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Introduction
Dividing cells faithfully transmit genetic information through a highly regulated process

referred to as the cell cycle. Ordered progression of signaling and structural events ensures accurate
reproduction of the genome and its segregation into daughter cells. Regulatory mechanisms known as
checkpoints compartmentalize this division process into biochemically discrete units, the beginning of
one depending upon successful completion of another, and thus comprise pathways that permit or
prohibit cell cycle progression (Hartwell and Weinert, 1989). A G2 checkpoint governs the transition
from interphase to mitosis, postponing the process when DNA is damaged or incompletely replicated
(Kaufmann, 1995), a situation that, without repair, would lead to fatal mitotic catastrophe or
endoreduplication. Many conserved molecular components participate in the regulatory and
surveillance pathways that affect G2/iM progression, and intricate crosstalk provides tight control of
this cell cycle transition. Cdc2 kinase is centrally responsible for mitotic initiation (King et al., 1994;
Nurse, 1990). It phosphorylates targets required to orchestrate the dynamic processes characteristic of
mitotic entry, including nuclear envelope breakdown, chromatin condensation, microtubule
destabilization, and spindle formation (Nigg, 1993). As the point of biochemical convergence
governing G2/M progression, Cdc2 functions as a molecular signal integrator controlled by several
layers of regulation (Morgan, 1997). Temporal and spatial coordination of its activation ensures that
mitosis-promoting activity occurs in the correct place, at the correct time, and only under the correct
circumstances. Combinatorial effects of phosphate incorporation by Cdc2 and its periodically
available cyclin B1 subunit (Meijer et al., 1989), dictate the activity state and subcellular localization
of the complex. In this respect, the Cdc2/cyclin B 1 complex provides the focal point for G2/M
regulation by kinases and phosphatases, and its rapid and complete activation stimulates mitotic entry.
The phosphatase, cdc25, is responsible for the final biochemical event in initating mitosis: removal of
inhibitory phosphates on cdc2 (Coleman and Dunphy, 1994; Gabrielli et al., 1992; Kuang et al., 1994;
Russell and Nurse, 1986). Overexpression of cdc25 in breast cancers is well documented (see original
grant application) and correlates with disease progression. The aim of this research as proposed was to
investigate the mechanism by which cdc25 contributes to breast cancer progression.

Body: Background
Following initial collaborative studies of cdc25 regulation, the bulk of the research efforts

funded by this grant have gone toward the study of a cdc2 5-interacting protein, Pinl. This protein was
initially cloned from A. nidulans (pinA) and human (pin]) libraries in yeast-two-hybrid screens by
virtue of its interaction with another G2/M-promoting kinase, NIMA (Crenshaw et al., 1998; Lu et al.,
1996). Because overexpression of active NIMA alone is deleterious in yeast, the identification of Pinl
these screens indicates that it suppresses the lethality of overexpressed NIMA protein and hints that it
might functionally oppose NIMA. The deduced amino acid sequences contain regions of homology to
a family of prokaryotic peptidyl-prolyl cis-trans isomerases (PPlases), the parvulins (Rudd et al.,
1995), and to the WW protein interaction domain recognized for its binding affinity for proline-
containing sequences (Sudol, 1996). essl/ptfl and dodo genes of S. cerevisiae (Hanes et al., 1989;
Hani et al., 1995) and Drosophila melanogaster (Maleszka et al., 1996), respectively, were cloned
previously in unrelated studies and share these domain features with both Aspergillus PinA and human
Pin1. The abilities of both dodo andpin] genes to rescue the lethality of essi deletion (Lu et al., 1996;
Maleszka et al., 1996) establishes functional homology among these family members. Interestingly,
biochemical analyses highlight an unexpected phosphorylation-specificity in proline sequence
recognition by both of Pinl's modular domains. Its WW domain binds preferentially to phospho-
serine/threonine-proline motifs (Landrieu et al., 2001; Lu et al., 1999b; Verdecia et al., 2000), and
while Pin1 catalyzes prolyl isomerization as predicted, it is unlike its relatively non-selective
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immunophilin cousins in that Pinl shows appreciable catalytic activity only toward prolines preceded
by phospho-serine/threonine but not phospho-tyrosine (Hani et al., 1999; Lu et al., 1999b;
Ranganathan et al., 1997; Yaffe et al., 1997). Thus, it seems that Pinl is an evolutionarily conserved
protein that is structurally and enzymatically poised to interact with phosphorylated proteins.

Indeed, Pinl's ability to bind phospho-proteins in a number of systems has been documented
(Crenshaw et al., 1998; Gerez et al., 2000; Hsu et al., 2001; Liu et al., 2001; Lu et al., 1999a; Pathan et
al., 2001; Shen et al., 1998). Studies using recombinant Pinl as an affinity reagent demonstrate that its
interaction with most proteins is dependent on their phosphorylation states. For example, Pinl binds
an extraordinary number of mitotic phospho-proteins including many recognized by the monoclonal
antibody, MPM-2 (Crenshaw et al., 1998; Shen et al., 1998), which recognizes an epitope including
phosphorylated serine/threonine-proline residues (Davis et al., 1983; Ding et al., 1997; Kuang et al.,
1989). Depletion of Pinl-binding partner(s) from Xenopus cycling extracts during interphase (using
tagged, immobilized A. nidulans PinA protein) causes a G2 arrest, while similar depletion of M-phase
extracts causes a reduction in Cdc2's histone HI kinase activity without directly removing the
Cdc2/cyclin B1 complex (Crenshaw et al., 1998). These experiments demonstrate that Pinl binding
proteins are important for both the initiation and maintenance of Cdc2 activation in Xenopus extracts.

Among the myriad MPM-2 reactive mitotic phospho-proteins depleted in these experiments is
Cdc25. Pinl interacts preferentially with hyperphosphorylated Cdc25, and in vitro-translated
phosphatase can be converted into a PinI-binding protein by the addition of active Cdc2/cyclin B I
(Crenshaw et al., 1998). While this observation provided the initial motivation for using Pinl to
further our understanding of cdc25, recently published results provide mechanistic insights into the
nature of the Pinl/cdc25 interaction that have helped in our interpretation of our biological results.
Namely, incubation of phosphorylated Cdc25 with sub-stoichiometric (catalytic) concentrations of
Pinl changes the pattern of protease digestion, indicating that Pinl not only binds, but also alters the
conformation of Cdc25 (Stukenberg and Kirschner, 2001). Further evidence for Cdc25 isomerization
by Pinl comes from the observation that in vitro phosphorylated Cdc25 is recognized by the MPM-2
antibody only after incubation with PinI (Stukenberg and Kirschner, 2001). As yet, it is not clear what
consequence this structural modification has on Cdc25's catalytic activity, but it does enhance the rate
of Cdc25 dephosphorylation by protein phosphatase 2A (PP2A)(Zhou et al., 2000b). PP2A
preferentially dephosphorylates trans isomers of the phospho-serine/threonine-proline motif; this
confirmation is favored in the presence of catalytically active Pinl. In addition, overexpression of Pinl
and PP2A are each able to suppress growth arrest phenotypes in yeast strains bearing conditional
genetic lesions in the reciprocal gene. These studies imply that, at least for PP2A and MPM-2,
substrate or epitope recognition, respectively, requires a specific isomer of the prolyl bond adjacent to
the phosphorylated side chain. It is intriguing to speculate that modulation of protein function
following phosphorylation may be, in some cases, the result of phosphate-directed prolyl
isomerization. Pinl's catalytic preference for phosphorylated sequences, which makes the connection
between protein phosphorylation and changes in protein conformation, is unique among eukaryotic
PPIases.

