| AD NUMBER |
| :--- | :--- |
| ADB805024 |
| CLASSIFICATION CHANGES |
| URCLASSIFIED |
| FROM: LIMITATION CHANGES |
| TO:
 Approved for public release; distribution is
 unlimited. Document partially illegible. |
| |
| |
| FROM:
 Distribution authorized to DoD only;
 Administrative/Operational Use; 29 JAN 1943.
 Other requests shall be referred to Office of
 Scientific Research and Development,
 Washington, DC 20301. Pre-dates formal DoD
 distribution statements. Treat as DoD only.
 Document partially illegible. |

1.7.1

 Armed Services Technical Information Agency
ARLINGTON HALL STATION ARLINGTON 12 VIRGINIA

"NOTICE: When Government or other drawings, specifications or other data are used for any purpose other than in connection with a definiteiy related Government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other ciata is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto."

REGRADED TO

UNCLASSIFIED

AUTHORITY: Notification from the Originating Agency as listed on

CADO Reclassification Bulletin.

$$
15 \text { JANUARY } 1951
$$

－sep－7－10276 $17 \Pi 1-475,6$ （Dupl．ATI－4756）

Divas．n 8 ，inianal Deronse Research C mattee 2）We
Orice rsciatific reserch and Development

t）Aggis：31，1912

bir Jone in lieurann
Tnsuilate if ilvencen Study Frincet．on，ew Jersey

$$
\begin{gathered}
\text { AINE } \\
\text { AS } \\
\text { AII } 3+660
\end{gathered}
$$

This a cunest ortains inforation affectins the national defense \ddots the jnitol States within the meaning of the
 wine ravelition of its contents in ainy manner to an unewhorizea serson is orohibited by law．

$$
\text { c opy 17. } \quad 74
$$

Air Documents Division，T－2
ABIC，Wrigit Field
Wicrorim ivo．
$\mathbf{R}=z=\mathbf{F}$
DIVISION 8^{*}
NATJONAL DEFENSE RESEARCH COMTTTEE
OF THE
OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT
Progress Report on "Theory of Shock Waves" to -
August 31, 1942 by
John von Neumann Institute for Advanced Study Princeton, New Jersey
Report OSRD No. 1140
Date: January 29, 1943
Copies No. 1 through 27-Dr. Irvin Stewart
Copy No: 28 - Colonel S. B. Ritchie, Ordnance Department Copy No. 29 - Dr. L. R. Littleton, Ordnance Department
Copies No. 30 and 31 - Division of Research and Development Bureau of Ordnance
Copy No. 32 - Ballistic Research Laboratory, Aberdeen Proving Ground
Copy No: 33-Mr. R. J. Slutz, Division 2
Copy No: 34 - Dr. J. G. Kirkwood
Copy No: 35 - Dr. G. B. Kistiakowsky
Copy No. 36 - Division 8 Files

The original supply of 51 copies having been exhausted, the report was reissued in July 1945 by the Technical Reports Section; IVDRC.

[^0]

DIVISION 3^{*}
NATIONAL DEFENSE RESEARCH COMITTEE
OF THE
OFFICE OF SCIDNTIFIC RESEARCH AID DEVELOPIENT
Section 8.1

Frogress Report on "Theory of Shock Waves"
Service Directives OD-02 and OD-03

Endorsement (1) Dr. J. G. Kirkwood, Member of Division 8, to G. B. Kistiakowsky, Chief of Division 8. Forwarding report and noting:
"In this report the basic mathematical problems of the theory of shock waves in compressible fluids are formulated and discussed in an illuminating fashion. Specific results obtained by von Neumann and his collaborators are discussed from the standpoint of the general theory. Details of the theory have been presented in part in previous OSRD reports by the author. Further details are promised in future reports."
(2) from G. B. Kistiakowsky, Chief Division 8, to Dr. Irvin Stewart, Executive Secretary of the National Defense Research Cormittee. Forwarding report and concurring with above endorsement.

This is a Final Report under Contract OZIsr-218 with the Institute for Advanced Study, Frinceton, New Jersey.

[^1]
TABLE OF CONTEMTS

Paragraphs Page
1 to 4 Introduction 1
5 to 6 The conservation laws and the differential equa tion 3
7 to 9 The role of entropy 5
10 to 13 Vorticity and the Riemann invariants 7
14 to 15 Natural boundary conditions. The need for discontiruities 11
16 to 19 The conservation laws and the discontinuities 13
20 to 22 Formulation of the basic problems of discontinuities 18
23 to 24 The origin of a shock 22
25 to 27 The interaction of shocks: Linear case 24
28 to 30 The interaction of shocks: Oblique case 26
31 to 34 Reaction shocks. Classification 29
35 to 38 Analysis of detonations 33

THEORY OF SHOCK TIAVES

by John von Neumarn, Institute for Advanced Study Princeton, New Jersey

Abstract

The basic mathematical problems of the theory of shock waves in compressible fluids are formulated and discusseci. Specific results obtained are considered from the standpoint of the general theory. The material treated is the ortgin of exp:osions and the propagation of their effects. Terminal problems -- that is, problems of danage -- are not considered.

The topics included are the conservation laws and the differential equation; the role of entropy, vorticity, and the Riemann invariants; natural boundary conditions (the need for discontinuities); the conservation laws and the discontinuities; formulation of the basic problems of discontinuities; the origin of shock; the interaction of shocks (linear and oblique cases); classification of reaction shocks; and analysis of detonation. "Reaction shocks" is the term used for shock waves frequently denoted as "detonation waves."

I. INTRODLCTION

1.

This report is concerned with theoretical work on various gas dynamical questions, partly of a rather general character, but are all related to the theory of explosions and the transmission of their blasts.1/ The problems that arise in this field are numerous and of varying nature, but almost all lead up to the study of discontinuous changes of state in compressible substances, the so-called shock waves, or briefly shocks. The theoretical work done was, therefore, in the main an investigation of shocks, their origin, their interaction, and their study under various conditions.
2. Shocks are possible in any compressible substance, and under the conditions in and around an explosion all knom substances must be regarded as

1/ That is, the origin of explosions and the propagation of their effects. Tominal problems, that is, problems of damage, are not considered.
compressible. Hence shocks should be investigated in gases, ličuds, and solids.

Now the essential medium for the shock in a progressing explosion consists of its burnt gas products, while the most important media for the propagation of the shock (blast) after the explosion are air and water.

The propagation of blasts under water is being investigated by J. G. Kirkwood and others [see Ref. (d)] and accordingly our investigations were restricted to the first tro topics, and so to shock waves in gases.?/
3. A shock may or may not alter the nature (that is, the equation of state) of the substance through which it passes. The latter is the case for blast waves. Te shall call such shocks, which pass through a (chemicallyl inert substance, pure shocics. The former is the case for detonation waves, wich as they pass induce the explosive chemical reaction. It is therefore customary to call this type of shock waves detonation waves. It is preferable, however, to talk of detonations only in a strictly technical sense. We shall therefore call all shocks of the first type, which induce chemical reactions, reaction shocks.

Thus the subject is subdivided into the theory of pure shocks and the theory of reaction shocks.
4. This report gives only the general outline of the problems considered and the results obtained. The details are given in several informal reports, of which trio, Ref. (j), (k), have already been submitted, and several will be submitted in the future. These latter reports had to be delayed for the folloring reason. They are closely connected thith other investigations, both experimental and theoretical, not under this contract, although conncted with it. It appeared desirable - in some cases nocessary -- to wait for the completion of certain phases of that work.

2/ The propagation of an explosion in a solid or liquid explosive is prima facie a shock betwoen that nedium and a gas. But it will appear later that it is in the main beheving as a shocl in a gas.

[^2]II. the conservation laits hid fie diffaremtial equation
5. Purc shocks, that is, discontinuous changes of the physical state where no chemical change is involved, are possible in a substance to the extent to winch its compressibility is noticeable but its heat conductivity and viscosity are necligible. Tho properties of a compressible substance are expressed by its caloric equettion of state, which gives its specific inner cnergy (inner encrgy per unit mass) 玉 as a function of its density e, or its specific volume $v[=1 / \rho]$, and the hydrostatic pressure,
\[

$$
\begin{equation*}
\Sigma=F(p, v) . \tag{1}
\end{equation*}
$$

\]

It is more corvenient, however, to use the specific entropy (that is, entropy per unit mass) Sinstead of the pressure p, and to express \underline{E} in terms of \underline{v} and \underline{S},
(2)

$$
E=E(S, v) .
$$

Expressions for the pressure \underline{p} and the temperature \underline{T} follow from Eq. (2):

$$
\begin{align*}
& p=-\frac{\partial E}{\partial V} ; \text { that is, } p=p(S, v) ; \tag{3}\\
& T=\frac{\partial E}{\partial S} ; \text { that is, } T=T(S, v) ;
\end{align*}
$$

and Eq. (1) is obtained by climinating \underline{S} between Eqs. (2) and (3).
If the substance charactorized by Eg . (2) is nonconductive (for heat) and nonviscous, then Eqs. (2) and (3) contain all we need to describe its behavior -- both thermic and mechanic. The differontial equations by which it is governed obtain by a direct application of the conscrvation laws: of mass, of momentum, and of energy.
6. First some formal preparations. The special coordinates form a vector $X=(x, y, z)$. The state of the substance at $X=(x, y, z)$ and at the time t is given by the mass velocity vector $U=(u, \pi \sim, \pi)$, and, as pointed out in the preceding section, by the specific volume \underline{v} and the specific entropy \underline{S}.

We use vector notations. 3/ Now the total differentia.l oyerator is:

$$
\begin{equation*}
D=\frac{\partial}{\partial t}+U \cdot \nabla . \tag{5}
\end{equation*}
$$

The statements of the conservation laws are:

Mass:

$$
\frac{\partial}{\partial t} \rho+\nabla \cdot(\rho \mathrm{U})=0, \quad\left(\rho=\frac{1}{V}\right)
$$

Momentum:

$$
D U=-v \nabla p,
$$

Energy:

$$
D\left[\frac{1}{2}(\mathrm{~J} \cdot \mathrm{U})+\mathrm{E}\right]=-\mathrm{V} \nabla \cdot(\mathrm{pU}) .
$$

By a simple computation these give the Eulerian differential equations:
(A)
$D v=v(\nabla \cdot \mathrm{U})$,
(B)
$D U=-v \nabla p$,
and

$$
D E=-p D v
$$

The last equation can be written

$$
\frac{\partial E}{\partial S} D S+\left(\frac{\partial E}{\partial v}+p\right) D v=0 ;
$$

that is, by Eqs. (3) and (4),

$$
\operatorname{TDS}=0,
$$

or
(C)

$$
D S=0
$$

3/ For two vectors $\Lambda[=(a, b, c)], L[=(\ell, m, n)]$, we have the scalar product

$$
A \cdot L=a \ell+b m+c n
$$

and the vector product

$$
f_{1} \times L=(b n-c m, c \ell-a n, a m-b n)
$$

Besides we have the differentiation or Mabla vector operator

$$
\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

Thus

$$
\operatorname{grad} f=\nabla f, \operatorname{div} A=\nabla \cdot H, \quad \text { rot } A=\nabla \times A
$$

RESTRICTED

Equations (A) to (C), in conjunction with Eq. (3), which expresses p in terms of $\underline{S}, \underline{v}_{2}$ are then our equations. Hote that Eqs. (A) and (C) are scalar equations, while Eq. (B) is vectorial. So we have five (differential) equations for the five dependent variables $\underline{v}, \underline{u}, \underline{w}, \underline{w}, \underline{S}$ as it should be.

