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DIVISION 8%
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"In this report the basic mathematical prob-
lems of the theory of shock waves in compres=—
sible fluids are formulated and discussed in

an illuminating fashiocn. Specific results
obtained by von Neumann and his collaborators
are discussed from the standpoint of the general
theory. Details of the theory have been pre-
sented 1n part in previous OSRD reports by the
author. Further details are promised in future
reports."

(2) from G. B. Kistialkowsky, Chief Division 8,
to Dr. Irvin Stewart, Executive Secretary of the National
Defense Research Comittee. Forwarding report and concur-
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THEORY OFF SHOCK WAVES

by John von Heumann,
Institute for Advanced Study
Princeton, liew Jersey |

Abstract,.

mhe basic mathematlcal proolems of the theory of shock waves
in compressible fluids are formulated and discussaci. Specific re-
sults obtained are considered from the standpoint af the gensral
theory. The material treated is the origin of exn.losions and the
- propagation of their effects. Terminal problems -- that is, prob-
lems of damage =—- are not considered.

The topics ineluded are the conservation laws and the differ-
ential equationj; the role of entropy, vorticity, and the Riemann
invariants; natural boundary conditions (the need for discontinu-
ities); the conservation laws and the dlSCOHtlﬂuwtleS, formulation
»f the basic problems of discontinuities; the origin of shock; the
interaction of shocks (linear and oblique cases)j classification
of reaction shocks; and analysis of detonation. "Reaction shocks"

1s the term used for shock waves frequently'denoted as "detonatlon
waves.'t ’ - o

L. IHTRCDUCTION

1. This report is concerned with theoretical work on various gas dynamical

cuestions, partly'of a rather géneral character, but afe all related to the

1/

that arise in this field are numerous and of varying mature, but almost all

theory of explosions and the transmission of their blasts.—’ The problems

lead up to the study of discontinuous changes of state in compressible sub-

stances, the so=called shock waves, or briefly shocks. - The theoretical work

done was, therefore, in the main an investigation of shocks, their origin,

their interaction, and their study under various conditions.

2, Shocks are possible in any compressible substance, and under the condi-

tions in and around an explosion all knovm substances must be regarded as

1/ That is, the origin of explosions and thec propagation of their
effects. Terminal problems, that is, proclems of damage, are not consider-
ed.

¢
<
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compressible. Hence shocks should be investigated in gases, licidds, and
solids.

Now the essential medium for the shock in a progressing explosion cone
sists of its burnt gas products, vhile the most important media for t™e

propagation of the shock (blast) after the -explosion are air and water.

The propagation of blasts under water is being investigated by J. G.
Kirkwood and others {see Ref. (d)] and accordingly our investigations were

restricted to the first two topics, and so to shock waves in gases.g

A shock may or may not alter the nature (that is, the equation of
state) of the substance through which it passes. The latter is the case
for blast waves. We shall call such shocks, which pass through a (chemi-
cally) inert substance, pure shocks. The former is the case for detonation
waves, vhich as they pass induce the explosive chemical reaction. It is
therefore customery to_call this type of shock waves detonation vaves. It
is preferable, however, to talk of detonations only in a strictly technical

sense. e shall therefore call all shocks of the first type, which induce

chemical reactions, reaction shocks.

Thus the subject is subdivided into the theory of pure shocks and the
theory of reaction shocks.,

This report gives only the geﬁéral'outline of the problems considered
and the results obtained. The details are given in several informal re-
ports, of which two, Ref. (j), (k), have.already been swomitted, and sev-
eral ill be submitted in the future. These latter reports had to be de-
layed for the following reasun. They.are closelv connbcted wlth other in-
vestigatidns,-bothuexnerimental nd theoreuzcaW no+ wder this contract
althourh coﬁncﬂ ed w1tn it. It apneared deswr ble - 1n somé cases neces-—

sary =—- to walt for the COFﬁ;pthﬂ of certain phases Ql'that work.

?/ The prOporatlon of an explosion in a s7lid or liquid explosive is
prima fa01e a shock hétwcen that medium and & gas. But il -will appear
later that it is in the main behaving as o shock in a gas.

RoSTRICTSLD




5

~ RESTRICTED

II. THE CONSERVATION LAWS AND THE DIFFZRENTIAL EQUATION

Purc shocks, that is, discontinuous chanzes of the physical state
where no chemical change is involved, are possible in a substance to the
extent to vhich its compressibility is netieeable but its heat conductivity
and viscosity are necgligible. The properties of a compressible substance

are expressed by its caloric cquation of state, which gives its specific

inner cnergy (inner cnergy per unit mass) I as o function of its density @,

or its specific volume v[ =1 /p], and the hydrostatic pressure,

(1) Z =F(p,v).

Tt is morc convenient, however, to use the specific entropy (that is, en=-
tropy per wunit mass) _S_ instead of the pressure p, and to express E in terms
of vand S,

(2) E =E(S,v).

Expressions for the pressure p end the temperaturc T follow from Eq. (2):

8% . -
(3) p=—-a%; that is, p = p(O,Y)s
() T = f%; that is, T = T(S,v);

and 2q. (1) is obtained by climimating S between IZgs. (2) and (3).

If the substance characterized by Zqg. (2) is nonconductive (for heat)
and nonviscous, then Eqs. (2) and (3) contain all we need to describe its

behavior == both thermic and mechanic. The differcntial equations by which

it is governed obtain by a direct application of the conscrvation laws: of

mass, of momentum, and of cnergy.

First some formal preparations. The special coordinates form a vector

X=(x,7,2). The state of the substance at ¥ = (x,v,2) and at the time t is

given by the mass velocity vector U= (u,n,tw), and, as pointed out in the

preceding section, by the specific volume v and the specific centropy S.

- o RESTRICIZED
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We use vector notations.}-/ How the total differential operator is:

. ' -2 )
(5) D=5+ U,

The statements of the conservation laws are:

. =) = = l

Mass: =P+ VpU) =0, [p v)
Momentun: DU = =-v¥p,

" Energy: D[3@-U) + E] = =vv+(pl).

By a simple computation these give the Eulerian differential é'Quatiops:

(a) Dv = v(VeU),
(B) . A DU = -v\?p,. _
and
DE = -pDv. 3
The last equation can be written §3
%DS+<%%+p)Dv=o; ;f
“that is, by Egs. (3) and (L), i
DS = 0,
or | :
() DS = 0.
3/ For two vectors A[ =(a,b,c)], L[= (&,m,n)], we have the§9_el}_e}_r:_
product - Co

A. L = ae + bm + cn l'. u..' - L - ‘n o

and the vector product

AxL = (bn = cmycl = an,am - bn),

Besides we have the differentiation or Habla vector operator

ve(o 2 _a..)
’ ax’ oy’ az/’

Thus .
grad £ = ¥, div A = V-H, rot A = ¥ x A,

ReS5TRICTZCED
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Equations (4) to (C), in conjunction with Zq. (3), which expresses p
in terms of S, v, are then our equations. iote that Egs. (A) and (C) are
scalar equations, while Eq. (B) is vectorial. So we have five (differen-
tial) equations for the five dependent variables vV, u, &y W, Eras it should
be.

III. THE ROLE OF ENTROPY

The differential equations (4) to (C) have a number of well~known

peculiarities, which it is appropriate to mention at this point.

The path of an individual element of substance is defined by the dif-

ferential equations,
(6) Ly =u.

The differential equations (A) to (C) specify the total differential D of
the five dependent variables v, u, an W, S, that is, the rates of change
along the paths of Egs. (6). The statement is particularly simple for

Eq. (C), where this rate of change is gzero. Thus Zq, (C) states that S is

constant along each path (6).

L/

If S happens to be constant on some three-dimensional surface=' which
all paths (6) intersect -- for example, at all points with a certain t =1,
-~ then the above statement implies that it is an absolute constant. In

this case, therefore, Ea. (C) may be replaced by
(cD) 5 =8, (5 a constant).

Note that the condition which is required for the validity of Eq.- (C1)

-- constancy of S on a suitable three-dimensional surface -- is in the
nature of a boundary condition. That is, it may be satisfied in consequence
of a suitable boundary condition, and on the other hand a2 boundary condition
may perfectly well conflict with Eq. (C'), and thereby remove the implica-
tion of Zq. (Ct) by Eo. (C).

These observations are of importance, because they show that Eq. (C1)

is not an integral of the differentisl equations (&), (8), and (C), although

L/ In the four-dimensional space-time of x, ¥, 2z, t.
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it looks like one. An integral is an equation that follows from the dif-
ferential equations wunder all conditions, while Eq. (C) obtains only

when suitable boundary .conditions are assigned. Ve call such an equation

-a pseudo integral.

The pseudo integral Eq. (C1), to the extent to which it is valid,
allows us to express p as a function of v by means of Eq. (3),

(7 p = #(v) [B(v) = p(54,v)].