Perhaps this substrate selectivity explains the requirement of the gene encoding the yeast Pinl
homologue, essl, for viability (Hanes et al., 1989; Hani et al., 1995). In contrast, all twelve yeast
immunophilin genes can be deleted, even in combination, without lethality (Dolinski et al., 1997).
Inactivation of ESS 1 causes terminal mitotic arrest and nuclear fragmentation (Hanes et al., 1989; Wu
et al., 2000), suggesting a function in mitotic exit. Curiously, neither dodo from D. melanogaster nor
the mouse Pinl homologue is required for viability, possibly due to genetic redundancy (Campbell et
al., 1997; Uchida et al., 1999). There is limited evidence that Pinl null mouse embryonic fibroblasts
are defective in their ability to re-enter the proliferative cycle following release from a serum-
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starvation-induced Go arrest (Fujimori et al., 1999). Recently researchers have reported a role for dodo
in influencing mitogen-activated protein kinase (MAPK)-dependent transcriptional regulation.
Apparently, phosphorylation of the transcription factor, CF2, on serine/threonine-proline sites by
MAPK causes its degradation in a process requiring the dodo gene product (Hsu et al., 2001). These
functions in metazoans still do not explain the failure of essl mutant yeast strains during mitosis.

Body: Results and Discussion
As this project was initiated, the cdc25 activation was known to involve phosphorylation of its

N-terminus (Izumi et al., 1992). The direct effect of this modification was not well understood,
although it was recognized that, following some minimal action of signal-initiating kinase, much of the
hyperphosphorylation of Cdc25 observed upon mitotic entry is attributable to Cdc2 itself, which
phosphorylates Cdc25 on multiple sites, stimulating its phosphatase activity, and thereby leads to
activation of more Cdc2/cyclin B 1 (Izumi et al., 1992). Thus, a catalytic positive feedback loop
amplifies the initiating Cdc25 signal to coordinate the complete and abrupt activation of Cdc2
(Hoffmnann et al., 1993). The identity of the "initiating kinase" is still debated, but recent insight, in
part the result of research supported by this grant, has expanded our understanding of cdc25 regulation
to include a second, but arguably more decisive, level of control of mitotic initiation.

Throughout interphase, cdc25 is physically sequestered to prevent premature functional
interaction with and activation of Cdc2/cyclin B 1. We and others have shown that phosphorylation of
Cdc25 on a single serine residue (216 in human, 287 inXenopus laevis) by Chkl and/or Cdsl kinases
(Furnari et al., 1999), confers to it the ability to bind cytoplasmic 14-3-3 proteins (Dalal et al., 1999;
Graves et al., 2001; Kumagai and Dunphy, 1999; Peng et al., 1997; Yang et al., 1999), thereby
preventing Cdc25 accumulation in the nucleus until G2/M. Furthermore, we have provided evidence
that, even while phosphorylated at this residue cdc25, retains its basal catalytic activity (Yang et al.,
1999). Thus, it seems feasible that inappropriate activation of Cdc2/cyclin B 1 would follow cdc25
overexpression if it reached levels sufficient to saturate the available 14-3-3. Consequently, early
mitotic entry would be expected to contribute genomic instability that is often associated with
development and progression of cancers.

The importance of suppressing cdc25's function in maintenance of genomic stability is
underscored by the circuitry of endogenous responses to genotoxic lesions. When the DNA is
damaged or replication is stalled, the abnormal structures trigger a cascade of events to elicit a
temporary cell cycle arrest known as a checkpoint. Cdc25 is the target of the G2 checkpoint kinase
cascade, the most proximal component of which is ataxia-telangiectasia-mutated kinase (ATM) and/or
the ATM-related kinase, ATR (Hekmat-Nejad et al., 2000; Hoekstra, 1997; Shiloh, 2001). In response
to genotoxic stress, ATM/ATR activation leads to increased activity of checkpoint kinases Chkl and
Cdsl (Kumagai et al., 1998; Zeng et al., 1998; Zhou et al., 2000a), thereby exploiting existing
regulatory machinery to enhance phosphorylation of Cdc25 serine 216 and prolong its cytoplasmic
sequestration (Boddy et al., 1998; Forbes et al., 1998; Fumari et al., 1999; Lopez-Girona et al., 1999;
Peng et al., 1997; Sanchez et al., 1997; Yang et al., 1999).

As the research funded by this grant began, Pinl had been implicated in cell cycle regulation
primarily in overexpression studies, and its ability to associate with known mitotic regulators,
including cdc25 had just been recognized. Whether this interaction occurred in vivo, and what role
Pin1 played in cell cycle regulation if any, was not known. The model system selected for addressing
this question was that of Xenopus laevis egg extracts. This system has been used successfully to
identify and characterize many of the molecules now recognized as universal eukaryotic cell cycle
regulators. Specifically relevant to studies of endogenous Pinl function, however, is the feasibility of
removing the protein directly from the extract and assessing the immediate effects on isolated cell
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cycle transitions.
Xenopus eggs that are arrested at metaphase of meiosis II are laid in response to hormonal cues.

Fertilization mobilizes calcium and spurs the egg's progression out of M phase and into a rapid series
of cell divisions. The early embryo increases its cell numbers without significant accumulation of
biomass by oscillating between S and M phases. To do this, the egg must already be stocked with
enough cytoplasmic components for all its resulting daughter cells. Thus, Xenopus eggs are
biochemical warehouses of cell cycle components. In addition to stockpiling proteins and organelles,
eggs also prepare for this dedicated proliferative phase by preparing ahead of time all the mRNA it will
need for these cycles. This investment on the part of the oocyte allows the zygote to bypass any need
for transcription, and even its translational efforts are largely dedicated to synthesizing cyclin B 1 for
each oscillatory transition from S phase into M phase. In fact, extracts of Xenopus eggs can be treated
with inhibitors of transcription with no apparent deleterious effects on cell cycle progression, and the
translation inhibitor, cycloheximide, is often used to synchronize extracts that can subsequently be
prompted to enter mitosis by addition of recombinant cyclin B 1. These biological characteristics of the
egg extract system have made it especially amenable for use in the study of isolated cell cycle
transitions.

Before Pinl's role in the Xenopus cell cycle could be ascertained, it was first necessary to clone
the Xenopus version of the gene, confirm its homology to other members of the Pinl family, and
generate reagents with which to remove the protein from extracts. Considering the known existence of
yeast, Aspergillus, fruit fly and human Pinl homologues, including the demonstrated abilities of fly
and human enzymes to complement essi deletion in yeast, there was good reason to suspect the
existence of a closely-related Xenopus Pin1. The human Pin1 coding region (Lu et aL, 1996) was used
to probe plaque lifts, obtained by bacterial infection with a lambda phage Xenopus gastrula cDNA,
under low-stringency hybridization conditions. Three clones were identified among roughly 5 x 105

plaques screened. Each of these contains an identical open reading frame that we designate xPinl
(Figure 1A). The predicted polypeptide sequence shares 89% identity with human Pinl and greater
than 45% identity with each of the eukaryotic parvulins over its full length of 159 residues (Figure 1B).
In vitro transcription directly from the cloned cDNA yields mRNA (Figure 2Aa) that, when translated
in vitro, encodes an 18 kDa protein as predicted (Figure 2Ab).