III. THE ROLE OF ENTROPY

7. The differential equations (\dot{A}) to (C) have a number of well-known peculiarities, which it is appropriate to mention at this point.

The path of an individual element of substance is defined by the differential equations,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \dot{X}=\mathrm{U} \tag{6}
\end{equation*}
$$

The differential equations (A) to (C) specify the total differential D of the five dependent variables $\underline{v}, \underline{u}, \underline{v}, \underline{w}, \underline{S}$, that is, the rates of change along the paths of Eqs. (6). The statemert is particularly simple for Eq. (C), where this rate of change is zero. Thus Eq. (C) states that \underline{S} is constant along each path (6).

If \underline{S} happens to be constant on some three-dimensional surface ${ }^{4 /}$ which all paths (6) intersect -- for example, at all points with a certain $t=t_{0}$ -- then the above statement implies that it is an absolute constant. In this case, therefore, Eq. (C) may be replaced by

$$
S=S_{0} \quad\left(S_{0} \text { a constant }\right)
$$

iNote that the condition which is required for the validity of Eq. (C^{1}) -- constancy of \underline{S} on a suitable three-dimensional surface -- is in the nature of a boundary condition. That is, it may be satisfied in consequence of a suitable boundary condition, and on the other hand a boundary condition may perfectly well conflict with Eq. (C^{2}), and thereby remove the implication of Iq . (C^{I}) by Eq . (C).

These observations are of importance, because they show that Eq. (C ${ }^{1}$) is not an integral of the differential equations (A), (B), and (C), although

$$
\text { 4/ In the four-dimensional space-time of } \underline{x}, \underline{y}, \underline{z}, \underline{t} \text {. }
$$

RESTRTCTED

RESTRICTED

it looks like one. An integral is an equation that follows from the differential equations under all conditions, while Eq. (C^{1}) obtains only when suitable boundary conditions are assigned. Ve call such an equation a. pseudo integral.
8. The pseudo integral Eq. $\left(C^{1}\right)$, to the extent to which it is valid, allows us to express \underline{p} as a function of v by means of Eq. (3),

$$
\begin{equation*}
p=\phi(v) \tag{7}
\end{equation*}
$$

$$
\left[\phi(v)=p\left(S_{o}, v\right)\right]
$$

Equation (7) has the appearance of an equation of state, but it can be regarded as such only in a very limited sense. Indeed (i) the validity of Eq. (7) is dependent upon the very restricted validity of the pseudo integral ($C^{ }$); (ii) even when valid, Eq. (7) contains the constant S_{0} which is not determined by the nature of the substance [whereas Eqs. (1) to (4) are], but arbitrarily assigned by the boundary conditions. $5 /$

In certain cases, however, Eq. (7) becomes an equation of state in the true sense. This occurs, when $p(S, v)$ does not depend on S. According to Eq. (3) this is equivalent to assuming that Iq. (2) has the form

$$
\begin{equation*}
\equiv E(S, v) \equiv A(S)+B(v) \tag{1}
\end{equation*}
$$

Then Tas. (3) ard (4) become

$$
\begin{align*}
& p=-\frac{\partial E}{\partial v}=-\frac{\partial}{\partial v} B(v), \tag{1}\\
& T=\frac{\partial E}{\partial S}=\frac{\partial}{\partial S} A(S) ;
\end{align*}
$$

that is, pressure and speciric volme on the one hand and temperature and specific entropy on the other form two pairs, such that the members of each pair determine each other directly without any interference from the other pair. The energy is simply_additive with respect to the contributions of these two pairs, that is, there is no interaction energy between them.
J. G. Kirlwrood and H. Bethe have shmm [Ref. (d), I, pp. 17 to 19] that this assumption is reasonably verified under the conditions of

[^3]underwater blasts. Thus the validity or invalidity of Eq. (21) corresponds to a certain extent to the division between liquids and gases. 6/

Although our interest is, as stated before, with shocks in gases, it will prove useful to keep the possibility of Eqs. (21) to (4^{1}) in mind.
9. To conclude this subject, for the time being, we observe this. When Eacs. (2 ${ }^{1}$) to (4^{1}).nold, then Eqs. (A) and (B) form a closed.system, not involving \underline{S} at, all. When $\underline{v}, \underline{u}, \underline{N}, \underline{w}$ are obtained from Eqs. (A) and (B), then Eq. (C) yields, as a secondary operation, S. In other words:

When Eqs. (21) to (4^{1} f hold, then the conservation laws of mass and momentum [that is, Eqs. (A) and (B)] suffice to determine everything except the specific entropy S . The conservation law of energy [that is, Eq. (C)] then determines \underline{S} : it states, as in the general case, that \underline{S} is constant along each path (6).

IV. VORTICITY AID THE RIEMANN INVARIANTS

10. Equations_(A) to (C) possess further well-knowm pseudo integrals. Their validity, horrever, is even more conditional than that one of Eq. (C ${ }^{1}$). Specifically, they depend on the validity of the S pseudo integral - that is, on the possibility of inferring Eq. (CI) from (C); or rather, on the existence of a fixed relation

$$
\begin{equation*}
p=\phi(S), \tag{7}
\end{equation*}
$$

which, as we satr, holds in the general..case only when Eq. (C^{2}) does, but in the special case, Eqs. (2 ${ }^{1}$) to (4^{1}), also without Eq. (C C^{1}).

6/ For an ideal gas.

$$
R T=p v, \quad E=\frac{R}{\gamma-1} T
$$

and

$$
S=\frac{R}{\underline{x}-1} \ln \left(p, v^{x}\right)
$$

where

$$
\frac{R}{\partial-1}=c_{v} .
$$

Consequently Eq . (2) becomes

$$
E=E(S, v) \equiv \frac{1}{\gamma-1} v^{-(\gamma-1)} e^{\frac{\gamma-1}{R} S}
$$

This is the opposite extreme from Iq. (2 ${ }^{1}$).
RESTRICTED

Thus we assurne now the validity of an Ea. (7) for all $\underline{x}, \underline{y}, \underline{z}, \underline{t}$. This entails the consequences pointed out in Par. $\hat{0}$ for the special. case given by Eqs. (2I) to ($4^{\dot{1}}$): we need only consider Eqs. (A), (B), and $\underline{v}, \underline{u}, \underline{w}, \underline{w} \mathbb{E} q$. (C) and \underline{S} have no influence on the results in that sphere.
11. A simple computation, based on Eqs. (A) and (B) alone, without using Ec. (7), gives

$$
\begin{equation*}
\mathrm{D}[\mathrm{v}(\nabla \times \mathrm{U})]=-\mathrm{v}(\nabla \mathrm{v} \cdot \times \nabla \mathrm{p}) . \tag{8}
\end{equation*}
$$

How Eg̣. (7) gives

$$
\nabla \mathrm{p}=\frac{\partial \not \partial}{\partial \mathrm{v}} \nabla \mathrm{v}
$$

so that the vectors $\nabla \mathrm{p}$ and $\nabla \mathrm{v}$ are parallel, and consequently $\nabla \mathrm{v} \times \nabla \mathrm{p}=0$. Then Eq. (8) becomes

$$
\begin{equation*}
\mathrm{D}[\mathrm{v}(\nabla \times U)]=0 . \tag{9}
\end{equation*}
$$

This brings about the same situation for $V(\nabla \times U)$ as was observed for \underline{S} in Par. 7: $v(\nabla \times U)$ is Constant along each path (6), and if it happens to be constant on a suitable three-dimensional surface -- for example, for a certain $t=t_{0}$. - then it is an absolutc constant, that is, then Eq. (9) becomes

$$
\begin{equation*}
v(\nabla \times u)=V_{0} . \quad\left(V_{0} \text { a constant vector }\right) \tag{10}
\end{equation*}
$$

Thus Eq. (10) is also a pseudo integral; but it depends not only on the usual boundary-condition properties, but also on the validity of Eq. (7) [see Par. 10].

The quantity $\mathrm{V}(\nabla \times \mathrm{U})$ occurring in $\mathrm{Iq} .(10)$ is the specific vorticity vector (vorticity per unit mass; $\nabla \times U$ is the vorticity per unit volume).
12. Being a vector equation, Ẹ. (10) really comprises three pseudo integrals. However, if the physical problem under consideration has really two, or even one, dimension instead of three -- that is, if everything depends only on the cordinates $\underline{x}, \underline{y}$, or even only on the conrdinate \underline{x}-..then this number is reduced. Indeed, in the two-dimensional case only
RESTRICTED

刀ne component of $v(\nabla \times U)$ is not identically zero - the z-component -- and in the one-dimensional case none. .. So we see that if the physical problem under consideration has three, two, one dimensions, then Eq. (10) stands for three, one, zero pseuds integrals, respectively.

- In the last_mentioned case, the one-dimensional case where $v(\nabla \times U)$ fails completely, there exist however two other pseudo integrals. They are dependent on Eq. (7) [see Par. 10] just like $v(\nabla \times U)$, but their paths are different from (6). They have no analogues for three and two dimensions.