Equation (7) has the appearance of an equation of state, bu? it can
be regarded as such only in a very limited sense. Indeed (i) tﬁé'valid—
ity of Eq. (7) is dependent upon the very restricted validity of the
pseudo integral (C*); (ii) even when valid, Eq. {7) contaeins the constant
S, which is not determined by the nature of the substance [whereas Egs. (1)

to (4) arel, but arbitrarily assigned by the boundary conditions.Z

In certain cases, however, Eq.. (7) becomes an equation of state in -
the true sense. This accurs, when p{S,v) does not depend on S. Accord-

ing to Ea. (3) this is equivalent to assuming that Zq. (2) has the form
(v I =2(S,v) = A(S) + B(v). .

Then Zas. (3) ard (4) become

1 =5 I = d 5,
(3 ) P a""v a-‘—f B(V):
1 =93 =2 x(s):

that is, pressure and specific volume on the_one hand and temperature and
specific entropy on the other form tvio pairs, such that the members of
each pair determine each other directly without any interference from the
other pair. The energy is simply additive with respect to the contribu-
tions of these two pairs, that is, there is no interaction energy between
them. '

J. G. Kirlkvrood and H. Bethe have shovrm [Ref. (d), I, pp. 17 to 19]

that this assumption is reasonably verified under the conditions of

5/ We are, of course, describing the peculiar relationship of the
adiabatic law =-- expressed by 2q. (7) —- to the equation of state.

RESTRICTZED
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wderwater blasts. Thus the validity or invalidity of Zq. (2%1) corre-

sponds tn a certain extent to the division between liquids and gases.é

Although our interest is, as stated before, with shocks in gases, it

will prove useful to keep the possibility of Zgs. (2%) to (L4?) in mind.

9. . To conclude this subject, for the time being, we doserve this. When
Bes. (21) to (41),hold, then Eas. (A) and (B) form a closed system, not _
involving S at all._ Vhen v, u, n, W are obtained from Egs. (4) and (B),
then Eg. (C) yields, as a secondary operation, S. In other words: ‘

When Egs. (21) to (L) hold, then the conservation laws of mass
and momentum [that is, Egqs. (A) and (B)] suffice to determine
everything except the specific entropy S. The conservation law

of energy [that is, Eq. (C)] then determines S: it states, as
in the general case, that S is constant along each path (6).

IV. VORTICITY AND THE RIEMANN INVARTANTS

10. Equations_(A) to (C) possess further well-knovn pseudo integrals.
Their validity, however, is even more conditional than that one of Eq. (C1).
Specifically, they depend on the validity of the S pseudo integral —- that
is, on the possibility of inferring Eq. (C1) from (C); or ratHer, on the

existence of a fixed relation

(7) p = 4(5),

which, as we saw, holds in the general case only when Eq. (C) does, but

in the special case, Egs. (21) to (41), also without Eq. (C1).

6/ TFor an ideal gas

RT =pv, & = 77 T
and
= _ R 7
S =5 1In (p,v"),
where
R_ ..
) 7-1 v
Consequently Zg. (2) becomes
7-1
— S5
E=EB(S,v) =g v 0 o B

This is the opposite extreme from Zq. (21).

RESTRTI
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~ Thus we assume now the validity of an Eq. (7) for all X, ¥, %, L.
This entails the consequences pointed out in Par., & for thg‘spégial case
given by Eags. (2%) to (hi): we need only consider Zgs. (&), (B), ani
¥, U, #y, W = Zq. (C) amd S have no influence on the results in that

sphere.

11, A simple computation, based on Zgs. (4) and (B) aiono, without using
Ec. (7), gives

(8) : Dlv(v x U)]

-v(vv.x vp).

How Ba. (7) gives

ag

v T

n

vp

so that the vectors ¥p and W are parallel, and conseqﬁently Yvx Vp=0.
Then Eq. (8) becomes i . .
(9) D[v(v x U)] =o0.

This brings about the same situation for v(V x U) as was observed
for S in Par. 7: v(V x U) is Eonstant along eath paih_(é){ and if it hap-
pens to be constant on a suitable three-dimensional surface -- for example,

?.

for a certain b=ty = then it is an absolutec constant, that is, then Eq.
(9) becomes '

10) v R TV, (Vg a constant vectar).

Thus Eq. (10) is also a pseudo integral; but it deperds noﬁ only on
the usual boundary-condition properties, but &lso on the validity of
Ba. (7) [see Par. 10].

The quantity v(Vx U) occurring in Eq. (10) is the specific vorticity

vector (vorticity per unit mass; Vx U is the vorticity per unit volume).

12. Being a vector equation, Za. (10) really comprises three pseudo in-
tegrals, However, if the physical problem under consideration has really
two, or even one, dimension instead of three -- that is, if everything
depends only on the coordinates X,y, or even only on the coordinate X --

o
L

_then this nurber is reduced. Indeed, in the two-dimensional case only

RISTRICTAID
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me component of v{(yx U) is not identically zero =~ the z-component -- and
in the one-dimensinonal case none. _So we see that if the physical problem
under consideration has three, two, one dimensions, then Eq. (10) stands

for three, one, zero pseudn integrals, respectively.

- In the last_mentvioned case, the one-dimensional case where v(Vx U)
fails completely, there eiist however two other pseudo integrals..‘ They are
dependent on Eq. (7) [see Par. 10] just like v(Vx U), but their peths are
different from (6). They have no analogues far three and two dimensions.

These integrals obtain as follows. Using Eq. (7), definel/

(11) c =clv) =,/- C—lév,

(12) @ = (@) =/j-g;é, v,

where ¢ is the velocity of sound (relative to the subgtance), while the in-

terpretation of wis not so simple. Now assume that everything depends on
x alone. Then a simple computation, based on Egs. (i), (B), and (7), gives

(13)-: . L%+(u:c)5%{-:l(uiw)=0.

The form-of Eq. (13) suggests the introduction of the characteristics
- defined by

(1k) 2 =;1‘;c

.in_place of the paths (6). Now we have the same situation for u *w and

Eq. (14) as vas observed for v(Vx U) and (6) in Par, 11: u * w is constant
along cach characteristic (1l), and if it happens to be constant on a suit-
able three=dimensional surface -- for exafnple, for a certain t ="co -= then

it is an absolute constant. That is, then Zq. (13) becomes

(15) utw=ag or u-w= o (ags b, ‘constént;.s).

d . \ . . :
7/ =35>0, since ;5 that is, p, decreases vwhen v increases.
iy av ’ bk L - :

RES

|
= v
(]
1o
]
)
o

PEEALSAM Fos MEAF LELARAA IPARERRY E bk sl
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Thus Eg. (13) dnes indeed Furnish two wmore pseud» integrals, which

again depend not only on the usual tounda rV-L01dltwov ﬂrOGPrtle , but also

on the validity of Zg. (7) [see Par. 1C}.

0

The guantities uztw occurring in 5. (13) are the Riemann invariants.

Surmary. There exist several pseudo iiutegrals, S, v(7x U), uz -—

the specific entropy, the specific vorticity, and (in on¢ dimension only)

‘the Riemann invariants. In three, two, one dimensions these are four,

two, three pseudo integrals.

The importance of these pseudo integrals in solving the differential

equations (A) to (C) is well Xnownm:
(1) Vnen 5 is constant, we have a relation (7), with many useful
applications, one of vhich is the emergence of the other pseudo integrals.
(i1) Then v(V»U) is constant, the possibility wzith the widest appli-

cations is that it is zero. Then Vij=O, and this meahs that there

exists a vclocthAnotentlal that is, a scalar function ¢ = g(x,y,2,t)
with U=v4. ' ‘

3
s

(iii) then either utw is constant, then an explicit relation between
u and v obtains, considerably facilitating the determination of the solu-

tion, Vhen both u*w are constant, then u and v are immediately knowm.

These techniques are familiar in the literature, so we need not go
into detail.

e dlsh, hc\ever, to point out this: while S has a certain precedence

over the other vseudo integrals [see (1) above or Par. 10}, all theoe

eudo integrals operate in the main in the same vAy. tho St dLL becore
even more consnicuous vhen we begin to study the influence of dlsconthu—
ities. All the foregoing pseudo integrals vill be affected in the same,

characteristic wry.

It is important to keep this in mind, bscause 5, vix U, utw, ar
quantities of very diffcerert physical mobture, and hardly ever classified
or vismalized topether. They belong nevertheless toret}er, and this in-

signt helps consideratly in understanding the role of diccontinuities.
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Y. HNLTURAL 3CU.DARY COMDITICIS. THE IEED FOR DISCONTTHUITIES

ry physical problem that is governed by differential eguations
possescses vhat may be called its natural boundary conditions, that is,
ditions under wi

con=-

1iich one can exnect by ordinary physical intuition, by com-
monsense, that one and only one solution must exist.