The xPinl cDNA expressed as an N-terminally tagged glutathione-S-transferase fusion protein
(GST-xPinl) in bacteria is readily purified to homogeneity, and xPinl is efficiently cleaved from the
GST moiety (Figure 2B). Recombinant xPinl conjugated to hemocyanin was used as antigen to
generate polyclonal antisera. Sera from two immunized rabbits recognize a single protein of 18 kDa in
Xenopus egg extracts (Figure 3A and data not shown). The concentration of Pinl in egg extracts is
roughly 20 ng/pL or approximately 1 jM, and this does not change throughout the cell cycle
(Figure 3B).

Because Xenopus Pinl shares such a high proportion of its primary amino acid sequence with
mammalian versions of the protein, the antisera generated against it recognize Pinl homologues in
mouse and human tissue extracts. To delineate the expression pattern of Pin1 in mammals, extracts
prepared from whole organs of six-week-old mice were subjected to immunoblot analysis. As shown
in Figure 4Aa, although low levels of expression are detectable in most adult mouse tissues, testis
expresses Pin1 to high levels, while cerebellum, kidney, and stomach show moderate expression. By
comparison, Pinl is expressed ubiquitously to high levels in neonatal mice (Figure 4Ab), suggesting
that expression of the protein is down-regulated at some time during post-natal development in most
tissues that do not continue to proliferate throughout the life of the organism.

From whole tissue extract containing a heterogeneous mixture of cell types, however, it isn't
possible to determine whether Pinl is expressed in proliferating cells. To specify the Pinl-expressing
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cells within the testis, affinity-purified anti-xPinl antibody was used in immunohistochemical analysis
of fixed tissue. Panels a, c, and e of Figure 5 show testis stained for Pinl (brown) and counterstained
with methyl green (DNA, blue/green). Pachytene spermatocytes near the periphery of each tubule,
which are executing meiosis I, are most intensely stained. That this staining is specific to Pini and not
the result of antibody cross-reactivity is confirmed by parallel staining of testis from a Pinlr/- mouse
(Figure 5 panels b, d, and f). Thus, it appears that PinI is expressed in cells undergoing meiosis.

To examine more directly whether actively cycling cells express Pin1, human biopsy samples
were subjected to immunoblot analysis. Paired biopsy samples of tumor (T) and adjacent normal (N)
tissue from patients with colon (a), kidney (b), liver (c), and lung (d) cancers were compared (Figure
6). As seen in adult mouse, both kidney and gastro-intestinal tissues express Pinl to high levels, and
there is no observable difference between normal and tumor samples. Expression levels are lower in
normal liver, but, again, the tumor samples are comparable to normal samples in expression level. In
contrast, each of the five lung tumors overexpresses Pinl relative to the low levels of expression
apparent in adjacent normal tissue.

The Xenopus extract system provides the opportunity for directly examining the effects of Pini
overexpression. When recombinant xPinl is added to cycling extracts during interphase, it delays the
entry into mitosis in a concentration-dependent manner. Histone HI kinase activity levels in the
extract indicating that Cdc2/cyclin B is active one hour after the addition of GST (Figure 7Aa) but not
until two hours after the addition of and equivalent concentration of xPinl (b). The peak of histone H1
kinase activity is accompanied by chromatin condensation and nuclear envelope breakdown
(Figure 7B). Figure 7C represents the mitotic index, quantified by fluorescence microscopy, of
extracts supplemented with various concentrations of xPinl ranging from 1 X endogenous (GST,
dotted line) to 100 X endogenous (2 jtg/jiL). While five-fold overexpression of Pinl does not
influence the duration of interphase, G2 is prolonged by the addition of both ten-and twenty-fold
endogenous levels and mitotic entry is postponed indefinitely by addition of 100-fold excess xPinl.
This phenomenon is observed only with the cleaved protein and not with the GST-xPinl fusion protein
(data not shown). These observations are consistent with those previously observed using the
Aspergillus PinA in cycling Xenopus extracts (Crenshaw et aL, 1998), although as might be
anticipated, the heterologous enzyme is considerably less potent in side-by-side experiments (data not
shown).

Xenopus Pinl can be used as an affinity reagent to removed Cdc25 from cell extract. It binds
the mitotic hyperphosphorylated form preferentially as shown in Figure 8Aa. This observation further
establishes the similarity of Xenopus Pinl with human and Aspergillus versions and provides a means
of testing the biochemical requirements for association of these two proteins. Mutation of the two
tryptophan residues that define Pinl's WW domain completely abrogates Cdc25 binding, while the
catalytically inactive version of the protein, xPinl C09A, appears to bind Cdc25 slightly more avidly
than wild type Pinl. In addition to demonstrating that the active site mutant's structure is not
compromised, this observation suggests that the interaction between the two enzymes might be
stabilized by the catalytic inability of the C109A mutant. Similar enhancement of binding is observed
when this Xenopus mutant protein is used in in vitro binding experiments with purified Aspergillus
NIMA (data not shown).

Because of Pinl's demonstrated preference for binding and catalysis of phospho-
serine/threonine-proline sequences, the most attractive candidate binding sites in Cdc25 are the Cdc2
sites that have been shown to be responsible for the bulk of Cdc25's mitotic phosphorylation and
activation (Izumi and Maller, 1993). Each of these sites was mutated in the context of the wild type
protein, and the abilities of the in vitro transcribed and translated missense mutants, which had been
incubated in Xenopus M extract for phosphorylation, to bind Pinl were assessed. No single mutation
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significantly diminishes the binding of the phosphatase to Pinl (Figure 8B). In contrast, the majority
of binding is abrogated by mutation of the three N-terminal threonines together, and additional
mutation of serines 205 and 285 does not further reduce Pinl binding. This suggests that multiple sites
contribute to make phosphorylated Cdc25 a Pinl-binding protein, although it does not distinguish
whether the identity of the phosphorylated sites is important.

The impact on the cell cycle of removing Pinl-associated proteins, including Cdc25, was
determined using Xenopus extracts. GST or GST-xPinl binding proteins were depleted from
interphase and mitotic extracts using GSH-sepharose-linked recombinant proteins. Histone HI kinase
activity was assessed after room temperature incubation of extracts with or without the addition of
exogenous Acyclin B 1, xPin 1, or both. Results indicate that either the bulk of Hil kinases are removed
among the Pinl binding proteins, or the treatment inhibits HI kinase activity indirectly, perhaps by
removing upstream activators thereby favoring the inhibition of mitotic H1 kinase activity (circles).
When Pinl binding proteins are depleted from interphase extracts, the responsiveness of the extract to
cyclin B 1 is diminished by co-addition of exogenous xPinl (stars). This suggests that the extract is
sensitized to the negative regulatory affects of Pinl on mitotic entry.

