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ON THE GENERAL TREORY OF TEXN AIRFOILS FOR

NONUNIFORM MOTION

By Eric Reissner

SUMMARY

General thin-airfoil theory for a compressible fluid “
3.s formulated as bbtindary problem for the velocity poten-
tial, without recourse to the theory of vortex motion.

On the basis of this formulation the integral equa-
tion of lfftin~surface theory for an incompressible fluid ~
is derived with the chordwise component of the fluid ve-.
Iocity&t the airfoil as the function to be determined. It
is shown how by integration by parts this integral equation
can be transformed into the Biot-Savart theorem. A clari-
fication is gained regarding the use of principal value
definitions for the Integrals which occurs

The integral equation of lifting-surface theory is
used as the starting pOint for the establishment of a theory
for the nonstationary airfoil which Is a generalization of
lifting-line theory for the stationary airfoil a?d which
might be called, Hlifting-strip” theory- Explicit expres-
sions are given for section lift and section moment in terms
of the circulation functio’n, which for any given wing de-
flection is to be determined from an integral equation which
is of the type of the equation Of lifting-line theory. Qhe
results O%tained are for airfOils of uniform chord. They
can be extended to tapered airfoils, One of the main uses
of the results should .~e that they furnish a practical means
for the analysis of the aerodynamic span effect in the problem
of wing flutter, The range of applicability of lllifting-
strip” theory is the sape as that of lifting-line theory so

that its results ma~be aPPlied %0 airfoils with aspect ratios
as low as three.

.
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INTRODUCTION
.

d

~ha theory of t~i,n airfoils may be character f~ed hY

the statement that it is the linear theory, obtained through
simplifications from an exact formulation of airfoil theory
for a nonviscous fluid. Xt is based on the assumptions of
infinitely thin airfoil sections, infinitesimal angle of
attack,e.nd infinitesimal camtere In spite of these restric-
tive assumptions it is plausible and generally accepted that
the theory reproduces the characteristic behavior of actual
wings with finite angle of attack and camber rather zccuratcly

. in many practical problemsc

First contributions to the theory of thin nirfoils are
Prandtlls theory of the lifting line (reference l),for the
determination of the aerodynamic span affect for statioilnry
airfoils of not too small aspect ratio, and Munk~s two-
dimensionnl theory of stationary airfoils (reference 2).

Shortly after Munk!s work investigations were made on
the two-dimensional li~enr theory of nonstationary motion
independently “Dy Birnhaum (reference 3) and by Wagner (rafer-
ence 4)0 Birn%num reduces the problem to an int~g=al equa-
tion by means of theorems on vortex motion while W~.gilei* ob-
tains an integral equation by way of formulating the boundary
p“roklem for the velocity potential. Birnbaumls formulation
(in common with the formulation of more general proble]~s by
means of the ~lacceleration potential” presenilY to be dis-
cussed) possesses the disadvantage of leading to an integral
equation with a considei-nbly more complicated kernel than in
the v~locity potaniial fornul?tion of the same problem. solu-
tions of this integ,ral equation were obtaiged by 3i_rnbaum hy
means of numerical methods restricted, however, to a far too
small range of values of the i~iportant “reduced frequency*t
pc.rametor. which was introduced by him, In Vagnorls work
atte:~tioa is focussed on transient problems for whioh the
ictegral equation of the problem is solvcdjby series devel-.
opmeutso Both autho?s deal only with tho motion of ~.rigid
straight-line profile. -.

.
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Subsequently Gleuert (reference 5), on the basis of
Wa8ner~s work, obtains an explicit solution for the ce.sa
of a simple harmonic motion of a rigid profile, This sOlU-
ti.ons depends on certain definite integrals which are f7lnc-
tions of the reduced frequenoy parameter, The definito
integrals are evaluated numerically in Glauert~s paper for
still too small a range of the reduced frequency para,neter.

In 1935 nnd 1936 Theotiorsen (reference 6), Cicala
l-eferellc~ ~), ~ll~nberger, nnd Von Borbely (roferencos

8 and 9), and Kussner (reference 10), independently end
publishing in this chronological order, gave the SOIW
tion of the two-dimensional problem for arbitrary motion
and deformation of the airfoil and obtained explicit ex-
pressioi~s for air forces and moments, They also found
that the definite integrals occurring in Glauertls special
and ti~eir own general solution could be expressed in terms
of certain tabulated Bessel functions of the reduced fre-
quenc;~ parameter.

Moclified derivr.tions of these results and applications
have subsequently been published by Gnrrick (reference 11)$
Von K<rmdn and Sears (reference 12), Diotze (reference 23),
Schwarz (reference 14), S3hngon (reference 15), and others.

Approximate solutions for the two-dimensional motion
of a rigid profile in a slightly compressible fluid hnve
been given in 1938 by Possio (reference 16),

An account of the work regarding the effect of s-pe.nwise
variation of the flow (three-dimensional theory) may be sub-
divided into two parts.

The first part includes investigations having the Rur-
pose of improving lifting-line theory for stationary motion
on the basis of various formulations of lifting-surface
theory- Workers in this field have been 31enk (reference
17), Burgers (reference 18), Von Xdrm4n (reference 19),
Schlichting (reference 20) Yuchs (reference 21.), Bollay
(reference 22), Wieghardt !reference 23), Kinner (refercilce
24), and Krienes (reference 25).

The second part includes investigations having the pur-
pose of obtaining generalizations of lifting-line theory .to
problems of nonstationary motion. Attempts of such general-
izations on the basis of vortex-filament considerations were
made independently by Cicala (references 26 and 27) and Von,
Borbely (reference 28), A study of the special case of an
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infinite airfoil with uniform chord, undergoing tending
deformations varying sinusoidally in the direction of the
span is due to Sears (reference 29). ResuJ.ts %ased :,n the
theory of the acceleration potential were given by Kussnor
(reference 30)0 The case of a rigid airfoil with elliptical
plan form was investigated by Jones (references 31 and 32).
The author believes that all these attempts contain assump-
tions, basically or analytically, which may lead to consid-
erable errors in the determination of the aerodynamic s-pan
effect. This is discussed in the body of the present paper.

Lastly, mention Is made of two general formula~ions of
thin-airfoil theory by Prandtl (reference 33) and Kussner
(reference 30) whereby an integral equation is obtained for
the distribution of pressure over the airfoil, Since, ac-
cording to the equations of motion for a nonviscous fluid,
the pressure may be thought of as the potential for the
acceleration field this approach has become known as tho
acceleration-potential method. An important point of this
method is the avoidance of the explicit introduction of the

* trailing surface of velocity discontinuity (:ttrailing vortex
sheet!]). It is felt, however, that nonetheless this method
possesses serious disadvantages when applied to problems of

* nonstationary motion, compared with a method making use of
the velocity potential. In this connection it is the authorts
opinion that the failure of Birnbaum (reference 3) to obtain
a complete solution of the two-dimensional problem is largely
due to the fact that a method was used by him which is iden-
tical with the two-dimensional form of the acceleration po-
tential method.

The present paper is composed of three parts. In part
I the known fundamental differential equations and bouqdary
conditions of thin airfoil theory are rederived, On the
basis of these equations the boundary problem for the veloc–
ity potential for a slightly compressible fluid iS formu-
lated. In this formulation any reference to the theory of
vortex motion is avoided by means of a simple symnetry con-
sideration.

In part II an integral equation is derived for the chord-
wise conponent of the velocity of the fluid at the airfoil,
restricting attention to the case of an incompressible fluid.