In such a case the mathematical verification of this intuitive asser-

tion ought to be possible. In fact, one of the most effective criteria for

the appraisal of the value and finality of a mathematical formulation of a
physical problem is just this: vhether it provides one ard only one solu-
tion for natural boundary conditions.

In the gas dynamical problem governed by the differential equations
(A) to (C), exanples of such natural boundary conditions are easy to find.
A "box" of a prescribed shape Cy, changing with time %, provides one. e
may prescribe the stvate of the substence in Gy for t =0, and that it fol-

low the changing shape Gy for all t> 0. Specifically:

(1) For £=0 ard X= (x,v,2) in the interior of C,s the quantities v,
1, S have given volues.

&

(i1) For t > 0 and X = (x,y,2) on the boundary of C;, the component of

Jnormal to Gy at X is equal to the normal velocity of C, at E.g/

If the »resent rnthematical setup of the theory is to be regarded as

really satisfactory, then it should

secure one and only one solution of
Egs. (&) to (C) with conditions (i) and (ii) for any fomily of Cy.

.

he problen in this gereral form is of extreme difficulty. However,
if the v, U, S in condition (i) are assizned constant values, then it sim-
plifies greatly: obviously all pseudo integrale S, v(Vx U),Z/ ujtJ,lg/ be-
cone availale.

Q/ Since e assume the substance to be nonviscous, wa rust allow for
cliding alon- the howndary of Ct’

9/ Tor three or tum dimensions. The eomstoncy of U
course, that {7 x ) =¢,
10/ Tor

one dimencion

-1 - 2

t-d
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5. The discussion of an arbitrary fomily O has been carried out in the

literature for the one-dimensioncl case, with the following result.

“hen the motion of the boundary of.Cy is generally receding (that is,

expanding the oahstanée in i%éiinteriorj, then there exists a unique gol-
ution. An exception must be made for the case when recession of Ct is too
fast (considerably supersonic), but this is satisfactorily explained by
the physical consideration that in‘such a case the substance will not fol-
low all changes of the boundary of Ci ) but forn a free surface in the in-
terior.

Then the motion of the boundary of Cy_is anywhere advancing (tbat is,
comp”ess1nb the suwbstance in its interior), then there ex1sts no solution.

Lhe motion of Cy may be perfectly reguwlar, even analjtlcal, ‘the dlfflculfv

per51sts nevertheless. In fact, if the velocities of C¢ are alvays con-

tinuous, then there exists a unigque solution for a certain time: it is
only a finite time after the advancing (compressive) motion of Ct has be-

gun, and at a finite distance in the interior of Cp, that the solution
breaks dowm.

This breakdown of the continucus behavior of e substance, governed
by the differential equations (A) to (€); is well attested by experiments:
in a compressible substance every cofipressive influence produces states
that exhibit all symptoms of discontinuity —- to the extent to which con;
ductivity and viscosity can be disregarded. In this way the pure shocks
cone into existencc.

Thus the theory based on Egs. (&) to (C) is incomplete. Account must

be taken of the possibilities of free surfaces and of discontinuities. The

freo surfaces, however, affcct only the boundary conditions, but not the
2 3 o < >

differeontial equations (&) to (C). They, ther

any further

rofore, 4o not interest us

The discontinuities, on the othar hand, upset the mechanisnm

of Egs. (i) to (C), and for this rcason it is necessary to give them our
attention.
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VI, THZ COISZERVATION IAVS /LI T3 DISCONTILHUITIES CLASSIFICATIO

T2 sinplest nossible discontinuity consists of a surface ¥ in space,
such that v, U, S are continuous on both sides of ¥, but (possivly) dis-

continuous tiien crossing F.

Consider a point X = (x,y,2z) on ¥ (all this at a definite time t), and
the element of Z around __ Dennte the two sides of iby 1 and 2, and the
corresponding values of v, U, S, p, E (at X, ¥y Z f_) by vy, Uy, Sq1, Py
By and v, Uy, Sz, po, Bs. Denote the normal of Jf, that is, a vector. of

it length, orthogonal to ¥ (at x, y, 2, t), with the orientation 1—2,
by n. The surface _.)f may be moving; denote its normal velocity (at Xy, ¥y 2,
t, in the direction g) by 5.

Wle must now state the laws that replace the differential equations (4)
to (C) at this discontinuity. These are based on the same physical prin-
ciples from which Eqs. (A) to (C) obtained in Par. 6: the conservation laws

of mass, mamentum, and energy.

It is convenient to introduce the mass flow it the mass which crosses

¥ in the direction of 1—2 (that is, n) per wnit surface rer wnit time.

The statements of the conservation laws are: .
lass: (Iy+n) = s = BV, (G n) - s = pvys
Homentum: p(U=TUp) = ~(py = p2)n; :
Inergy: }-‘[;(Ul Up) + 3p = 3 e Gp) = 3] = =[p,(Up-2) - v (Uenk

ey

'y simple computations these yleld the following equations.

Vhen py #Fp., the Rankine-Hugoniot eguations:

—— [ The signs in the
(hg po=x jpl - D2 , | two formulae
S T v = vy S must [disagree
BV Yacree
2} - (
(Bs) Up = Ty = 2V(p1 = 22) vz = va)n, | vhen py 2 pp
(Cs) Tq =8, = 2{pg + o) (ve = vo)
Wen Dy T pn, the contact discontinuiiy eouctions:
(’Lc) "A = O’
(V'c) (‘:1' n) = (.ap_’ }’1),
(Ze) JER T
~13 - TSV TRE S
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There ic no need to discuss these eguations in detail: Zgs. (A
(C5) have received sufficient atiention in the literature, and Zgs. (A)
t0 (Cc) are fairly trivial. ‘e restrict ourselves to tiie following ob-
servations

{1) s can now be expressed vith the help of the original conserva-
tion law of mass;

(ii) the discontinuity of U [that is, U= U,] is normal to ¥ in the

first case [use Ea. (BS)}, and tangential to it in the second case [use

(BRI
(L’l) the two cases are also characterized by M 7# 0 or u=0, that is,

by the presence or absence of a mass flow across the discontinuity sur-
face Y.

The circunstance that we wish to emphasize is this::although Eaq.
( (Cgq) ard (&) to (C,) are based on the same-physical principles
as Bos. (&) to (C) == the conservation laws. of mass, momenturn, and energy
(see Par. 6 and Par. 16) behave nevertheless in an. entlrcly different man-

ner vith respect to the pseudo integ rals S v('\"x U), utw.

Congider first S and EZes. (AS) to (C_). .Combining Zo. (Cg) with
(2), Za. (3) gives o h

. Z(S1,vy) = 2(Sa,va) _ 1108 . i
232 = 222 (s + ._.' > 5e
(16) Vi = Va 2 :_3 (?1iV1) _ (b '-)J

. . .. .
0 o

llow this equation shows, that vl——evz.implies 91— 55, that is, that if
the v-discontinuity is smell, then the S=discontinuity is also small. In-
deed, it can be showm that 3, = oz.sttJ;rd-order in v, - V. [See, for

example, Ref. (2), p. §.] 2ut in generel S,

\1}~

S, vhen vy ¥ v,. lcthe
has shovm [Ref. (a), yp. 10 to 12}, that if the cuistance has an cguation

of state (2) fulfilling a few plausible requirements, then 3g. (16) im-

plies
(17) S, 23, for v, S vy, resvechtivel..
It is =asy to verify tlese assertions for oan idnal pas, using the farmdac

riven in footnote 6.
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(C), this fails to o the case in the discontinuous regime in which Z£gs.
(AS) to (CS) hold. Also, if S is constant on one side of ¥, even this
vill not in general be true on the other side, unless ¥ is plane and mov-

ing with the sane velOCIty'eveerhere.

Thus S ceases to be a pseudo integral as soon as a discontinuity P
satisfying Zgs. (Rs) to (CS) is crossed =~ but this disturbance is a third-
order effect if the discontinuity at ¥ is small.

Considering their dependence on the pseudo-integral character of S,

the quantities v(Vx U), u+w, cannot be pseudo integrals ecither. The dis-

turbance is again a third-order effect if the discontinuity at ¥ is smll.

The failure of v(Vx U) to be a pssudo integral in this situation has,
among others, this consecguence. Zven if conditions are constant on one
side of ¥, and hence Vx U vanishes (see footnote 8), ¥x U will be nonvan-
ishing on the other side of ¥ unless fis plane, cylindrical, or spherical.
That is, a discontinuity surface of unsymmetric nature produces vorticity.
[See Ref. (c), pp. 362:to 369.]

Before ve go any further, let us give some nore attention to the fact
that S changes at the crossing of a discontinuity surface. In the older
literature of the subject this caused considerable confusion. [See, for

example, Ref. (c), pp. 189 to 207, including Ref. to S&bert and Hugonint.]