Initial characterization of Xenopus Pinl indicated the protein is abundantly expressed
throughout the cell cycle. There is a positive correlation between mammalian Pinl expression and the
proliferative status of cells and tissues. The induced expression of Pin1 in human lung cancers could
contribute to or be a byproduct of neoplastic transformation. While this study documents differential
Pinl expression between normal and tumor tissue only in lung cancers but not in liver, colon or kidney
samples, it is noteworthy that all the tumors examined express Pinl to at least moderate levels, and low
levels of expression in normal lung samples distinguished lung from the other organs. Unfortunately,
the specific lesion(s) leading to neoplasia in these lung cancers are not known, so this interesting
observation does not offer insight into the potential causes or effects of Pinl overexpression.

It would be informative to know, for example, what the status of cyclin D1 expression levels
are in the lung samples. A recent evaluation of human breast cancer cell lines and tissue samples
demonstrates that Pin1 expression levels correlate with tumor grade and cyclin DI expression levels
(Wulf et al., 2001), and in cells overexpressing BRCA1, Pini is one of the most potently suppressed
genes (MacLachlan et al., 2000). Transcription of a cyclin D1 promoter-driven reporter gene is
activated by Pinl, and Pinl overexpression causes an increase in the levels of cyclin DI RNA in breast
cancer cell lines (Wulf et al., 2001). The effect is not a result of general transcription stimulation but
seems to occur by enhancing effects of Pinl on the transactivating activity of phosphorylated c-Jun
(Wulf et al., 2001). Thus, it seems that yet another aspect of transcriptional regulation is influenced by
Pin1, adding to its previously demonstrated genetic and physical interactions with HDAC components
and RNA Pol II CTD (Arevalo-Rodriguez et al., 2000; Morris et al., 1999; Myers et al., 2001; Wu et
al., 2000). Cyclin D1 expression is commonly upregulated in breast cancers (Bartkova et al., 1994;
Gillett et al., 1994), and despite its reputation as an oncogene, histological analyses and
epidemiological studies indicate that overexpression of cyclin DI is associated with positive prognosis
and responsiveness of breast cancers to endocrine therapy (Barnes and Gillett, 1998; Gillett et al.,
1996). This apparent contradiction might be due to cdk4/cyclin DI -dependent transcriptional
activation of cell cycle inhibitors such as p27 (Barnes and Gillett, 1998). Thus, Pinl upregulation may
oppose neoplastic progression by inducing cyclin D1 under circumstances in which the cyclin
promotes differentiation rather than proliferation.

The data in Xenopus support the developing and complementary view in the field that Pin1
might suppress cell proliferation as a negative regulator of mitotic entry (Crenshaw et al., 1998; Lu et
al., 1996; Shen et al., 1998). Addition of Pinl to interphase extracts stalls or disables entry into
mitosis. Pinl binding to known G2/M regulators, including phosphorylated Cdc25, provides a
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potential target for its theoretical action. Finally, the observation that depletion of Pinl binding
proteins from M phase extracts results in reduction of histone H1 kinase activity to almost interphase
levels is tantalizing despite the obviously non-physiologic experimental design. The apparent mitotic
arrest that is the result of essl deletion suggests a role for Pinl in mitotic exit, but in theory this could
be a secondary consequence of inappropriate mitotic entry. To ascertain the nature of Pinl's cell cycle
function, the Xenopus extract system was exploited to examine the consequences of Pinl depletion.

Extracts generated in the presence of calcium chelators remain cytostatic factor-arrested (CSF)
until the addition of exogenous calcium allows progression into anaphase. Therefore, CSF extracts,
once prepared can be subjected to various biochemical manipulations after which the ability to exit M
phase can be assessed. On the other hand, lysis of eggs in the presence of calcium renders the resulting
extract interphase in nature, and, again, manipulations can be performed prior to evaluating the
subsequent cell cycle transition, in this case mitotic entry.

This system for studying cell cycle regulation is especially suited to assessment of Pini 's cell
cycle function for several reasons. The gene's essential nature in yeast, in combination with the
protein's stability, confound attempts to dissect cell cycle function genetically, and as the studies were
begun conditional mutants allowing rapid inactivation of Pinl protein had not been characterized.
Even with the availability of such mutants, however, the Xenopus system provides a setting in which to
assess Pinl's cell cycle function independently of any effects that might result indirectly from its
effects on transcriptional regulation and RNA processing.

The mitotic arrest observed in the essi mutant yeast strain suggests a function for Pinl in
mitotic exit. To test this directly, CSF extracts were used to examine the consequences of removal of
Pinl on mitotic exit and DNA replication. When CSF extracts are immunodepleted of
Pinl (Figure 9A), PinI-depleted and mock-depleted extracts are equally capable of exiting M phase
(Figure 9B). Furthermore, Pinl-depletion has no effect on DNA replication (Figure 9C). Thus, in this
cell-free system, Pini appears not to be required for either S phase or the M/G 1 transition.

Alternatively, the mitotic arrest of yeast could be the consequence of a premature mitotic entry
triggered in the absence of Pinl. To examine the effects of Pinl depletion on the isolated G2/M
transition, cycling or interphase extracts were depleted of Pin1 and subsequently induced to enter M
phase either by enabling intrinsic oscillations or by addition of exogenous cyclin B 1 protein,
respectively. Microscopic examination of nuclei, coupled with measurement of Cdc2-cyclin B 1-
catalyzed histone H1 phosphorylation, revealed that both types of extract, when depleted of Pin1, enter
mitosis more rapidly than do control extracts (Figure 10). Although the absolute timing of mitotic
entry varies from extract to extract, removal of Pinl consistently accelerates the transition into M
phase.

The possibility exists that the premature mitosis in Pinl-depleted extract is due to the failure of
a negative regulatory influence at the G2/M transition. The duration of interphase in Xenopus extracts
can be prolonged by supplementing extracts with high concentrations of sperm chromatin, which
increases the time required for DNA synthesis (Dasso and Newport, 1990). The presence of
unreplicated DNA triggers the G2 replication checkpoint delay of mitotic initiation (Elledge, 1996;
Feilotter et al., 1992). The effects of low and high concentrations of sperm in Pinl-depleted or mock-
depleted extracts are presented in Figure 11. The higher DNA concentration causes a G2 delay in
mock-depleted extracts. However, this delay is greatly reduced in Pinl-depleted extracts. Thus, the
difference in timing of mitotic entry observed between mock-depleted and Pin 1-depleted extracts may
reflect the inability of Pinl-depleted extracts to arrest in G2 in response to unreplicated DNA. Notably,
when the concentration of DNA is low, the transition out of mitosis into interphase occurs normally
even without Pinl. In contrast, the Pinl-depleted extract supplemented with DNA to achieve a high
concentration of chromatin fails to exit mitosis. It is possible that the M phase arrest occurring in these
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extracts does so because of mitosis is initiated the presence of unreplicated DNA, and therefore M
phase failsafe mechanisms are triggered to prevent segregation of damaged chromosomes.

To test the hypothesis that the operation of the replication checkpoint requires Pinl, replication
was specifically suspended by addition of the DNA polymerase inhibitor, aphidicolin, to interphase
extracts. In mock-depleted extracts, aphidicolin treatment postpones mitotic entry as expected
(Figure 12). Depletion of Pinl from extracts or addition of caffeine, a treatment that, by inhibiting
ATM/ATR disables that component of G2 checkpoint function (Dasso and Newport, 1990; Patel et al.,
1997; Schlegel and Pardee, 1986; Zhou et al., 2000a), prevents the aphidicolin-induced cell cycle
delay.

