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compressible.    Hence  shocks should be investigated in gases,  liniLd8| and 

solids. 

Now the essential medium for the  shock in a progressing explosion con- 

sists of its burnt gas products, -while the most important medj.a for t.he 

propagation of the shock (blast) after the explosion are air and "water. 

The propagation of blasts under -water is being investigated by J.  G. 

Kirkwood and others  [see Ref.   (d)] and accordingly our investigations were 
2/ 

restricted to the first tv^o topics, and so to shock -waves in gases.— 

3. A shock may or may not alter the nature  (that is, the equation of 

state)  of the substance through -yvhich it passes.    The latter is the case 

for blast mves.    'Je shall call such shocks, "which pass through a  (chemi- 

cally) inert substance, pure shocks.    The former is the case for detonation 

■waves, yjhich as they pass induce the explosive chemical reaction.    It is 

therefore customary to_call this type of shock -naves detonation -17aves.    It 

is preferable,  however,  to talk of detonations only in a strictly technical 

sense.    \le shall therefore call all shocks of the first type, ■which induce 

chemical reactions, reaction shocks. 

Thus the subject is subdivided into the theory of pure shocks and the 

theory of reaction shocks. 

ij. This report gives only the general" outline of the problems considered 

and the results  obtained.    The details, are  given in several informal re- 

ports, of ivhich two, Ref«   (j),   (k)^have.already bden submitted, and sev- 

eral T/ill be submitted in the future.    These latter reports had to be de- 

layed for the following reason.    They .are closely ..connected vdth other in- 

vest! gatiöns^  both experimental and theoretical, not under this  contract, 

although connected Tdth it.    It appeared desirable — in some cases neces- 

sary .— .to mit for the  completion of certain phases of'that work. 

2/    The propagation of an explosion in a solid or liquid explosive is 
prima facie a shock betv/een that medium and a gas.    But it-will appear 
later    that it is in the main behaving as a shod: in a gas. 

STRIGT2D 
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II. THE GONSSRVATION U17S Al© THE DIFFERENTIAL EQUATION 

5. Pure shocks, that is, discontinuous changes of the physical state 

■where no chemical change is involved, are possible in a substance to the 

extent to ivhich its compressibility is noticeable but its heat conductivity 

and viscosity arc necligible. The propertiea of a compressible substance 

are expressed by its caloric equation of state, "which gives its specific 

inner energy (inner energy per unit mass) S as a function of its density £, 

or its specific volume v[ - ly^o], and the hydrostatic pressure, 

(1) 3 =F(p,v). 

It is more convenient, hoiTover, to use the srjecific entropy (that is, en- 

tropy per unit mass) S instead of the pressure p, and to express E in terms 

of v and S, 

(2) E  =E(S,v). 

Expressions for the pressure p and the temperature T follov: from Eq.   (2): 

(3) P'^a?5    that is'    p " P^v^ 

(li) T 'Hi    that is'     T  " T(S^V)5 

and Eq,   (l) is obtained by eliminating S botvjeen Zqs.   (2) and  (3). 

If the  substance characterized by Eq.   (2)  is nonconductive   (for heat) 

and nonviscous, then Sqs.   (2) and  (3)  contain all vje need to describe its 

behavior — both thermic and mechanic.    The differential equations by which 

it is govorned obtain by a direct application of the  conservation laws;  of 

mass/ of momentum, and of energy. 

6. First some formal preparations.    The special coordinates form a vector 

X= (x,y,z)o    The state of the  substance at X= (x,y,2) and at the time t is 

given by the mass velocity vector U= (u,nf,Tr), and,  as pointed out in the 

preceding section, by the  specific volume v and the  specific entropy S. 

-3- RESTRICTED 
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We use vector notations.-       Now the total differential operator is! 

(5) D=A+U.v. 

The statements of the conservation laws are: 

I&ss: Jfc/o*  V^U) - 0, -S*^) 

Manentm: DÜ - -v7p. 

Energy: D[-|(ü»U)  + E]   ^-vvCpU). 

By a simple computation these give the Eulerian differential equations: 

(A) Dv = v(vU), 

(B) DÜ = -vVp, 

and 

DE = -pDv. 

The last equation can be -written 

iDS+(p + p)D.=0; 

that is, by Eqs.   (3) and   ([*)., 

TDS  = 0, 

or 

(G) DS  « 0. 

3/   For two vectors A[=(a,b,c)], L[- {t,m}n)]9 we have the scalar 
product ■ 

A • L = a€  + bm + en       - -■ "... ■"'/ 

and the vector product 

Ax L = (bn - cm,c^ - an^am ~ bn). 

Besides we have the differentiation or Mabla vector operator 

v'     lax5 dj' öZ/
- 

Thus 

grad f =  vf,    div A = VK,    rot A =   V x A. 

R Z. 3 T R I C T E D 
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Equations  (A) to (C), in conjunction vdth 2q.   (3), wfeich expresses £ 

in terms of S, v, are then onr equations.    Mote    that 2qs.   (A) and  (C) are 

scalar equations, vAiile Sq.   (3) is vectorial.    So Tire have five  (differen- 

tial) equations for the five dependent variables v, u, nr, w, 3 as it should 

be. 

III.    THE ROLE OF ENTROPY 

?. The differential equations  (A) to (G) have a number of well-known 

peculiarities, "which it is appropriate to mention at this point. 

The path of an individual element of substance is defined by the dif- 

ferential equations 5 

(6) ±X~V. 

The differential equations (A) to (G) specify the total differential D of 

the five dependent variables v, u, /ir, w, S, that is, the rates of change 

along the paths of Eqs. (6). The statement is particularly simple for 

Eq. (C), where this rate of change is zero. Thus Sq. (C) states that S is 

constant along each path (6). 

If S happens to be constant on some three-dimensional surface— which 

all paths (6) intersect — for example, at all points with a certain t = t0 

— then the above statement implies that it is an absolute constant. In 

this case, therefore, Eq. (C) may be replaced by 

(G1) S = S0 (S0 a constant). 

Note that the condition which is required for the validity of Eq.- (C1) 

— constancy of S on a suitable three-dimensional surface — is in the 

nature of a boundary condition.    That is, it may be satisfied in consequence 

of a suitable boundary condition, and on the other hand a boundary condition 

may perfectly well conflict with Eq.   (G1), and thereby remove the implica- 

tion of Eq.   (G1) by So.   (C). 

These observations are of importance, because they show that Sq.   (C1) 

is not an integral of the differential equations  (A),   (3), and  (G), although 

h/   In the four-dimensional space-time of x, y,  z, t. 

RESTRICTED 
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it looks like one.    An integral i-s an equation that follows from the dif- 

ferential equations under all conditions, while Sq.   (G1) obtains only 

•when suitable boundary conditions are assigned.    Vie call such an equation 

a pseudo integral. 

The pseudo integral Bq,   (C1), to the extent to which it is valid, 

allows us to express p as a function of v by means of Sq.   (3), 

(7) P = ^(v) W(v)  = p(S0,v)3. 

Equation (?) has the appearance of an equation of state, but it can 

be regarded as such only in a very limited sense. Indeed (i) the valid- 

ity of Eq. (?) is dependent upon the very restricted validity of the 

pseudo integral (C1); (ii) even when valid, Sq. (?) contains the constant 

So which is not determined by the nature of the substaixe [whereas Eqs. (l) 

to UO are], but arbitrarily assigned by the boundary conditions.- 

In certain cases, however. Sq.. (?) becomes an equation of state in 

the true sense. This occurs, when p(S,v) does not depend on S. Accordr 

ing to Eq. (3) this is equivalent to assuming that 3q. (2) has the form 

(21) E ;= E(S,v) = A(S) + B(v). 

Then Sqs.   (3) and  (I4) become 

(31) P=-i=-£B(v), 

that is,  pressure and specific volume on the_one hand and temperature and 

specific entropy on the other form two pairs,  such that the members of 

each pair determine each other directly without any interference from the 

other pair.    The energy is simply „additive with respect to the   contribu- 

tions of these two pairs, that is, there is no interaction energy between 

them. 

J.  G. Kirkwood and H. Bethe have shown [Ref.   (d), I,  pp.  17 to 19] 

that this assumption is reasonably verified under the  conditions of 

5/   We are,  of course, describing the peculiar relationship of the 
adiabatic law —- expressed by Sq.   (7) — to the equation of state. 

REST RIG TSD 
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underrater blasts. Thus the validity or invalidity of 3q, (21) corre- 

sponds to a certain extent to the division between liquids and gases.- 

Although our interest is, as stated before., ."with shocks in gases, it 

Td.ll prove useful to keep the possibility of 3qs. {21)  to (Ux) in mind. 