The situvation is this: Zq. (C) states +hat the specific entropy of
an individual clenent of substance never changes in the course of its con-

tinuous motion, that is, that this motion remains olvmys- thermodynamically

reversible. How_Eqs

5

. (A) to (C) cxpressed enly thé conscrvation laws of
matter, momentum, and cnergy. Hence the computation which gave Eg. (C)

A—I
its present form, really proved thiss for a .compressibic, nonconductive,

nonviscous substance the conscervation _of matter, momentum, and cnergy im-

B

nlies alsn that of

@]

ntrony -- that is, thermodyramic reversibility -- as

lonz as the motion is continuous.
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The result given in inequality (17) then proves that this implica-

tion no longer holds gnod when this motion (or' ratier its v, U, p, E)
becomes discontinuous. This is very odd. The implicntion of one con-
servation law by another one is usually an algebraical fact which should

not be affected by svch differences. But it is nevertueless so,

Consequently the entropy theorem, which took care of itself in the

continuous case, must be given special consideration in the discontinuous

3 case. The entrogy must not decrease during the motion of an individual
9 .

4 elenent of substance. That is, for p2 0 we must foroid 5; 2 3, ro-
acetivaly -- thot is, by inequality (17) we must forbid v, $ v,. This
z s O i Ly 1 2

3 mecns thot never wlvy=v,)<0. ilow a simple considerr.tion bused on Ags.
E (g)» (BgJ, and inequality (17) yioclds this.

n

The entropy theorenm requires that the sign + be alweys used in Eq.

3 (Bg). That is, the sign * must be used in Eq. (Ag) for py S ps, that is,
= s ‘ : : : %,

ii fOI‘ v 1< V2 . ‘ , ‘

If this condition is fulfilled, we call ¥ & positive shock; if it

s E.

3 is nol, a negalive shock. Hence posliive shocks alone are permissible.
;

; As mentioned above, this change of S in a shock was questioned in

C , 2

;} the older literature. Doubts were expressed as to vhether the conserva-
. A - . s ps '

: tion of energy, that is, Eq. (C5), should not be sacrificed rather than

the conservation of entropy. The latter amounts to 3q. (7), that is, to

(8) Cpm8tn), b =BG

/
Ha

. s 11 .
and Eg. (Cg ) and Bg. (18) arec gencrally conflicting.—' The gquestion
arose as to vhich of thesc two adiabatic laws of Lfootnote 11 should be

considered valid.

11/ Thus for an ideal gas (see footnote 6) pubting

r—t

l\

= Vo
- gx = =7,

'

)

'3
i

{18) is the well-knovn ordinary adiabatic law,
-1
&= ()7,
vhile Za. (Cg) is the flankine-Huroniot adisbatic law

g=<3+1)-(3-1h
(r+1) = (7 -1)

YT Y
T
s s
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herc can 2e no dopt that it is BEg, (CS) the cnergy must be con-
served, and entropy must only nnt decrease, The irreversibility of Zas.
(Ag) to (C ) is odd but not at all absurd. All continuity arguments used
in the litercture are invalid, The (irreversible) discontinuities Fare
ot limiting forms of (reversible) continuous motiors, since no compressive

. . . 12
motion can remcin continuous.—

There is, however, one addendum to this. If Zq. (7) == that is, Ea.
(18) -- holds, because the equotion of state has the specicl form Zeos. (21)
to (41) discussed in Par. 8, then its validity is absolute. Now in this
case we saw in Pore 9 that the motion of the substance is governed by Egs.
(L) and (B) 2lone, while Zq. (C) stands apart. It determines only the be-
havior of 8. Similarly, Egs. (&), (Bg), and (7) -- that is, Zq. (18) --
may then be used t¢ determine the motion of the substance, and Zq. (CS)
stands apart, dealing with 5 only. That is, the motion is determined in
each case as if there wére no conservation ofAenergy, and bv uéinc q. (7)

—— that is, Zo. (18). Bub the energy is, of course, coaserved -—- bv con-

"serving the entropy according to Eq. (C) in'the con+inuous case, and by

changing it bpproprlately ccerding to 5. (us) in the discontinuous one.
Consider next Zos.. (fig) to.(C ). In this case nn substance crosses
the discontinuity [sce (iii) in Par. 16]; hence there arise no cuestions in
connection vith the pseudo integrals S, v(Vx U). 1In the cne-dimensional
case, the nseudo imbegrals untrw may nave to be treated differently on the

two sides of P, but this dnes nnt lead to any serious difficulties either.

The following noint, however, is worth emphasizing. There exists here
a fundamental difference between the one-dimensional case, ~nd the three-

and tvo-dimensional oncs.

In the first cose only v can be discontinuous at f since here 3q.

v
T

(3;) inmplies U; = Up. Sinse p is continuous by Ia. (C ), this involves by

3

3n. (3) o discontinuity in S -- that is, diffcrent adicbatic lows [Za. (7)]

12/ Tho discontinuities f arc 11'11 tiny forms of continuous mations,
he substancs is endoved with a small CORJNCuJMAUJ, or viscosity, and
chis allaved to tend to zero. chq con51uc rotions corraoborate the increase
25 eatropy in ¥, although-this aspect of t%” subject has not beon stadied
quite exhaustively. [See, for cxanple, Ref. (g) Jy 0. 587 to 607.]
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on heth sides of P, This implies that vhen there is an absolute reason
for the validity of Zo, (7) -~ that is, when the eq.gtion of state has
the special form Zqs, (2%) to (L) discussed in

of discontinuity gamnot occur. 3But

ol

2r, 8 == then this kird

this is true in one dinension only!

In the second case v ma ain be discontlnuous at ¥, but Zq. (BC)

Yy ag
allows also any discontinuity of the component U tangential to ¥, th

is, we may have gliding of the two sides along ¥ (see footnote 8). iiow

it is well known that this tywe of discontinuity

is the eguivalent of a
vorticity sheet.li

It follows that we must expect such a discentinuity to oriygzinate
vhere there is reason to expect the creation of a concentrated form (sheet)
of vorticity. iowr it appeared at the end of Pare. 17 that a
satisfying Zas. (hg) to (Cg)s when of
nature producass voriticity.
ated, and the vorticity created ves continuously disturbed.

dlscontinuity
surface ¥ of the tyve

usymmetric
There P was continuously curved and acceler-
Hence if the
eurvature or. the acceleration of ¥ is concentrat“d'an an infinitesimal
stretch ~— that is, if

if 2 has an edge or corner, or if it hes to underg

L3
a.discontinuous change in velocity -~— then a veort Lc1tJ

sheet may "be ex—
pected. Thus a disconbinuity satisf{ying &gs. (Ag) to (C ) may bé cxnected
inuity of the type satisfying Bas. (Ag) to

e 5
(C.) exhibits any one of tho cbove ;rgvts.

to origirate ilicre a discennt

:
o .

In one dimension o sini

ST

-

lor argunent ﬂonll be ,ade, by using S in-
stead of v{(Vx ) == and this alterna tive is cffeoctive in threc or two
. Howevor, as v obgerved further obeve, the shecial

dimensions also form
(

given by Bas. (2%) o () of the couzlion of state cxcludes discontinu-
ities of the typo satlsfyinf 105 aﬁc) to (CC) in onc Jimens

....... ion, but nov
in three or in o diinensions

YTI. FORMULLTION Gi THC BASIC PROSLZIS OF DISCOHTIVUITIES

1
13 I

O e d s
Iy comparison of these facts vith the difficultios pointed oub in
Por. 15, it cppeors reosonnble to try i

v the theory in a new form, which

13/ Like P, it is two-dimensiond three=cdincnsionnl case,
and onz=dinensional in tic

A
tiro=diimenss onzl onec
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2llovs for discontinuitics the

(Cs) and thase sotisfying gs. (&) to (oc), besides the arcas in which the

differential equations (&) to (C)

— 19 - RESTRTCTZD

two types, those satisfyine Egs. (Ag) to

are fulfilled.]-}i’

Ir other words the fouwr-dimcnsional x,7,z,te~space-time must be divi-

ded by three-dimensional surfaces
Aty A", ..., In cach onc of thesc
ential equations (4} to (C) being

P, ... represent discontinuitics,

kn

isfying Ecs. (AS) to (CS), or of the sccond kind, that is, satisfying 3aos

(he) te (Cg).

T, 3 -
From the remorlss of Pore 15 1

1ith free (tvo-dimensionsl) edges.

I
of the sccond kind should bepin only ot (trro-dimensional) cdros

twe alreody coxisting interfaces

- -

In ths two-dincnsional casc

cdge assume their usual geomct-
ric meaning -- mhking things
cosicr to viswlize. In the
onc-dimensioncl casc space-
time is two=dincnsional; all
the above dimensions ore ro=-
duced by two, and e can cven
Five a schematic drawing of

conditions to Lo expocted (Fiz,1).