That PinI is directly responsible for the failure of the replication checkpoint delay of mitotic
entry is indicated by the observation that supplementation of PinI -depleted extracts with recombinant
xPinl restores the G2 delay elicited by aphidicolin (Figure 13A, dashed line). This delay remained
caffeine-sensitive in the reconstituted extract (data not shown), attesting to the restoration of a
functional ATM/ATR-dependent checkpoint response. Furthermore, the catalytically inactive point
mutant of Pinl, xPinl C109A, does not complement the checkpoint defect (Figure 13A, asterisks),
indicating that the prolyl isomerase activity of the enzyme is essential for replication checkpoint
integrity in Xenopus.

It was important to determine whether the premature mitosis that occurs in the absence of Pinl
is indicative of more than a kinetic change in cell cycle progression. In all assays examined, mitosis
observed in PinI-depleted extract is indistinguishable from that seen in the presence of caffeine.
Hyperphosphorylation of Cdc25, increased HI kinase activity, and the appearance of MPM-2 epitopes
accompanies microscopically observed mitotic entry (Figure 13B and Figure 10). Therefore, Pinl is
not required for MPM-2 epitope generation per se, or for the ability of mitotic phosphoproteins to
regulate mitotic progression. Instead, precocious activation of Cdc25 may be the direct consequence
of Pinl removal.

It has been reported that Pinl antagonizes in vitro phosphorylation of the mitotic regulators,
Cdc25, Mytl and Weel by Cdc2/cyclin B (Patra et al., 1999). Although the ability of PinI to bind
mitotic phosphoproteins appears to be important for this inhibition, association alone is not sufficient
for endogenous Pinl function. While the xPinlc °9A mutant binds to Pini-binding proteins as well or
better than the wild type protein (Figure 8A), this mutant is incapable of restoring the checkpoint
response in Pinl -depleted extracts when added to achieve concentrations sufficient for
complementation by wild type xPinl. Furthermore, Xenopus laevis Pinl complements the lethality of
essi mutants in budding yeast, but the catalytically compromised mutant is inactive in the
complementation assay'. Together these observations indicate that PinI is functionally conserved and
that its catalytic activity is required for both its checkpoint role in Xenopus and its essential function in
S. cerevisiae.

Target-specific inhibition of Cdc2 activity may offer a biochemical mechanism for Pinl's role
in enabling the replication checkpoint. It has been suggested Cdc25 hyperphosphorylation by the
Cdc2/cyclin B I complex is directed by p 13/SUC I's affinity for Cdc25's N-terminal phosphoepitopes
(Landrieu et al., 2001). The targeting of Cdc2/cyclin BI, through its stable association with
p13/SUC1, to Cdc25 is competitively antagonized by Pinl binding to the phosphatase and disrupting
p 1 3/SUC 1-binding (Patra et al., 1999), potentially explaining the conflicting data regarding whether
Pinl association inhibits Cdc25 activity (Crenshaw et al., 1998; Shen et al., 1998; Stukenberg and
Kirschner, 2001; Zhou et al., 2000b). Thus, Pinl-mediated inhibition of Cdc25 hyperphosphorylation
likely acts in concert with 14-3-3-mediated cytoplasmic sequestration of the phosphatase, and perhaps

C. B. Wilcox, K. E. Winkler, A. R. Means and S. D. Hanes, unpublished data.
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with isomer-specific PP2A dephosphorylation of Cdc25's activating phosphorylations enabled by Pinl
(Zhou et al., 2000b), to prolong G2 by preventing functional interaction of Cdc25 with Cdc2 under
checkpoint conditions. This function is consistent with previous observations that G2 is temporally
extended when Pinl is over-expressed (Crenshaw et al., 1998; Lu et al., 1996; Shen et al., 1998).

In the absence of DNA perturbation, consequences of Pinl-removal may not be manifested;
this would explain the lack of gross cell cycle disruption in Pinl-null Drosophila and mouse mutants.
Demonstration of the essential role of Pinl in the caffeine-sensitive replication checkpoint establishes a
position for endogenous Pinl in the eukaryotic cell cycle regulatory network.G 2 checkpoints provide
failsafe protection in normally dividing cells (Elledge, 1996), but they also influence the genomic
instability common in cancers and may affect the efficacy of certain cancer therapies (Hartwell, 1992;
Maity et al., 1997; O'Connor, 1997; Piette and Munoz, 2000). Neoplastic transformation is
characterized by autonomous cell division, and many commonly-used therapeutic agents target
proliferative cells by capitalizing on their enhanced vulnerabilities to DNA damage. Typically, a cell
with damaged DNA will afford itself time for repair prior to mitosis by activating the cdc25-dependent
checkpoint in parallel with a second G2 checkpoint that functions through the activity of p53.
However, in the progression to oncogenic transformation cells frequently lose p53 function, rendering
the caffeine-sensitive checkpoint pathway critical for any chance at recovery from genetic lesions
(Toyoshima et al., 1998). Of course, the goal of the oncologic therapies is to prevent this recovery,
and to do so selectively. Disabling the cdc25-dependent G2 checkpoint would, in theory, sensitize p53-
/_cancer cells to DNA damage while sparing normally dividing cells that maintain functional p53
(Shapiro and Harper, 1999). Experiments in cultured cells demonstrate the potential efficacy of such a
strategy (Blasina et al., 1997; Suganuma et al., 1999).

Pinl may be an attractive target in this endeavor because we have shown that its catalytic
activity is required for the Cdc25-dependent G2 checkpoint. In accordance with this possibility is the
observation that several approaches used to reduce Pinl expression markedly induce apoptosis in
transformed cell lines, while untransformed cells are more mildly affected (Rippmann et al., 2000).
Mechanistically, Pinl seems to attenuate cdc25 activity by enhancing its dephosphorylation by PP2A,
and it is likely that the premature mitotic entry observed in the absence of Pinl is the manifestation of
promiscuous activity of cdc25. Thus, one would expect that the loss of Pinl function would be
especially notable when cdc25 is overexpressed, as it often is in breast cancer. The increased need for
Pinl in such a scenario may select for the overexpression of Pinl, itself, in many cancers as has been
documented here and elsewhere, further emphasizing the potential of this Pinl as a target for adjuvant
chemotherapeutics in cdc25-overexpressing cells.
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Key Research Accomplishments

1. Cloning of the X laevis homologue of Pin 1
2. Prokaryotic expression of recombinant xPinl and antibody generation
3. Demonstration of Pinl's ability to bind Cdc25 and structure-function analysis of the interaction
4. Evaluation of exogenous Pinl's influence on cell cycle progression in X laevis extracts
5. Demonstration that Pinl is not required for mitotic exit
6. Recognition that Pinl modulates the timing of mitotic entry
7. Demonstration that Pinl is required for the caffeine-sensitive replication checkpoint
8. Demonstration that this requirement relies on the enzymes prolyl isomerase activity
9. Recognition that premature mitosis in the absence of Pinl is characterized by the appearance of

hyperphosphorylated cdc25 and activate histone H1 kinase activity

Reportable Outcomes

1. Thesis: "Pinning down the Cell Cycle: An Examination Of G2/M Regulation By PIN1 And Its
Binding Partners," by Katharine Estelle Winkler, Department of Pharmacology, Program in Cell
and Molecular Biology, Duke University, Durham, North Carolina. Dissertation submitted in
partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of
Pharmacology in the Graduate School of Duke University, copyright 2001.