& This integral equation has the important property that its
kbrnol is the sane for problems of stationary and nonstation-
ary notionO In contrast to what occurs in the integral equa-

. tion for the acceleration potential, It is shown how the
integral equation obtained can be transformed, by integration
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by parts, into a form equivalent to the Biot-Sava.rt theorem,
It may be mentioned that a clarification is gained regarding
the use of principal value definitions for the integrals
occurring in the different forms of the integral eql.antion
of the problem,

Ill~~rt 1~1 ‘the inte”gral eqUatiOn of lifting-surfs.~e

theory i> used to establish a theory for the nonstatiofinr:y
airfoil which is a generalization of lifting-line theory
for the stationary airfoil and for which the name of lift- ,
ing-strip theory is proposed. This new theory, which in-
cludes the known two-dimensional theory for the nonstation-
ar~l ~irf~il as well as three-dimensional lifting–line thOOry
for the stationary airfoil as special cases is believei to
be the first correct theory of this kind. It permits deter-
mination of the aerodynamic span effect for airfoils of not
too small aspect ratio in a manner which is a combination
of t!le known procedures in the two-dimensional theory for
the nonstationary airfoil and in the three-dimensional theory
for bhe stationary QirfOil, Explicit expressions are given .
for section lift and section moment in terms of the circ-a-
lation function which for any given wing deflection is to
be determined from an integral equation which is of the t:-pe
of the equation of lifting-line theorye Yhe calculations
may be extended so as to obtain an explicit expression for
the aileron hinge moment,

This paper forms part of n project of the Depart~llent
of Mathematics at Massachusetts Institute of Technology
made possible by financial assistance from the National
Advisory Committee for ~~eronautics,

The author wishes to express his appreciation to Prof.
Ho n, phillips, head of the Department of Mathematics nt
M.lOT., for relief from part ef his regular duties in connec-
tion with this work; to Professors H. Reissner, M. Rauscher,
and 1?. B. Hildebrand for helpful discussions on the sub~oct
of the p?.per: to Prof. Rauscher also for the original sug-
gestion to study the problem of the aerodynamic span effecte

LIST OF SYMBOLS

B velocity vector, giving the difference of fluid
velocity and. velocity of flight

Gm velocity of flight (llundisturbedll velocity)
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U, V,:{ velocity components

P+P~ pressure

Pm undisturbed pressure

p+pd

Pm

X,Y, Z

T

J?

H

a

density ‘

undisturbed density

Cartesian coordinates

time

implicit equation of the airfoil surface:
T(X,Y,Z,T) = O

explicit equation of the airfoil surface:
z = H(X,Y,T]

velocity of sound in undisturbed flow

Ra region occupied by projection of airfoil surface
on X,Y - plane

X* X-coordinate of trailing edge of airfoil region

X,y, z dimensionless Oartesian coordinates, x = X/b,
Y= Y/b, Z = z/b

b reference length, for airfoils with uniform chord
identified with the semi-chord

t dimensionless time, t = WT

u reference frequency

h dimensionless explicit equation of airfoil surface,
h= H/b

;. dimensionless velocity vector, % = ~/~.fi@l
.

P dimensionless pressure, p = w~p=uaa

k Ilre”duce&frequencyll parameter, k = b~/Uca

P Machts number of the undisturbed flow, p= uca/a
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‘t

Idy

mdy

LdY

MdY

$

hk

01,

pk

xl

Rw

Rr

r

uoe it

rk
.

it
woe

x-coordinate of trailing edge of airfoil region

dimensionless air force associated l.vithstrip dY

dimensionless moment of air force associated with
strip d~

air force associated with strip dY, L = (2pmU’’b)l

moment of air force associated with strip dY,
M= (2p@ U@’b2) m

velocity potential

it
amplitude function defined by h = e ‘k

defined by ~=eit~

defined by p = eit pk

x-coordinate of leading edge of airfoil region

wake region, being the semi-infinite strip in the
x,y-plane extending from the trailing edge in
the direction of the main flow

region of x,y-plane which is not part of airfoil
and wake region

circulation function defined by

~r=
‘taob,y,+o) dx

f
‘—aY_—

xi

chordwise fluid velocity component at airfoil,

adkb,y,+d
‘o =

-—.——
ax

defined by r = eit r
k

normal fluid velocity component at airfoil,

(

b%(x,y,z)

)
W. = -———

az
Z=o
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In a symbol designating various integrals in the
course Of evaluation or transformation

~k defined by I = eit tk

~k defined by m = eit mk

s ratio of semi-span and semi-chord for airfoil
of rectangular plan form

Y* dimensionless coordinate d~fined”by y*= y/s = ~/sb

- a sign designating quantities of the two-dimensional
(section-force) theory

s a function defined by equation (133)

% a function defined by equation (135)

KO,KL modified Bessel functions of the second kind

JO$J1,J2 Bessel functions of the first kind

o
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Io- TH3 BOUNDARY PROBLEM FOR THE VELOCITY POTENTIAL

IN NONSTATIONARY THIN-AIRFOIL !7HXORY

FORMULATION OF THE PROBLEM

~~eglecting finite thickness and finite angle-of-attack
effects, thin-airfoil theory treats wings as almost flat
plates, possessing no thickness. Flow of an ideal compres-
sible fluid is assumed, the uniform velocity of which is
disturbed by the presence of the airfoil, which is only

slightly Inclined against the directioa of the undisturbed

velocity. The velocity change ~ caused by the presence
of the airfoil is considered small compared with the un-

disturbed velocity ~a and the changes in density and
pressure, p and P are considered small compared with the
undisturbed density and pressure ~ and Pm. On the basis

of these assumptions a linearized form of the problem is
obtainedO”

Before linearization the differential equations of
the problem are the Euler equation

3(3+ ‘7rm) grad (P+P~)
—+ (~+ &)*grad (d+~a)=- --—-———-- (1)

—% p+pti

and the equation of continuity

(2)

AS boundary condition it is prescribed that on the
surface of the airfoil the normal component of the fluid
velocit;- equals the normal component of the velocity of
the element of the airfoil with which it is in contact.
If F(X,Y,Z,T) = O is the equation of the surface repre-
senting the airfoil the boundary condition has the form,

F(X,Y,Z,T) = O: aF + (t+ ~e)ograd F = O (3)
G
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Formulation of the conditions at infinity and of the con-
ditions along the edge of the airfoil surface is postponed
until after the problem has been linearized.~

The undisturbed velocity $a may be taken as parallel
to the X-axis, so that

o

(.4)

where ‘~ represents a unit vector in the =directiona

The airfoil surface is assumed to lie very nearly in
the X,Y-plane (fig. 1) and its equation may be written as

F =z- H(X,Y,T) = O (5)

The assumption of small disturbances is equivalent.
to the following order of magnitude relations, for the

velocity changes,
9

*

.

●

For the slope of the wing surface,

—
ax

1, 3H<1
aY

(6)

(7)

The condition of small density change is

P<P@ (8)

permitting the linear pressure change density change re-
lation

P 1P=—
a2

(9)

-————--- ———-.-———-.—--——-——————— -———_

lThe stationary problem (b/bT sO) in its general form
has boon discussed by R. von Mises in a paper given before
the American Mathematical Society in April 1942. ,
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where

11

.2 f’@o (lo)
dp ~

.

is the square of the velocity of sound of the undisturbed
flow*

Introducing equations (6) to-(lO) into the differential
equations (1) and (2) and neglecting terms small of higher
order leads to the following linear equations,

(11)

(12)

while the boundary condition (3) becomes with grad Z= z

where 2 stands for a unit vector in the Z-direction,

(13)

In view of the fact that the airfoil surface lies very
nearly in the X,Y - plane it is permissible to satisfy
this condition instead of at the surface itself at the
projection of the surface onto the X,Y-planec Denoting by
Ra the region occupied by the projection of the airfoil

surface, which will henceforth be called the airfoil region,

and introducing for x ~H+~ bHgrad H its value
a 7Y

and

writing 1? for the Z-component of the velocity, the
bounde,ry condition takes on its final form

z .o; X,yin Ra; w.AH+um~H
?)9! ax

(14)

The region Ra is to be Considered as the limit of

closed surfaces surrounding Ra, the boundary condition

(14) holding on both sides, Z =+0,

Concerning the shape of the region Ra the restriction

is made that straight liqes having the direction of U=

.
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intersect its bow.ndary” either in two points, are tangent to
it, or are entirely outside.