9. _ To conclude this subject, for the tine being, we observe this«. When 

Eos. (21) to (U^/nold, then Sqs, jU) and (B) form a closed.system, not _ 

involving S at all. _ "When v, u, AT, ware obtained from Eqs. (A) and (B), 

then Eq. (C) yields, as a secondary operation, S, In other words: 

Mien Sqs. (21) to (I41) hold, then the conservation laws of mass 
and momentum [that is, Eqs. (A) and (B)] suffice to determine 
everything except the specific entropy S, The conservation law 
of energy [that is, Sq. (G)] then determines S: it states, as 
in the general case, that S is constant along each path (6). 

IV.  VORTICITY AI^D THE RIEMANN INVARIANTS 

10. Equations_(A) to (C) possess further well-knoim pseudo integrals. 

Their validity, however, is even more conditional than that one of Eq. (C1), 

Specifically., they depend on the validity of the S pseudo integral — that 

is, on the possibility of inferring Eq. (G1) from (G)^ or rather, on the 

existence of a fixed relation 

(7) P = tis), 

Y/hich, as vie saw, holds in the general..case only when Eq,   (G1)  does, but 

in the  special case, Eqs.   (21) to  (I41), also without Eq.   (C1). 

6/   For an ideal gas- 

RT  - pv,      S  « y^ T 

and - 

S = 7 ., 1  ^  (P.J
Y

*)> 

wnere 
R = c. ^ - 1       ^V 

Consequently Eq.   (2) becomes 

E =E(S,v) =7^1 

This is the  opposite extreme from Eq.   (21). 

^is 
 v  ^      ' e 

RSSTRICTED 
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Thus v:e assune novr the validity of an Eq.   (?)  for all x, v, z, t. 

This entails .the  consequences pointed Out in Par.  o for the special case 

given by Sqs.   (21) to  (U1): rre need only consider Eqs.   (A),   (B), and 

v, u, or, if — Eq,   (C) arad S have no influence on the results in that 

sphere. 

11. A simple computation^ based on 3qs.   (A) and  (B) alonO| vdthout using 

So.   (7)5  gives 

(8) D[v(v x U)]   = -v(Vv,x vp). 

rJow Eq.   (7)  gives 

Vp = ^ 7v 

so that the vectors  Vp and Vv are parallel, and consequently VvxVp = 0. 

Then Sq.   (8) becomes 

(9) D[v(V  x U)]   » 0. , .   . 

This brings about the same situation.for v(V x U) as -was observed 

for S in Par.  7: v(v  x U) is 6onstant along each path  (6), and if it hap- 

pens to be  constant on a suitable   three-dimensional surface — for example, 

for a certain t = t0 — then it is an absolute  constant,  that is, then    Sq. 

(9) becomes 

(10) v(V x U)   = V0 (VQ a constant vector). 

Thus Sq.   (10) is also a pseudo integral; but it depends not only on 

the usual boundary-condition properties, but also on the- validity of 

Ea.   (7)   [see Par.   10]. 

The quantity v(Vx U) occurring in Sq«   (10) is the  specific vorticity 

vector  (vorticity per unit mass:  Vx U is the vorticity per unit volume). 

12. Being a vector equation.  Bo.   (10) really comprises three pseudo in- 

tegrals.    However, if the physical problem under consideration has really 

two,  or even one, dimension    instead of three — that is, if everything 

depends  only on the  coordinates x,y,  or even only on the  coordinate x — 

..then.this number is reduced.    Indeed,  in the two-dimensional case only 

R 2 S T R I C T IC D 
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one component of v(v ^ lT) is not identically zero — the  z-component — and 

in the one-dimensional case none.  „So we see that if the physical problem 

under consideration has three, two,  one dimensions, then 3q.   (10)  stands 

for three,  one, zero pseudo integrals, respectively. 

-     - In the last.mentioned case,  the  one-dimensional case where v(Vx u) 

fails completely, there exist however two other pseudo integrals.    They are 

dependent on Eq.   (?)   [see Par.  10]   Just like v(VxU), but their paths are 

different from (6).    They have no analogues for three and two dimensions. 

7/ These integrals obtain as follows. Using Sq. (?), define-    _ . 

(12) to-uiv)   B 

Ymere £ is the velocity of sound (relative to the substance), while the in- 

terpretation of u) is not so simple. Now assume that everything depends on 

x alone. Then a simple computation, based on Sqs. (A), (B), and (7)^ gives 

(13) ^ [A. (u-0) JLj(u±^) =0. 

The form of Sq. (13) suggests the introduction of the characteristics 

defined by 

(II4) d 
dt Ä ' x = u 

in.place of the paths   (6).    Now we have the  same situation for u + CJ and 

So.   (ill) as vjas observed for v(Vx U) and   (6) in Par«   11: u + CJ is constant 

along each characteristic   (lii), and if it happens to be constant  on a suit- 

able three-dimensional surface — for example, for a certain t=t0 — then 

it is an absolute  constant.    That is, then Sq.   (13) becomes 

(l5) u + (J * a0   or   u - w = b0        (a0, b0 constants). 

j/   - -r- > 0,  since |4,  that is, p,  decreases when v increases. 

RESTRICTED 
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Th-.is Eq,   (-15) does indeed furrjLsh two more pseudo integrals, irtiich 

again depend not only on the usml boundary-condition properties, but also 

on the validity of Eq.   (?)   [see Far.  10].   ' 

The quantities u + w occurring in 2qm   (13) are the lUemann invariants. 

13, Simr.ary.    There exist several pseudo integrals, S, v(VxU), u + 6j -  

the specific entropy,  the  specific vorticity, and   (in one dimension only) 

-the Riemann invariants.    In three, two,  one dimensions these are four, 

two, three pseudo integrals. 

The importance of these pseudo integrals in solving the differential 

equations   (A)  to  (C) is well knov/n: 

(i) Vjhen S is constant, we have a relation (?)* "with many useful 

applications,  one of which is the emergence  of  the   other pseudo integrals. 

(ii) Vllien v(v>c-U)  is  constant,  the possibility with the widest appli- 

cations is that it is zero.    Then  Vx_TJ=0, and this means that there 

exists a velocity potential,  that is, a scalar function 0 = ^(x,y,z,t) 

with U = V^. ,, ; ■ ■ ■    ■ 

(iii) Vlhen either u + u; is  constant, then an explicit relation between 

u and v obtains,  considerably facilitating the  determination of the   solu- 

tion.    When both u±o are constant,  then u and v are immediately knovjn. 

These techniques are familiar in the  literature,  so we need not go 

into detail. 

Yfe wish, however, to point  out this : while S lias a certain precedence 

over the  other    pseudo integrals .[see   (i)  above or Far.   10], all these 

pseudo integrals operate in the main in the  same v/ay.    .This will .become ., 

even more  consnicuous when we begin to study the influence  of discontinu- 

ities.    All the  foregoing pseudo integrals will be affected in the same, 

characteristic way. 

It is  important to keep this in mind, because S,  W x TJ,_u + ü), are 

quantities of very different  physical  nature, and hardly ever classified 

or visualized together.     They belong nevertheless together,  and this in- 

sight helps  considerably in understanding the role  of discontinuities. 

REGT RIOT ID 
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V.     NATURAL 3C".T)ARJ OOmiTlOSS.    THE IttD FOR DISCOHTINUITIES 

l'v. Bvery physical problem that-is  2overned- --y differential equations 

possesses y/hat nay be called its natural boundary conditions, that is,   con- 

ditions under which one  can expect by ordinary physical intuition, by com- 

monsense,  that one and only one  solution must exist. 

In such a case the mathematical verification of this intuitive asser- 

tion ought to be possible.    In fact,  one   of the  most effective criteria for 

the appraisal of the value and finality of a mathematical formulation of a 

physical problem is  just this: v-hether.it provides  one and only one  solu- 

tion for natural boundary conditions, 

In the. gas dynamical problem governed- by the differential equations 

(A) to  (G), examples of such natural boundary conditions are easy to find. 

A "box" of a prescribed shape C, , changing mth time  t,  provides  one.    We 

may prescribe the  state of the substance in G0 for t = 0, and that it fol- 

low the changing shape Gt for all t> 0.    Specifically: 

(i) For t = 0 and X= (x,y,z)  in the interior of G  , the  quantities v, 

U, S have  given values. 

(ii) For t > 0 and X= (x,y,z)  on the boundary of C'G, the   component of 

U normal to G-»- at X is equal to the normal velocity of 0,   at X.- 

If the  present mathematical setup of the theory is to be regarded as 

really satisfactory, then it should secure  one and only one  solution of 

Eos.   (A)  to  (C) v.lth conditions   (i) and   (ii)  for any fairily of Gt. 