2. Manuscript: Katherine I. Swenson, Katharine E. Winkler, Anthony R. Means. Working title:
MLK3: A NIMA-like cell cycle regulated kinase localized near the centrosome. Submitted.

3. Manuscript: Katharine E. Winkler, Katherine I. Swenson, Sally Kornbluth, Anthony R. Means.
2000. Requirement of the Prolyl Isomerase Pinl for the Replication Checkpoint. Science, 287:
1644-1647. See Appendix A.

4. Manuscript: Jing Yang, Katharine Winkler, Minoru Yoshida, Sally Kornbluth. 1999.
Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25
nuclear import. EMBO, 18: 2174-2183. See Appendix B.

5. Abstract and Poster: Keystone Symposium: Cell Cycle 2001, January 2001.
6. Abstract and Poster: Era of Hope Department of Defense Breast Cancer Research Program

Meeting, June 2000.
7. Abstract and Poster: Keystone Symposium: Cancer, Cell Cycle and Therapeutics, January 2000.
8. Award Lecture: Harold M. Weintraub Graduate Student Award Symposium "Pinning Down the

Cell Cycle" Fred Hutchinson Cancer Research Center, Seattle, WA, May 2000.
9. Invited Talk: Biological Sciences Graduate Student Symposium "The Replication Checkpoint

Requires the Prolyl Isomerase, Pinl" Duke University, Durham, NC, October 1999.
10. Invited Talk: Pharmacology and Cancer Biology Departmental Retreat "The Replication

Checkpoint Requires the Prolyl Isomerase, Pinl" Duke University, Durham, NC, April 1999.
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Conclusions
Globally, in combination with published data from other laboratories, these studies imply a role

for isomerization in manifesting the effects of proline-directed phosphorylation that is a common
modification among mitotic regulators. Structural modulation of proteins that results from
phosphorylation is often invoked to explain the regulatory influence of this post-translational
modification. Phosphate attachment to amino acid side chains can directly affect secondary, tertiary,
and quaternary protein structure, as well as provide signature motifs recognized by protein binding
domains. The existence of a phosphate-directed peptidyl-prolyl cis-trans isomerase opens the
possibility that isomerization is another way in which phosphate causes changes in protein function. In
some cases, a regulated phosphorylation event might exert its influence in cooperation with protein
remodeling enzymes. The recognition that some proteins exhibit isomer-specific recognition of
phosphorylated sequences supports the likelihood that phosphorylation-directed prolyl isomerization is
a bonefide signaling mechanism.

In the context of short peptides, phosphorylation of serine/threonine-proline motifs has been
shown to stabilize the cis conformation of the peptide (Schutkowski et al., 1998). By limiting
spontaneous isomerization, phosphorylation may not only render a serine/threonine-proline site a Pinl
substrate, but also heighten the need for Pinl's catalytic influence on backbone dynamics by rendering
a proline resistant to immunophilin action (Yaffe et al., 1997). Known consequences of Pinl-mediated
isomerization include effects on target proteins' catalytic activity (Stukenberg and Kirschner, 2001;
Wulf et al., 2001), substrate preference (Patra et al., 1999), associative interactions (Lu et al., 1999a),
phosphorylation state (Liu et al., 2001; Zhou et al., 2000b), acetylation (Arevalo-Rodriguez et al.,
2000), and proteolysis (Hsu et al., 2001). Furthermore, the proline-directed p42 MAP kinase favors
substrates with a trans prolyl bond adjacent to the phospho-acceptor (Weiwad et al., 2000), and PP2A
dephosphorylates trans isomers preferentially (Zhou et al., 2000b). A role for phospho-
serine/threonine-directed prolyl isomerization in manifesting conformational changes induced by
phosphorylation could be widespread.

The restraining influence of phosphorylation on the conformation of prolyl peptide bonds
within proteins has not been clearly demonstrated. However, indirect evidence that the conclusions
from peptide assays accurately reflect protein biochemistry can be extracted from the experiments
addressing Pinl's effects on Cdc25 conformation (Stukenberg and Kirschner, 2001). These
researchers show that exposure of phosphorylated Cdc25 to sub-stoichiometric quantities of Pinl not
only directly affects the structure of the phosphatase as judged by limited protease digestion, but also is
required for its recognition by the MPM-2 antibody. If isomerization by Pinl is necessary to render a
phospho-serine/threonine-proline motif an MPM-2 epitope, the monoclonal antibody, itself, might
become a tool for identifying Pinl's mitotic targets. Furthermore, an MPM-2-directed phosphatase
activity has been partially purified from Xenopus oocyte extracts (Che et al., 1998). The activity was
not attributed to a known phosphatase, and future studies may identify this as a dedicated MPM-2
phosphatase. A conformation-dependent MPM-2 phosphatase would be an attractive candidate to
investigate in unraveling the mechanism by which Pinl negatively influences mitotic entry.