In additiOn to the differential equations (11) and (12)
and the boundary condition (14) the fundamental condition is
imposed that along the trailing edge of the airfoil the ve-
locity remains finite (Kutta-Joukowsky condition)

-+
x~ (Y) = 0: U finite (15)

It should be remembered that this condition is motivated
in the following way- Experiments show that for airfoils of
finite thickness with rounded leading edge and sharp tra$ling
edge the effect of viscosity manifests itself in such a way
that the flow pattern is quickly developed into very nearly
the same as that for an ideal fluid with the condition im-
posed that the velocity renains finite at the trailiag edge,
which is the only place where it could mathematically become
infiaite, Conditions for the existence of this close coilnec-
tioi~ between viscous and ideal fluid flow theory involvo
limits on the thickness-chord ratio of the airfoil sections
and on the magnitude and direction of the undisturbed veloc-

ity ~~ which are satisfied for conventional airfoils vith
angle of attack below the stalling angle and velocity of
flight not too close to the velocity of sound.

No condition is imposed in thin-airfoil theory on the
velocity at the leading edge. A sharp leading edge is con-
sidered as the limit of rounded edges for which the velocity
at the leading edge becomes, in general, infinite, TO the
extent that this happens, linearized thin-airfoil theory
must be considered inconsistent. The excuse for permitting
such inconsistency is furnished IIY the fact that it is re-

stricted to a zone of small width adjacent to the leadiag
edge. This makes plausible that the effect is insignificant
so far as it concerns the calculation of the resultant forces
and moments which the flowing fluid exerts on the airfoil.
(In the two-dimensional stationary theory this has been con-
f#.rmed ,b~”comparing the results of the linear theor>’ ‘with
the kilown results of exact theory. )

Conditions at infinity are undisturbed flow far in front
of the airfoil - that is,

x =-m; 5= o, P = o (16)

while, as regards conditions far behind the airfoil (X=+o$)
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.

the omission of the viscous term in the Euler equations is”,
in general, responsible for a persistence of the disturbing
influeilce of the airfoil.

DIMEN$IOITLESS FORM OF THE IIQUATIONS OF T!H3!I?ROBLBM
,

Zlefore proceeding further it is convenient to make the
system of equations (11) to (16) dimensionless, Dimension-
less coordinates are introduced by putting

(1?)

where b. is a reference length which in the two-dimensional
theory will be identified with the semi-chord of the airfoil,

Dimensionless time is introduced by putting

t =(J)T (18)

where w is a reference frequency which in the case of
harmonic oscillations will be identified with the frequency
of oscillation,

A dimensionless camber surface equation is introduced
by putting

(19)

Dimensionless velocity and pressure changes are intr~
duced hy putting

&

(21)

Vheri equations (17) to (21) are introduced into the
differential equations (11) and (12) and into the bound-
ary conditions (14), it is found that it is conveni~nt to
define the following two dimensionless parameters,
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.

.

k=+
m

Um
$ =—

(22)

(23)
a

The ltreduced frequency!t parameter lk is of %asic importance
in the theory of nonstationary motion, The paraueter @
represents Machls number of the undisturbed flow, the ratio
of the velocity of the undisturbed flow and of the velocity
of sound. in the undisturbed flow.

The differential eg.uations and boundary conditions have
now the following fermi if use is made of the relation,,.

= 0; X,y
ah ah

z in Ra; w = k— + —
at ax

(24)

(25)

(26)

z = O;x= Xt(y); ii finite (27’)

+
x = -co: u = o, P=o (28)

The analytical part of thin-airfoil theory con~ists
in solving this system of equations (24) to (28) so that
e:cpressions may be obtained for forces and moments exerted
by the fluid on specified portions of the airfoil. !i?hese
forces and moments manifest themselves through discontinu-
ities of pressure within,the airfoil region Rae A convcn-
ie~t+n:ta~:onR1s ~gdwrite PU foT the pressure On the side
z a Pt on the side z = - 0 of RaO

Denoting by tdy and mdy dimensionless forms of
forces and moments associated with strips dy of the air-
foil, a convenient way of writing forces and moments per
unit of span length is
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, ‘a
n

1 (Y; xl, x2)=~
1

[PI (x, Y)- Pu(x, Y)] dx (29)
X2

x
1

m(y; Xc, Xl, Xa) = -
1

2( X-XO) .[p~(x,Y)-
4

Pu(~, Y)l d~ (30”)

“1

where from now ‘on the variables y, z=, X2 in ~ and m
will not le written unless necessary to avoid ambiguities.

!i!herelations between dimensionless forces and mo~fienis
and the corresponding actual forces and moments L and M
are established by means of equations (21) and (17),

L= (2pm U=zb)l ‘ (31)

(32)

REDUCTION OF THE BOUNDARY PROBLEM TO A

PROBLEM FOR THE HALF SPACE

So far the problem has been formulated as boundary
probleu for the exterior of an infinitely thin closed sur-
face. It may be observed, however, that”in equations
to (28) of the problem no distinction occurs between the
portion of the fluid Habovell the airfoil surface and the
portion of the fluid Ilbelowllthe airfoil surface. ‘This
indicates that the flow must possess properties of symmetry
and antisymmetry with respect to the x,y-plane, i~ the
sense thct the components of the velocity vector u and
the pressure p are either even or odd functions of the
z-coordinate, The boundary equation (26) which is to be
understood as holding for z = +0 indicates that the ve-
locity component w is an even function of 20 From the
z-componont equation of equation (24) it follows then that
also ap/az is an even function of z and consequentil;- p
an odd function of z, From the remaining component equa–
tions of equation (24) it follows then that also the velocity
components u and v are odd functions of z.

The fact that the pressure p is an odd function of z
in conjunction with the fact that p iS continuous within
the flv.id”indicates that p vanishes over the part of the
x,Y-??lane outside the region Fat



NACA TN Noe 946 16

z = 0; x,y outside Ra: p = O (33)

Con bining equation (33) with equations (26) to (28) there
is obtained a system of conditions for the entire x~y-plane
which may then he considered as the boundary of one of the
half spaces, say the half space z > 00

INTRODUCTION OF VELOCITY POTENTIAL

Ih.u-ther treatment of the pro~lem is carried out here
in terms of a velocity potential 0, the existence of which
follows from the fact that equation (24) implies

(34)

Since rot $ = O in the region of undisturbed flow, it
f’ollows from equation (34) that throughout, the interior
of the half spaces 2>0 and Z<o,

rot F = O (35) ‘

From ti~is it is concluded

+
u= grad @ (36)

Introducing equation (36) into the continuity equation (25)
leads to

(37)

Introducing equation (36’) into the equation of motion (24)
leads to

(38)

which is equivalent to
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with an additive arbitrary function of t incorporated in ~.

Introducing equation (39) into equation (37) furnishes
the differential equation for @,

In terms of @ the boundary conditions (26) to (28)
and (33) assume the following form:

z= o:

z = 0:

z = o;

z = o;

?@) ah bh
X,Y inside Ra: — = k —- + _—

82 at ax
(41)

x= X*(X): : grad @ finite (42)

x=-~: ‘0=0 (43)

* a~
X,Y outside Ra : k—+— = O

at ax
(:4)

TO simplify the work from here on the case of simple
harmonic motion is assumed by putting

h(x,y,t) = hk .(x,y)e it
(45)

Because of the linearity of the problem more general solu-
tions may be obtained from the solution for this case by
means of superposition, for instance, solutions for tran-
sient pro%lems through the meansm of Fourier-Laplace inte-
grals, The functions hk may be complex themselves so as
to account for phase differences between different hk~

.
Vith h given by equation (45a) the potential @

will he of the form
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@ = Ok (x, y,z)eit (46)

where again ok may be a complex f~ctions

Substituting @ of equation (46) in equation (40)

(47)

Substituting $ of equation (46) in equation (39),

1 1 it

(

a~\% it

‘~p=-~pke= ik@k+—
)ax e

The boundary conditions (41) to (44) become

?f$k ahk
z = O; x,y inside Ra’: -a~ = ikhk + --x–

(48)

(49)

.

z =O;x= Xt(y)’: grad @k finite (50)

z = o; x=-cc?”: @k=o (51)

?bk
z = O; x,y outside Ra: ik$k + –a= = O (52)

It is important to note that equation (52) may be
integrated to

ok (X, y,o) = c (y) e-ikx (53)

when x and y are outside “the region RaO Using equa-
tion (51) it is seen that c vanishes along lines y =
constant which do not pass through the region Ra and that
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c vanishes
through Ra

coordinate
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along the part of lines y = constant passing
reaching from x = -CO to the leading edge

x% , Hence if in addition to the airfoil region
Ra there is defined (1) a wake region Rw %eing the seni-

infinite strip extending from the trailing edge in the di-
rection of the main flow and (2) a region Rr aenoting the

remaining part of the x,y-plane~ the boundary condition (52)
may be formulated in the following form (see also fig. 2)

z = o; X,y in,Rr?@kso (54)

= O; x,y in
-ik[x-xt(y)] (55)

1 ‘k(y)ez Rw:::@k = -
2

where ~rk’ ,stands’ for the v“alue of @k at the trailing.

edge

(56)

and uhere, since @k(x, y,+ 0)= -@( X,y, -0), r ‘rkeit

is the value of.what is kfiown as the circulation.

