .052 1545 .037 .054 1635	.032 .050 1485
.040 .052 1545 .037 .054 1635	.032 .050 1485
.040 .052 1 .037 .054 1	.032 .050 1
.040 .052 .037 .054	.032 .050
040.	. 032
	_
6.5 6.5	6.5
- 9.10	5
F F F	121
.057	.058
-042 -038	•03
6.5	6.5
· · · · · · · · · · · · · · · · · · ·	
5.69 6.32 6.32	6.95
~ ~ ~	ă l
-	90 5.69 6.6 00 6.32 6.5

- Per 10 - 210-

-

.

BOAT	F
FLYING	
- 1	
Ħ	
DABLE	•

PA

[b = 11.83 ft]

+ forward of step - aft of step Hull: SIF Model No. 339-1 v (ft/sec) (ft/sec) 67.7 79.0 101.5 112.7 112.7 1135.1 Þ ≓ £ на 19 19 19 אנ нĴ Lower limit tria $c_{\Delta}^{1/2} = 1.155$ $c_{\Delta}^{1/6} = 1.050$ $\sqrt{60} = 105,200$ 1/2 = 1.155 ບ້າ Ч Sprey Upper limit trim 0^N0 84410 110.0 100.0 8.9 7.3 7.3 7.3 c_{X}^{c} and a aguar 1 Displacement 2223999999599898989 Plantag ጜ ૹૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ 0 ኇ s/(∆/w)^{2/3} = 20.75 b = 11.83 ft c_V²c_∆^{2/3} 0.0488 0.0488 0.0462 0.0462 0.0455 0.0455 0.0455 0.0425 0.0225 0.0225 _ام 25.0 = 1.331 s∕s ¢° ~5/c⁴ Resistance ٥ Resistance 011000000 263827286999 ~~⊳ ⊤ (geb) 440,0000 c √ 3 C ∆ 1/3 (geb) 5 ۲ `∂[>] رم. # ۲.0) $dC_{\rm I}/d\alpha = 0.100$ (0°T'= C C Constants \$ (c⊅o

NACA TN No. 1259

NACA TN No. 1259

i

1

			₹ (ft/aec)	0888887 440000	9.5 8.9 8			•c)	44020000	o. 339-1
			в (1р)	22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 22,500 20,5000 20,5000 20,5000 20,5000 20,50000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			γ (ft/8	888 888 9 8 4 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	TT Model H i of step step
			Z (ft)	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	04.4.54 04.4.54			R 1b)	200 200 200 200 200 200 200 200 200 200	Hull: S] + forward
		۲ (ft)		+ 56-2 + 56-5 + 66-2 + 66-2	1,4,6,9,4 1,4,6,9,4,9,4 1,4,6,9,4,9,4 1,4,6,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4				288222333	
			cz	。 33.4846	94.991.11 94.991.96		-	limit B	9 2 2 4 9 7 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	
		rey	с <mark>о</mark> Ж	7.5.5 1.58 1.1.88 1.1.1.88	- - - - - - - - - - - - - - - - - - -			Lower tri	\$0,00,00,00 \$	957 986 2,900
		Sp	°0 ¹⁴ 0	ំ ស្ត្រីស្ត័ត់ឡំ ស្ត្រីស្តីតំឡំ	10.11.1 0.19.1 0.19.1			ţ		1/2 = 0.5 1/6 = 0.5 1/5 = 1.55
5	eður.	-	C_∆ ^{1/3}	+ 11.75 + 11.75		ange		pper lim trim	Stable 11.0 10.9 10.8 10.5 8.8 8.8	ૢૼ _{ૼૺ} ૰ૢૼૼ૰ૼૻૻૻ
	Displacement		۳	0 .093 .108 .123 .123		Planing 1				
			с _к с _ү ² с_2/3	0.0488 0.0488 0.0488 0.0543 0.0425 0.0425	0288 0220 0220 0220	H	63	હ્	0 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	17 23 ft 916
		stance	₽	0.916 919 878 878 948 948 948 948 948 948 948 948 948 94	791 791 694		Resistan	\ ^C _R /c _V	0.143 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	v) ² /3 = 20 b = 13 s/b ² = 20 c _b = 0.5
		Reg	CA 5		6.08 7.35 8.75 10.28					/▽//s
			$c_V^{c_V^2}$	14.00 14.00 14.00 10 10 10 10 10 10 10 10 10 10 10 10 1	6.60 8.07 9.75 11.60			т (deb	101 4.0.0.0.0.0.0 4.0.0.1.0.0.00	
			T (فعل)	ู่ ถู่น่า : ตู่ เกิด ๔ ถู่น่า: ตู่ เกิด ๔	10.0 10.5 10.5		5		8-20 8-20 7-18 7-18 7-18 7-18	
			ۍ ک	0 9 9 9 7 7 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9	2-96 2-96 3-20					000 Ib 0 9g ft
		•	(C _∆ = 1.0)	8.28568 8.28568	25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.		c	رم_ = 1.0) (دے = 1.0)	8888888 9-1-100-1-1 9-1-100-1-1	Constants $\bigcirc_{0} = 140$, $\bigcirc_{3} = 3,50$ $@_{0} = 8^{0}$ $dC_{1}/dcc = 0.10$