The problem in this  general form is  of extreme• difficulty.    However, 

if the v,   F, S in condition  (i) are assigned constant  values, then it sim- 

plifies  greatly:  obviously all pseudo integrals S,  v(Fx U),-'   U + CJ,—   be- 

come available. 

8/    Since we assume the  substance to be nonviscous, we must allow for 
gliding along the  boundary of G., 

9/    For three or t;ro dimensions.    The  constancy of U implies,   of 
course,  that v(v x U) - 0, 

10/    i.:or one dimension. 

- 11   - R 3 S T R I .C T..E.D 
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The discussion of an arbitrary family Ci  has been carried out in the 

literature  for the one-dimensional case, vdth the folloiving result. 

Vihen the motion of the boundary of. Qt is generally receding  (that is, 

expanding the substance in its interior)> then there exists a unique sol- 

ution.    An exception must be made for the  case when recession of C+ is too 

fast  (considerably supersonic), but this is satisfactorily explained by 

the physical consideration that in such a case the substance vdll not fol- 

low all changes of the boundary of C^3 but form a free surface in the in- 

terior. 

vihen the motion of the boundary of G^_is anywhere advancing (that is, 

compressing the  substance in its interior).., then there exists no solution. 

The motion of C+ may be perfectly regular, even analytical; the difficulty 

persists nevertheless.    In fact, if the velocities of C^ are always con- 

tinuous., then there exists a unique solution for a certain time; it is 

only a finite time after the advancing  (compressive) motion of G^ has be- 

gun, and at a finite distance in the interior of Cj., that the solution 

breaks doivn. 

This breakdown of the continuous behavior of ^he substance, governed 

by the differential equations   (A)'to (G); is r/ell attested by experiments: 

in a compressible  substance every cotnpressive influence produces states 

that exhibit all symptoms of discontinuity ,— to the extent to which con- 

ductivity and viscosity can be disregarded.    In this way the pure shocks 

come into existence. 

Thus the  theory based on Eqs,   (A) to  (0) is incomplete.    Account must 

be taken of the possibilities of free surfaces and of discontinuities.  The 

free surfaces, however, affect only the boundary conditions, but not the 

differential equations   (A)  to   (C).     They,  therefore^ .do not interest us 

any further.    The discontinuities,  on the  other hand, upset the mechanism 

of Eqs.   (A)  to  (C)j and for this reason it is necessary to give thorn our 

attention. 
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VI.    Tii2 GOxISSRVATION lA'.VS AMD T:3 DISC^ITINUITISS GUSSIFIGATION 

10. The simplest posg5.ble discoritinnlty consists of a surface / in space, 

such that v,  U, S arc continuous on both sides of f, but   (possibly) dis- 

continuous T/hen crossing- f. 

Consider a point X= (x,y,z)  on f (all this at a definite time t), and 

the  element  of  / around X.    Denote the two sides  of i by 1  and 2, and the 

corresponding values of v,  U,  S,  p_, E  (at x, y, z, t) by v^  U-L,  3l3  p1, 

Sl3 and v2 ,, .U23  S2, pg, 32.    Denote the norral of £,  that is5  a vector, of 

unit length,  orthogonal to f (at x,  y, z, t), mth the orientation 1—^2, 

by n.     The  surface / may be movingj  denote its normal velocity  (at x, y,  z, 

t, in the direction n) by s. 

We must novr state the lavrs that replace the  differential equations   (A) 

to  (C) at this discontinuity.    These are based on the same physical prin- 

ciples from which Eos.   (A) to  (G)  obtained in Par.  6: the  conservation laws 

of mass, momentum, and energy. 

It is convenient to introduce the mass flow t/i the mass which crosses 

2; in the  direction of 1 —4 2   (that is, n)  per unit surface per unit time. 

The statements  01  the  conservation laws are? 

Lass: (U-L • n)  - s  = pvx,       (U2 • n) ~ s  = pv2 5 

Momentum:    ^CUx-U2)   * - (Pi - P2 ) nj 

^erf^y:        ^[U^i' Ui)  + ^2. " -|(U2 • Us) - 32]   = - [pi(li1'-■) -;■  (U^n)]. 

3y simple  computations these yield the  following equations. 

'.Tnen r)x T^P?.;  the  Rankine-Hu^oniot equations; 
  f The signs in the 

(As) u = ±    Pl - — ) I  two formulae 
" Vv2  -viJ <; ,   {disagree 

must s ; tagree 
(ßs) TJi - ^ = i V(PI - P^(V2 - vjn ,   ! v;hen pi^ p^ 

(Cg) ^x - E2   = "Kp! + p2)(v2   - Vi). 

V/lien pi   = pn,  the   contact discontinuity equations: 

(Ac) ^ = 0, 

(3c) (--!• n)   = (V  n), 

wc) PI =:-. 
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There is no need to discuss these equations in detail: Sqs.   (Ag) to 

(Gs)  have received suiTiciont attention in the literature^ arid Sqs.   (Ac) 

to  (G«) are fairly trivial.    We restrict ourselves to the  following ob- 

servations: 

(i)  s can nov.r be expressed v/ith the help of the original conserva- 

tion law of mass5 

(ii) the discontinuity of U [that is, l^- U2] is normal to fin the 

first case [use Sq, (Bs)], and. tangential to it in the second case [use 

3qv.(B0)]3 

(iii) the tvro cases are also characterized by /m ^  0 or ^ = 0, that is 

by the presence or absence of a nass flow across the discontiniaity sur- 

face  f. 

17. The circumstance that we wish to emphasize    is this r although üJq. 

(As)  to  (Gs) and   (Ac) to  (Cc) are based on-the  same-physical principles 

as Eos,   (A)  to   (C)  -- the conservation lav;s-of-mass^ momentum,  and-energy 

(see  Par.  6 and Far,   16) behave nevertheless in an.entirely different man- 

ner with respect to the  pseudo integrals S,  v(vx ü),  u+4r. 

Consider first S and Eos.   (A^)  to  (C^,),   .Combining So,   (CL) vdth 
— '      . o S ö 

Eq.   (2), Eo.   (3)   gives 

(16)  ^^ ? ^ (S^vJ  + - (o2,v2) 

How this equation shoy-s >  that V3,—iv2  implies S-t—*^,  that is,  that if 

the v-discontinuity is small, then the S-discontinuity is also small.    In- 

deed,  it can be shown    that S--^ - S2- is -third- order in v1 - v2.     [See,  for 

example, Hef.   (a),  p,  C]    But in general S1 =/=-■ S2 v.iien v^^ 7^  v2,     3cthe 

has shcr/.n  [Ref.   (a),  pp.   10 to 12],  that if the substance has an equation 

of state   (2)  fulfilling a few plausible requirements^  then Eq.   (l6) im- 

plies 

(17) ^i 5 S2    for    v1 ^ v23 respectively. 

It is easy to verify these assertions for an ideal ras,  nsi-n; the  formula«' 

raven in footnote 6. 

-:    T G T E D 
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So we see  that v;hile S remains constant along the paths   (6)  of the 

substance as long as v/e have the  continuous regime given by 2qs.   (A) to 

(G), this fails to bo the  case in the discontinuous regime in "which Sqs. 

(A_)  to (Ce) hold.    Also,  if S is constant on one side of f, even this 

vail not in general be true on the other side,  unless £ is plane and mov- 

ing v;ith the same velocity everywhere. 

Thus S ceases to be a pseudo integral as soon as a discontinuity f 

satisfying 3qs.   (A0)  to   (G  )  is crossed — but this disturbance is a third- 
o S 

order effect if the discontinuity at ^ is  small. 

Considering their dependence on the pseudo-integral character of S, 

the quantities v(v>'TJ),   o.+ Cj, cannot be pseudo integrals cither.    The dis- 

turbance is again a third-order effect if the discontinuity at f is snail. 

The failure  of v(V x Tj)  to be a pseudo integral in this situation has, 

among others,  this  consequence.    Even if conditions are constant on one 

side  of f, and hence Vx U vanishes   (see footnote 8),  Vx U mil'be nonvan- 

ishing on the other side of £ unless f ±s plane,  cylindrical,   or spherical. 

That is^.a discontinuity surface  of unsymmetric nature produces vorticity. 

[See Ref.   (c),  pp.  362:.-to 369.] 

18. Before vie  go any. further, let us give some more attention to the fact 

that S changes at the crossing of a discontinuity surface. In the older 

literature of the subject this caused considerable confusion. [See, for 

example, Ref.   (c),  pp.   189 to 207,  including Ref.  to Sebert and Kugoniot.] 