The problem is now to determine the solution of the
differential equation (47) for the half space Z>o

subject to the boundary conditions (49), (50), (54), and
(55). The notable feature of this mixed boundary problem
iS that it contains the undetermined function rk which

has to be found in such a form that the finiteness condition
(50) is satisfied.

.

.
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II,- THE Ii?TEGRAL EQUATION OF LIYTING-SURFACE

THEORY TOR AN TNCOMPRESSIELE I?LUID

Equation (47) indicates that for an incompressible
fluid @k and also a~f ax are harmonic functions, The
function &&/bx may be represented in the interior of
the half space Z>o %y means of its values at the bound-
ary. z = O which may be denoted by Uo. Dispensing in what

follows with the subscript k this representation is

The kernel

(58)

may be obtained either by way of introducing spherical
coordinates shout the point (fs,%o) in the differential
equation for a@/ ax whence a solution possessing the proper
singularity is found by separation of variables, or by means
of a Fourier integral solution for ?@/bx for the case that
u vanishes everywhere except over an infinitesimal area
d~d~ where it has the Yalue l/d~d~,

TO obtain on the left hand side of equation (57) the “
correct boundary values U. when z = O the integral must

be defined properly, One such definition is obtained in the
follokffng way. Write equation (57) in the form

(59)

where RI is a small rectangular region surrounding the

point ~ = x, ~ = y, and Ra is the remaining region of

integration, It is found that the correct boundary value
U. is obtained f~om equation (59) when the ‘sides of R1
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. and the value of z are ~imultaneously made small in such
a wa;- that the value of z tends more rapidly to zero than
the smaller of the sides of the rectangle RI. This result
holds independently of the location of the point x,y
in

with-
R1 so that no reason to prefer the principal value of

the integral - which corresponds to symmetrical location of
X,y wit~in Rl - appears at this stage, The motivation
for vorking “with principal values appears at-a later stage.

The integral equation for u is obtained by means of
the condition that over part of t~e boundary the values of
the normal velocity a@/?)z are prescribed. The value of
*/bz is determined by first taking

where it is legitimate to differentiate inside the sign of
integration as long as Z>o, The value of i30/az iS
obtaiaed by integrating equation (60) with respect to .y.

This integration is facilitated if use is made of the follow-
ing identity,

.3

:(:)+:+)++(%)=0sr={(-g)z+(,-fi)z+z’~’
Substituting equation (61) in equation (60) and integrating
from x = --ca, where a@/az = o, there follows

x

@l 11 [
x!_ t—=——

az 2n
Uo y-————

}

3/2
Aq)z+(y-m)z+zz

/

/-ca
LL

+a
[{

x

I
(y+) dxl

—
by

1]

—“-”~=s d~dq

-m (X f–g)a+(y-n)z+ z
)

and after evaluation of the inner integral,
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r

22

s= I x-t
_uru. l_—._.—_———

2TrJ J ‘“’ J

L

7 3/2
.: , (.x-g)%y-m)a+z~., :.

(Y-n) (x-f) J
I

~zVy-’)’+z?+<+’J

In this integral the region of integration consists of the
airfoil regi~n Ra and the wake region Rw only, as equa-

tion (54) indicates that U. vanishes in Era

To obtain the integral equation for U. the loundary

conditions (49), (54), and (55) have to be used and the
~ limit of’ the integral (62) as z tends to zero has to be
taken. In principle the simplest procedure would be to
evaluate the integral first for non-vanishing z and then
make z = O in the integrated expression However, inas-
much as the integrand in equation (62) becomes of simpler
form when in it z is made equal to z,ero it is desirable
to define the process of integration in equation (62), or
in an equation derived from it, in such a way that the
correct result is obtained if first z is made equal to
zero and then the integration is carried out, This, as will
be shown, is possible without transformation as regards the
first term in equation (62) while the second term has to %e
brought into a different form, in order to avoid singular-.
ities of too high order.

In this transformation two different cases are dis- -
tinguished: (1) the case for which the leading edge is
straight and perpendicular to the direction of the ‘main-
flow, (2) the case where this is not SO. In the first
case the second term may be integrated by parts with re-
spect to T and since in view of equation (54) U.
vanishes at both ends of the q-integration interval
there follows from equation (62)



.
23

.
?@ 1

j

N x- E—=.. — /u. ~——

bz a-r 1
J E7’E

-pg)a+(y-n)a+z
Ra+Rw )

+ au. Y-q

[

%! 1— —— -——z,1 d~d~ (63)
aq (Y-n) z+zz

{
$)(x-g) a+(y.-&+z2’

. J

In the second case the” t”ransformation of equation (62)
involvos first integration %y parts with respect to ~,

From equation (54) follows that in the integrated part .@.

vanishes when t = xl while for E =@ the factor of +0
Vzulishose Yhus instead of equation (62) ther”e may be
written.

In this expression the second term may be integrated by
parts ~.~ithrespect to ~ and, writing i3+o/3q = V.

and observing that the integrated part vanishes at the
limits, there follows
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r~~=_~ H{
x— t

Uo y——————-——
az ar > 3/a

Ra+Rw
.)(x-f )2+(y-m)2+z
L )

7

It may he noted that an equation equivalent to equation
(64) could also have been obtained by applying the Biot-
Savart theorem with a vortex sheet occupying the regions
Ra and R in the x,y-planeo

w

The integral equation of the problem is now obtained
by substituting either in equation (63) or in equation .(64)
the boundery conditions (49) and (55). There follows, from

equation (63),

x,y in IIa : r-
1

1-

(JJI ~
(x- g)

Wo(x,y) = - ~ lim U. ~

2W Z*O (x_&) 2+(y.-q)2+z
j’.3/2

I ‘a 1
L “

+
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Equation (65) is valid when the leading edge of the airfoil
is a straight line parallel to the y-axis.
(64) follows,

From equation
without restriction concerning the leading

edge curve,

x,7 in Ra :

+ we’’”)=-y-i df’--~’66)
p- N+(Y-&+za J J

In both equations r is defined, according to equation (56),
by

x~

~r(q) s
J

uo(t, n)dg . (67)

xl

According to eq~ation (50), the additional condition is
imposed that

U. (tt, I-I)finite (68)

Equation (6.5) has the advantage that in it only U. occurs,
but the disadvantage that its applicability is restricted
to airfoils with leading edge straight and perpendicular



.
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to the direction of the main flow. Equation (66) is free
of this restriction, hut contains the two unknowns U. and
PO (vhich, however, are both derivatives of the same func-

tion $.)O The developments of part III of this paper ar~

based on equation (65) but it Is certain that equivalent
results can be obtained on the basis of equation (66)*

So far as the integral equations (65) and (66) are
concerned it is possible to put z directly equal, to zero
in some of the wake integrals as the variable x is always
exterior to Rw. This is not the case with the integrals
over the airfoil region “where the integrand becomes infinite
when z = o,t=x, Y=a. The order of this infinity is
most easilY recognized if cylindrical coordinates about
the point x,y are introduced, that is,

whence, for instance,

On the basis of this formula the integrals over Rw and
Ra could be considered as composed of the following two
regions: (1) a small circle with center p = O, (2) the
region minus, the small circular region. It is possible to

show that 1im
JJ

has the value which would also be ob-
Z+

tai.ned by excluding from the region of integration the small
circle, assuming in the integral over the remaining region
z equal to zero and by finally letting the tiadius of t’he
excluded circle go to zero.