Currently, it is clear that Pinl has in an explicit G2/M regulatory role that requires its activity as
a peptidyl-prolyl cis-trans isomerase. The experiments described here are a starting point for what
promises to be an exciting investigation of cell cycle regulation by the mitotic kinases. Broader
implications may also present themselves as inquiries of these sorts lead to an appreciation of the
potential for proline isomerization in biological decision-making.
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Figure 1. Sequence of the Xenopus laevis PinI homologue.
(A) cDNA sequence obtained in three independent clones identified by low stringency
hybridization using human Pinl probe. (B) Amino acid sequence alignment of Pinl
homologues; identical and similar residues are shaded (dark and light, respectively).
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Figure 2. cDNA cloning and expression of xPinl.
(A) Ethidium bromide-stained RNA resolved in TAE/1% agarose (a) and 35S-methionine-
labeled protein separated by SDS-PAGE produced pBKCMV-xPinlclone 6 fromT3
polymerase-driven in vitro transcription (a) and subsequent in vitro translation (b). (B)
Coomassie blue staining of 1 gg recombinant GST-xPinl and cleaved xPinl purified from
bacteria.
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Figure 3. Pinl expression in Xenopus extracts.
(A) Immunoblot using anti-xPinl serum (diluted 5000-fold) of indicated quantities (ng)
purified recombinant xPinl and 0.5 tL Xenopus egg extract. (B) Immunoblots of PinI (a)
and cdc25 (b) expression and representation of histone HI kinase activity (c) in cycling
Xenopus extract.
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Figure 4. Pinl expression within and among mammalian tissues.
(A) Pinl immunoblot analysis of 75 [ig soluble protein extracts generated from adult (a)
and neonatal (b) mouse tissue: cerebrum (1); cerebellum (2); heart (3); kidney (4); liver
(5); large intestine (6); lung (7); muscle (8); pancreas (9); small intestine (10); spleen (11);
stomach (12); testis (13); thymus (14). (B) Membranes stained with coomassie blue
confirm equal loading except where degradation is apparent in (a)1 0 and, to lesser extent,
in (b)7 and (b)12. Regions exposed for (A) are indicated.
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Figure 5. Pinl staining of testis from wild type (a, c, and e) and Pinl- (b, d, and f) mice.
Brown stain, Pinl; green/blue stain, DNA; pachytene spermatocytes, arrows.
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Figure 6. Expression of Pini in primary human tumors.
Soluble extracts (75 rtg) of tumor (T) or adjacent normal (N) tissue samples from five
human colon (a), kidney (c), liver (e), and lung (g) cancers were immunoblotted for
Pinl. Pairs of samples were coded for unbiased analysis. Membranes stained with
coomassie blue are shown to the right of the appropriate immunoblot (b, d, f, and h),
with the exposure area indicated.
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FigureT7 Mitotic delay upon addition of recombinant xPinl to Xenopus extracts.
(A) Autoradiogram of phosphate incorporation into histone HlI and (B) representative
DNA staining in aliquots removed from cycling extracts at the indicated time (min)
following extract supplementation with demnembranated sperm chromatin, ATP
regenerating mix, and GST (a) or xPinlI (b) protein and transfer to 25'C. (C) Mitotic
index in S extract supplemented with chromatin, ATP regenerating mix, non-
degradable human cyclin Bl1, and GSTor xPinlI to final concentrations indicated
ranging form 5-fold to 100-fold over endogenous levels of 20 ng/gL).
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Figure 8. Cdc25 binding by xPinl.
(A) Immunoblots of endogenous Cdc25 bound to GST,
GST-xPinl, GST-W1 1,34A, or GST-C109A beads (a) or
present in (b) interphase (S) and M-phase (M) Xenopus f
extracts. (B) Autoradiograms of in vitro transcribed and
translated, 3 5S-methionine-labeled site mutants of
Cdc25Cl: wild type (a); T48V (b); T67V (c); T138V (d);
S205A (e); S285A (f); in rabbit reticulocyte lysate (retic
lysate), following incubation of retic lysate with Xenopus
M extract cytosol in the presence of ATP for 20 min at
25°C (+ M extract), or the material bound to GST or GST-
xPinl beads from twice the amount of retic loaded.
(C) Autoradiogram of similar experiment performed for multiple site mutants of
Cdc25Cl: wild type (WT); T48,67,138V (T3); T48,67,138V;S205,285A (T3S2).
* High protein concentrations in these lanes caused distortion.
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Figure 9. Exit from mitosis in Xenopus extracts lacking Pin 1.
(A) Immunoblot of Pinl in CSF extracts immunodepleted three times in succession
(10 , 20, 30). (B) DNA visualized at indicated times (min) following supplementation
of 3°depleted extracts with demembranated sperm chromatin, and ATP regenerating
mix, and 400 ltM CaC12. (C) Autoradiogram of a 32P-dCTP incorporated into DNA
by pulse labeling in extracts and resolved by agarose gel electrophoresis.
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Figure 10. Function for PinI in the regulation of the G2/M transition.
(A) Immunoblot confirming depletion of PinI from S extracts. (B) Autoradiogram
and (C) Phosphorimager quantification of histone HI kinase activity in aliquots of
3°-depleted extracts at indicated times (min) after supplementation with
demembranated sperm nuclei, ATP, and Acyclin BI. (D) Typical images of nuclei
from a separate but similar experiment.
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Figure 11. Potentiation of the Pinl depletion effect by addition of extra chromatin.
Mitotic index, monitored by fluorescence microscopy, in cycling extracts depleted of
Pinl and supplemented with ATP and 500 or 5000 nuclei/ltL..
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Figure 12. Requirement of Pinl for the checkpoint arrest in response to unreplicated DNA.
Mitotic index at specified time after Acyclin B 1 addition to immunodepleted cytosolic S
extract supplemented with membranes isolated from interphase egg extracts (1:1 0),
demembranated sperm nuclei, ATP regenerating mix, and aphidicolin (50 Vg/mL, except as
indicated, dotted line), in the presence (dashed line) or absence (solid lines) of caffeine (5
mM).
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Figure 13. Restoration of checkpoint function after addition of recombinant xPinl.
(A) Mitotic index of extracts treated as in Figure 4.4, and supplemented with xPinlI or
C1IO9A protein (100 ng/iL). (B) lInmunoblots showing xPinl1, cdc25, and MPM-2
reactivity in the above extracts following 120 min in the presence of Acyclin B 1.
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Appendix A

REPORTS

[K. Kusano, R. Miledi, J. Stinnakre, J. Physiof (London)ofte ensSltinFg2), narespectively ooo equirement of the Prolyl
328, 143 (1982)] and 101 mM (based on the fittingof the Nernst plot in Fig. 2E), respectively.

13. However, the possibility exists that Kcv functions as a
subunit, which up-regulates the activity of endogenous Isom erase NO for the
KI channels in oocytes. To exclude this possibility, we
constructed a site-specific mutation in the selectivity
filter sequence of Kcv by replacing Phe 66 

(F66) with Ala(A). If Kcv is a channel protein, the mutant protein

should, by analogy to the Shaker channel, form a chan- Katharine E. Winkler, Katherine I. Swenson, Sally Kornbluth,
nel unable to conduct K- currents (1). Using standard
voltage-clamp assays, nine oocytes expressing KcvF66A Anthony R. Means*
had currents similar in kinetics to those of H20-injected
oocytes with no additional K÷ conductance compared The peptidyl-prolyl isomerase Pin1 has been implicated in regulating cell cycle
to the H.0-injected control cells. Hence, the absence of
a prominent K'-selective current in KcvF66A-express- progression. Pin1 was found to be required for the DNA replication checkpoint
ing oocytes confirms that Kcv functions as a channel in Xenopus laevis. Egg extracts depleted of Pin1 inappropriately transited from
protein in oocytes and that the observed currents are the G2 to the M phase of the cell cycle in the presence of the DNA replication
not due to activation of endogenous channel proteins.

14. G. Yellen, Curr. Opin. Neurobiol. 9, 267 (1999); D. M. inhibitor aphidicolin. This defect in replication checkpoint function was reversed
Papazian, Neuron 23, 7 (1999). after the addition of recombinant wild-type Pinl, but not an isomerase-inactive

15. C. Wan& K. Takeuchi, L H. Pinto, R. A. Lamb,J. Virol, mutant, to the depleted extract. Premature mitotic entry in the absence of Pin1
67, 5585 (1993).