The situation is this! Eq.   (C)  states    that the  specific entropy of 

an individual element  of substance never changes in the course of its con- 

tinuous motion, that is,  that this motion remains alv/ays- thcrmodynamically 

reversible.    Mo-vr. 3qs,   (A) to  (C)  expressed only thO   conservation lav;s of 

matter, momentum,, and energy,    lie nee the  computation which gave Sq.   (G) 

its present form, really proved this! for a compressible, nonconductivc, 

nonviscous substance the  conservation.of matter, momentum, and energy im- 

plies also that of entropy — that is, J;hermodynamic reversibility — as 

Ion;: as the  motion is  continuous. 

T G  '" 7 n 
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The result given in inequality (17) then proves tlat this iinplica- 

tion- no longer holds good when this motion (or rather its v, UJ E> ?) 

becomes discontinuous« This is very odd. The inplicr.tion of one con- 

servation law hy another one is usually an algebraical fact which should 

not be affected by such differences.  But it is nevertheless so# 

Consequently the entropy theorem, which, took care of itself in the 

continuous case, must be ijiven  special consideration in the discontinuous 

case. The entropy must not decrease during the motion of an individual 

element of substance.  That is, for p ^ 0 we must forbid S1  < 32, rc- 

jpcctiv-'l^" — that is, by inequality (17) we must forbid Vx $ v$. This 

means that never ^(v^ v2)<0. How a simple considerr.tion based on äcs. 

■(-■-s), (Bs-), and inequality (l?) yields this. 

The entropy theorem requires that the sign + be always used in Eq. 

(Be,). That is, the sign + must be used in So. (Ag) for $x > V2 9 that  is, 

for Vi < V2« 

If this condition is fulfilled, we call fa  positive shock; if it 

is not, a negative shock. Hence posiLive shocks alone are pemo-ssible. 

As mentioned above, this change of S in a shock was questioned in 

the older literature. Doubts v;ere expressed as to whether the conserva- 

tion of energy, that is, Eq. (C^), should not be sacrificed rather than 

the conservation of entropy. The latter amounts to 3q. (7), that is, to 

(18) px = pOi),  p2 = ^(vo) 

11 ^ 
and Eq, (G ) and Eq. (18) are generally conflicting.-—'  The question 

arose as to which of these two. adi aba tic laws of footnote 11 should be 

considered valid. 

11/ Thus for an ideal gas (see footnote 6) putting 

P2 .      t V2  - -H 

EG. '(13) is the v.-ell-kncnMi ordinary adiabatic law, 

^ = (7)-", 

while Ec.   (Gs)  is the Hankine-Hugoniot adiabatic lav; 

s   nr+1} - ^ - TT* 

/t    i    O     i 
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There can bo no doubt    that it is 3qf   (C^); the energy must be  con- 

servedj  and entropv must only not decrease»    The irreversibility of Sos. 

(As)  to  (Gs) is odd but nob at all absurd.    All continuity arguments used 

in the literature are invalid,    The   (irreversible)  discontinuities  /are 

not limiting forms of  (reversible)  continuous motions^  since no compressive 
12/ motion can remain continuous.— 

There is, however, one addendum to this.    If Eq.   (?)  — that is, Eq. 

(18)  — holds, because the  equation of state has the   special form 3cs. (21) 

to   (I41) discussed in Par,  8, then its validity is absolute.    Now in this 

case T.e  saw in Par,   y that the motion of the  substance is governed by Sqs. 

(A) and  (B) alone5 vßiile Eq. . (C)  stands apart.    It determines  only the be- 

havior of 3.    Similarly^  Eqs.   (A«),   (Bs), and   (?) — that is, Eq.   (18) — 

may then be  used tö determine the  motion of the  substance,  and Eq.   (Cg) 

stands apart, dealin-' -with Sonly.    That is, the motion is determined in 

each case as if there were no conservation of energy,  and by using Eq.   (7) 

— that is, Eq,   (18),     But the energy is,   of course,  conserved — by con- 

serving the  entropy according to Eq.   (C)  in the  continuous case, and by 

changing it appropriately according to En.   (Gs;  in the  discontinuous  one. 

19- Consider next Eos.. (Ac) to. (C  ).     In this  case no substance  crosses 

the discontinuity [see   (iii) in Par.   16]^ hence there arise no Questions in 

connection rrith the  pseudo integrals S,   v(Vx ü).     In the  one-dimensional 

case,  the pseudo integrals u + W niay have to be treated differently on the 

two sides of ^. but this  does not lead to any serious difficulties either. 

The following point, however,  is worth emphasizing.    There  exists hero 

a fundamental difference between the  one-dimensional case, and the three- 

and two-dimensional ones. 

In the  first  case  only v can be discontinuous at cP,  since here Eq. 

(3C)  implies  bn^Uo.     Since  p is  continuous by Eq,   (Cc),  this involves by 

Eq.   (3) a discontinuity in S — that is,  different adiabatic laws   [Eq.   (7)] 

J_2/    The discontinuities $_ arc  limiting forms  of continuous motions, 
if the  substance  is endowed with a small conductivity,   or viscosity, and 
this allowed to tend to zero.    Such considerations corroborate the increase 
of entropy in £,  although"this aspect of the  subject-has not boon studied 
quite  exhaustively.     [See,  for example, Ref.   (g),  pp.   %1 to 60?,] 
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on both Sides of ^    Tliis implies that ;vhen there is an absolute reason 

for the validity of Eo.   (7) — that is, when the equation of state has 

the special form Sqs,   (21) to (I41) discussed in Par. 8 — then this kind 

of discontinuity Qannot occur.    But this is true in one dimension only! 

In the  second case v may again be discontinuous at f, but 3q.   (BQ) 

allows also any discontinuity of the component U tangential to f9  that 

is, Y-re ray have gliding of the two sides along £ (see footnote 8).    Now 

it is well lenown that this type of discontinuity is the  equivalent of a 
13/ vorticity sheet.— 

It follows that we must expect such a discontinuity to originate 

where there is reason to expect the  creation of a concentrated form (sheet) 

of vorticity.    rlov: it appeared at the end of Far,  17 that a discontinuity 

surface f of the type satisfying 3qs.   (As) to  (Gs)? vhen of unsymmetric 

nature produces vorticity.    There /was continuously curved and accelerr- 

ated, end the vorticity created ras continuously disturbed.    Hence  if the   ■ 

curvature or. the acceleratioti of £ is concentrated on an infiniteßlmal 

stretch — that is, if f has an edge or corner,  or if it has to undergo 

a..discontinuous change in velocity — then a vorticity sheet may be ex- 

■   pected.   .Thus, a discontinuity satisfying iSqsi.   (Ac)'to  (Gc) may be oxpoctod 

to originate  v.hie re a discontinuity of ■ the .type satisfying 3q's.   (Ag) to 

(Cs) exhibits any one  of the above traits. 

In one dimension a  similar arr-ument could be made, by usinp S in- 

stead of vis/x lr)  — and this alternative is uffectivo in three or two 

dimensions also.    However;j as r/o  observed further above; the special form 

given by 2qs.   (21)  to   (h1)  of the equation of state excludes discontinu- 

ities of the typ- satisfying Eqs.   (Ac) to  (Cc) in one dimension, but not 

in three  or in two dimensions. 

VII.    FOEhlUUTIOI-J OF IT-IS BASIC PP0bL3?.£ OF D'rSCa;TIT:UlTI^S 

20. .  By comparison of  these facts vdtii the difficulties pointed out in 

Par.   15, it appears reasonable; to try the theory in a new form, which 

13/   Lihe ?, it is two-dimensional in the three-dimensional case, 
and one-dimensional in the two-dimensional one. 

T R I C  T f D 
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allor.'s for discontinuities  of the t\:o types,  those satisfying Eqs.   (Ag) to 

(0S) and those satisfjrlng 3qs.   (Ac)  to  (Cc)3 besides the ereas in Y:hich the 

differential equations   (A)  to  (C) are fulfilled.— 

Ii: other v.rords the iciu—diraensional x^Zjt-Bpacc-tinie must be divi- 

ded by three-dirensional surfaces f, ^S ^.'S ••« into distinct doriiains A, 

A', A'1,....    In each one of these domains there is continuity, the rliffer- 

ontial equations   (A)  to  (C) being valid,'   The  separating interfaces f, fl, 

oP'1,... represent discontinuities,  either of the first kindj that is,  sat- 

isfying Ecs.   (Ag) to  (Cs),  or of the second kind,  that is,  satisfying 3qs. 
(Ac)  to   (Cc). 

Fron the  remarks of Par,   13 V:G  conclude  furtlier thet the  interfaces 

of the first kind rr.y begin in the interior of the A, A', A11, ,.. domains, 

i.lth free  (tro-dimonsionr-l) edges.    From the remarks of Per.   1> interfaces 

of the  second kind should begin only at   (tTrc-dimcnsionel) edges formed by 

tue already existing interfaces of the first kind. 