These integrals obtain as follows. Using Eq. (7), define 7/

$$
\begin{align*}
& c=c(v)=\sqrt{-\frac{d \phi}{d v}} v \tag{11}\\
& \omega=\omega(v)=\int \sqrt{-\frac{d \phi}{d v}} d v, \tag{12}
\end{align*}
$$

where c is the velocity of sound (relative to the substance), while the interpretation of $\boldsymbol{\omega}$ is not so simple. Now assume that everything depends on x alone. Then a simple computation, based on Eqs. (A) , (B), and (7), gives

$$
\begin{equation*}
\left[\frac{\partial}{\partial t}+(u \mp c) \frac{\partial}{\partial x}\right](u \pm \omega)=0 . \tag{13}
\end{equation*}
$$

The form or Eq. (13) suggests the introduction of the characteristics defined by

$$
\begin{equation*}
\frac{d}{d t} x=u \mp c \tag{14}
\end{equation*}
$$

in place of the paths (6). Now we have the same situation for $u \pm \omega$ and Eq. (14) as vas observed for $v(\nabla \times U)$ and (6) in Par. 11: $u \pm \omega$ is constant along each characteristic (14), and if it happens to be constant on a suitable three-dimensional surface -- for example, for a certain $t=t_{0}$-- then it is an absolute constant. That is, then Eq. (13) becomes

$$
\begin{equation*}
u+\omega=a_{0} \text { or } u-\omega=b_{0} \quad\left(a_{0}, b_{n} \text { constants }\right) \tag{15}
\end{equation*}
$$

I/ $-\frac{d \phi}{d v}>0$, since $\underline{\phi}$, that is, \underline{p}, decreases when \underline{v} increases.

Thus Eq. (15) dres indeed furnish two more pseuad integrals, which again depend not miy on the usuel boundary-condition properties, but also on the validity of IC . (7) [see Par. 10].

The quantities $u \pm \omega$ occurring in Jq . (13) are the $\underline{\text { Pemann invariants. }}$
13. Sumary. There exist several pseudo integrals, $\underline{S}, v(\nabla \times U), u \pm \omega-$ the specific entropy, the specific vorticity, and (in one dimension only) the Riemann invariants. In three, two, one dimensions these are four, two, three pseucio integrals.

The importance of these pseudo integrals in solving the differential equations (A) to (C) is well known:
(i) When \underline{S} is constant, we have a relation (7), with many useful applications, one of which is the emergence of the other pseudo integrals.
(ii) When $v(\nabla \times U)$ is constant, the possibility with the widest applications is that it is zero. Then $\nabla \times_{-} U=0$, and this means that there exists a velocity potential, that is, a scalar function $\phi=\phi(x, y, z, t)$ with $\mathrm{U}=\nabla \phi$.
(iii.) When either $u \pm \omega$ is constant, then an explicit relation between \underline{u} and \underline{v} obtains, considerably facilitating the determination of the solution. When both $u \pm \omega$ are constant, then \underline{u} and \underline{v} are immediately known.

These techniques are familiar in the literature, so we need not go into detail.

We wish, hovever, to point out this: while \underline{S} has a certain precedence over the other pseutio integrals [see (i) above or Far. 10], all these pseudo interrals operate in the main in the same way. This will become even more consicuous when we begin to study the influence of discontinuities. All the foregoing gseudo integrals will be affected in the same, characteristic maj.

It is important io teep this in mind, because \underline{S}, $v \times 0, u \pm \omega$, are quantities of very difforert physical neture, and hardly ever classified or visualized together. They belong nevertheless together, and this insight helps considerably in understanding the role of discontinuities.

[^4]
V. Matiral bo: dary comiticits. the hezi for discontmutties

11.. \quad Very physical problem that is governed bj differential equations possesses what may be called its natural boundary conditions, that is, conditions under which one can expect by ordinary physical intuition, by commonsense, that one and only one solution must exist.

In such a case the mathematical verification of this intuitive assertion ought to be possible. In fact, one of the most effective criteria for the appraisal of the value and finality of a mathematical formulation of a physical problem is just this: whether it provides one and only one solution for natural boundary conditions.

In the gas dynamical problem gəverned by the differential equations (A) to (C), examples of such natural boundary conditions are easy to find. A "box" of a prescrined shape C_{t}, changing with time t, provides one. We may prescribe the state of the substance in C_{0} for $t=0$, and that it foilow the chancine shape C_{t} for all $t>0$. Specifically:
(i) For $t=0$ and $X=(x, y, z)$ in the interior of C_{0}, the quantities \underline{v}, U, S have given values.
(ii) For $t>0$ and $X=(x, y, z)$ on the boundary of C_{i}, the component of U normal to C_{t} at X is equal to the normal velocity of C_{t} at $X . \mathbb{B}^{/}$

If the present mathematicall setup of the theory is to be regarded as really satisfactory, tien it should secure one and only one solution of Eos. (A) to (C) : ith conditions (i) ard (ii) for any family of C_{t}.

The probien in this gereral form is of extreme difficulty. However, if the $\underline{v}, \underline{S}$ in condition (i) are assioned constant values, then it simplifies grectly: obviously all pseudo integrale $\underline{S}, v(\nabla \times U), \underline{\prime} u \pm \omega, \underline{10}$ become available.

[^5]15. The discussion or an arbitrary fomily on has been carried out in the literature for the one-dimensional case, with the following result.

When the motion of the boundary of. C_{t} is generally receding (that is, expandinc the substance in its interior), then there exists a unique solution. An exception must be made for the case when recession of C_{t} is too fast (considerably sunersonic), but this is satisfactorily explained by the physical consideration that in such a case the substance will not follow all changes of the boundary of C_{t}, but form a free surface in the interior.

Then the motion of the boundary of $C_{t-i s}$ anywhere advancing (that is, compressing the substance in its interior), then there exists no solution. The motion of C_{t} may be perfectly regular, even analytical; the difficult,y persists nevertheless. In fact, if the velocities of C_{t} are alvays continuous, then there exists a unique solution for a certain time: it is only a finite tine after the advancing (compressive) motion of C_{t} has begun, and at a finite distance in the interior of δ_{t}, that the solution breaks down.

This breakdown of the continuous behavior of tie substance, governed by the differential equations (A) to (\mathcal{C}); is mell attested by experiments: in a compressible substance every compressive influence produces states that exhibit all symptoms of discontinuity -- io the extent to which conductivity and viscosity can be disregarded. In this way the pure shocks come into existence.

Thus the theory based on Eas. (A) to (C) is incomplete. foccount must be talon of the possibilities of free surfaces and of discontinuities. The free surfaces, however, affect only the boundary conditions, but not the differontial equations (A) to (C). They, theroforo, do not intorest us any furthor. The discontinuities, on the othor hand, upset the inechanism of Eqs. (A) to (C), and for this reason it is nocessary to give thom our attention.

[^6]VI. Tile conservation lats hit t: disconetnutries ciassificirion
16. The simplest possible discontinuty consists of a surface $\underline{\rho}$ in space, such that $\underline{v}, \underline{U}, \underline{S}$ are continuous on both sides of \underline{f}, but (possibly) discontinuous when crossing $\underline{\rho}$.

Consider a point $X=(x, y, z)$ on $\underline{\mathscr{\varphi}}$ (all this at a definite time \underline{t}), and the element of \underline{f} around \underline{x}. Denote the two sides of \underline{f} by 1 and $?$, and the corresponding values of $\underline{v}, \underline{U}, \underline{S}, \underline{p}, \underline{E}$ (at $\underline{x}, \underline{y}, \underline{z}, \underline{t}$) by $v_{1}, U_{1}, S_{1}, p_{1}$, I_{1}, and $\mathrm{v}_{2}, \mathrm{U}_{2}, S_{2}, p_{2}, \mathrm{I}_{2}$. Denote the normal of $\underline{\rho}$, that is, a vector, of unit leneth, orthomonal to \underline{f} ($a t \underline{x}, \underline{y}, \underline{z}, \underline{t}$), with the orientation $1 \rightarrow 2$, by \underline{n}. The surface \underline{f} may be moving; denote its normal velocity (at $\underline{x}, \underline{y}, \underline{z}$, \underline{t}, in the direction \underline{n}) by $\underline{\underline{s}}$.

We must now state the laws that replace the differential equations (A) to (C) at this discontinuity. These are based on the same physical principles from which Egs. (A) to (C) obtained in Par. 6: the conservation laws of mass, momentum, and energy.

It is convenient to introduce the mass flow μ : the mass which crosses \underline{y} in the direction of $1 \rightarrow 2$ (that is, \underline{n}) per unit surface per unit time.

The statements or the conservation laws are:

$$
\text { Hass: } \quad\left(U_{1} \cdot r\right)-s=\mu v_{1}, \quad\left(J_{2} \cdot n\right)-s=\mu v_{2} ;
$$

Momentum: $\mu\left(U_{1}-U_{2}\right)=-\left(p_{1}-p_{2}\right) n$;
 By simple computations these yield the folloring equations.

$$
\text { hen } p_{1} \neq p_{2} \text {, the Rankine-Hugoniot equations: }
$$

$$
\begin{array}{ll}
\left(A_{S}\right) & \mu= \pm \sqrt{\frac{p_{1}-p_{2}}{v_{2}-v_{1}}}, \\
\left(B_{S}\right) \\
\left(C_{S}\right) & \mathrm{J}_{1}-\ddot{i}_{2}= \pm \sqrt{\left(p_{1}-p_{2}\right)\left(v_{2}-v_{1}\right) n}, \\
I_{1}-E_{2}=\frac{3}{2}\left(p_{1}+p_{2}\right)\left(v_{2}-v_{1}\right) .
\end{array}\left\{\begin{array}{l}
\text { The signs in } \tag{s}\\
\text { two formulae } \\
\text { must }\left\{\begin{array}{l}
\text { disagre } \\
\text { agree }
\end{array}\right. \\
\text { when } p_{1} \gtrless p_{2}
\end{array}\right.
$$

Then $p_{I}=p_{2}$, the contact discontinutive equations:

$$
\left(U_{c}\right) \quad\left(U_{1} \cdot n\right)=\left(U_{2} \cdot n\right)
$$

$$
\left(o_{c}\right)
$$

$$
\begin{aligned}
& \mu=0, \\
& \left(u_{1} \cdot n\right)= \\
& n_{1}=
\end{aligned}
$$

There is no need to discuss these equations in detail: Ias. (A_{s}) to $\left(C_{3}\right)$ have received surficient attention in the literature, and Jqs. (A_{c}) to $\left(C_{c}\right)$ are faimy trivial. Te restrict ourselves to the following observations:
(i) scan now be expressed with the help oi the original conservation law of mass;
(ii) the discontinuity of $\underline{U}\left[\right.$ that is, $\left.U_{2}-\dot{U}_{2}\right]$ is normal to $\underline{\mathscr{L}}$ in the first case [use Eq. $\left(B_{S}\right)$], and tangential to it in the second case [use Iq. $\left.\left(\beta_{c}\right)\right]$;
(iii) the two cases are also characterized by $\mu \neq 0$ or $\mu=0$, that is, by the presence or absence of a mass flow across the discontinuity surface \underline{f}.
17. The circumstance that we wish to emphasize is this: although Eq. $\left(A_{S}\right)$ to $\left(C_{S}\right)$ and $\left(A_{C}\right)$ to $\left(C_{C}\right)$ are based on the same physical principles as EOs. (K) to ((0)-- the conservation laws of mass, momenturi, and energy (see Par. 6 and Par. 16) behave nevertheless in an entirely different nanner with respect to the pseudo integrals $\underline{S}, \mathrm{v}(\mathrm{v} \times \mathrm{J}), \mathrm{u} \pm \omega$.