For the applications it is, however, more convenient
to subdivide the region Ra in a different way. This may
be explained in detail for one of the integrals occurring
in eq~ations (65) and (66): namely,



The integral 12 may be written as

‘.=UWJ’ [70)

31 R2

where RI is a small rectangular region surrounding the point

E = K,:7=’q in the ~ ,V-plane and R2 the remainder of

tha airfoil region Ra. In equation (70) RI ma!~ be nade

so small that in it the functio-n U. changes very little,

so that

AL 1

vu
RI jy-+(Y-!7) +. ]

With Rl thus determined make z so small that

+ i52 (73)



Since in this definition z approaches zero automatically
as the size of the” rectangle RI shrinks, there may be
written

10 =lfm I
z =lim

Z40 R ~~o
Iz

The most convenient form of Z. is obtained if the?
sh:tpe of the rectangle RI is chosen such that the first
i.nte<r.-d in equation (74) vanishes. This is Vhe case when
the rectangle RI is symmetrical about the line ‘~ = X,

since the integrand is an odd function of ~ -x. This iS ‘
the szue as saying that the gap in the second integral is
Symmetrical sO far as the ~–integration is conce~ned,
which is equivalent to saying that the principal value
of the integral is taken in carrying out the integration
with respect to ~ . This may be indicated ly writing

(7’5)

In the same way it cam be shown that the simplest form of
the reuaining singular iutegrals in equations (65) and (65)
is obtained by making the rectangle Rl symmetrical about
the line y = ~ - that is,
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and

o

/[

Vo(t, a)(Y-d d~dm
lim —-..———

3 laz-o . ●

f(x-g)’+(3,-a)& +za}
Ra L

As in one integral gap symmetry in the ~-direction and
in the other integral gap symmetry in the ~-fiirection is

,desirable, it is most convenient to have in both integrals
gay syzmetry in both directions. With this understandin~
the integral equations (65) and (66) may be written

X,Y

w=
o

in Ra :

+ ik—
4Tr

$F-ikxt}-ik’
f

x -t
+

{
1+1

}}

d~d~ (’77)

Y–n (X-c) a+(y-n)
a I/a

L -1
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or

.

.

X,X in

W. =

Ra :

/-

1 [!
! %(h) (4-).—

{
———

a-r. L{(X-+) a+(y+)
}

8 3/a

Ra
T

-ik(~.-xt)

1 -ikI’(~)e

Jf{

(x-g)
——

–7 7
———

411 (=g)’+(y–m)y
●R( [

(7’8)

In equations (77) and (78) r is defined, as before, by
equation (g?) and u. is$ as before, subject to the con—
dition of finiteness of equation (68).

In what follows equation (77) will be specialized to
the following cases (leaving deductions from equation (76)
foi” future work):

(1) The two–dimensional theory, where no new results
are obtained;

(2) Tho stationary theory for :Lirfoils of rectangul~.r
plan form from which in a manner similnr to that used by
3urgerc (reference 1’8) there is obtained ?randtlls equp.tion
of liftin~line theory, Also obtained are expressions for the
spanwise variations of total moment and allero’n hinge moment
which are equivalent to earlier, apparently not well known,
results of Glauert~
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(3) The nonstationary theory for airfoils of rec--
tan~ular plm form. Here a thory is obtained for the

aerodynamic span effect which is “a generalization of the
Praiidtl theory for the stationary airfoil and ie considered
just as reliable for the nonstationary airfoil as lifting-

line theory for the stationary airfoil.

Before proceeding with this Program exPressiOn~ ‘P-y be
obtained for lift and moments in terms of the function u~ ,

which is the function to he determined from the form of the
integral equation of lifting-surface theory as given in this
paper. Substituting in equations (29) and (30) the value of

P fr om equation (48) and taking into account that pi=- Pu
there follows first

●J
‘1

and
Xa

f.

h~k eit dx
m(y:xo,xl, X2) = ( X-xo) (ik@k+ ~ )

,
‘1

lfri%ing .

itm= mk e

there follows

Xa

J ( ik@k + Uo) dx
‘k =

xl
anti

(79)

(80)

(81)

(82)

‘2
mk = r (x--xo)(ik@k + Uo) dx (83)

By integration 3:” parts equations (82) and (83) may be trans-
formed into expressions depending only ‘n ‘of.

Ik(xl,xa)=ik {(xa-x,)~’uodx+tf’( x,-x)uodx)+f:odx (a4)

x~ ‘1 ‘1



x.

.

.

.

● ✎

.

{

A

(
X2+-X1

mk(::ot x1$x2 )f)=ik (X2-XX) —~ - x. ~. dx

xl
x.

f

‘2

+ “(X2-X) (22=- x.) U. }ax +

f

(x--Xo) U. dx (85)

“xl .xl

From equations (84) and (85) there follotts in Par-
ticular for

., (l) the section lift (XZ = xt, X2 = xt)—_—-——

Xt Xt
P P

tk = ik J /(Xt-x)uo dx + U. dx

xl

(2) the section moment———-.——- —

.Jx ~

alto Ut X. (xl = xl, X2 = Xt)

(86)

Xt

IIlk(xo)= i!c

f

( x~-x)

. xi

(3) the aileron hinge moment (XZ=XO=C, X2 = xt)
-- .-—— —-——--—

Xt

(Xt+x )U. dx +“f (x–xo)uodx. (77)-— - ‘o2
xl

c

~1~ (old = ik
{ !

$ (xt-c)’ U. dx

“x*
b

x%

+ J *-+0 “}((Xt ,2 .-x )

c x%

+ ! “(X-C) U. dx (38)
.
c

It me,y be n“oted that equations (86) and (87) coincide uith
expressions previously used hy Glauert (reference 5)

.
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III.- LIFTING-STRIP THEORY FOR THE NONSTATIONARY MOTION

03’AIT AIRFOIL OF FINITE SPAN

In what follows a theory is developed for the airfoil
of finite span suljected to nonstationary motion which may
be consi-dered as a generali~ation of lifting-line theory for
the stationary airfoil. No use is made in this development
of the vortex filament motion. The starting point of the
developments is the integral equation of lifting-surface
theory in the form of equation (77). In this integral eqqa-
tion simplifying assumptions are introduced of which it is
appa’rent that they are of the same nature for the stationary
and for the nonstationary airfoil. Thus , the rani=’eof valid-
ity of th~theory uut forward here coincides with the range
of validity of lifting-line theory for the stationary airfoil.

While derivation of the results for the wing in non-
uniform motion depends on the same order of magnitude rela-
tions regarding aspect ratios as the derivation of the re-
sults for the wing in uniform motions the steps involved in
the solution of the uniform-motion case are naturally of a
much simpler nature than the steps involved in the solution
of the nonuniform-motion case.

The results obtained here consist in explicit expres-
sions giving lift and moment intensity at every section of
the span for any deflection of the wing in terms of the cir-
culation function which has to he determined from an integral
equation of the nature of the lifting-line equation. If the

assumption of two-dimensionality is introduced into the re-
sults they reduce exactly to the known results of the two-
dimensional theory.

No ,expressions are as yet given for aileron hinge mo-
ments. Such expressions may, however, be obtained from the
present results.

Also, airfoils of rectangular plan form only have for
the time being been considered, for the sake of perspicacity.
It is certain that equivalent results can be obtained for
tapered airfoils.