In the tiTO-dimensional case  space-time is three-dimensional, all. ,thc 

above dimensions are reduced by one, and so the v.erds domain,   surface, 

edge assume their usual geomet- 

ric meaning — making things X ^ 

easier to visualize.    In the 

one-dimensional case  space- 

time is tv'o-dimensional^ all 

the above dimensions are re- 

duced by tiTO, and v'e  can oven 

^ive a schematic drard-ng of  the 

conditions tobe expected  (Fi^,l), 

In applying 3qs.   (As) to  (Cs) 

to the interfaces of the first Fig.  1. 

kind it is also necessary to remember the.conclusion of Par.   16,  according 

to ivhich only positive shocks are r-llaved. 

]h/ The free surfaces, mentioned at the beginning of Far, 1$ are 
really special cases of 3qs, (Ac) to (Cc) v.lth Pissp2

s:0 and rdth zero 
density (l/v=/o = 0)  on the empty side. 

b,  boundaries of C^ 
0, areas A, A», A",   ... 
1, interfaces f,  f't f"t 

first kind 
2, interfaces ^ ^', f", 

second kind 

of the 

of the 

U Zi  o T 
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21. The considorations of Far. 20 are of a highly heuristic nature; the 

conclusions reached are only surmises. The mathematical corroboration 

would consist of showing that the present formulation of our problem 

has always one and only one solution when natural boundary conditions 

are prescribed. This would necessitate giving a definition of what a 

natural boundary condition is that is in harmony rath physical intuition 

and sufficiently general to include all plausible situations. As a pre- 

liminary check, howeverj the special setup of the "box1' G^ as discussed 

in Pars. 1)4 and 15  should be analyzed. 

The simplest possible case of this setup has been solved in the lit- 

erature : one dimension, constant values and rest at t= 0 (see the end of 

Par. II4), G. semi-iniinite> its one boundary point at rest at x = 0 for 

0 < t = t0 and then set into motion with a discontinuous change of veloc- 

ity for t > t0i  ^
=uo(t-t0). 

For u < 0 -this is an expansive motion5 for u > 0 it is a compres- 

sive one. In the first case there exists one, and only one, solution 

with no discontinuities. In the second case no such solution exists_, but 

there exists one, and only one, with a discontinuity of the first kind 

beginning at the boundary point x^O, t = t .  This is a positive shock. 

A similar discontinuous solution would exist in the first case only if 

negative shocks, too, were allowed. 

So we see that it is necessary to allow positive shock discontinu- 

ities in order to have at least one solution in each natural problem. 

It is necessary to forbid negative shock discontinuities in order to have 

no more than one solution.  This takes care of the dlscontimiitios of the 

first kind. The discontinuities'of"the second kind arc presumably neces- 

sary in order to be able to continue the solutions beyond the odres form- 

ed by discontinuity surfaces of the first kind — that is, their inter- 

sections (see Par, 20 and Pi?;, 1), 

Thus the setup arrived at for partly thermodynamic reasons is also 

plausible frou a purely mechanical point of view. 

22. For a more gonoral motion 

(19) x = r(t) 

:-' T n - J 
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01 the boundary point  of C, , and for tre  case "fben G.   is finite and has 

two boiindarj points,  only very fra-.-nontary results exist.    A good deal 

can be predicted qualitatively — but the properly mathemtical theory is 

extrenely incomplete• 

Assimn.^j as  one should, tliat the boundary velocities in Sq«   (19) are 

continuous,  that is,  that ~ is  continuous,  the  discontinuities must be 

expected to be pin in the interior,  and not on the boundary.     (See Tars. 1$ 

and-20 end iip.   1.) 

Before any exhaustive matheniatical theory can be attempted, it is 

necessary to acquire an insight into the  nature  of the  various elementary 

constituents v/hich combine to give the  complex picture presented,  for ex- 

ample, on Fip.   1,    The ivr.tters to be  considered are  therefore theses 

(i1)  Hoy- does a discontinuity surface begin in the interior? 

(ii1) Kovr do tviu discontinuity surfaces intersect; that is, 
■  what phenomena originate at such an intersection edge? 

As y;e sav; in Par.  20,  it seems probable that the primary discontinuities, 

originatin.'-  according to   (i1), are  of the first kind — those of the  sec- 

ond kind ..should come from  (ii1).     [For vortex sheets this u^as  proved in 

i;.ef.   (c),  pp.  3h^to 36I.]    Combining this uith the observations inadc 

•subsequently,   (i1)  can bo modified as follenvs s 

(i11)  How does a discontinuity surface  of the  first kind — 
a nositive shock — bordn in the   interior, if ^i is 

1 r-. / continuous anc* compress^ve.-i^/ 
cTT 

Since there is no flop- of matter across a discontinuity of l-he second 

kind [see (ii) in Par, 16], two such iiscontinuitios cannot intersect. So 

we must Iiavü at least one discontinuity of the first kind in (ii.1). bhen 

this intersect:-- one of the second kind, there arises e problem which v:e 

need not consider in tin: framework of this firsi; orientation. In some 

cases it is quite easy to solve, a::d in the others it is essentially equi- 

valent to a special casü of the next case. The last case, intersection of 

13/ Gompressivity means that the acceler: 
directed toward the substance — that is, for •; 
:-:, df/dt increases 5 for an upper boundary point 

iblon of the boundary is 
lovmr boundary point ir 
in x, df/dt decreases. 
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tv-o diGContirndties of the first kind, is the really interestinr: one. 

Conbinin-i these ob3er\ratior.s vdth the conclusions of (ii) in Par. 20, 

■we  come to replace   (ii1) by this statement: 

(ii11) iiov; do tvro disconttnuity surfaces of the first kind 
intersect,  that is, rrhat phenomena originate at such 
an intersection edce?    In articulars  hcr.7 do the 
discontinuities of  the second, kind begin there? 

VIII.    TKS ORIGIN OF A SHCCK 

23. Tlv.-i mathematical approach to  (i11) is very difficult beca ise the 

shock /vdll be accelerated,  and the problem is of determining ^ to- 

• - gethor vath the solution of Eq.   (A)  — a quite unusual type of njlxed 

different Lai equation unknorm boundary problem.    It is- possible, how- 

over,  to dotcnuinc-the point X    v/horo the  shock ^begins, and the  condi- 

tions in the neighborhood of that point.    They are singular, and- the de- 

scription of this singularity is the problem. 

The existing literature on this question is'unsatisfactory, partly 

because the apparent conflict bctvreen the  conservation lav;s for energy 

and..entropy More usually not treated properly,     [3co the  last part of 

Par,  13, and Ref.   (c), pp.  20? to 217.] 

If df/dt is  continuous, but d2f/dt2 is allowed to be discontinuous, 

v/e obtain-a situation vrhicii is typified by f(t) "0 for 0 < t ^ t0 and 

f(t)=an(t-   tnP for t 
-'Q* This is the case that v/as usually consid- 

ered in the literature.     The  solution in the  above sense vns completely 

determined by J,  Calkin in connection vrith the  contract luidor vMch this 

report uas v/rittcn,    A detailed.report on this sue,pet vrlll be s\ibmittcd 

shortly. 

If d2f/lt2 is also continuous, and df/dt increasing, then the shock 

originates under entirely different conditions. This T/as established by 

J. Calkin. A report on the details of this case — r.nich are ratrier un- 

expected — vdll follov;. 

The first setup — d^f/dt2 discontinuous  — can never be anything 

but an approximation.    It v.-ould be a useful one  if  L;:s result approximate 1 

RIOTED 
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triat  of the second setup — d2f/dt2   continuous.     Since it dees not,  but the 

second case has a qualitatively dii'ierent solution, vie conclude that the 

first setup must be rejected.    That is,  the solution of the  second setup 

gives the desired answer'to  (i11).—' 

2I4. A variant of   (i11) v;hich deserves consideration is the  follovdng. 

Consider an arrangement, whereby the  ''box'1   [tiiat is, its f(t)j  is com- 

pressed for t > t  , as discussed in Far.   23, but  only during a finite time 

interval t    <t "^ t  , and brought to rest again for .t ^ tx.     It is known 

that this initiates a positive shock in the  interior, as described before, 

but that the  shock v.dll lose intensity subsequently ov/ing to the  expansive 

motion necessitated by bringing f(t) to rest,     This phenomenon is mathe- 

matically most difficult. 