Consider first S and Ees. $\left(A_{s}\right)$ to ($\left.C_{s}\right)$. Combining Io. (C_{s}) with Iq. (2), Bc. (3) gives

$$
\begin{equation*}
\frac{I\left(S_{1}, v_{1}\right)-E\left(S_{2}, v_{2}\right)}{v_{1}-v_{2}}=\frac{1}{2}\left[\frac{\partial E}{\partial v}\left(S_{1}, v_{1}\right)+\frac{\partial E}{\partial v}\left(S_{2}, v_{2}\right)\right] . \tag{16}
\end{equation*}
$$

How this equation shove; that $v_{1} \rightarrow v_{2}$ implies $S_{1} \rightarrow S_{2}$, that is, that if the \underline{V}-discontinuity is small, then the S-discontinuity is also small. Indeed, it can be shom that $\sigma_{1}-S_{2}$ is thinerd order in $V_{1}-v_{2}$. [See, for example, Ref. (a), p. E.J But in general $S_{1} \neq S_{2}$ when $v_{1} \neq v_{2}$. Bothe has shom [Ref. (a), ip. 10 to 12], that if the sustance has an ocuation of state (2) fulfiling a few plausible requironents, then $3 q$. (16) implies

$$
\begin{equation*}
S_{1} \gtrless S_{2} \text { for } v_{1} \lessgtr v_{2} \text {, respectivel. } \tag{17}
\end{equation*}
$$

It is easy to wrify theso assertions fon on ion as, wand tho romat given in footroto 6.

So we see that mile \underline{S} romains constant along the paths (6) of the sustance $2 s$ long as we have the continuous reaime given by Eqs. (A) to (C), this fails to bo the case in the discontinuous regime in which Eqs. $\left(k_{\mathrm{S}}\right)$ to $\left(\mathrm{C}_{\mathrm{S}}\right)$ hold. Also, if S is constant on one side of $\underline{\rho}$, even this will not in general be true on the other side, unless $\underline{\rho}$ is plane and moving with the same velocity everywhere.

Thus \underline{S} ceases to be a pseudo integral as soon as a discontinuity $\underline{\varphi}$ satisfying Eqs. (h_{s}) to (C_{s}) is crossed -- but this disturbance is a thirdorder effect if the discontinuity at $\underline{\mathscr{L}}$ is small.

Considering their dependence on the pseudo-integral character of \underline{S}, the quantities $v(\nabla \times U), u \pm \omega$, cannot be pseudo integrals cither. The disturbance is again a thiri-order effect if the discontinuity at \underline{f} is small.

The failure of $\mathrm{V}(\nabla \times \mathrm{U})$ to be a pseudo integral in this situation has, among others, this consequence. Even if conditions are constant on one side of $\underline{\rho}$, and hence $\nabla \times U$ vanishes (see footnote 8), $\nabla \times \mathbb{U}$ will be nonvanishing on the other side of $\underset{\sim}{f}$ unless $\underline{\mathscr{y}}$ is plane, cylindrical, or spherical. That is, a discontinuity surface of unsymetric nature produces vorticity. [See Ref. (c), pp. 362 to 369.]
18.

Before ve go any further, let us sive some more attention to the fact that \underline{S} changes at the crossing of a discontinuity surface. In the older literature of the subject this caused considerable confusion. [See, for example, Ref. (c), pp. 189 to 207, including Ref. to Sébert and Hugoniot.]

The situation is this: $\mathbb{I q}$. (C) states that the specific entropy of an individual olement of substance never changes in the course of its continuous motion, that is, that this motion romains 0.1 mays thormodymamically roversible. Mow Ios. (A) to (C) cxpressed only the conscrivation laws of mattor, momentun, and onersy. Honce the cmputation mich gavo Eo. (c) its present form, reaily proved this: for a comprossible, nonconcuctive, nonviscous substance the conservation of matter, momentum, and onorgy implics also that or ontropy -- that is, thermodynamic roversibility -- as lons as the motion is continuous.

The res:lt given in inequality (17) thon mores that this implication no longer holds good wher this motion (or rather its $\mathbb{v}, \underline{\underline{y}}, \underline{\underline{E}}$) becomes disconiinuous. This is very odd. The implicetion of one conservation law by another one is usually an alcelrmical fact which should not be affected by such differences. But it is nevertieless so,

Consequently the entropy theorem, which took care of itself in the continuous case, must be given srecial consideration in the discontinuous case. The entropy must not decrease during the motion of an individual element of substance. That is, frr $\mu \gtrless 0$ we must forid $S_{1} \gtrless S_{2}$, roWetivily -- thrt is, by inequality (17) we must forbid $\mathrm{v}_{1} \lessgtr \mathrm{v}_{2}$. This moins the.t nover $\mu\left(\mathrm{v}_{\mathrm{I}}-\mathrm{v}_{2}\right)<0$. ilorr a simplo considerition bised on Eqs. $\left(\therefore\right.$) , $\left.B_{s}\right)$, and incquality (17) yields this.

The entrony theorem requires that the sion + be always used in Eq. $\left(B_{S}\right)$. That is, the sign \pm must be used in E . . (A_{S}) ior $p_{I} \lessgtr p_{2}$, that is, for $v_{1} \gtreqless v_{2}$.

If this condition is fulfilled, we cali $\underline{\mu}$ a positive shock; if it is nol, a negulive shock. Hence posilive shocks alone are permissible.

As mentioned above, this change of \underline{S} in a shock was questioned in the oldor literature. Doubts were expressed as to whether the conservation of encrgy, that is, Eq. $\left(C_{3}\right)$, should not be sacrificed rather than the conservation of entropy. The latter amounts to 3 F . (7), that is, to

$$
\begin{equation*}
p_{1}=\phi\left(v_{1}\right), \quad p_{2}=\phi\left(v_{2}\right) \tag{18}
\end{equation*}
$$

and Eq. (C_{S}) and Eq. (18) are gencrally conflictinc. 11/ The question arose as to which of thesc tiro adiabatic laws of footnote 11 should be considered valid.

11/ Thus for an ideal cas (see footnote 6) putting

$$
\frac{p_{2}}{p_{1}}=\xi, \quad \frac{v_{2}}{v_{1}}=\eta,
$$

دc. (10) is the vell-knom ordinary adiabatic law,

$$
\xi=(\eta)^{-\pi}
$$

while $\exists \mathrm{C}$. $\left(\mathrm{C}_{\mathrm{S}}\right)$ is the ian:ine-utoniot adiabatic lav

$$
\xi=\frac{(\gamma+1)-(\gamma-1) \eta}{(\gamma+1) ;-(\gamma-1)} .
$$

There can be no dowt that it is $\mathbb{E} Q$. $\left(C_{s}\right)$: the onergy must be conserved, and ontropy must only not decrease, The irreversibility of Zas. $\left(A_{S}\right)$ to $\left(\mathrm{C}_{\mathrm{S}}\right)$ is odd but not at all absurd: All continuity arguments used in the liteinture are invalid, The (irreversible) discontinuities $\underline{\rho}$ are not limiting forms of (reversible) continuous motior.s, since no compressive motion can remain continuous. 12/

There is, however, one addendum to this. If Eq. (7) -- that is, Eq. (18) -- holds, because the equation of state has the special form Eos. (2 ${ }^{1}$) to (4^{1}) discussed in Par. 8, then its validity is absolute. Now in this case re saw in Por. 9 that the motion of the substance is governed by Eqs. (A) and (B) alone, wile Eq . (C) stands apart. It determines only the behavior of S. Sinilarly, Eqs. (A_{S}), (B_{S}), and (7) -- thai is, Eq. (18) -may then be uscd to determine the motion of the substance, and $\mathbb{Z q} .\left(C_{S}\right)$ stands apart, dealine with Sonly. That is, the motion is determined in each case as if there were no onnservation of energy, and by using Eq. (7) -- that is', Di. (18). But the energy is, of course, conserved -- by conserving the entropy according to Eq . (C) in the continuous case, and by changing it appropriately according to Eq . (C_{s}) in the discontinuous one.
19. Consider next Eas. (Λ_{c}) to (C_{c}). In this case $n o$ substance crosses the discontinusty [sce (iii) in Par. 16]; honce thore arise no questions in connection with the pseudio integrals $\underline{S}, v(\nabla \times \mathrm{J})$. In the one-dimensional case, the pseudo integrals $u \pm \omega$ may have to be treated differently on the two sides of $\underline{\rho}$, but this does not lead to any serious difficulties either.

The following point, howevor, is worth empiasizing. There exists here a fundamental differenco between the one-dimensimal case, ond the threeand two-dimensional nos.

In the first cosc only \underline{v} can be discontinuous at $\underline{\boldsymbol{p}}$, since here Iq . $\left(B_{C}\right)$ implies $U_{1}=U_{2}$. Since p is continunus by Iq . (C_{C}), this involves by IT. (3) a. discontinuity in \underline{S}-- that is, difforent adiabatic jews [Bq. (7)]

12/ Tha discontinuities φ aro limitine forms of continuous intions, if the substance is ondown th a small comucuivity, or viscosity, and this allored to tond to zero. Such considerations corrooncots tho increase or ontropy in $\underline{\underline{y}}$, afthoughthis aspect of the sunfoct has not, hoon stindiod quito oxhaistivoly. [Soc, for oxample, Rof. (e), p. 587 to 607.]

> RESTEICTID
on hoth sides of φ. f :nis irplies that when there is an absolute reason for the validity of \dot{H}. (7) - that is, when the equation of state has the special form Eqs. (2^{1}) to (4^{1}) discussed in Par. 8 - then this kird of discontinuity connot occur. Bnt this is true in one dinension only.

In the second case v may again be discontinuous at $\underline{\rho}$, but Eq. (B_{2}) allows also any disconcinuity of the component \underline{I} tangential to $\underline{\varphi}$, that is, we may have gliding of the two sides along $\underline{\varphi}$ (see footnote 8). How it is well known that this type of discontinuity is the equivalent of a vorticity sheet. $13 /$

It follows that we must expect such a discontinuity to orivinate where there is reason to expect the creation of a concentrated form (sheet) of vorticity. Nor: it appeared at the end of Far. 17 that a discontinuity surface $\underline{\rho}$ of the type satisfying zas. $\left(A_{S}\right)$ to $\left(C_{S}\right)$, when of unsymmetric nature produces voricity. There $\underline{\rho}$ was continuonsly curvod and accelere ated, and the vorticity croated vas continuously disturbed. Hence if the curvature or the acceleration of if concentrated on an infinitesimal strotch -- that is, if $\underline{\perp}$ has an edge or corner, or if it has to undergo a.discontinuous charge in velocity -- then a vorticity sheet may be expected. Thus a siscontinuity satisfying Ios. (A_{C}) to (C_{C}) may be axpocted to oricinate mere a discontinuity of the tiye satisfying Eqs. (A_{s}) to $\left(C_{S}\right)$ exhibits any one of the eibove troits.