P, P, P, .., into distinet domains 4,
domains there is continuity, the 4iffer-
valid.  The separcting interfaces ¥, ¥,
citiicr of the first kind, trhat is, sat-

e conclude furticr that the interfaces
of the first kind may begin in the

interior of the 4, A', A", ... domarins,
From the remorkes cr. 15 interfaces

ormed by

of the first kind.

scoce-time is three-dimensional, @ll the
above dimensions ere reduced by one, and so the words domcin,

surfoce,

b, boundaries of Cy
0, areas A, A', A", ..,
1, interfaces ¥, fr, ¥",

- 2 first kind
2, interfaces ¥, Pr, ¥, .., of trc
In applying Igs. (&g) to (Cg) second kind
to the interfoces of the first Fig, 1,
Ikind it is alse nccessary to rememier the conclusion of [or. 13, nccording

to which only positive shiocks arc ollowed.

1L/ The Lre

@@
llvsocu1 1 cas

¢s, mentioned at the ww”inrinv of rare 15 are
c 3s. (&c) to (Cg) with py=p, =0 and with zero
d- nsity (1/V =Q) on the empty si

8l80

=

]
(&R

-
v
t:1
o

-
{‘"

A

=T
=

vy
Ron

rq_'-'.'"";]‘."_'f.' L JEaN

B Saumramadat A atis SUr o c)
2 iadi s 20 " -

ATpOTY T Yy

PV R i b A A DA

TR




22,

)

=3
e
i
(@]
3

&3

21,

The considerations of Par. 20 are of a highly heuristic nature; the

- 20 -

coenclusions reached are only surmises.

are prescribed.

natural boundary condition is that is in harmeny with physical intuition

and sufficiently general to include all plausible situations.

The mathematical corroboration
would consist of showing that the present formulation of our problem

has always ocne and only one solution when natural boundary conditions

This would recessitate giving a definition of what a

As a pre-

liminary check, however, the special setup of the "box" Ci as discussed
in Pars. 14 and 15 should be analyzed.

The simplest possible'case of this setup has been solved in the lit-

erature: one Jimension, constant values and rest at t =0 (see the end of

Par. 1L), C, semi-infinite, its one boundaiy point at rest at x=0 for

0<t < t, and then set into motion with a discontinuous change of veloc-
ity for t > ¢t

A similar discontinuous solution vould exist

For U, < 0 .this is an expansive motionj; for u, >0 it 4
sive one.

\
s X=u - :
0° Lo(t tO).

negative shocks, too, were allowed.

ities in order to have at
Tt is necessary to [orbid
no nore than.bno
first kind.

sary in order to

So we see that it is necessary to allow

snlutinn,

T
Liie

2
=
O

least one solution

ed by discontinuity surfaces of the first

szctions (see ior.

ma

IRSE
Liatle

20 and Tic, 1),

tiwe setup arvived at for

plausible frouw a purely mecchonical

For a more gercral motion

o]

is a

compres—

In the first case there exists one, and only one, solution

with no discontinuities. In the second case no such solution exists, but

there exists one, and only onec, vith a discontinuity of the firs
beginning at the boundary point x=0, {=%

kind

This is a positiwve shock.

in the first casc only if

positive shock discontinu-
in each ratural problen.

oclt discontinuities in order to have

o

i the discontinuitics of the

are preswably rieces-

Loyond the ediges Torm-

that is, thedir inter-

reasons ic also

noint of view.
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ol tiie bownrlory point of Qt, and for tr2 case len C't is finite and has
two bowndary points, only very fra mentary results cxist. A good deal
can te nredicted gualitetively == but the pronerly mathematical theory is

extrermely incomnlete,

hsowiing, as oje should, that the boundary velocities in 3g. (19) are
continuous, that is, thot = is continuous, the discmtinuities must be
gxnectel Lo besin in the in

ard 20 wnd big, 10)

erior, and not on the boundary. (See Iurs. 15

Sefore any exhaustive matheratical the ory can be attempted, it is

necessary to acquire an insi

Mt into the natnrs of the various elementary
constituents which combineg

e
e 1o The mntt

5

to gj_vc the complex picture presented, for ex
e

ample, on 71 rs to be considered are therefore these:

(31) liow dozs & discontinuity surface begin in the interior?

{(ii1) Howr de two disconitinuity surficces in

ot pnenomena originat 1

terse
dncte ot such an inter

fis wie sow in 'E“S. 20, it scems probable that the Dr'i::ary discontinuities,
originatin: according to (i), zre of the first kind -- those of the scc-
ond kind should come from (ii1). [For vortex cihcets this wms proved in

chsorvations made

oince tisre ig no flo- ol motter & 3¢ o Aiscontinuity of the sccond

eind [seo (id cannst intorscct. So

e must hove ot

1lcast one discontinuity of thc first kind in (3i1). “hen

£ O S % og 5 SR B SREHS 185 7 L ey et ! wy e S -
g dntersceby e of the sacond kind, thoro crises o proulan vwhich we

N LA S o RIS, 18 L vty e o s @ T

neod ot conzidor in thr francwork of tnls firss oricntation. In some

cagses it dis quite ongy to solve, and in the othors it is essentinlly egui-

volzont to 2 srecial case af the ot case. Tho last casc, intersection of
bo¥e i "c‘z:r.,» accelaralhion of the bounlory is

thac = ekl _ for Iovor Lboundory polint in
og: i

:-:, -f/it increas
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- frether with the solution of Zg. {(4A) —— 2 quite

&3]
R
3
pee )
b
(@]
C=2)
o
o
N
(3%}

two discontinuwities of the first idnd, is the really intéresting one.

Corbinin~ these shservations vith tho

ations vith the conclusions of (ii) in Par. 20,
wWe cono e (i1) by this stoterients
o discontinuity curfaces of the first kind
cu, wnct is, wiat phenomena originate at such
rsection edre? In particuwlar: how 4o the
sinuitie £

s of thie second kind begin thoere?

VITI. TS GRIGIN CF A SHCCK

The mathematical approach to (i) is very difficult beca ise the

shock Pvill be accelerated, and the proolem is of determining P to-

{a) a unusual tywe of mixed

differential equation unknovm boundary problem. It is possible, how-

S

cver, to determine the peoint X where the shock ¥ vezins, and the condi-

tions in the neie ‘mwhowl of’ r,b 2t point.  The

@]
<
)
a1
(&}
(fl

singulor, and the de-
scription of thi

(.'l,

singuwlarity is the problem.

The existing literature on this question ia wsatisfactory, partly

because the anparent conflict betwoen the consarvation laws for Cnergy
and _entropy ivrare usua;‘:ly not treated proscerlv. [Sso the last rart of

- \ - - . 1
fgr. 18, an " l) . (C), pl. 20{ to 21 j

If dL/ds is co *1\,111110.1'3, but d%£/dat? is allowed to be disc

we obtaina situction 1.:1'1101; to ond

£(t) =a (b= ©.)? ror t > t,.

cred in the literaturc. The Dll’le in th

determined by J. Colkin din conncction with the contract uader vhi

report s writteon. A detailled report on this susect will be submitied
shortly,

d?f/it? 3o nlse conbinu

5
=)
n
-
0
>
RR,
5

S~
~a
Cf-
=
5
J
1621
}-‘

then tho shoels
originctes wrier ontirsly dilferent conditione. This wms cst&blishcd ligg
J. Calicin. A veport on the detoils of this ¢

ase =-- vhich are raothor un-

cxpactad == vill follaeir,

The first sctup == 42£/dt? discontinuouc -- can

y nLvor be tnything
but 2r approximction. Tt vowld Do o uselful ame i Lic rosult aporaoadinl
RI35TRTOCTED

3
[

35
b is

-
)

IRt &£ aaagd s T o I

7

i

IWT Y

jrdl B

Ay

3

e T S T

AR DD g

-

bl Sl g




Y- Pl

T i

dodid,

L K ST

R 2

BV S P 2 ARSSAPNES KR LAINE MV VEEENE T

DR

k<

Yy

P &8 £5 ST LIRS SN WS

- 23 RESTHRICTED

that of the second setup —— d°7/3%° continvous. Since it dces not, but the

second case has a qualitotively different solvtion, we cenclule that the

fr
first setup must be rejected. That is, the solution of the second setup
16/

srives tre desired answer to (i11).

A variant of (i11) which deserves consideration is the following,

Consider an arrangement, whareby he "oox" [that is, its £{t)

nressad for t > ¢

P

cussed in Par. 23, but only during & finite tine
intervel t0'< v < tl, and br oughb to rest again far & 2 t,. It is known
that this initictes a positive shock in the interior, «s described before,
but that tie shock will lose.irtensity subsequently owing to the expansive
motion nacesesivated by bringing £{t) to rest, This phencmenon is mathe-
ratically most Aifficudt.