Mov; lot the interval t    < t  < t    be very short, but the   motion of 

f(t) during this period very violent.    One may try to arrange the data so 

that this motion injects into the  substance an energy G(> 0, <  00) and 

then make t-t   ■—>0. nhile the value of e    is held fixed.     This amounts to 
o •.;■'•,■ •• •• O 

injecting a fixed amount of energy e   (>0,  < .00) into the substance during 

an infiniteslmally "brief period. 

The problem is  of a certain practical interest  since it  is  equivalent 

to describing the  decay of a very violent,   instantaneously originated, 

blast v;avo in air. 

It rras solved — in three and in two dimensions,  as woll as in one — 

in a report submitted by the author previously in connection with this 

contract   [Rcf. (j) ] . 

The procedure  used there lias  since found ^applications in some other 

problems of  similar nature.   [See,  for example5 R01.   (i), and the anther's 

reoort on '^oostiny,1' montioned at the en i of Far.  3^-J 

16/   In fact even the first setur: ,p rr lay lead  to a solution vdiich he 
longs to the  second type if f (t)  7or t ■ 
an(t-t0)2+b0(t-t0)3+c0(t-t0)^ ... 
cicntly ?;;rcat in comparison to a0. 

'■■■'■.-) -p 
"O 

1    + r} yy^ 

vrnth any on::  of b o^-o* • • ^^ffd ■ 

T  C  7 ^ D 
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IX. THE IliTSRACTICN 0? SHOCKS: UI-TS/in GAGIi 

25-     Let us no-.v consider (ii11) in Par. 22, that is, the intersection of 

two discontinuity surfaces of the first kind.  This may also be described 

as the collision of tvro positive shocks. 

The physical picture is that of tv;o shocks moving into a domain of 

continuity and getting into contact vdth each other. In order to have as- 

elementary a setup as possible, one may imagine that v, U. S are constant 

in the domain ahead of both shocks, and also (although vath other values) 

in the domains behind the tv/o shocks. The shocks are then plane, and 

have constant velocities. 

In the one-dimensional case the tv/o shocks move in opposite or in 

parallel directions. In the latter case it can be shov/n that the shock 

which is behind the other one (in their common direction of motion) must 

be faster than the fonvard one and finally catch up vrith it.—  Thus 

the tno shocks must collide in each case, and they are not in contact 

before that collision.  This is the linear collision of two 

shocks. 

In the three- or turo-dimensional case the conditions are the same if 

the two shock fronts (discontinuity surfaces) are parallel planes. 7e 

choosö their common normal as the x-axis and evorythinf-; is obviously in- 

dependent of y,2_.  'Jc still have linear shocks. 

Assume nor: that they are not parallel. Choose the plane containing 

their two normals as the x,y-plane.  Then ovorybhin^ is still independent 

of s and so the problem is two dimensional. In this case the two shock 

fronts intersect at all tines.  That is, the two shocks have been in con- 

tact — collision — all along.  This is the obi-' quo collision of two 

shocks. 

Summary.  (ii11) is the- problem of the collision of two positive 

shocks.  This problem is cither linear, one dimensional, in which case 

17/ In this case the throe domains are not as indicated above but 
are a domain ahead of the first shock, a domain between the two shocks, 
r. domain behind the second shock. The second one disappears as the two 
shocks catch uo. 
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the collision occurs at a definite instant5 or it is oblique, tvj-o dimen- 

sional, in v.tiich ca5?e the collision is goinf? on continuously at all times. 

26. We add a ncrark concerning the possibility of a discontinuity surface 

running into a boundary, that is, the case of reflection. 

Let us again assume that the discontinuity surface and the boundary 

are planes. Then the influence of the boundary is equivalent to v/hat 

would be the influence of a rrdrror image .of the original discontinuity 

surface, reflected by the vail. That is, reflection is equivalent to the 

collision of two syranetric discontinuity surfaces. Hence our discussions 

of Far, 23' apply again, and reflections, too, can be subdivided into 

linear reflections (one-dimensional) and oblique reflections (two-dimen- 

sional). 

27. -Let us return to the collisions, and consider first the linear typo. 

Vfe are in one dinension^ ..therefore rre must expect at the point of 

collision, among other things, the beginning of a discontinuity of the 

second .kind — except r/hen the equations of state have the special form 

of Eqs. (21) to (h1). It is also easy to see that this discontinuity of 

the second kind must disappear for reasons of symmetry if the tvro collid- 

ing discontinuity surfaces are symmetric. 

The problem has been solved fully when the substance is an ideal gas 

with ? i 5V3.  The only further phenomena originating at the collision 

are these: two positive shocks if the two colliding shocks arc in opposite 

directions 1 one positive shock if they are in the same direction. Apart 

from these, and from the discontinuity of the second kind mentioned above, 

the substance has no discontinuities and obeys the differential 3cs, (A) 

to (0). 

Those results form the content of a report to be submitted by the 

anthor. 

Vic restate this result. Two positive shocks in a linear heed-on col- 

lision produce two positive shocks3 if one catches up with the other, then 

they eroiucc or^ positive shock. 
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It v/ould be interesting to determine for vfoich equations of state 

this result is generally true.    This would involve investigations alonr 

the lines of Bethe's work  [Ref.   (fc), mentioned in Par.   17],    For ideal 

gases the condition is, äs mentioned above,  If ^ 5/3,    It seems remark- 

able that this .inequality j -which is justifiable by molecular^kinetic 

considerations,  emerges here in a purely macroscopic context. 

We add that sane of the  older literature on this  subject is in error 

because of a failure   bo recognize the role of the discontinuities of the 

second kind. 

TIIE -INTERACTIOiI OF SHOCKS;. OBLIQUE HJ    ^t-vjSh 

28. Tfe-novf pass-to the collisions of the oblique type.    For the  sake of 

simplicity, v/o discuss the  symmetric case, that is,  that one of oblique 

reflection  (see Par...  26).    In this case the discontinuity of the  second 

kind docs not arise, and there are some minor technical simplifications. 

But the characteristic difficulties of the problem, -which TO are going 

to consider novj-, are essentially the  same as in the  general case. 

Consider first the oblique reflection of _ a very weak. s;io::k, that is, 

a sound wave.    In this  case the .original shock „and the wall produce a 

second, reflected shock which 
n 

forms  bhc  same angle vdth the 

y.-all as the  original one   (Fii?,  2). 

[This is x,y-spaoe not x^y^t-space 

time.    Tub have pointed out before 

that this problem is essentially 

two- dimensional. ] 
x 

w w, wall 
OS,   original shock 
R3,   reflected shock 

{sonic case) 

Fig. 2. 

If the original shock is not 

sonic, there will be complica- 

tions — but it is easy to pre- 

dict their nature* The gas behind the original shock is easily seen to 

move in the direction of that shock — hence it has a component to the 

ri.'drt in Fig. 2 — and to have a higher sound velocity than the gas 

R 00 r K i c 
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ahead of the  original shock.    Hence the reflected shock must be expected 

to be faster, even in relation to the original one, then it vrould be in 

the sonic case.    That is,  it vdll be pushed forvard to a position like 

iilS1  on Fig.  2, that is,  its angle ^ with the r/all mil exceed the angle 

of the original  (or the  sonic-reflected)  shock vrith the mil. 

It is natural to make this exact, by applying Sqs.   (As) to (Cs) to 

these two shocks.    The quantities v, U, S are constant ahead of the  origi- 

nal shock.—7    It is also natural to try.to make v,  U, S constant in the 

domain between the two shocks, and similarly in the  domain behind the  sec- 
r?/ 17/ 

ond shock,—i-' 

If this is done the same number of equations and variables obtain, 

but- the equations are of a high algebraic order. It is found that these 
• * /    19/ equations can be solved, unless the angle ct. is too. near to TT/2.—■     HOYJ-- 

20/ ever,-there exist then two solutions of the type R'St.—        vVhilG it is 

usually possible to tell which of these two is the physically real one, 

this duplicity is nevertheless somewhat disquieting. 

But when ot is near to Tr/2 — that is, for anearJy glancing incidence -- 
"" .       '    " 2Ty "  

the situation becomes even stranger: there exists no solution.—f 

Attempts to find a solution by other, more complicated arrangements 

of plane shocks have invariably failed. The reality of the phenomenon is, 

however, beyond question. The existence of an Mabnormal,' type of reflec- 

tion for strong shocks and nearly glancing incidence has been established 

experimentally by 2, lach [Ref. (f)]. '     ' 

18/ Of course, U=0 ahead of the original shock. . There is no reason 
to restrict U in the domain between the two shocks. Behind the reflected 
shock, U must be parallel to the wall. 

19/ The weaker the original shock, the nearer ot may come to rr/2. Of 
course a = IT/2 itself must be excluded.  In this case no reflection occurs 
at all. 