In one dimension a simiior argument comid be rade, by usine S in stead of $v(\nabla \times U)$-- and this alternative is uffective in threc or two dimensione aiso. Hotrovor, as mosorved further shove, tho social form given b_{r} EgS. ($\left(^{1}\right.$) to (1^{1}) of the eoution of state oxclados discontinuitios of tho typo satisfyine Eqs. (h_{c}) to (c_{c}) ir onc dimonsion, but not in threc or in tro dinunsions.

20. Sy comparison of those fects vith the difficultios pninted out fri Par. 15, it appais ronsomble to try the theory in a now form, wich

13/ Like $\underline{\varphi}$, it is tro-dimonsional in tho throo-tinonsionel case, and ons-dimonsionn in the tro-dinonsional ono.
allows for discontinuities of the two types, those satisfying Eqs. (As) to (C_{s}) and those satisfying Jcs. (A_{c}) to (C_{c}), besides the areas in which the differential equations (A) to (C) are fulfilled. $14 /$

If other words the fou-dimensional $x, y, z, t-s p a c o-t i m e ~ m u s t ~ b o ~ d i v i-~$ dod by throedimonsional surfaces $\underline{\varphi}, \underline{\varphi}, \underline{\rho} \underline{\prime \prime}, \ldots$ into distinct domains \underline{A}, \underline{A}^{\prime}, $\underline{A}^{\prime \prime}, \ldots$ In each on c of these domains there is continuity, the liferontial equations (\hat{A}) to (G) being valid. The separating interfaces $\underset{\sim}{\rho}, \underline{\rho}$, $\underline{q}^{n}, \ldots$ represent discontinuities, citron of the first kind, that is, satisfying Eos. (A_{S}) tr $\left(C_{S}\right)$, or of tho second kind, that is, satisfying Jas. $\left(A_{c}\right)$ to (C_{c}).

From the romorts of Par. 15 wo conclude further that the interfaces of tho first kind my login in the intorion of the $\underline{4}$, $\underline{L}^{4}, \underline{L}^{\prime \prime}, \ldots$ domains, with free (troo-dimonsionel) edges. From the remark of Ier. 19 interfaces of the second kind should begin only ct (tro-dinonsionai) odes formed by two already existing interfaces of the first kind.

In the tridimensional case seaco-time is throc-dimonsional, all the above dimensions are reduced by one, and so the :orts domain, surface, edge assume tho sir usual geonctrid moaning -- miking things easier to visualize. In tho one-dimensionsl case spacetime is tro-dimonsional; all

b , boundaries of C_{t}
0 , areas $A, A^{\prime}, A^{\prime \prime}, \ldots$
1 , interfaces $\rho^{\rho}, \rho^{\prime}, \varphi^{\prime \prime}, \ldots$ of the first kind
2, interfaces $\nu^{\nu}, \varphi_{r}, \varphi_{n}, \ldots$ of $t r c$ second kind
to the interfaces of the first
Pic. 1.
kind it is also nocossary to remember the conclusion of For. 10, according to which only positive shocks are allowed.

[^7]21. The considcrations of Far. 20 are of a highly heuristic nature; the conclusions reached are only surmises. The mathematical corroboration would consist of shoring that the present formulation of our problem has always one and only one solution when natural boundary conditions are prescribed. This would necessitate giving a definition of what a natural boundary condition is that is in harmony with physical intuition and sufficiently exeneral to include all plausible situations. As a preliminary check, however, the special setup of the "box" C_{t} as discussed in Pars. 14 and 15 should be analyzed.

The simplest possible case of this setup has been solved in the litorature: one dimension, constant values and rest at $t=0$ (see the end of Par. 14), C_{t} semi-infinite, its one boundairy point at rest at $x=0$ for $0<t \leqq t_{0}$ and then set into motion with a discontinuous change of velocity for $t>t_{0} ; x=v_{0}\left(t-t_{0}\right)$.

For $u_{0}<0$.this is an expansive motion; for $u_{0}>0$ it is a compressive one. In the first case there exists one, and only one, solution with no discontinuities. In the second case no such solution exists, but there exists one, and only one, with a discontinuity of the first kind beginning at the boundary point $x=0, t=t_{0}$. This iss a positive shock. A similar discontinuous solution would exist in the first casc only if negative shockis, too, were allowed.

So we see that it is necessary to allow positive shock discontinuities in order to have at, least no solution in each natural problom. It is necessary to forbin necative shock discontinutios in order to have no more than ono solution. This takos care oil the discontinutios of the first kind. The discontimuties of the second kind are prosumbly rocessary in ordor to be ablo to continue tho solutions oyon tho odyes fomd by discontinuity arfecos of the first rind - that is, thoir irtorsoctions (soc int 20 ant Fíg 1).

Thite tho setup arrived at for partly thomodrmamic reasons is also plausible from a puroly mochonical noint of viov.
22. For a mono soreral motion

$$
\begin{equation*}
\mathrm{z}=\mathrm{f}^{\prime}(\mathrm{t}) \tag{19}
\end{equation*}
$$

```
\STRTCT-D
```

of the bountory point of C_{t}, and for tio case men C_{t} is finite and has two boundary points, only very framontany pesults orist. is gool deal. can be rrodictoc gualitatively - but the prownly mathenatical theory is extremoly incomplete.

Ascurins, as ono should, that the boundary velocities in Eq. (19) are contimons, that is, that $\frac{d f}{d i t}$ is antinuous, the discminuities must be exectok to boin in the interior, and not on tie boundary. (See Inrs. 15 ard-20 ind 1 is. 1.)

Defore any exhastive matiematical theory can be atiempted, it is nocessary to acquire an insisht into tile natne of the various elemontary constituents mich combine to five the complex picturo presented, for example, on wig. 1. The mettors to be considered are therefore these:
(i $^{\text {I }}$) How does a discontinuity surfoce besin in tho intcrior?

- (iil) Fow do two discontinuity surinces intorsect; that is, mat pienmens onigincte at such an intorsection odec?
is we sew in Fru. 20, it scoms probable that the primay discontinuties, orienantin: according to (i^{1}), are of tho finst kind - those of the second kind should como fron (iil). [ror vortex shoots this ms provod in Kot. (c), me 36 to 361.$]$ Domining this mith tho cosorvations mado -sbsequanty, (ix) can bo modifioh as frallows:
(ill) Now doos a discontinuity surfoce of tho first kind -

Sineo thoro is no flo 0. mettor acrose a discontinuity oi tho socond kind [sco (ii) in Fa. 16], two such Jisomanuitios cannot intorscot. So

 rood not chaidur in thi. franownle of the finsi rivatation. In some cases it is quito snoy to solvo, and in tuv ouns it is ossontinlly couiwalont to a. snocial case of the noxt caso. Tho lest case, intonsection of

I:/ Commossivity mons that tha acolomain of tho bownary is

$$
3325 \pm 0320
$$

two discontinuties of the first kind, is the really interestins one. Cominine these boservations with the conclusions of (ii) in Far. 20, we com to ronlace (iii) by this staterent:
(ijill) :how do two discontinuity surfaces of the first kind incersect, but is, what phenomena orizinate at such an intersection edge? In particular: ho: fo the discontinuities of the second kind begin there?

VIII. THE ORIUITN OR A SHCCK

23. The mathenatical approach to (iII) is very difficult beca se the shock \underline{f} rill be accelercitod, and the proslom is of detomining i? toGether with the solution of $\mathrm{Dc} .(\mathrm{i})$ - a quito unusual type of mixod differontial equation unkom boundary problem. It is possiblo, fiowever, to dotermine the point X_{0} whore the shock φ bocins, and the conditions in the neighborhood of that point. Thoy are singular, and the description of this stingularity is the pronlom.

Tho existing İtorature on this question is msatisfactory, partly bocause the apporent conflict betweon the consorvation laves for onorgy and entrony wore usualy not troated properly. [ico the last part of Pi.r. 18, and Eor. (c), pir. 207 to 217.3

If $d f / d^{4}$ is contimous, but $d^{2} n / d^{2}$ is allorod to bo discontinuous, We notajor a situction which is typirtod by $f(t)=0$ for $0<t \leqq t_{0}$ and $f(t)=a_{0}\left(t-t_{0}\right)^{2}$ for $t>t_{0}$. Thie is the crso thet was asually considorod in the Iftorature. The solution in the ajove sonso mas complatoly detominod by J. Cankin in comoction with the contract whor which this roport ias mitton. A dunilod roport on this swact will bo sumittod shortly.

If. $d^{2} f / \mathrm{At}^{2}$ i.e alse continuous, and li/dt incronsing, thon the ohoct originctes umon ontirulj diforent comitions. Pis we ostablishod by J. Calkin. A roport on the doteils on this caso -- wich ore rather unoxpoctod -- vill follow.

Thu first sctup -- $d^{2} f / d^{2}$ discontinume - - on mivor be mythine but on apmoximetion. It would bo a asorul me it ise result amorintui
335Titored
that of the second setup $--d^{2} \hat{I} / d^{2}$ continuous. Since it does not, but the second case has a qualitatively difiorent sulution, we conclude that the first setup must be rejected. That is, the solution of the second setup fives the desired answer to (il1). $16 /$
24. A variant of (i^{11}) which deserves consideration is the folloring. Consider an arrangement, whereby the "box" [that is, its $f(t)$] is compressed for $t>t_{0}$, as discussed in Par. 23, but only during a finite time interval $t_{0}<\ddot{i}<t_{1}$, and broumht to rost arain $f o r$. $\geqq t_{1}$. It is know that this initintes a positive shock in the interior, as described before, but that the shock will lose intensity subsequently oring to the expansive motion necessitated by bringine $f(t)$ to rest. This phenomenon is mathematicallü most difficult.

Wow lot the iriterval $t_{0}<t<t_{1}$ be very short, but the motion of $f(t)$ during this rowiod vory violont. One may try to arrange the data so that this motion injects into the substanco an energy $o_{0}(>0,<\infty)$ and then make $t-t_{0} \rightarrow 0$, mile the value of e_{0} is held fixed. This amounts to indecting a fixed amount of erergy $0_{0}(>0,<\infty)$ into the substanco during an infinitesimally briof period.