How lov the interwal t <t < tl bz very short, but the motion of
£(t) during this poriod very violent. One may try to arrangs the data so
that this motion'lngect” into the et tance an energy ¢, (>0, < ) and
then make t-'toi—aO, vhile the wvalue of e, is held fixed. This amounts to

injecting a fized amount of energyleo(>'0, < c0) into the substance during
an infinitesimally Drief period.

The problon is of a2 certein prociical interest since it is cquivalent
to desciilins the decay of a vory v101“1 t, instantanecously originated,
blast weve in air.

0
& gen
v &

[l

s ¢olveld == in three and in two Jirmonsions, s wrell as in one --
in & rcport gubritied by the anthor proviously in connection with this
contract [Raf, (3)].

he procedire uesed thore has since fomnd applications in some other

ar nature. [Sec, for oxamplo, Raie (1), ard ihe

&
J
[$]
¢
=
=
=)
Q
Lo
-
0

revort on Whoostin s, mirtioned ot the oni of Tnre 3.

16/ 1In fa

t seinp may lead to a snlution which be-
longs t9 ) il

.. Ay L
53 0L 2 {"\l 2

n O)“+ eeo vATh any onz of byt ... suffi-
ciently great in comporisen to a,.
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Y. THE INTERACTIOCN OF SHCOKS: LIVEAR CASE

Let us now consider (1111) in Par. 22, that is, the intersection of
two discontinuity surfaces of the first kind. This may also be described

as the collision of two positive shocks.

The physical picture is that of two shocks moving into a domoin of
continuity and gettinz into contact with each other. In order to have as
elementary a satup as possible, one may imagine that v, U, S are constant
1n the dorain ahead of both shoclss, and also (although with other values)
in the domains behind the tvm shocks. The shocks are then plane, ard

have constant velocities.

In the one-dimensional case the twe shocks nove in opposite or in
parallcl directions. In the latter case it can be shovm that the shock
vhich is behind the other one (in their common direction of motion) must
be faster than the fortard one and finally catch up with it.lz/ Thus
the two shocks must collide in cach.caso, and they are not in contact
before that collision. This is the lincar collision of two

shocks.,

In “he three- or tuo—d:mens1onal case the conditions are the same if
the tiro shock fronts (discontinuity-sarf&cos) are parallel plenes. e
chnose their common normal as the x-axis and everythings is opwﬂously in-

dependent of y,2z. Ve still have lincar shocks.

LAssume now that Lhov arc not parail:l. Choose the plane containing
their two normals as the X,y-plone. Then overychin: is sti 1 independent
of z and so the problem is two dimensional. In this casc the two shnck
fronts intarsect at all tines. That is, the two shncks have been in con-

tact =-- collision -- 21l alon:. Thnis is the obligue collision of fum

hecks.

Swmery. {(1i11) iz tho

(@]
o}
53
o]
o
19
@)
A
O
be
ct
E;:
(@]
(@
}-—J
-
=

sion of twn wozitive

shocks. This nroblom is oither lincar, ore dimensional, in which case

i

17/ In this case the three demeins are not as indicated above bhut
arc a domain ahcad of the first shock, a domain between the tiwo shocks,
o domain behind the secend shock. The sccond onc discppears 2s the two
shoclzs catel ur.
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i

the collision nccurs at a definite inctant; or it is oblique, tvo dimen-

sional, in which case the collision is goins on continuously at all tines.

Vle add @ rerar¥ concerning the possibility of a discontinuity surface

runninz into a boundary, that is, the case of reflection.

Lot us again assune that the discontinuity swurface and the Loundary
are planes. Then the influence of the boundary is equivalent to what
vould be the influence of a mirror image of the original discontinuity
surface, refliected by the wall. That is, reflection is equivalent to the

collision of two symneiric discontinuity surfaces. ience our discussions

of Par. 25 apply again, and reflections, too, can be sundivided into

lincar reflechbions (one=dimensional) and oblique reflections {two-dimen—

Let us rcturn to the collisions, and consider first the linear type

.
o

e are in one dimensiony therefore ve must cxpect at the point of
collision, among other things, the beginning of 2 discontinuity of the

second kind =~ except vhen the equations of state have ti

thie special form
of Egqs. (21) 4o (41). It is also casy to see that this discontinuity of

the second kind must disappear for roasons of syrmctry if tho tuo collid-

ing discontinuity surfaces cre symmetric.

The problen has been solved Cully when the substance is an ideal gas

vith § €5/3.  The only further phonomons orisinating at the collision
arc tlieses two positive shocks if the two colliding shocks are in opposite

arc in the same direction. Apart
1 fron the dizcontinuity of the sccend kind renilioned above,

the sungtance nas no discontinuitics and obays the differantial Egs (A)

to (C).

he contert of a ropert to bo submitted by the

Wy - ! A PORCIRSCS 3 e e, 08 & ap = 1 3 I v~ -
de rostate this rosult. Tvo positive shccks in o lingar heod-on col-
1icion oratuc: 550 vociive Arleera 30 e e e IR e I KA N O + 43
L&l Jreduen o pocitive shocke; 4P one cotchog up with tho othor, thon
4. .- -3~ B - -~ - [ S M
Ly Lreinle nne nocitive shocl.
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It would be irteresting to determine for vhich equations of state
this result is generally true. This would involve investigations alony
the lines of 3ethe's work [Ref. (a), mentioned in Par. 17], For ideal
gases the condition is, as mentlened abave, 7 S 5/3. It seems remark=-
able that this_inequality, which is justifiable by molecular=kinetic
considerations, emerges here in a purely macroscopic context.

e add that some of the older literature on this subject is in error

bacause of a failurs to recognize the role of the discontinuities of the

second kind.

Z. TIE -INTERACTIOH OF SHOCKS: OSLIGUE CASE

Vie-now pass-tn-the collisions of the ahli qﬂﬁ tyna. Tor the sake of

simplicity, v discuss the symmetric case, that is, that ono of oblignue

- reflection (sce Pare 25). In this case the diSCOntllult} of the second

1nd doos not crise, and th re are sv"»~11 ar ¥ncnnwc~l simplificotions.

uut the c1aracterwst;c GLFE] cultleq of the U“Oolmm vhich Lg arz going

to conQ1dﬁr ﬂow, are oss nt1a71v the same as in t“u goneral case

Consider first the ohliqus reflection of a vory weak. shock, that is,

1

& sound wave. In this case the original sheck and the wall producc
¥ sccond, reiflectcd shoclk which

Torms tie sans angle with the
Et1S!

(G

Bt . 3 G g a edbf 5
chat this »nroblem ic essentially

x 5 . .
Lo dimensional. ]
W-—--w, wall
0s, orizinal shock If the original shock is not
R3, reflected shock ) ' am - )
(sonic case) sonic, thore will e complica-
Fig. 2. tions ~- but it is casy to pre-

m

dict their noture. The 7as behind the origzinal shock is casily sceon to

Y
[

move in the dirsction of that shoclt —-= hencoe 1t has o cawponent e tie

richt in Fiz, 2 == 2nd to have a highcr sound velocliy than the gas

t2
w
g
phs
[}
o
[
td
()

o]

N ' v2ll a= the original onc (Fis. 2).

[This is x,y-spcce not X,y,t=-space

R, N B ¥
7?ﬁ;§; Ji&/ time. i have pointed out before
W v
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ahead of the original shock. Hence the reflected shock must be expected

to be faster, even in relation to the original onc, than it would be in

the sonic case. That is, it will be pushed forward to o position like

b, 2 AN

{'St on Fig. 2, that is, its angle 8 with the vall will exceed the argle

of the origina) (op the sonic-reflected) shock with the vall. E
. . ) . ™™ ‘r.

It is natural to male this exact, by applyinz Egs. (As) to (Cs) to 8
these two shoclts. The quantities v, U, S are constant ahead of the origi- o
13/ = = = E

L e T S0 siee wslmEd 4 try.to mks v, U, S constant in the ¥

domain betvieen the two shoclis, and similarly in the domain behind the sec-

ry !
ond shocl:, &-/

If this is done the same muaver of equations and varicbles obtain,
“but the equations are of 2 high algebraic order. "It is found that these
. . 19/
equations can be solved, unless the angle e is too.near to n/2.—' Hovr=

- i - . g . g 20 “tn. e . .
ever, there exist then two solutions of the type R'S'.—/ While it is

A2 R BALY Y S I AL

usuwally possible to tell which of these two is-the physically real one,

this duplicity is nevertheless somewhat disquicting.