20/ If the shock is very weak, then one solution has its ^ near to a*, 
the other near to TT/2. The first one yields a weak shock, the second one 
a stronr; shock. The physically realized case is therefore the first one 
— except possibly for some very special situations, 

2l/ This phenomenon was observed before on a similar problem by 
Epstein [lief. (b)]. In the case of oblique reflection it las first men- 
tioned by 1,  Teller (oral commuiication to the author). 

R3STRICT-I.D 
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29.    The experir.ental evidence, [Re.fs, (f), (n)] is sufficient to estab- 

lish qualitatively the number and the nature of the shocks that inter- 

vene in this "abnormal'1 reflection (Fig, 3). Thus a new shock, the in- 

termediate shock IS enters into 

the picture. The original shock 

v and the reflected shock meet at 

a point P, v/hich is no longer 

at the wall, as in the "normal" 

reflection of Fig. 2, but moving 

in the interior. The experi- 

ments show, furthermore, that P 

is moving into the interior, 

artziy from the wall, along the 

dashed line of £i£U'. 3. 

JSL  x 

w-—w, wall... 
OS,   original shock 
R?fS",  reflected" shock 
IS, .  intermediate shock- 

Fig. 3. 
If tho mathematical analysis 

is now appliQd, the following 

facts appear. 

(i) The reflected shock near P and the intermediate shock must 
be curved... 

. (ii) For weak shocks, at least, /3 < ^ and  not /? >fc, as in the 
"normal" reflection of Fig. .2, 

Therefore we must expect a rather complicated motion of tho sub- 

stance behind the reflected and the intermediate shocks, which has vortic- 

ity — that is, neither S nor v(VxTj) constant. Besides, a discontinuity 

of the. second t-ypcr ^- a vorticity sheet — should issue from F into the 

same domain. 

All this loads to very difficult mathematical problems, oven for 

ideal gases. "Assuming a strong shock, and a very nearly glancing inci- 

dence — that is, a, *" TT/2 — approximate solutions can be determined! 

"zero" order quite easily, "first" order with considerable difficulty. 
22/ 

They corroborate in detail the qualitative statements made above.— 

22/ Since this phenomenon is not stationary it is necessary to 
discuss it from the beginning — v.hero the original shock first hits the 
Y/all. Owing to the obliquonoss of the reflection this necessitates (sec 
Par. 25) some changes in tho geometry of the picture. 

R E S T R I G T E D 
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These investigations, for ideal gases, are contained In a report 

which vd.ll be submitted shortly by the author. 

A direct comparison of the results of the  mathematical analysis with 

the experiments has only been possible so far to a limited extent.    Con- 

sider very nearly glancing incidence — that is, 06^/2.    Denote the 

velocity of the original shock by s,  the mass velocity of the gas behind 

it by u, and the velocity of sound there by c.    Then 

(20) tgV-.^ - (s -u)*    for  «c -»0. 
s 

This formula appears to be in reasonable agreement with the experi- 

ments   [Ref,   (m)]. 

30. The experiments as well as the mathematical analysis show that the  in- 

termediate  shock IS is very flat as long as the velocity of the original 

shock does not exceed about 3 times sound velocity.    They also show that 

even for shocks which are less than 10 percent above sound velocity, a can 

deviate as much as TT/3 from Tr/2 before the intermediate sheck IS dis- 

appears and. the  reflection becomes normal.    In this respect recent experi- 

ments of Charters and Thomas, Ballistic Research laboratory, Aberdeen 

Froving Ground, are particularly convincing» 

As the intensity of the (original) shock increases, tie intermediate 

shock seems to become more and more convex. There are reasons to believe 

that this convexity may progress to the extent of giving the intermediate 

shock the character of a protuberance when the original shock has 10 to 

20 times sound velocity, as it may in explosions. This phenomenon, if 

real, ray be connected with some important blast effects. -. It was studied 

further in several memoranda of the author to the Navy Bureau of Ordnance 

[Ref.   («)]. 

XI.    RSA.CTI0H SHOCKS.    CLASSIFICATION 

31« A reaction shock involves a chemical change;  that is, the equation 

of state,  Eq,   (2) — and with it 3q3.   (3) and  (I;)  — is expressed by dif- 

ferent functions  on both sides of the discontinuity.    That is, the 

R^STi:IGT2D 
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conservation laws of i^ass, nonont^jn, and energy ray be fonimlated in the 

same "way as in Par,  16, but they v.lll contain two different functions: 

(21) Si * MSuVa),       Es   = 22(82^2), 

The difference between the two functions in Sq, (21) expresses the chem- 

ical change. 

The results of Par, 16 still apply, if this proviso is made. Thus 

we have again two types of discontinuities: those described by Sqs. (As) 

to (C0). and those described by Eos. (A } to (G ), The conclusions (i), s *    c      ^ 
(ii) of Par. 16 are also still valid.        ■' ' 

It follows that no,flow of matter occurs aoro$s the discontinuities 

of the second kind [Sqs. (A«) to (C_)]. Hence there is really no chemi- 
 •.. . ■ o      c       •■    

cal reaction in this case. Two chemically different substances•are con- 

tiguously existing, separated by the discontinuity surface.' Actually 

••  "'this is the normal form for the coexistence of two phases, sihce the dif- 

ference in the equations of state — hence in Sq. (3) — prevents con- 

tinuity of all of v, S, p. 

For the discontinuities, of the first kind [Sqs". (A^) to (C,.)]. on 

the other hand, there is a flovr of matter across the discontinuity, A 

chemical reaction is therefore the substratum of this picture, and the 

picture is only legitimate to the extent to vMch this reaction can be 

treated as instantaneous. 

Siqinmary. A discontinuity "(reaction "shock) of the first kind de- 

scribes a chemical reaction, to the extent "to which it can be treated 

as instantaneous, which must be induced by one of the discontinuities 

(p, T, U?) accompanying the shoe]:. 

A discontinuity of the second kind involves no reaction at all^ it 

describes the normal' form of co-existenco of two different phases. 

32.     It follows from the above that the really intorasting objects for 

further study are the reaction shocks which arc discontinuities of the 

first kind, governed by Eos, (As) to (C ). ".Ye shall therefore restrict 

ourselves to. these. 

RjioiHICTiijD 
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Inspecting Sqs,   (As) to  (Cs) once more, it appears    that Pi^Vx and 

'Pzfv2 are linked by 2q,   (Gs)   only.    Of course,  the equations of state, 

Sq.   (2),  expressed by Eq.   (21), are then better replaced by Sq.   (1),  ex- 

pressed by 

(22) Ex -FiCp^vO,      E2  -F2(p2,vs). 

If Eq.   (G ) is fulfilled,  then Eqs,   (As) and  (B )  can be used to determine 

the  other quantities which are of interest. 

Assuming tliat the  state of the  substance into which the reaction 

shock is penetrating — say that on the side 2 — is known, we have this 

situation: Pa^V are knownj Pi^i are linked by Eq.   (G ). 

This connection of Pi^Vx can be depicted by a curve in the p,v-plane, 

the Rankine-Hu^oniot curve.    It should be remembered that this curve de- 

pends  on the   choice of P2,v2-. 

Obviously Pi^p^i ^i^^z  fulfills Eq*   (Gs) only v/hen the two func- 

tions F1(p,v) and F2(p,v) aro identical —that is, v^ion V;G have a pure shock. In 

other words: the point p2,v2 lies-on the Rankine-Hugoniot curve, only when 

there is no reaction — for a pure shock. 

For an .exothermic reaction, that" is, FII/PIJVI)^ F2 (p^v^   [not 

FzipzyVz)1*]}  i^ is easy to verify   that $2^2 lies below the Rankine- 

Hugoniot curve.    The-conditions'are shov/n in Figs. U and 5» 

III III  
Fig. 4.    Pure shock. Fig. 5.    Reaction shock. 
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33. By Eq# (Bg) 

(23)    . **$t^m^' 
hence tg(ü£ 0. Consequently 4; must lie in the quadrants I or III. For 

a pure shock this is automatically true (Fig, 10, but for a reaction 

shock it excludes a certain part of the curve, which lies in quadrant II 

(Fig. 5). 

Besides this, for a pure shock the lower part of the curve — in 

quadrant III — is clearly a negative shock. ITe saw that, these .must be 

forbidden since they would cause a decrease of entropy (see Par. lu). 

Hence only the curve in quadrant I has reality. 

'• - -    In the case of a reaction shock the situation is different. First5 

the thermodynamics of the chemical reaction which is involved here would 

have to be gone into in considerable detail before anything could be ex- 

cluded on thermodynanio grounds.  Second, -there is definite evidence as 

.   to the reality of at least part of the curve in quadrant III in this 

case. Third, we- saw in Far. 20 that there is no known application of 

the theory where pure shocks in quadrant. Ill (that is, negative shocks) 

are needed to produce a solution^ while we shall see that they are defi- 

. nitqly necessary in the main problem involving reaction shocks (see 

Par. 36).. 