.
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YHE INTEGRAL EQUATION OB’ LIPZ!tNG-SURi!’AGI!TREORY

FOR AN AIRE’OIL OF RECTANGULAR PLAN FORM

Taking as airfoil region Ra the rectangle bounded by
the lines X.*1
(77) %eoomes

and y =hs, the basic integral equation

.
IS

1

u-{

Uow’t)(x - f.)
Woh=

.-1-s -((x- !U2 + (y - Tl)=’y8
L J

with, aocording to equations (67) and (68)

.

u. (1,~) finite

(90)

. (91)

Before considering the three-dimensional. problem of the
nonstationary airfoil this equation is specialized for the
two-ilimensional case and for the three-dimensional stationary
case and some results are established pertaining to these
cases whioh it is convenient to make use of later on.
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THE INTEGRAL EQUATION OF l!WO.DIMENSIONAL TEE’ORY

35

!l!heairfoil region has now the form of the infinite

striP lx! ~ 1 and the assumption of two-dimensional flow
is expressed by

Wahcd = We(x), llJ.gll) = U(+?J1 r(~) censt.ant (92)

The Integration with respect to ‘il can le &arried out, leav-
ing

where r is given in terms of Uo, %y equation (90) and
where the finiteness condition equation (91) has to be ob-
99rved. Equations (94), (90), anti (91) can be solved ex-
plicitly for u , the result may be substituted in equa-
tions (86) to (88) for lift and moments to obtain the well-
known Theodo&sen-Cioa3a-Ellenberger-KHssner results. 2hese
same results will appear as speoial case~ of the new tlaeory
taking account of the aerodynamic span effeet.

THE INTEGRAL EQUATION OF THREE-DIMENSIONAL S?ATSONARY THEORY

with

k*u
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equation (89) reduces to

s

f d11
Wo(x, y) = - — Uo(t,’o(x - E)

2Tr
-1 -s

1~

(x - g)= + (y - T)a

Approximate solutions of equation (95) for airfoils
without canber for ~~lich Wo = a = constant have beer. o%-

taineci by Blenk (reference 17) and Wieghardt (reference 23)
with the aim of supplementing Pre.ndtl’ s lifting-line theory.
The inverse pro%lem, to obtain convenient expressions for
Wo when U. is gi:en,,has been dealt with, using Fourier
integrals, by Von Karman (reference Ig) and Fuchs (reference
21).

It appears that the task of obtaining quantitative so-
lutions of equation (95) giving reliable corrections for the
results of lifting-line theory is of considerable difficulty
and requires work going beyond what has been accomplished by
Bleak and Wieghardt,

Lifting-line theory may be obtained from equation (S5),
substantially according to Burgers (reference 18), in the
following manner.

Substitute in equation (95) as new variables

(96)

which changes equation (95) into,

. ●
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For eufficiontly large s, practically for

Q>3

the terms

(98)

have a steep maximum for y* = V* so that, roughly, the
main contribution to the value of the integrals containing
these terms oomes f~om the immediate neighborhood Of the line
Y* = fi*. In this neighborhood the ,values of U. and ‘o

+ 1
are thought to change sufficiently slowly to permit replac-
ing thetr actual values by their values at y* =q** If this
approximation is aocepted equation (97) bec~mes

1“ J

(99)

In the first two integrals tie integration with respect
to n* may be carried. out explicitly, Because the main
contribution to tho value of the integral$ comos from the

.

immediate neighborhood of V* = V* the err Or introd~~ed ~y
integrating frem _ to i-ca instead of from -1 to +1 is
negleoted, (This latter approximation evidently ceases to
be good in the immediate vioinity of the tip sections
y* m &l, and could not be made were it not for tho fact
that uo turns out to be small near the tip sections.) Ifith
the following values of the relevant two integrals,

co

.
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the integral equation (99) is re~uced to

abd if in the second term use is made of Gquation (90) there
follows as final f~rm of the approximate integral equation
of the stationary rectangular lifting surface,

It may be seen that the second term in equation (10~) gives
the finite-span cor:eotion, while neglecting the second term
is equivalent to assuming two-dimensional flow at every sec-
tion.

TO determine the functions U. and r usc is made of

a known invetsion formula which is to be considered as a re-
sult of two-dimensional potential theory. (See,for instance,
S6hngen, reference 34.) The inversion formula states that
to the relation

there corresponds the following inverse relation expressing
f in terms of g,

(103)

-a

Applying equations {102) and (103) to equation (101)
in order to soZve for uo,
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and with

there follows
.-”.

‘ J“Eqfxl %+ ‘$uo(x, y*) = -
IT

=-3.
“ L

(104)

(105)

13quation (105) becomes, by integration, an equation for
w

It is plausible and may be justified rigorously that in the
second term on the right the order of integration may be
interchanged. Then with

(“E==-=.. (106)

there follows as integral equation for r ,

Since, according to equation (86)

20 ..Lr
2

(108)

it follows that equation (107), the integral equation of
lifti.n~line theory, determines directly the lift distribu-
tion in the stationary aase,
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In addition to the integral equation for the 3ift dis-
tribution further results may be deduced from equation (Z05).
Introducing the value of Uo, as given by equation (105)
into equation (87) for the seation moment me(xo, -1, 1)
there follows

rn~(xo, ~~bs - .o)dsf--1, 1) = ?r~(xo, -1, 1) - &

(109)

where go stands for the value of the moment in the absence
of an aerodynamic span effect. From equation (109) follows
that there is no aerodynamic span effect for the moment

shout the auarter chord noin~ x~=- ~ (whiah vanishes for

the straight line profile)- that is,

1
mo(-~) -1, 1) = HOG-+, -1, 1) (110)

A probably more important result of this nature concerns
the value of the aileron hinge moment which is defined by
equation (88). Introducing equation (105) into equation (88)
gives 1 %

lno(c,c),l) =

‘Writing
fll

J
f(c) = (x

c

ao(c,c,l) - /==
-dl+x

.

Clx
i

ar

-1 ‘“ - ‘“

(111)

-J’ 1
c) (--ax= 1+

x+x

(112)

and observing equations (107) and (108), there may be written
instead of equation (111)

~g-uation (113) indicates that the aerod.ynami~ span effect.—
for the hinge moment differs from the span e..fg~t for th~
~. and in which manner the two are related.
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THE INTEGRAL EQTJATION 03’ LIFTING-STRIP THEORY

FOR NOZ?STA!F1ONARY MOTION

The starting point is the complete integral equation
(89) which may be written in the form

IVo = 11 + 12 (li4)

wh”er e 11 stands for the integraL over the airfoil region

and 12 stands for the integral over the wake region. The

appropriate approximation for It has been obtained in the

preceding section on tha stationary airfoil. According to
equation (101)

(115)

It remains to obtain an approximation for 1= which

corresponds to that obtained for ll. It will be shown that

several essential steps are involved in the derivation of
this approximation.

Starting with the exact expression

(126)”

the first step consists in separating from :2 the value z~:

would possess if the two-dimensional theory were co~rect.
According to equation (94) the value of 12 in the two-dimen.
sional theory is

(11?)

.
.

The seoond step consists in writing



4.2

{118)

-s

which may readily he verified in view of the fact that
r(+g) s O.

With equations (11’?) and (118) 12 of equation (12.6)
may be written as

. A further transformation is accomplished hy the follow-
:.ng integration by parts

0

The .tntegrated part of equation (120) vanishes as ~ vanishes
at both limits. Introducing equation (Z20) into equation
(119), there follows

and combining the first two terms within the braces,

.
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{

ikeik b s ~-ikhl(~) ~ - Iy - ml=Iz+—
4Tr ff Y -v

f .~z/a ‘-~

+ L(x - ;)”-: (y - ~) j

}

~ d~ (122)
~-[

The next step consists in se arating in equation (122)
the integration with respect to f in two parts as follows:

f=f-[
1 x

Then

Ia =13+14+15 (123)

i-

15=-

+

(224)

Ilquation (124) may be simplified by introducing a new vari-
able of integration

k(~-x)=A, kd~=dA (126)

(127)
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So far, no approximations have been made in the treatment of
the wake integral. The place where they are made is in the
remaining term IE. !lhie is possible owing to the fact that
the t-region of integration, (x,l), in 15 is always small-
er than the chord of the airfoil and that part of the factor

‘ik’t rl(~) in the integztiis, as wasmultiph~ing e the case
previously in the integrals extended over the airfoil region,
of appreciable magnitude in the neighborhood of the line
9 = Y Only. The term~zi,~ question are

r
(x -na+(y-?-l) +-ql 1 x-g

—z— (128)
(x - t)(y - V) 2 (y- n)l Y - VI

and the s sign holds as soon as IY - I’ll is somewhat larg-
er than Ix - ~1 which, considering the assumption regarding
aspect ratios as expreseed by equation (98) means over most
of the span. With this observation the approximation for 15
is

)(‘lJx- ~)a i- (y - ~)

l-’ }
IY - d ~~d~ m-—

x-g x. E
(129)

equatiou (129) the integration with re-in the first term of
spect to ~ may “be ca~ried out , the second term c:~~~~s be-
cause the integrandis an odd function of y - T1.