đ

TABLE III.- FLYING BOAT B [b = 13.23 ft]

æ
BOAT
FLYING
-• VI
TABLE

[b = 15.28 ft]

· · · · ·	and the second sec		+	_			7	
	R (ib) (rt/moc,	6, 8% 6, 8% 15, 7% 15, 7%15, 7% 15, 7% 15, 7% 15, 7%15, 7% 15, 7% 15, 7%15, 7% 15, 7% 15, 7%15,			τ (ft/89α)	8.09 9.09 7.09 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.05	Model N o. 339-1 f step ep	
	2 (H)	**************************************			R (1b)	528882338 52882338 528882338 528885 528885 5288 5288	forward of aft of str	
	нţ	222.5 29.8 29.8 29.8 20.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2						
	°°	。 ខ្លួនដ្ឋដ្ឋាភិភ្ជាស់ខ្លួនផ្លូន		11日 11日 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日 1日	61 61 61 61 61 61 61 61 61 61 61 61 61 61			
	к _о	4.0-1			Lover trr	ĎÓÓÓ Ť MÓÓ	at 98 9	
Spray	2 <mark>0</mark> %	888888898988 88888889898		Upper 11mtt			5 = 0.78 = 228,	
	ي <mark>1/3</mark> د⊿	4.0.000 1.0.000 1.0.00 1.0000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000000	8			stable 11.3 11.2 10.9 9.8 8.6 7.6		
	۶ ⁴⁴	0 0000 1000 0000 0000 0000 0000 0000 0	ufng ren					
	$\frac{c_{\rm R}}{c_{\rm V}}$	0.0488 0.0488 0.0483 0.0463 0.0463 0.0463 0.0463 0.0443 0.0443 0.0443 0.0443 0.0443 0.0255 0.0235 0.0238 0.0217	alf	jce	ېل	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	£4 €4 €90 0 ≠1	
ance	 در	0.614 663 663 668 668 668 668 668 668 668 668		Resistan	Resistan	∫c_ _R /c _∀	0.148 .122 .0569 .054 .038 .038 .038 .0346	2/3 = 20.7 b = 15.8 b = 15.8 c = 0.61
Regist	c ⁴ 2	ୢୄୄୄ ଌୄୖୄୄୖ୴ୠୢୄଡ଼ୢୢୢୢୢୠୢୄୠୄୠୄୠୄୄ ୡୄୄୖଢ଼ୠୢୢୢୠୄୠୄୠୄୠୄୠୄ						
	$\frac{c_{\Psi}^{2}}{c_{\Delta}^{1/3}}$	२५७५५५ १५७५५३७५४			⊤ (dag)	1111 1111 101 100 100 100 100 100 100 1		
	⊤ (dæg)	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛			ບ້	66688 666888 66688 66688 66688 66688 66688 66688 66688 66688 66688 6668	tt.	
	ۍ	0 0 1 1 1 1 1 1 1 1 1 1					41 000, 1 pa 00 20 ag f	
	Go (Go (Co (Co (Co (Co (Co (Co (Co (Co (Co (C				^م (م _ل = ۱.0)	₩₩ ₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	$constants constants c_{o} = 140 s = 30^{5} c_{o} = 80^{5} dc_{T}/da = 0.10^{5} $	
	Resistance Spray	$ (c_{\Delta_{0}}^{\alpha} = 1.0) \begin{array}{c c} c_{V} & T & T & T \\ \hline & T & c_{V}^{2} & c_{V} & c_{V} \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1, 0 \\ -1, 0 \\ -1, 0 \\ -1, 0 \\ -1, 0 \\ -1, 0 \end{bmatrix} \xrightarrow{\Gamma} \\ \begin{bmatrix} C_{\Delta} \\ -1, 0 \\ -1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Restatuse Series Seri	