3lu     The parts I and III of the Rankine-Hugoniot curve of a reaction 

shock are distinguished by simple criteria. In the former the reaction 

increases p and/o - l/v and it is easy to show that the shock velocity £ 

exceeds the sound velocity c2 of p^^Vo. In the latter all this is re- 

versed. 

For an explosive reaction part I is undoubtedly describing states 

of detonation, while it is customary, and probably justified, to iden- 

tify the states described by part III with those of burning or defla- 
23/ 

gration.-^-  At any rate we are going to use these expressions in the 

sense indicated. 

23/ The variable and somewhat erratic behavior of actual defla- 
gration makes the latter identification less certain than the former one. 

P. 3 S T'R I C T ^ D 
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Vfe can say, therefore, that in a detonation the pressure and density 

of the reacted substance are higher than those of the unreacted one, and 

the detonation is faster than any sonic signal that might precede it — 

that is, no such signal can precede it.    In a deflagration all this is re- 

versed. 

One also concludes easily from the above  [or from Eq.   (Bg)] that in a 

detonation the burnt gases follow in the same direction as the detonation 

"wave, while in a deflagration their direction is opposite.    That is, a 

detonation absorbs its own flame, while a deflagration emits one. 

The first statement may sound paradoxical, but all moving-film photo- 

graphs of these phenomena corroborate it.    A detonation produces a narrow 

luminous strip, a deflagration a wide, expanding flame.    Of course, -when a 

flame is emitted from a detonation — which is the superficially visible 

phenomenon — the detonation is over and the subsequent expansion of the 

. burnt gases has set in. ■•■■. 

.   . ; XII.  • MALYSIS OF DETONATIONS 

"-35^ - Returning to Figs. I4 and 5, we have to comment upon the fact that they 

each represent a one-dimensional manifold of possible values Pi^Vx — that 

is, of shocks.    This" is natural for the pure shock,  Fig.  U'9 which must be 

supported by a compression behind it, and whose intensity will therefore 

depend upon the intensity of that support.    For the reaction shock. Fig.  5, 

it is again plausible that support, or the  opposite, will modify the shock. 

However, there should be a point on the curve of Fig.  5 representing a 

reaction shock unsupported and unhindered — that is, in equilibrium. 

The problem of finding the equilibrium point on the curve of Fig. $ 

is one of some „difficulty. It has been given a good deal of attention in 

the literature, and it is rather generally agreed that the hypothesis of 

Chapman and..Jouguet is correct. The equilibrium point is that one whoro 

the line F2^v2—»PIJVX is tangent to the curve. There is no doubt that 

this question cannot be settled without investigating the mechanical situ- 

ation in the burnt gas farther behind the detonation front; and also the 

RESTRICTED 
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dotails of tho  chemical reaction, vMcb   was   so far described as occur- 

ring instantaneously within that front, but v/hich must actinlly occupy a 

zone of finite extension in space and tinB, 

The physical assumptions on v^iich the Qhapnan=rJouguet hypothesis 

rests, its domain of validity, and its proof v;ere analyzed in a report 

subiiiitted previously by the author in connection T.lth this contract [see 

Ref.   (k)]. 

36. In this connection am vdsh to point out one fact that has not re- 

ceived so far the attention it appears to deserve. 

;  ■    " Consider tho explosive reaction and take its finite duration, that 

is, its noninstantancous character, into account. 

The reaction must nevertheless be initiated by ah abrupt change of 

some significant quantity :[p>;;T> Ü?' (sec Par. 31H1. —HoTOver, at the mo- 

ment when this discontinuity passes over an-clement .of a: substance, the 

chemical reaction there is Just beginning.    That is, for the purpose of 

this discentijiuity, the substance might as iTell be chemically inert — 

tho discontinuity at the first racment is a pure shock. , If XIQ define_the 
; '  ■   shock in albroader Tjay, so that it includes the entire reaction zone, 

then it is, of course, a reaction shock. 

.In the equilibrium form of detonation both phenomena — the first, 

initiating shock and the. entire reaction zone—'must have the same veloc- 

ity. ■     x:.- -.■:■        ::■ ' ■    : Z.  : ' 

So Trc must superpose Figs, h and .t?, and use t\n "points Pi,v1 and 

Pi>vi ~" corresponding to mere excitation and to complete reaction. Since 

both: have the .same velocity, and 
■n 

the same mass flow, both' give 

the  same arglc ä>.by Sq.   (23)5 that 

is, Pi/Vi and p^v^ lie on the 

same line from p2>Y2*    r^lQ situ- 

ation is shorn in Fig. 6.    This 

figure shows    that the intact sub- 

stance at Pfe,V2 is transformed by 

Pi,vi 

- v 
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the pure shock into the excited one at p^Vx and that after the reaction 

is over, its state is Pi,vi. The -ultiTrate detonation pressure pi is lower 

than the excitation pressure p^.*«» #iiGh is ^rather strange.    However, the 

details are even more peculiar. 

We can also take a view of the shock which excludes from it the ex- 

citation process, but includes the entire reaction zone proper..    The con- 

servation laws of matter, momentum,, and energy — that is, Eqs,   (As) to 

(Cs) — must remain true.    That is, Pi,Vi must also lie on the Rankine- 

Hugoniot curve of Pi,v1.    Now this curve is not shown in Fig, 6_(those on 

that figure belong to Pa^) — but this much is clear: p[ < PxJ that is, 

this reaction shock decreases   the pressure... Let us thorcfore replace 

p1,v1aijd Pä,V2 in Fig,  $ by our p^vj. and Pi/Vi and I'Gcall the discussion 

of Par. 3l|,    Then we must conclude that this reaction shock has to be 

classified as a deflagration. 
♦      r   -- 

So wc see that the process, which as a whole «is a detonation,  can be 

dissolved into several parts if the finite duration of the reaction is 

taken into account.    It is then seen to consist of two parts: , 

(i) A pure shock, which initiates the reaction, but still takes 
place entirely in the inert substance, 

(ii) The chemical reaction which follows, and which is. best de- 
scribed, as a deflagration. 

37. This view, that the entire — undissolved — process is a detonation 

which when analyzed dissolves into a pure shock and a deflagration,may 

seem paradoxical.    However, a comparison with the qualitative characteri- 

zations of Far» 3I4 shows that it is quite reasonable. 

Thus a detonation increases pressure and density; a deflagration de- 

creases it.    Indeed, the whole reaction does increase them both, but the 

(pure  shock)  excitation sets in v.lth a higher increase than the ultimate 

one, and so the  reaction proper decreases thorn. 

A detonation is preceded by no sonic signal of its comingj a defla- 

gration is.    Indeed, the whole reaction is preceded by no such signal, 

but its second phase  (the reaction proper) is — by the first phase, the 

(pure shock)  excitation. 
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38. The mathematical theory must take account of the details of excita- 

tion and of the reaction proper m* while we have treated these in a very 

global way.    Besides, this picture should be applied to the nonequilib- 

rium forms of detonation as wall.     (See Far. 35.) 

In this connection it is important to distinguish between.two possi- 

bilities.    The equilibrium detonation may produce sufficient p,  U,  t to 

initiate the detonation, or it may not.    Let us call the first type of 

detonation an activej  and the second type a passive one. 

'An active type detonation can presumably be initiated at sub-equilib- 

rium rates, that vd.ll npicl: up" to equilibrium.    A passive type detona- 

tion is simply unable to exist in equilibrium.    It must be initiated above 

it,  "boosted," and it will then gradually decay toward equilibrium.    And 

since it cannot exist in equilibrium it will "peter out" before this hap- 

pens, that is, after a definite finite time dependent upon the strength 

'    of the "booster." : 

These qualitative indications  can be substantiated mathematically. 

This vail be done  in two subsequent reports by the author, dealing with 

active and with passive type' detonations,  respectively.    It is hoped that 

they will contribute to the understanding of the nonequilibriurn forms of 

detonation — the  "picking up" of the active type, and the  "boosting" and 

"petering out" of the  passive one. 
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The basic mathematical problems of the theory of shock waves In compressible fluids are formulated and 
discussed In an illuminating fashion.   The topics discussed In connection with this study are the conserva- 
tion laws and the differential equation, the role of entropy, vortlclty and the Rlemann invariants, natural 
boundary conditions (the need for discontinuities), the conservation laws and the discontinuities, formulation 
of the basic problems of discontinuities, the origin of a shock, the interaction of shocks (linear case), the 
interaction of shocks (oblique case), reaction shocks, and analysis oi detonations. 
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