Introducing 15 from equation (130), 14 from equa-
tion (12’7) and 13 from equation (117) into equation (123)
there follows
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Introducing 12 from equation (131) and 11 from equa-
tion (115) into equation (114) there follows as approximate
integral equation of lifting-surface theory for the rectangu-
lar nonstationary airfoil”

Putting as an ab%reviatiog

f -,1/2 ,aJ

S(kly- ml) =,
r[

e-iA ~+kly-Tli- :A2 + ka(y - 0)2; 1dA
A

b
(133)

equation (132) may be written i.n the form .

eik(l-x)
-

{

“~’(v~ (I - S(kly - ?ll)~d~ (134)
4n.~- ?-lL J

-s

Equations (134) and (133) are the generalization of
equation (94) of the two.dimensional theory and of equation
(101) of the three-dimensional sta;:~~;ry theory. They re-
duce to th,ese special cases when o or k=O,
respectively. It may be noted that acco~ding to equation
(134) the induced velocity due to the finite-span effect
varies across the chord in contrast to the result of the
stationary theory j.n which this velocity is uniform. In ad-

. , dition to this the cumulative effect of the spanwise rate of
change of I’ is modified as compared with the result of the
stationary theory by the occurrence of the function S which

. can be tabulated once for all.
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It is because of~he chordwise variation of the induced
velocity that it is no longer possible to speak of a liftinq
line. _To exprees the fact that the derivation of the inte-
gral equation (134) depends on the-assumption of the span be-
ing rather longer than the chord the name of lifting-strim.—
theory is Proposed for the basic eauation (“134) and for the
consequences derived therefron.

Further treatment of equation (134) is possible by o
means of a combination of the known procedures of the two-
dimensional theory and of the three-dimensional stationary
theory.

As in the three-dimensional stationary theory an inte-
gral equation for I’ is obtained which may be solved by
numerical methods.

As in the two-dimensional theory explicit expressions
for thd section lift and the section moments can be obtained
in terms of the function r. This will be done in what fol-
lows for lift and moment of the entire chord, leaving calcu-
lation of the aileron hinge moment for future work.

The first step in this program consists in the determi-
nation of U. from equation (134) by means of the inversion
formulas (102) and (103). The result is, if as a further
abbreviation there is put

eik(l-~)
+

41T
Q(y)? A

jx-~
(136)

The section lift and the section monents may he calculated
by introducing equation (136) into equations (86) to (88).
From the two-dimensional theory it is known that these cal-
culations lead to explicit results in terms of known func-
tions and in terms of I’ for part of equation (136), It
will be shown that also the remaining terms can be expressed
in terms of knowu functj.ons and in terms of Q.
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Integrating equation (136)

To evaluate equation (137) the order of integration with
respect to x and ~ is interchanged and use is made of
equation (106). There follows

remains to evaluate the integrals

To obtain 16, interchange the order of integration

(139)

(140)
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The value of this integral is known in terms of modified
Bessel functions (Sap Durand, vol. II, p. 295)

Ie =-m
[

~-ik .
Ko(ik) + Kl(ik) - —

Iik A
(14.2)

TO obtain 1, , use is
mula (see, for instance, Gray
functions, p. 46)

made of the following known for-
and Mathews Treatise on Bessel

1

!
-ik~

;l~~ d~ = ~ Jo(k)

From this there follows

(143)

Substituting ea-uations (142) and (144) in equation (138),

.
J

$r=-
f~

~ ~.@ ikeik

[

~-ik
-— r Ko(ik) + Kz(ik) -=

. 2
-1 1

- eik
[

~ Q Jo(k) - iJl(k)
]

(145)

and canceling the term on the left against one of the terms
on the right, rearranging and introducing the value of Q
frOm equation (135) there follows as integral equation for I’,

~r(y) + Jo(k) - iJi(k)

f { }

~’”(11) 1 - S(kly - ill) d~

4ik[~o(ik) + K.l(ik)~”_s Y - ~

.//l+ ,Wo(&,y) d~
= ..”

ikeik[Ko(ik) + K (ik)]
1

(146)
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A similar equation has been obtained by Cicala (refer-
ence 27) by means of considerations involving vortex fila-
ments. Cicalals equation distinguishes itself from equation
(159) by the fact that the factor Jo(k) - iJz(k) is re-

placed by a factor e-ik. Since for large k

(147)

it is seen that finite span corrections of a different order
cf magnitude in k are to be expected from Cicala’s equa-
tion and from the one given here. The difference is large
even for relatively small values of k well within the prac-
tical range as can be seen by comparing the two terms as fcl-’
lows,

-ik
k=f zO.T8; e =0”7 - i 0;7; Jo(k) - iJl(k) = 0.8s - i 0.36 (1413)

It may be noted that Cicalals result would follow from the
basic equation (134) if in the third term of this equation
the factor exp~ik(l-x)] were missing. This means that in
Cicalals work the chordwise variation of the finite-span-
effect contribution to the induced velocity has been left
out of consideration. E’urther discrepancies which, it ap-
pears, cannot all be accounted for in this manner are found
between Cicalals ekpressicns for section lift and moment and
the expressions given in what follows. It may be emphasized
that while there is a fcrmal resemblance between part of the
present results and Cicalals results, the present wcrk and
Cicala!s work are fundamentally different. Cicalals approach
to. the problem does not permit a rational determination of

‘ all the factors of importance in the problem.

Regarding Ktissnerls work (reference 10) on the same sub-
ject the following may be said. On the basis of the integral
equation of lifting-surface theory set up in terms of the ac-
celeration potential Kiissner obtains an integral equation for
a quantity which, in the notation of the. present paper, is
the section lift ~k. Kiissner states that this equation is

correct only when -ikxwo(x,y) = ~(y)e and for other func-
ticns w. an equivalent 3? might be determined by means of

the equation
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It appears that Ktissner”t result cannot be correct inasmuch
as it does not reduce tc the value of the section lift of the
two-dimensional. theory when the assumption of two-dimension-
ality is introduced into the equation. l’urthermore, no pro-
vision is made in Ktissnerls work for the determination of the
finite-epan effect on the values of”the section moments.

The comment that his result does not reduce to the ap-
propriate two-dimensional result when it shduld do so applies
also to Searsi special solution (reference 29) for the infi-
nite periodically bent airfoil. Searel paper also contains
no formula for the effect of three-dimensional flow on the
values of the section moment .

As Jonesl work (references 31 and 32) deals with the
transient problem of a ri.gi~ airfoil with elliptical form
view no direct comparison is possi%le of his results with
the ones given here. Inasmuch, however, as his developments
make essential use of vortex-filament notions it appears de-
siralle to conpare his results with results which may be
obtained on the basis of the notions of the preeent paper.

DET!XRMINATION OF THE EXPRESSION 3’OR THE SECTION LIFT

According to equation (86)

1

f

Zk=ik (l-X)UodX+~r

11

and it remains to evaluate the integral

1

Ie = ik
f

(1 - x) Uo ax

:1

Substituting equation (136) in equation (150)

(149)

(150)

-1 --1 n

eik(q )
-I-

41T 1 }

Q~dx

.

(151)
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Interchanging the order of integration with respect to t
and x leads to the integral

1

f
1(1.X) LQ2E__. TT(~.2)

l+XX -E
:1 .