The problom is of a certein prectical interest since it is cauivalent to descibine the decay of a vory violont, instantaneously oricinated, blast wave in air.

It was solved - in timee and in two 大imensions, as woll as in one in a ronort subutted by tho entinor mrovionsly in connection with this contrict [iof. (i)].

The procenue used thore has since foud applications in some other robloms of similar nature. [Soo, for uxamio, Rot. (i), ard tho anthor's

[^8]```
RESTRICTED
```


25. Let us now consider (ii ${ }^{11}$ ) in Par. 22, that is, the intersection of two discontinuity surfaces of the first kind. This may also be described as the collision of two posi.tive shocks.

The phycical nicture is that of two shocks moving into a donain of continuity and geting into contact with each otner. In order to have as elementary a sotup as possible, ne may inagine that $\underline{v}$, $\underline{U}$. $\underline{S}$ are constant in the dorain ahead of both shoc!es, and also (although with other values) in the domains behind the two shocks. The shocks are then plane, and have constant velocities.

In tho one-dimensional case the two shocks rove in opposite or in parallel directions. In the latter case it can be shom that the shock which is behind ti:e other one (in their common direction of motion) must be faster than the forrard onc and finally catch up with it. 17/ Thus the tro shocks must collide in each case, and they are not in contact before that collision. This is the linear collision of tro shocks.

In the three- or tro-dimensional case the conditions are the same if the turo shock fronts (discontinuity suricecs) are parallel plenes. Te choose their common nomal as the $x$-axis and everythine is obviously indepondont of Erz. Tio still have lincar shooks.

Assume now that thoy are not prailel. Chonse the plane containing their two normals as the $x, y$-plane. Then ovorythins is still independent or $\underline{z}$ and so the moblon is tron dimensional. In this caso tho two shock fronts intersect at, all times. That is, the two shocles have been in contact -- collision -- all alons. This is tho noligio collision of two shocks.

Sumary. (iill) is the problon of the collision of two positivo shocis. This problom is oithor linear, ore dimonsionel, in which caso

[^9]
the collision occurs at a definite inctant; or it is oblique, two timensional, in whicil case the collision is goinf on continuously at all times.
26. We add a rerark concornine the possibility of a discontinuity surface running into a boundary, that is, the case of reflection.

Iet us again assune that the discontinuity surface and the boundary are planes. Then the influence of the boundary is equivalent to what would be the influence of a rimor image of the original discontinuity surface, reflected by the wall. That is, reflection is equivalent to the collision of two symetric discontinuity surfaces. Hence our discussions of Far. 25 apply again, and reflections, too, can be subdi vided into Iinear reflections (one-dimensional) and oblique reflections (two-dimensional).
27. Let us roturn to the coilisions, and consider first the linear bype.

We are in one dimension; therefore me must expect at the point of collision, arong other things, the boginning of a discontinuity of the second kind -- except when the equations of state have tho speciel form of Eqs. (21) to ( $4^{1}$ ). It is also easy in sec that this discontinuity of the secone kind must disappear for roasons of symmetry if the torn collidine discontinuity surfaces are symetric.

Tho problen has been solved iully when the substance is an ideal gas with $\gamma \leqq 5 / 3$. The onjy furthor phonoma orisinatine at tho collision are these two positive shocks if the tro colliding shocks are in opposite cirections; ono positive shock if thoy are in the same dircction. Arart from these, and from tho diceontinuity of the socond kind montioned above, the sunctace ias no discontinutios and boys wo dirforontial Ecs. (A)七七 ( 0 ).

Ir ese rocilte form tio coment of a roport to be submitted by the a)

The rostate this rosult. Two positur shock in a lirone hoden colItsion potuce two porive shock; if on catcone up aith the othor, then they modore no yoretive shock.

It would be irteresting to determine for wich equations of state this result is generally true. This would involve Investigations alone the lines of Bethe's work [Fef. ( $\quad$ ), mentioned in Par. 17], For ideal gases the condition is, as mentioned above, $\gamma \leqq 5 / 3$. It seems remarkable that this_inequality, which is justiriable by molecular-kinetic considerations, emerges hore in a purely macroscopic context.

We add that sone of the older literature on this subject is in error bacause of a failuro to recognize the role of the discontinuities of the second lind.

## $\because . \operatorname{THE}$ IITPRACTLOT OF SHOCKS: OLTOE OASE

28. We now pass th the cnlisions of the oblique the. Tor the sake of simplicity, :re discuss the symmetric case, that is, that one of oblique reflection (sce Pare 26). In this case the discontinuity of the second kind docs not crise, and there are 500 minor technical simplificotions. But the characteristic difficulties of the proben, which we aro going to consider now, are essontially the same as in tho gonoral case.

Consider first tho bolique reflection oin a vory weak she ek, that is, á sound wave. In this case the original shoce and the wall produco a
y

w---w, wall
OS, original shock
RS, reflected shock (sonic case)
Fig. 2.
socond, reilectod shock wrich foms tio same anglo with tho rall as the original onc (Fig. 2). [This is $\underline{x}, \underline{y}$-specc not $\underline{x}, \underline{y}, \underline{t}-s p a c e$ time. Ho have pointed out before that this problem in essontially tro dinonsionaI.]

If the orignal shock is not sonic, thore will be complications - but it is oasy to pro-
dict thoir neture. The gas bohind tho orisinal shock is casily soon to move in tho diroction of that shock - horej it has $\therefore$ componont to tio risht in Pig. $2-\infty$ and to have a highor sound volocity than tho ges
ESSINICTED
ahead of the oricinal shock. Hence the reflected shock must be expected to be faster, even in relation to the original one, then it would be in the sonic case. That iṣ, it will be pushed forvard to a position like irs' on Fig. 2, that is, its angle $\mathcal{E}$ with the rall will exceed the angle of the original (on the sonic-reflected) shock with the will.

It is natural to male this exact, by applying Eqs. $\left(A_{s}\right)$ to $\left(C_{S}\right)$ to these two shocks. The quantities $\underline{V}, \underline{U}, \underline{S}$ are constant ahead of the original shock. $\underline{Y}^{13 /}$ It is also natural to try, to make $\underline{Y}, \underline{U}, \underline{S}$ constant in the domain between the two shocis, and similarly in the domain behind the second shock. 17/

If this is done the same numer of equations and variables obtain, but the equetions are of a high algebraic order. It is found that these equations can be solved, unless the cngle $\underline{\alpha}$ is too. near to $\pi / 2$. 19/ However, 'there exist then two solutions of the type R'S1. 20/ While it is usually possible to tell which of these tiro is the physically real one, this duplicity is nevertheless somewhat disquieting.

But then $\alpha$ is near to $\pi / 2$-- that is, for anearly glancine incidence -the situation becomes even strancer: there exists no soiution. 21

Attempts to find a solution by other, more complicated arrangements of plane shocles have invariably failed. The reality of the phenomenon is, hor:ever, beyond question. The existence of an "abnormal" type of reflection for strong shocks and noarly glencing incidence has been established exporimentally by E. Fach [ror. (f)].

18/ Of course, $U=0$ ahead of tho orizinal shock. There is no reason to rostrict, $U$ in the domain betwoon the two shocks. Behind the roflected shock, $\underline{U}$ muet be parallol to the wall.

19/ The wealor the orizinal shock, the noaror $\alpha$ may come to $\pi / 2$. Of coursc $\alpha=\pi / 2$ itsolf must be oxcluded. In this casc no rofloction occurs at a.ll.

20/ If the shock is very reak, thon one solation has its $\underline{\beta}$ nor to $\alpha$, the othor new to $\pi / 2$. The first one vields a wonk shock, the second one a strons shoc:. The physically roalized casc is therofore tho first one -- oxcont possibly for some very spocial situctions.

21/ rhis phonmonon was obsorvod bormo on similer problen by Enstoin [rion. (b)]. In the cose of obligue rofloction it ins first montionod by 2 . Tollor (oral commuication to the author).

> RSTRIGTSD
29. The experimental evidence, [Refs. (f), (m)] is sufficient in establish qualitatively the numior and the nature of the shocks that intervene in this "abnormal" reflection (Fig, 3). Thus a new shook, the intermediate shock IS enters into the picture. The orisinal shock and the reflected shock meet at a point $\underline{P}$, which is no longer at the wall, as in the "normal" reflection of Fig. 2, but moving in the interior. The experiments show, furthermore, that $\underline{P}$ is moving into the interior, away from the rail, along the dashed line of Pif:-3.

If the mathematical ancilysis is now applied, the following facts appear.
(i) The reflected shock near $P$ and the intormediato shock must bc curved.
(ii) For weak shocks, at least, $\beta<\alpha$ and not, $\beta>\alpha$ as in the "normil" reflaction of Fig. 2.

Therefore we must expect a rather complicated motion of tio substance behind the reflected and the intermediate shoçs, which has vorticity -- that is, neither $\underline{S}$ nor $v(\nabla \times \mathrm{J})$ constant. Bosides, a discontinuity of the second tyic - a vorticity shect -- should issuo from $\underline{E}$ into the samc dmain.

All this leads to vory difficult methomatical probloms, oven for
 dence -- that is, $\boldsymbol{\alpha} \pi \pi / 2$ - approximato solutions can be detcmined: "zoro" ordor quitc oasily, "first" ordor inth onsidorable difficulty. They corroboratc in detail the qualitative statoments mado c.bove. 22/

22/ Since this phenomonon is not stentionary it is nocossary to discuss it from the becinning -- wore the orizinal shock first hits tio well. Oring to the obliquenoss of the roflection this nocossjitetos (sec Par. 25) some changes in the geometry of the picturc.

[^10]These investigations, for idecil gases, are contained in a report which will be submitted shortly by the author.