But whén & is near to Tr/2 -~ that is, for anearly glancing inc¢idence ==

. . . ; 2 . 21,
the situatison becomes even stranger: there exists no solution.~/

Attempts 4o find a2 solution by other, more complicated arrangements
of plang shocks have invaricbly failed., The reality of the phenomenon is,

hovever, beyond question. The oxistence of an "abnormal" type of reflcc-
(=]

tion for strong shocks and ncarly glencing incidence has been established

oxporimentally by Z. Mach [fef. (£)]. e

Ty

18/ Of coursc, U=0 ahead of thc origzinal shock. . Therc is no rcason
to restrict U in tho domain betwcen the two shocks. Behind the reflected
shock, U muct be parallcl to the wall.

19/ The we
coursc o= /2 it
at all.

20/ 1If the shock is vory wealk, then onc solution has its A neer to a,
the other near to m/2. The first onc yiclds 2 wieak shock, the second one
¢ strons shock. The thysically realized casce is therefore the first one
-= cxcent passibly for scme very snecial situctions.,

s

1 bl

alar the orizinal shock, th: ncarer o may come to n/2. Of
sclf must be excluded., Iz this casc no rcfleoction occurs

Zpstein  [Defs, (b)]. In the cose of obligue reflection it
tioned by 3. Teller (aral commuiication to the author).

21/ This phonomenon was obscerved bafore on @ similer probiom by
LS} i
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29. - The experirental evidence, [Refs. (f), (m)] is sufficient t» estab-
lish quelitatively the number and the nature of the shocks that inter—
vene in this "abnormal" reflection (Fig, 3). Thus a rew shock, the in-

termediate shock IS enters into

the picture. The original shock

¥ A and the reflected shock meet at
RugH 5 g5 “a point P, vhich is no longer
l _ at the wall, as in the "normal"
a2 " reflection of Fig. 2, but moving
/IHT L3 in the interior. The experi-
W ut x . ments show, furthermore, that P
.w--_—;v,».*vall . o | is moving into the interior,
%Slé' B iz'ji;r;:ido:;g:k - a"ay from the wmll, along the
Ts: " intermediate shock..  -dashed line or.mg..--."s.
I"Fig.' o If. the mth matical anzlysis
- . is now applied, the following
facts appears
(1) The ref ted shock near P @ the intormediate shock must

bc rucw-vw-_gd N

- (ii) For weak shocks, at lecast, /3< « and not /3 > as in the
"normel" reflection of Fig. 2.

Therefore we must expect a rather compllcated mot;on of the sub=
stance behind the reflected and the intermediatc shogks, ‘.’-’th.x has vortic=-
ity == that is, neither S nor v(Vx 1) constant. Besides, a discontinuity

_of the second typo == a vorticity shect ~- should issu.c from F into the

sare domain.

All this lcads teo very Aifficult mothomatical probloms s cven for
ideol gases. 4 AS»Q; ming a s’cron{ shock, and a very neas *1y gl ricing inci-
dence =~ that is, & ~ /2 -— approximate solutions can be determined:
"zero" ordar quitc casily, "first" order sith considereble Jif£3culty

‘ ] 22
They corrobor::.tc in detail the qualitative sta tements made abovc.—-/

22/ Since th.m phenomenon is not stationary it is nccessory to
discuss 1’r, from the beginning -- vherce the nriginel shock first hits tp'

well. Owing to the obliguencss of the reflcection this nccessitates (sce
Par. 25) some changes in the goometry of the picturc.
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These investigations, for idesl gases, are contained in a report

vhich will be submitted shortly by the author.

A direct comparison of the results of the mathematical analysis with
the experiments has only been possible so far 10 a limited extent. Con-
sider very nearly glancing incidence —- that is, w ~ /2. Denote the
velocity of the original shock by S, the mass velocity of the gas behind
it by u, and the velocity of sound there by c¢. Then

H

2 _ - )2
(20) tg\v-——)"”c' (: u) for « — 0,

This formula appears to be in reasonzble agreement with the experi-
ments [Ref. (m)]l.

The experiments as well as the mathematical analysis show that the in-
termediate shoclk I3 is very flat as long as the velocity of the original
shock does nnt exceed about 3 times sound velocity. They also show that
even for shocks which are less than 10 nercent above sound velocity, e can
deviate as much as /3 from /2 beforé the intormediate shock IS dis-
appears ard the reflection becomes normal. In this respect recent experi-—
ments-of Chartgrs and Thomes, Ballistic Research. laboratory, Aberdecn

Froving fround, are marticularly convincing.

N

Ls the intoﬁsity of thz (original) shock increases, tre inbermediate
shock scoms t92 becoms more and more convex. Thare are reazons to believe
that this convexity may progress te the extont of giving the intermedicte
shock the character of a protuberance vhen the original shock has 10 to
20 tinmes sound veloacity, as it moy in éxplosiOns. Tris phcnomenon, if
rcal, ray be connacted with some important blast offects.. It ves studied

further in scveral memorande of the avthor t95 the Navy Burcaw of Crdnance

[Ref. (8)].

XI., REACTION SHOCKS. OCLASSIFICLTICH

A reaction shock involves o chemicel chionge; that is, the countion

of stote, Zq. (2) = ond with it Zgs. (3) anml (L) -- is cxyressed by dif-

Terent functions on both sides of the discontinuity. That is, the
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' tlguously elethV, separafed by the. discontinuity surface. Actually

“this is the norm ? form for the coexistence of two phases, since the dif-

conservation laws of mass, momentum, and energy iy be formulated in the

same way as in Par, 16, but they ill contain two different functions:

)

(21) By = E3(S1,va), Ep 7 Ep(Szyva),

ot 18 L

v

The difference between the two functions in Eq, (21) expresses the chem-

ical chanrge,

The resulps of Par, 16.still apply, if this proviso is made. Thus
we have agaih two tjpes of discontinuities: those described by Egs. (AS)
to (Cs), and those described by Egs. (A ) to (Cg ) The conclusions (i),
(ii) of Par, 16 are also still valid. I

pFETAL AT 112

It iollows ‘that no Llow of matter occurs across tle discontinuities
‘of the second kind [Vq (u ) to_(CC)]. Hence there is really no chemi-

cal reactlon in this case. Two chemicall" different substanc¢eés are con-

A H TR To LAY OF ML TV

ference in tho equgtwogs of state ~= hence in Eq. (3) == prevents con-
tanlty of all of ¥s §3‘E'

For tho o discontinpities of the first kind [Zgsi (&) to (Cs)], on
thc other hand, there is a flow of matter across the discontinuity. A .
chemical roacti is *h rn“ore the substratum of this picture, and the
plcturn is only legitimatc to thc extent to vhich this roaction ccn be

treated as instantancous.

Sumary. L discontinuity (reaction shack) of the first clnd de-
scribes a chemical reaction, to the extent to which it can be troated

as instantaneous, thich must be iaduced by ome of the disceomntinuities

(p, T, U?) accompanying the shocl.

A discontinuity of the second kind involves no recction at all; iv

describes the normal form of co-cxistencs of two Aiffercnt phascs.

It follows from the cbove that the really interesting objects for
further study arc the reactinon shocks which are discontinuitics of the
first kind, govorned by Zas. (Ag) to (S ). e shall therefore restrict

oursclves ta thesec.
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Inspecting Egs, (Ag) to (Cg) once more, it appears that py,v; and
Pz,Vz are linked by 3g. (Cg) only. Of course, the equations of state,

Zg. (2), expressed by Eq, (21), are then better replaced by Eg. (1), ex-

::

2

pressed by ¥
&

= = x.

(22) By = F1(pasva)s, Ez = Falpo,va). 5
If Be. (Cg) is fulfilled, then Egs. (Ag) and (B) can be used to determine S
the other quantities which are of interest. o
Assuming that the state of the substance into which the reaction -
shock is penetrating -- say that on the side 2 == is known, we have this F]
: g
situation: py,vy, are knovmj p,,vy; are linked by Eq. (Cs). »

This comnection of p,4,vy can be depicted by a curve in the p,v-plane,

the Rankine-Hugoniot curve. It should be remermbered that this curve de-

pends on the choice of p,,v,.

Obviously py =1, vy =V, fulfills Eq. (Cs)-only when the two func-

tions F,(»,v)and F5(p,v) arc identical -=-that is, vhen ve have a pure shock. In

other words: the point p,,v, lies on the Rankine=Hugzoniot curve only when
there is no reaction -- for a pure shock.

For an exothermic reaction, that is, I'4(p1,v1) > Fs(pi,vy) [not
Fp(pa,va)t], it is easy‘to verify that p,,v, lics below the Lankine-

Hugoniot curve. The.conditions are shovm in Figs. L and 5.

pl,vil {
I . II
=" . ‘?—_}_‘\"i
111 iy Per e 111
Fig. 4, Pure shock. Fig, 5. Reaction shock,




RESTRICTZED - 32 -

33. By Eq. (Bg)

3k.