Hence
1

Ie = ik

f

(g - 2) ~ .0- i,keik ~ m e-in d~

.J 1 -t [. 21T J k-~
-1 1

(152)

(153)

It is convenient (but not essential) to make use of equation
(138) by writing equation (153) in the form.

lt remains to evaluate

and

(154)

(155)

19 $s found by interchanging the order of integration
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Integrating by parts
.

~-ik

ik [ r

A+l

A-1 1‘J+=‘
A

}
e-i 1+

using e,qu ,atioa (141) and the kn own for mu.la

ICo(ik) (157)

(158)

there follows

r~ =TT (
)L-

[
Kl(ik)

~-ik

ik 11
II+

The
.la (
ence

i nt
see
35

egral 110 is f
Beeeel Function
)

ound
s by

by means
Gray and

of the f
Mathews,

’011

P.

owi
46

ng
form
refer

.

1

()/’”:e

~1

,ixg
Jl(x) 159.

.

where

r(~) =

represent the classical r-function and

Thus 1
J2(k)

k
e-ik~ (160)

equa-

can-

110 d =-l-r

Introducing now

tion (160) into
collations

from

.ation (

e qu

154

.ation

) ther

.58) and

follows

II

aft
o
er

from

somee

[

1

1
>.ik

.
-1

KI (ik)

m
e-ik

-—
ik 1

‘~(g,y)Ie = w

ikeik Jl(k)
—Q~

4

ikeik

2
r (161 ).

.

+

Substituting IS

there follows for
from equation (161)
the section lift

in equation (149),
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1

d-.
ik ‘ ikeik JI(k~ Q(y)+ ike Ki(ik) I’(y) - —

2 4 k

r

(162)

where r is to be determined from equation (146) and Q is
defined by equation (135). For two-dimensional motion equa-
tion (162) reduces to

1

and, since according to equation (146) the two-dimensional
circulation is given by

i= lj~wo’”a’ (164)
2

‘ikeik IKo(ik) + Kl(ik)]

there follows as special case the known expression for the
section lift of the two-dimensional theory

The factor of the second integral has been designated
by Theodorsen (reference 6) by C(k) = F(k) + i G(k).

It is apparent that once the integral equation (146)
for r has been solved the calculation of the lift distri-
bution is no more complicated in the three-dimensional the-
ory than it is in the two-dimefisional theory.

DE’2ERMINA’I?lGN OF THE EXPRESSION FOR THE SECTION MOMENT

According to equation (87) the section moment shout the
semi-chord point is given by



NACA TN NO. 946 54

1

ik

fT.
-1

ink(o) x=) 16’71 dx ax

Th
r

.e second
and Ie

term of this equati
of equation (150)

on can be expressed in terms of

Ir
L+—
ik 2

(168)ax.x Uo =.

Hence, with equ.ation (161),

! x
.
-1

f..
-1

eik

T
ax Kl(ik)rUo Wo + +

Jl(k)
k

(169)

(170)

+ Q

~t remains to evaluate
1

ik

f
(

T.
-1

quat i on

1- X2) U. d

(136) iS gi

111

according to

.x

,vewhich, n I)y

1

ik n

J%’
-1

1

{f .,
-x

[
W()x“ )(11 11

ikeik

2n

eik(l-~)

4Tr
(171)Q+

Inter
to x
first

changin
and

;(

J.
-1

as before
the foil

th
Owi

.e
ng

or
i
der
nt e

of i
gral

ntegration
has to be e

a
-t-$)

Wit
val

hr
,uat

egar d
ed

(172)x’ r)= 1+X

dx

x ‘- k

With this
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Wri,ting

(k2 M=T

(173)

and making use of equation (138) 1~~ may be written in the—
form

I11=-

There remains to be evaluated

I
13 =

J

f!

-1

(174)

d~1d~ (175)

(176)

The value of 11= is found by first interchanging the order
of integration,-”-

by then integrating by parts



w

(178)

Utilizing equations (142) and (157)

(179)

The value of
h3 is found with the help of equation

(160)
1

(180)

Substituting now equations (179) and ,(180) in equation (174)
there results after some cancellations

-(
e-ik

)]

~lk
+ 1 Kl(ik) - ~

}
+ Ko(ik) + — J2(k) Q (181)

ik 8

Introducing equations (181) and (169) into equations (170)
and (167), there follows; after some further cancellations
and after making use of a recurrence formula for Bessel func-
tions, as expression for the section moment distribution in
the three-dimensional theory

+ ikeik eik
Ko(ik) r + — Jo(k) Q

4 8
(182)
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For the two-dimensional case this expression for the
. section moment reduces to

. (183)
and with I’ from equation (164)

*

i%k(o) =
f f

~wod@$7~~%d~
. .
-1 -1

1 Ko(ik)’

/e ‘0 “- ~Kl(ik) + Ko(ik)”_l
(184)

T,his is in agreement with the known results for this ease.

RflSUv~ OT BASIC 3’ORMULA$ 01’ LIFTING STRIP THEORY

I’OR AIRH’OILS OF RECTANGULAR PLAN FORM

(1) The integral equation of lifting-surf~:e>t:;ory as
reduced for sufficiently large aspect ratio,. -

{

m
ikeik ~-ik~Uo(g,y) ,~g + —

Wo(x,y) = - ~
t f

~k(y) — d~
IT. x- 2n x- t

-1 s
1

- ‘ik::-x){ $+#{, - S(k,, -,,,}.,

where -s
1

(134)

JWC h = eit h~, r = rk eit, L rk = Uo dxl$o = ikhk + —
ax ‘ -2.

-1
and
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. The function S is related to a function ~ which iS tab-
ulated in equation (27), in the following way

s(x) = ix I’(x)

(2) The integral representation for the chordwise veloc-
ity component at the airfoil

(136)

-s J

(3) The integral equation for the circulation funotion

s

& Jo(k) - i Jl(k)
~ rk(y) + ~’-~.sp,

4ik LKo(ik) + Kz(ik)] .
1 —s

J

.,

‘EzI Wodg
A/ l.{

=. (146)

ikeik CKo(ik) + KI (ik)]

The modified Bessel functions of the second kind may be ex-
pressed in terms of Hankel functions ,.

Ko(ik) = - i ; Ho(2)(k), Kl(ik) = - ; Hi(z)(k)

(4) The form~la for the section lift I = Ik eit

Ik=-ik
J

~l-&aW d~ +~K(ik) ’k(y)o 2
1

-1 s.

- –—-Jr*{l - S}d,ikeik Jl(k)

4 k
(162)

I
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(5) The formula for the section moment about the semt-
chord point m(o) = ink(o) ei!

+ ikeik
Ko(ik) rk(y) +

4
$ Jo(k)J//’_{l - s} d,

CONCLUDING REMARKS

(182)

The developments of this paper indicate that use of the
velocity potential is preferable in important respects to
the use of the acceleration potential in thin-airfoil theory.

Recognition of this fact is considered as an essential
aid in the establishment of Illifting-stripll theory for a non-
stationary airfoil. While this theory lias here been devel-
oped for airfoils of rectangular plan form it can be extended
to tapered airfoils.

Application of the results of the present paper should
permit, among other things, the investigation of the aero-
dynamic span effect in the problem of wing flutter. For this
purpose it remains to establish a convenient scheme for the
numerical eolution of the integral equation for the circula-
tion function.

While some investigators have stated as their opinion
that the error in flutter calculations resulting from the
assumption of two-dimensional flow is negligibly small for
all wings with aspect ratios a%ove three, the author consid-
ers the available evidence as inconclusive. He believes that
a deoision on this questi”on can be reached by applying the
I’esults of part III of this paper to a number of representa-
tive flutter casee.

It is emphasized that the manner in which lifting-strip
theory is obtained indicates that its range of validity is
no less than the range of validity of ltfting-line theory
for the stationary airfoil. Inasmuch as experiments have
shown that lifting-line theory may be applied for wings with
aspect ratios as low as three, the same must be true for the
results obtained in pgmt III of this paper for, the nonsta-
tionary. airfoil. It should be possible to apply lifting-
stri.p theory to tail flutter problems.

Massachusetts Institute of Technology,
Cambridge, Mass., Feb. 1943.
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Figure 2