A direct comparison of the results of the mathematical analysis with the experiments has only been possible so far to a limited extent. Consider very nearly glancing incidence -- that is, $\alpha \sim \pi / 2$. Denote the velocity of the original shock by $\underline{s}$, the mass velocity of the gas behind it by $\underline{u}$, and the velocity of sound there by $\underline{c}$. Then

$$
\begin{equation*}
\operatorname{tg} \psi \rightarrow \frac{\sqrt{c^{2}-(s-u)^{2}}}{s} \text { for } \alpha \rightarrow 0 \tag{20}
\end{equation*}
$$

This formula appears to be in reasonable agreement with the experiments [Ref. (m)].
30. The experiments as well as the mathematical analysis show that the intermediate shock IS is very flat as long as the vclocity of the original shock does not exceed about 3 times sound velocity. They also show that even for shocks which are less than 10 mercent above sound velocity, $\underline{\alpha}$ can deviate as much as $\pi / 3$ from $\pi / 2$ before the intormediate shock IS disappears arid the reflection becomes normal. In this respect recent experiments of Charters and Thomas, Ballistic Research Labomtory, Aberdeen Froving fround, are particulerly convincing.

Lis the intensity of tha (original) shock increases, the intermediate shock scoms to become more and more convex. There are reasons to believe that this convexity may progress to the extont of giving the intermediate shock the cheractor of a protuborance wen the orisinal shock has 10 to 20 tinos sound velocity, as it mey in explosions. This phonomonon, if ronl, ray be connocten with some impmitant blest offects.: It was studied furthor in sevoral momorande of the author to the Havy Burcau of Ordiance [izef. ( $\ell$ )].

## XI. REMCTIOH SHOCHS S CIASIFTCAREM

31. A roaction shock involves a chomical clence; that is, tho countion of state, Eq. (2) -- and with it Eqs. (3) and (i) -- is cmprossod by difforent functions on onth sides of tho discontinuity. That is, the
conservation lavs of mass, momentum, and energy nay be sormulated in the same way as in Par. 16, but they :rill contain two different functions:

$$
\begin{equation*}
E_{1}=E_{1}\left(S_{1}, v_{1}\right), \quad E_{2}=E_{2}\left(S_{2}, v_{2}\right) \tag{21}
\end{equation*}
$$

The difference between the two functions in Eg. (21) expresses the chemical change.

The results of Par. 16 still apply, if this proviso is made. Thus we have again two types of discontinuities: those described by Eqs. ( $A_{S}$ ) to ( $C_{S}$ ), and those described by Eas: $\left(A_{c}\right)$ to ( $\left.C_{c}\right)$. The conclusions (i), (ii) of Par. 10 are also still valid.

It follows that no flow of matter occurs across the discontinuities of the second kind [Eqs. $\left(\epsilon_{c}\right)$ to $\left(C_{c}\right)$ ]. Hence there is really no chemical reaction in this case. Two chenically different substinces are contiguously existing, separated by the discontinuity surface. Actually
$\therefore$ this is the normel form for the coeristence of two phases, since the difference in the equations of state -- hence in Eq. (3) - prevents continuity of all of $\underline{v}, \underline{S}, \underline{p}$.

For the discontinuities of the first kind $\left[\mathcal{I} s:\left(\mathcal{A}_{S}\right)\right.$ to $\left.\left(C_{S}\right)\right]$, on the nther hand, there is a flow of matwer across the discontinuity. A chemical reaction is thererome the substratum of this pictiure, and the picture is only legitimate to tho cxtent to vich this roaction cen be treated as instantanoous.

Sumary. A discontinuity (reaction shock) of the first kind doscribes a chemical roaction, to the oxtent th mich it can be treated as instentonoous, wheh must be inchood by me or tho discontinuities ( $\mathrm{p}, \mathrm{T}, \mathrm{U}$ ) accompantine the shocl.

A discontinuity of the second kind involves no resction at all; it describes the normal iorm of en-cxistonce of tron rifforent phascs.
32. It follows from the rbove that tho realiy intorasting objccts for furthor study are tho recction shocks which aro discontinuitios of the first kind, govornod by Ias. $\left(A_{s}\right)$ to $\left(S_{S}\right)$. To shall thorotoro rostrict oursclyes to these.

RJTRINT U

Inspecting Eqs, $\left(A_{s}\right)$ to $\left(C_{s}\right)$ once more, it appears that $p_{1}, v_{1}$ and $\mathrm{p}_{2}, \mathrm{v}_{2}$ are linked by iq. $\left(\mathrm{C}_{\mathrm{s}}\right)$ only. Of course, the equations of state, Iq. (2), expressed by Eq. (21), are then better replaced by Eq. (1), expressed by

$$
\begin{equation*}
E_{1}=F_{1}\left(p_{1}, v_{1}\right), \quad \mathbb{E}_{2}=F_{2}\left(p_{2}, v_{2}\right) . \tag{22}
\end{equation*}
$$

If Eog. $\left(G_{S}\right)$ is fulfilled, then Eqs. ( $A_{s}$ ) and $\left(B_{S}\right)$ can be used to determine the other quantities which are of interest.

Assuming that the state of the substance into which the reaction shock is penetrating -- say that on the side 2 -- is known, we have this situation: $p_{2}, v_{2}$ are known; $p_{1}, v_{1}$ are linked by Eq. $\left(\mathrm{C}_{\mathrm{s}}\right)$.

This connection of $p_{1}, v_{1}$ can be depicted by a curve in the $\underline{p}, \underline{v}-\mathrm{plane}$, the Rankine-Hugoniot curve. It should be remembered that this curve depends on the choice of $\mathrm{p}_{2}, \mathrm{v}_{2}$.

Obviously $p_{1}=p_{2}, v_{1}=v_{2}$ fulfills Eq. ( $C_{s}$ ) only when the two $f$ unctions $F_{1}(p, v)$ and $F_{2}(p, v)$ are identical --that is, when we have a pure shock. In other words: the point $\dot{\mathrm{p}}_{2}, \mathrm{v}_{2}$ lies on the Rankine-Hugoniot curve only when there is no reaction -- for a pure shock.

For an exothermic reaction, that is, $F_{1}\left(p_{1}, v_{1}\right)>F_{2}\left(p_{1}, v_{1}\right)$ [not $\left.F_{2}\left(p_{2}, v_{2}\right)!\right]$, it is easy to verify that $p_{2}, v_{2}$ lies bolow the RankineHugoniot curve. The conditions are shown in Figs. 4 and 5.


Fig. 4. Pure shock.


Fie. 5. Reaction shock.
33. By Eq. $\left(B_{\mathrm{s}}\right)$

$$
\begin{equation*}
\mu=\sqrt{\frac{p_{1}-p_{2}}{v_{2}-v_{1}}}=\sqrt{\operatorname{tg} \omega} ; \tag{23}
\end{equation*}
$$

hence $\operatorname{tg} \omega \geqq 0$. Consequently $\underline{\omega}$ must lie in the quadrants I or III. For a pure shock this is automatically true (Fig. 4), but for a reaction shoci: it excludes a certain part of the curve, which lies in quadrant II (Fig. 5).

Besides this, for a pure shock the lower part of the curve -- in quadrant III -- is clearly a negative shock. We saw that. these must be forbidden since they would cause a decrease of entropy (see Par. 18). Hence only the curve in quadrant I has reality.

In the case of a reaction shock the situation is different. First, the thermodynamics of the chemical reaction which is involved here would have to be gone into in considerable detail before anything could be excluded on thermodynaric grounds. Second, there is definite evidence as to the reality of at least part of the curve in quadrant III in this case. Third, we saw in Por. 20 that there is no know application of the theory where pure shocks in ouadrant III (that is, regative shocks) are needod to produce a solution, while we shall sce that they are definitegly necessary in the mein problem involving reaction shocks (see Par. 36).
34. The parts I and III of the Fankine-Ifugoniot curve of a reaction shock are distinguished by simple criteria. In the former tha reaction increases $p$ and $p=1 / \mathrm{v}$ and it is ecsy to show that the shock velocity $\underline{s}$ exceeds the sound velocity $c_{2}$ of $p_{2}, \mathrm{v}_{2}$. In the lattor all this is roversed.

For an explosivo reaction part $I$ is undouitedly describing states Dif dotonation, while it is customary, and probeliy justificd, to identify the states descrined by part III with those oi burning or deflagration. $\frac{23 / \text { At any rete we are going to use these expressions in the }}{\text { and }}$ sonsc indicated.
$\frac{23 /}{}$ The vericblo and somerhat crratic behavior of actual dofla-
gration mokes tho lattor idontification loss cortain than the fomer onc.

We can say, therefore, that in a detonation the pressure and density of the reacted substance are higher than those of the unreacted one, and the detonation is faster than any sonic signal that might precede it -that is, no such signal can precede it. In a deflagration all this is reversed.

One also concludes easily from the above [or from Eq. ( $B_{s}$ )] that in a detonation the burnt gases follow in the same direction as the detonation wave, while in a deflagration their direction is opposite. That is, a detonation absorbs its own flame, while a deflagration emits one.

The first statement may sound paradoxical, but all moving-film photographs of these phenomena corroborate it. A detonation produces a narrow luminous strip, a deflagration a wide, expanding flame. Of course, when a flame is emitted from detonation -- which is the superficially visible phenomenon - the detonation is over and the subsequent expansion of the burnt gases has set in.

## XII. ANALYSIS OF DETONATIONS

-35. $\therefore$ Returning to Figs. 4 and 5, we have to comment upon the fact that they each represent a crie-dimensional manifold of possible values $p_{1}, v_{1}$-- that is, of shocks. This is natural for the pure shock, FiE. L, which must be supported by a compression behind it, and whose intensity will therefore depend upon the intensity of that support. For the roaction shock, Fig. 5, it is again plausible that support, or the opposite, will modify the shock. However, there should be a point on the curve of Fig. 5 representing a reaction shock unsupported and unhindered -- that is, in equilibrium.

The problem of finding the equilibrium point on the curve of Fig. 5 is one of some_difficulty. It has been given a good deal of attention in the literature, and it is rathor generally agreed that the hypothesis of Chapman and Jouguet is correct. The equilibrium point is that one where the line $\mathrm{p}_{2}, \mathrm{v}_{2} \longrightarrow \mathrm{p}_{1}, \mathrm{v}_{1}$ is tangent to the curve. There is no doubt that this question cannot be settled without investigating the mochanical situation in the burnt gas farthor bohind the dotonation front; and also the

[^11]details of the chemical reaction, which was so far described as occurring instantancously within that front, but which must actually occupy a zone of finite extension in spece and times:

The physical assumptions on which the Chapman=Jouguct hypothesis rests, its domain of validity, and its proof were analyzed in a report submitted previously by the author in connection with this contract [sce Ref. (k)].
36. In this connection we wish to point out one fact that has not received so far the attention it appears to descrve.