(23) . M= Po=Pa Vtg“’:

Va2 =

hence tgwzZ O. Consequently @ must lie in the quadrants I or III. Tor
a pure shock this is automatically true (Fig. L), but for a reaction

shock it excludes a certain part of the curve, which 1¢es in quadrant II

(Fig. 5).

s

Besides this ’ for a pure shock the lower part of the curve -= in
quadrant IIT == is vlcarly a negative shock. Wé saw that.these,maot be
“forbidden since they would cause a decrease of ent opy (see Par. 18).

Hence only'thp curve in quadrann I has reality.

In the case ‘of a‘reaction shocl: the situation is different. First,
the thermodynamics of the chiemical reaction which is involved here would
have to be gone into in considerablé'detdii before anything cbuld be ex~
cluded on thermodynaric grounds. = Second, there is definite evidence as
to the reality of at least part of the curve in quadrdnt IIT in this
case. Third, we saw in Par. 20 that there is no known application of

the theory where pure shocks in ouadrant IIT (that is, regative shocks)

are needod ta p“Oducc a solu tion, while we shall see that they are defi-

nﬂtﬂly necess ry in the main problem involving reaction shocks (see
Par. 36)..

The parts I and III of the Rankine=!lugoniot curve of a reaction
shock are distinguished by simple criteria. In the former tha reaction
increascs p @ zcip'—1/ and it is easy to show trat the shock Gelocity S
exceceds the sound VOlOCltV ¢z 7 pp,va. In the latter all this is rc-

versed.

For an cxplosive reaction part I is undoubtedly descriting states
of detonation, whilc it is customary, and probably justificd, to iden-
tify the states described by vart III with those of burning or deflo-
gration.gz/ At any rote we arc going to use thesc expressions in the
scnse indicated.

23/ The vericble and somewhat crratic behavior of actual do
grotion mekes the latter identification less certain then the fon“ Y onc.
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Wle can say, therefore, that in a detonatioﬁ.iﬁe_pfééé&?éﬂﬁﬁd density
of the reacted substance are higher than those of the unreacted one, and
the detonation is faster than any sonic signal that might precede it --
that is, no such signal can precede it. In a deflagration all this is re-
versed.

One also concludes easily from the above [or from Eq. (Bg)] that in a
detonation the burnt gases follow in the same direction as the detonation
wave, while in a deflagration their direction is opposite. That is, a
detonation absorbs its own flame, while a deflagration emits one.

The first statement may sound paradoxical, but all moVing-film photo-

graphs of thesg phenomena corroborate it. A detonation produces a narrow

- luminous strip, a deflagration a wide, expanding flame. Of course, when a

flame is emitted from'a detonation == which is the superficially visible

phenomenon == the detomation is over and the subsequent expansion of the

- burnt gases has set in.

, XII. - ANALYSIS OF DETONATIONS

- Returning to Figs. L and 5, we have to comment upon the fact that they
each represent a orie-dimensional manifold of possible values p;,vy -~ that
is, of shocks. This is natural for the pure shock, Fig. i, vhich must be
supported by a compression behind it, and whose intensit&‘will therefore
depend upon the intensity of that support. For the rcaction shock, Fig. 5,
it is again plausible that support, or the opposite, will modify the shock.
However, therc should be a point on the curve of Fig. 5 rcpresenting a

reaction shock unsupported and wnhindered =- that is, in cquilibrium.

The problem of finding the equilibrium point on the curve of Fig. 5
is onc of somec _difficulty. It has becen given a good deal of attention in
the literaturc, and it is rather generally agreed that the hypothesis of

Chapman and Jouguet is correct. The cquilibrium point is that onc where

the line py,ve——p,;,v; is tangent to the curve. There is no dowbt that
this question cannot be scttled vithout ihvcsﬁigating the nmechanical situ-

ation in the burnt gas farther behind the dotbnation fronts and ~lso the
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: then 1t. 1s, of coursc, a rcuctlon s}‘ock

RESTRICTED - 3L -

details of the chemical recaction, which was so far described as occur-
ring instantancously within that front, but which must actmlly occupy &
zone of finite extension in space ard time,

The physical assumptions on vhich the Chapman=Jouguct hypothesis
rests, its domain of validity, and its proof were analyzed in a report
subpitted previously by the author in connection with this contract [sce
Ref.s (k)].
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In this cbnx'icctic'in.’wé wish to point out onc fact that has not re-

ceived so far the attention it appears to desecrve.

T AT YR
Y SR AR IRE TN

Consider the explosive reaction and take its finite duration, that
is, its noninstantancous character, into account.

il

B it LGS

The reaction must nevertholess be initiated ‘by an abrupt change of
some significant quantity {p,. T, U? (scc Pare 31}]. ~Howevery at the mo-
ment vhen this discontinuity passes over an-clement of a:substance, the

chemical recaction there is just beginning. That is, for the purposc of

YT

this disconti.nuity—, the substance. might as. well be chemically inert —-
the dlsccntmulty at the first moment is a pure shock. . If wc define_the

shock in a. broadcr my, so that it :mcludes t1c c"l‘blrc rg,actlon .20Nne,

Ip bh_ othbra.um forr‘ o*‘ detonation both phenomena =— the first,
initiating shock and the .;entlr.c_z_ reaction aenc -~ must have the samc vcloc-
ity. '

‘.:..,..‘

So we must superposc Figs. L and Sl and use o po:mts pl,vl and

pl,vl —= corresponding to nere cxcitation and to coantc reaction. Since
both have the same wvelocity, and
the same mass fl4w, botl giwe

the same angle w by Eqs -(23); that
is, p1,v1 ond p},vy lie on the

sarc line from py,vee The situ-

P.»V, ation is show in Fig. 6. This

figurc shows thot the intcet sub-

stance at p,,vs is transformed by
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'taken into account. It is then sccn to con51sf of tweo parts:

e
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the pure shock into the excited one at py,vy and that after the reaction
is over, its state is pl,vl. The, ultlnate detonation pressure py is lower

than theAexC1taulon pressure py ew which is rather strange. However, the

L FEA R TR it

‘details are even more peguliar,

We can also take a view of the shock vhich excludes from it the ex- g
citation process, but includes the entire reaction zone proper. The con- 3
servation laws of matter, momentum, and energy = that is, Egse (As) to %
(Cg) — must remain true. That is, pj,v} must also lie on the Rankine- &
Hugoniot curve of p,,vi. . Now this curve is not shown in Fig. 6_(those on 3
that figure belong’to PssVa) == but this much is clear: p{ < py; that is, %
this reaction shock decrcases the pressure.. Let us thorefore replace ?
p1sviand pa,v, in Fig, 5 by our p},v! and py,vy and recall the discussion 5
ol Par. 3&. Then we must conclude that this reaction shock has to be ]
classified as a deflagration, | ’ ) i E

So we sce that the process, which as a wheole .is-a detonation, can be

dissolved into several parts if the fln-tc duration of the reaction is

s

(i:) A pure shock, which initiates the reaction, but still takes
placc entirely in the ¢ncrt substance.

(ii) The chemical reaction whlch followo, ard wvhich is best de-
scribed, as a deflagration. '

This view, that thc cntire == undissolved -= process is a detonation
which when analyzed dissolves into a purc shock and a deflagration,may
seem paradnxical. However, a comparison with thc qualitative characteri-

zations of Pare 3i shows that it is quitc rcasonablc.

Thus a detomation increases pressure and densityj a deflagration de—
creases 1t. Indeed, the whole rcaction does incrcasc them both, but the

(purc shock) excitation scts in with 2 higher incrcase than the ultimate

onc, and sn the rcaction proper decreascs them.

L dotonation is preceded by no sonic signel of its comingy o defla-

grotion is. Indeed, the whole rcaction is preoceded by no such signal,

but its second phase (the reaction proper) is == by the first phasc, the

(pure shock) cxcitation.
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38.

‘The mathemati.cal theory must take account of the details of excita=-
tion and of the reaction proper == while we have treated these in a very
global way., Besides, this pigture should be applied to the nonequilib-
rium forms of detonation as wall., (See Far, 35.)

In this connection it is importqnt to distinguish between two possi-

bilities. The equilibrium detonation may produce sufficient p, U, t to

" initiate the detonation, or it may not. Let uvs call the first type of

detonation an active, and the second type & passive ‘one.

An active type detonation can precumably be initiated at sub-equilib-

riun rates, that will "pick up" to equilibrium. A passive type detona-

tion is simply uratle to exist in equilibrium. It must be initiated above

it, "boosted," and it will then graduvally decay toward equilibrium. And

since it cannot exist in equilibdrium it will "“peter out" before this hap-
pens, that is, after a definite finite time dependent upon the strength

of the "booster."

These qualitative indications can be subsiantiated mothematically.
This will be done in tvo subsequent reports by the author, dealing with

active and with passive type detonations, respectively. It is hoped that
they will contribute to the understanding of the nonequilibrium forms of
detonation == the "picking up" of the active type, and the "boosting! and

"petering out" of the passive onc.
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