NACA TN No. 1259

Figure 1

··· ·· ·· ··

Ę

J

Figure 6

à.

÷

Figure 7(b)

FIGURE 8

NACA TN No. 1259

Figure 9

ī

Figure 10

			•									
TITLE A Gran	hical Method	for Intern	plation of W					ATI- 9150				
Flying	Boats from	Collapsed F	Results of G	enera	1 Tests	f Flying-Boa	s of Specific -Hull Models	REVISION (None)				
ORIGINATING	AGENCY: N	S. ational Adv	isory Comn	ittee	for Aero	nautics, Was	hington, D. C.	ORIO. AGENCY NO. TN-1259				
PUBLISHED BY	:(Same)					-	- ·	PUBLISHING AGENCY N (Same)	<i>i</i> 0.			
Jan '48	DOC. CLASS. Unclass.	U.S.	LANGUA	GL ,	PAGES 36	tables, diag	rs. graphs					
ABSTRACT:												
	characteri a collapsed specific ca of the inter general tes	stics of spe i form. Wa se may be polation mo its will be o	cific flying ter resistan determined ethod the sh of great aid	boats ice an in abo apes to the	from a ind porpoi out 20 to and magne designe	chart showing sing characte 30 minutes. hitudes of coll rs.	test results in ristics of one Through the us apsed curves o	e f				
	P 1/3/5 P20/4 =>											
DISTRIBUTION:	Request c	opies of thi	s_report on	ly fro	m Origin	ating Agency	/	/				
DIVISION: Wate	er-Borne Air	craft (21)		SUBJ	ECT HEA	DINGS:						
			<u> </u>	. HVO	rodynam	cs data - Red	uction (49834.4)				
(A)D=	-B8	05	(60);	33_								
		N INH CON NI		100	NICAL IN	DEX W	ight-Pattorson Air F Dayton, Ohio	orco Baso				

n

TITLE: A Grap Flying AUTHOR(S): I ORIGINATING PUBLISHED BY	hical Method Boats from ocke, F. W. AGENCY: N: :(Same)	for Interpola Collapsed Res S. ational Adviso	tion of Hydr ults of Gen ory Commit	rodynamic C eral Tests o tee for Aero	naracter Flying nautics,	istics of Specific Boat-Hull Models Washington, D. C.	АТО- 9150 вгузном (None) осно. Аобису ио. ТN-1259 Ризціянико Аобису (Same)				
DATE	DATE DOC. GASS. COUNTRY LANGUAGE PAGES HUISTRATIONS Ton '48 Unclose II.S. Fing 36 tables, diagra, graphs										
Jan '48	Unclass.	U.S	Eng.		tables,	magrs, graphs					
DISTRIBUTION:	A simple a characteri a collapse specific ca of the inter general ter Request a	nd rapid meti stics of speci d form. Wate isse may be de rpolation meti sts will he of copies of this	nod is prese fic flying bo r resistance termined in mod the shar great aid to report only	ented for inte oats from a c e and porpoi about 20 to bes and magn the designe	rpolatin hart sho sing chan 30 minut itudes o 's. ating As	g the hydrodynamic wing test results it racteristics of one ies. Through the u f collapsed curves	se of				
DIVISION: Wat	er-Borne At	craft (21)	S	UBJECT HEA	NGS:						
SECTION: Tes	ting (9)).: R-21-9-1		1	Hydrodynam:	cs data	- Reduction (49834,	4)				
Air Occuments	Oivision, Intellig Materiol Commo	once Department ind	AID Y	ECHNICAL IN	DIX	Wright-Pattorson Air Dayton, Oh	Force Base lo	Ĺ			