Consider the explosive reaction and take its finitc duration, that is, its noninstantancous character, into account.

The reaction must nevertholess be initiated by an abrupt change of some significant quantity [p, T, U? (sce Par. 31)]. - Horrever, at the moment whon this discontinuity passes over an eloment of a substance, the chemical reaction there is just beginning. That is, for the purposc of this discontinuity, the substance might as wall be chomically inort -the discontinuity at the first moment is a purc shock. If wo define the shock in a_brnader way, so that it includes the ontire roaction zonc, then it is, of coursc, a reaction shock.

In the cquilibrium form of detonation both phonomona - the first, initiating shock and the entire roaction zore - must have the same velocity.

So wo must superpose Figs. 4 and 5 , and usc two points $p_{1}, v_{1}$ and $\mathrm{p}_{1}^{\prime}, \mathrm{v}_{1}^{\prime}-$ correspondins to mero excitation and to completc reaction. Since both heve the same velocity, and
p

the same mass fliw, both give the same englo w. by Eq. (23); that is, $p_{1}, v_{1}$ and $p_{1}^{\prime}, v_{1}^{\prime}$ lie on the sainc line from $\mathrm{p}_{2}, \mathrm{v}_{2}$. The situation is show in Fig. 6. This figure shows thet the inte.ct substance at $p_{2}, v_{2}$ is transformod by

[^12]the pure shock into the excited one at $p_{I} v_{1}$ and that after the reaction is over, its state is $p_{1}^{\prime}, v_{1}^{\prime}$. The ultimate detonation pressure $p_{1}^{\prime}$ is lower than the excitation pressure $p_{q}$. which is rather strange. However, the details are even more pecullar. .

We can also take a view of the shock which excludes from it the excitation process, but includes the entire reaction zone proper. The conservation laws of matter, momentum, and enerey $-\infty$ that is, Eqs. (As) to $\left(C_{S}\right)$-- must remain true. That is, $p_{1}^{\prime} v_{1}^{\prime}$ must also lie on the RankineHugoniot curve of $p_{1}, v_{1}$. Now this curve is not shown in Fig. 6_ (those on that figure belong to $\left.p_{2}, v_{2}\right)-$ but this much is clear: $p_{1}^{\prime}<p_{1}$; that is, this reaction shock decreases the pressure... Let us thorefore replace $p_{1}, v_{1}$ and $p_{2}, v_{2}$ in $F i g$. 5 by our $p_{1}^{\prime}, v_{1}^{\prime}$ and $p_{1}, v_{1}$ and recall the discussion 0 : Par. 34. Then we must conclude that this reaction shock has to be classified as a deflagration.

So we sec that the process, which as a whole is a detonation, can be dissolved into several parts if the finite duraiion of the reaction is taken into account. It is then seen to consist of two parts:
(i) A pure shock, which initietes the reaction, but still takes place entircly in the incrt substance.
(ii) The chemical reaction which follows, and which is best described as a deflagration.
37. This vicw, that the ontire -- undissolved -- process is a detonation wich when analyzed dissolves into a pure shock and a deflagration, may seem paradnxical. However, a comparison with the qualitative characterizations of far. 34 shows that it is quite roasonable.

Thus a detonation ircreases pressure and density; a deflagration decreases it. Indeed, the whole reaction does increaso them both, but the (pure shock) excitation scts in with a highor increase than the ultimate onc, and so the reaction proper decreases them.

A dotonation is procodod by no sonic sicnal of its coming; a doflacration is. Indecd, the whole reaction is procoded by no such signal, but its sceond phaso (the roaction propor) is $\rightarrow$ by the first phase, the (pure shock) oxcitation.
38. The mathematical theory must take account of the details of excitation and of the reaction proper $m$ while we have treated these in a very global way. Besides, this pigture should be applied to the nonequilibrium forms of detonation as well. (See Far. 35.)

In this connection it is important to distinguish between two possibilities. The equilibrium detonation may produce sufficient $\underline{p}, \underline{U}, t$ to initiate the detonation, or it may not. Let us call the first type of detonation an active, and the second type a passive one.

An active type detonation can presumably be initiated at sub-equilibrium rates, that will "picl: up" to equilibrium. A passive type detonation is simply unaile to exist in equilibrium. It must be initiated above it, "boosted," and it will then gradually decay tarard equilibrium. And since it cannot exist in equilibrium it will "peter out" before this happens, that is, arter a definite finite time dependent upon the strength of the "booster."

These qualitative indications can be substantiated mathomatically. This will be done in tiro subsequent reports by the author, dealing with active and with passive type detonations, respectively. It is hoped that they will contribute to the understanding of the nonequilibrium forms of detonation -- the "picking up" of the active type, and the "boosting" and "petering out" of the passive onc.

RESTRICTED

## Bibliography

(a) H. Bethe, "The theory of shock waves for an arbitrary equation of state," IDRC Division B Report No. 171 (OSRD-545), 1942.
(b) F. S. Epstein, "On the air resistance of projectiles," Froc. Nat. Acad. 17, 532-547 (1931).
(c) J. Hadanard, "Leçons sur la propagation des ondes," A. Hermann (Paris, 1903).
(d) J. G. Kirkwood, H. Bethe, E. Montroll, "The pressure wave produced by an uinderwater explosion, I, II," NDRC Division B Meport No. 252 (OSFD-588) and Report Ho. 281 (OSRD-676), 1942.
(e) G. B. Kistiakowsky and E. B. Wilson, Jr., "The hydrodynamic theory of detonation and shock waves," IDICC Division B Report iNo. 52 (OSRD-114), 19L: 1.
(f) E. Fach, Various papers in the Sitzungsberichte der (iiener) Akodemie der Wissenschaften, 1875 to 1889. Particularly Vol. 77, pp. $819 \mathrm{ff}, 1878$.
(g) J. W. Rayleigh; "herial plane waves of finite amplitude," Scientific papers, Vol. V, pp. 573 to 616, 1912.
(h) B: Riemenn, "Tber Luftwellen endicher Schwingussweite," Ges. Werke., pp. 156 ff. "Also: Riemarn-Weber, "Fartielle differential Gleichungen," Vol. II, pp. 503 to $562, \mathrm{~F}$. Vieveg, Braunschreig; 1919 edition.
(i) J. H. Van Vleck, "The blast wave due to a very intensive explosion in a gas of varyine density," BDRC Division B Informal Report, 1942.
(j) J. von iveuman, "Shock waves started by an infinitesimally short detonation of given (positive and finite) encrgy," indic Division B Informal Roport, 19L1.
(k) J. von IIewann, "Theory of detonation waves," IDFiC Division E Report No. 238 (CORD-546),1942.
(l) J. von Nicumann, inree memoranda, Files of the U.S. Navy, Bureau of Ordnance. Sent., Oct. 19L2.
(m) E. B. Mison, Jr., \#. D. Kemedy, and C:: K. Traonkel. Frivato comunications on siark experiments. Sept., Oct. 1942." This materiel was later published in Division 8, IDRC, interim roports.

For a detailed brbliography of tho subject see fof. (e), p. 50.

| $\begin{aligned} & \text { COUNTAY } \\ & \text { NeRe } \end{aligned}$ | LANGUAGE Enge | FORG＇NCLASS | U．S．CLAS5． Rostr． | $\begin{gathered} \text { DATE } \\ \text { J口马' } 33 \end{gathered}$ | $\begin{gathered} \hline \text { PAGES } \\ 32 \end{gathered}$ | ILIUS． <br> 6 | FEATURES <br> diafri |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

良thematicai problems of theory of shock wave in compressible fluids is outlined． Subject is sub－divided into theory of pure shocks and theory of detonation waves and reaction shocks．Study of linear case and oblique case in interaction of shocks and analyois of detonation is given：Only general outlino of problems is shom；details appear in supplemantary reports．

TITLE: Progress Report on "Theory of Shock Waves" to Aug 31, 1942

## ATJ- 34660

AUTHOR(S): Von Neumann, John
ORIGINATING AGENCY: Princeton Univ., Inst. of Advanced Study, Princeton, N. J. PUBLISHED EY: Office of Scientific Research and Development, NDRC, Div a

| $\begin{aligned} & \text { man } \\ & \operatorname{Jan} \cdot 43 \end{aligned}$ | $\begin{aligned} & \text { Boc ens } \\ & \text { Unctass. } \end{aligned}$ | Exunty | Lavelued Eng. | $\begin{aligned} & \text { Pues } \\ & 29 \\ & \hline \end{aligned}$ | I11世5 (17O\% fraphs |
| :---: | :---: | :---: | :---: | :---: | :---: |

ABSTRACT:
The basic mathematical problems of the theory of shock waves in compressible fluids are formulated and discussed in an illuminating fashion. The topics discussed in connection with this study are the conservation laws and the differential equation, the role of entropy, vorticity and the Rlemann invariants, natural boundary conditions (the need for discontinuities), the conservation laws and the discontinuities, formulation of the basic problems of discontinulties, the origin of a shock, the interaction of shocks (linear case), the interaction of shocks (ohlique case), reaction shocks, and analysis of detonations.

DISTRIBUTION: Copies of this report oblainahle from Air Documents Division: Attn: MCmXD

DIVISION: Ordnance and Armament (22)
SECTION: Explosives (6)

SUBECT HEADINGS: Explosions - Blast waves - Calculation (34440); Shock waves (B6300)

UNCLASSIFIED per Authority of OSRD List \#29, Dated 8-13 July 1946。



[^0]:    *ivision 8 is composed of former Sections B-1 and B-2.

[^1]:    *Division 8 is composed of former Sections B-1 and B-2.

[^2]:    $\overline{R 3 S T R I C T A D}$

[^3]:    5/ We are, of course, describing the peculiar relationship of the adiabatic law -- expressed by Iq . (7) -- to the equation of state.

    RESTRICTID

[^4]:    RESTRICRED

[^5]:    8/ Since we assume the substance to be nonviscous, we must allow for cliding alon. the boundary of $\mathrm{C}_{t}$.

    2f Fon thee or tur dimensions. Tho constian of implies, of course, thet $\because(6 \times \%)=0$.

    10/ Fon one dimension.

[^6]:    RJSTAICTJD

[^7]:    14/ The froe surfaces, mentioned at the bogimine of for. 15 are really special cases of EOs. ( $\mathrm{A}_{\mathrm{C}}$ ) to ( $\mathrm{C}_{\mathrm{C}}$ ) with $\mathrm{p}_{1}=\mathrm{p}_{2}=0$ and with zero density $(1 / v=p=0)$ on the empty side.

[^8]:    16/ In fact evon the first sctup mat Ioce to a solution which belongs to tho socont trou in $f(t)$ or $t>t_{0}$ is or troform. $a_{n}\left(t-t_{0}\right)^{2}+b_{0}\left(t-t_{0}\right)^{3}+c_{0}\left(t-t_{0}\right)^{4}+\ldots$ inthan an on $0_{0}, a_{0} \ldots \operatorname{sifi}$ ciontly ercat in comporison to an.

[^9]:    17) In this casc the thro domains are not as indicated above but aro a domain ahcod of the first shock, a domain betwoen the tro shocics, a. domain behind the second shock. The socond one disappoars as the two shocks catc!: u. .
[^10]:    RESTRIOTED

[^11]:    RESTRICTED

[^12]:    RESTRICTED