16. Concentration for half-maximal inhibition estimated was accompanied by hyperphosphorylation of Cdc25, activation of Cdc2/cyclin
by fitting Michaelis-Menten type kinetics to data. B, and generation of epitopes recognized by the mitotic phosphoprotein an-

17. The adamantyl group of amantadine is believed to tibody, MPM-2. Therefore, Pinl appears to be required for the checkpoint
interact with the hydrophobic lining of the M2 pore, delaying th
whereas the ammonium group forms H bonds with e onset of mitosis in response to incomplete replication.
the imidazole ring of His

37 [C. S. Gandhi et at., J. Biol.
Chem. 274, 5474 (1999)]. The peptidyl-prolyl isomerase (PPIase) Pinl with microtubules in brain extracts (17). The

18. Voltage-dependency of inhibition by BaZl was ana- affects cell cycle transitions. Originally identi- relation of these functions to control of the cell
lyzed quantitatively based on a Woodhull block mod-
el [A. M. Woodhullj. Gen. Physiol. 61,687 (1973)] by fled in yeast-two hybrid screens as a protein cycle remains unclear, and events regulated by
fitting data of relative block to that binds to and suppresses the toxicity of the PinI that influence the cell cycle have yet to be

____b___ fungal mitotic kinase Never In Mitosis A defined. We examined Pin) function in Xenopus
k( (NIMA), Pinl is present in all eukaryotic cells egg extracts that are transcriptionally inactive,1 + i-e(zAFIRr)B, examined (1-4). Although Pint is an abundant thus allowing us to avoid possible effects of

where /o is control and / blocked current, b,,,, the protein, the expression of which does not Pinl on transcriptional events that might affect
maximal block, B, the concentration of Ball, k0 the change during the cell cycle (Fig. 1), it clearly cell cycle progression. This model system pro-
dissociation constant of the blocking reaction at volt-
age = 0 mV, 8 the fraction of the electrical field influences cell cycle dynamics. Overexpression vided the opportunity to focus on specific cell
crossed by Ba2+, and z = 2 the valence of the of Pinl is deleterious in the budding yeast cycle transitions and thereby evaluate the con-
blocking ion. R, T, and F have their usual thermody- Saccharomyces cerevisiae and causes a G2 ar- tribution of Pinl protein to each transition.
namic me = 0.9 0.03, and ki = 660 fo 12 m M a n = rest in HeLa cells and in Xenopus laevis egg The Xenopus Pinl homolog was isolated

3 oocytes). extracts, suggesting that the protein negatively by low-stringency hybridization screening of
19. R. Z. Sabirov, T. Tominaga, A. Miwa, Y. Okada, S. Oiki, regulates the initiation of mitosis (1, 3). The a Xenopus gastrula cDNA library with a hu-

J. Gen. Physiol. 110, 665 (1997); R. C. Shieh, J. C. budding yeast Pin) homolog ESS) is encoded man PinI probe (18). The inserts of three
Chang, J. Arreola, Biophys. J. 75, 2313 (1998); J. M.
Owen, C. C. Quinn, R. Leach, J. B. Findlay, M. R. by an essential gene; essl deletion mutants independently isolated clones each encoded
Boyett, Exp. Physiol. 84, 471 (1999). exhibit terminal mitotic arrest, suggesting a re- an identical open reading frame (xPinl). The

20. J. L. Van Etten, D. E. Burbank, Y. Xia, R. H. Meints, quirement for Pinl in mitotic exit (4, 5). In predicted polypeptide sequence shared 89%
Virology 126, 117 (1983).

21. About 1200 plaque-forming units of virus PBCV-1, or contrast, Pin) is not critical for any readily identity with human Pin) and >45% identity
a small plaque variant P1210 [D. Landstein, D. E. observable function in Drosophila melano- with each of the eukaryotic parvulins over its
Burbank, J. W. Nietfeldt, J. L. Van Etten, Virology 214, gaster (2) or mouse (6). full length of 159 residues. Recombinant
413 (1995)], were mixed with 108 host cells (Chlor-
ella strain NC64A) and warm MBBM top agar con- In vitro, Pinl binds a subset of mitotic pro- xPinl was purified from bacteria (Fig. IA)
taining various concentrations of ion-channel inhibi- teins containing a motif composed of a phos- and used to generate polyclonal antiserum
tors. The mixture was layered onto MBBM nutrient phoserine or phosphothreonine residue followed that recognized a single protein of 18 kD in
agar (22). After incubating for 2 days at 25°C, viral
plaques were counted. Potassium concentration of by a proline residue (3, 7-9) that is also recog- Xenopus egg extracts (Fig. 11B). The concen-
MBBM growth medium was 1.3 mM. nized by the MPM-2 monoclonal antibody (10, tration of Pinl in egg extracts was estimated

22. J. L. Van Etten, unpublished results. 11). Among these potential cell cycle targets, to be 20 ng/ltl, or -1 p.M, and this did not
23. R. A. Lamb and L. H. Pinto, Virology 229, 1 (1997).
24. J. Kyte and R. F. DootittleJ. MoL. Biol. 157, 105 (1982). only substoichiometric interaction of Pinl with change throughout the cell cycle (Fig. 1C).
25. Channel nomenclature according to (7) and A. Wei, T. the mitotic phosphatase Cdc25C has been dem- The mitotic arrest observed in yeast lacking

Jegla, L. Salkoff, Neuropharmacology 35, 805 (1996). onstrated in vivo (12); thus, it is unclear whether ESS1 suggested a function for the protein in
26. J. D. Thompson, D. G. Higgins, T. J. Gibson, Nucleic the numerous phosphoproteins associated with mitotic exit. To test this directly we used cyto-

Acids Res. 22, 4673 (1994); N. Saitou and M. Nei,
Mot. Biol. Evol. 4, 406 (1987). Only the pore region Pin) in vitro are biologically relevant targets for static factor-arrested egg extracts (CSF extracts)
and flanking transmembrane segments were used for Pin) in vivo. Endogenous PinI protein has been (19) to examine the consequences of the remov-
the phylogenetic comparisons. For Kir and Kv chan- implicated in transcriptional regulation and al of Pin) on mitotic exit and DNA replication.
nets, consensus sequences of the appropriate sub-
family were used in the calculations. RNA processing in yeast (5, 13-16) and in CSF extracts, generated in the presence of

27. We thank H. Terlau, D. Gradmann, and M. Blatt for mediating the association of phosphorylated tau EGTA to prevent calcium-dependent degrada-
helpful discussions. Supported in part by MURST in tion of cyclin B, exhibit high H) kinase activity
the framework of Cofin-99, NIH grant GM32441 to
J.V.E., Small Business Innovative Research grant Department of Pharmacology and Cancer Biology, and other hallmarks of normal M phase arrest.
GM41333 to M.N., Telethon grants (#971 and Duke University Medical Center, Box 3813, Durham, Calcium addition, which recapitulates a physio-
#296.bi) to D.D. and A.M., and a traveling grant by NC 27710, USA. logical consequence of fertilization, causes the
the SmithKline Beecham foundation to B.P. *To whom correspondence should be addressed. E- extracts to proceed into interphase, character-
3 November 1999; accepted 13 January 2000 mail: means0O1@mc.duke.edu ized by nuclear envelope formation, chromatin
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decondensation, and initiation of replication, expected (Fig. 4A). Depletion of Pint from presence of caffeine. Hyperphosphorylation
When CSF extracts were immunodepleted of extracts or addition of caffeine [a treatment that of Cdc25, increased HI kinase activity, and
Pint (20), we found that Pinil-depleted and disables the replication checkpoint (22, 25-27)] the appearance of MPM-2 epitopes (Figs. 3A
mock-depleted extracts were equally capable of prevented the aphidicolin-induced cell cycle de- and 4C) accompanied microscopically ob-
exiting the M phase (Fig. 2, A and B). Further- lay. Supplementation of Pinl-depleted extracts served mitotic entry in both cases. Therefore,
more, Pint depletion had no effect on DNA with recombinant xPinl restored the G2 delay Pint is not required for MPM-2 epitope gen-
replication (Fig. 2C). Thus, in this cell-free sys- elicited by aphidicolin (Fig. 4B), and the delay eration or for the ability of these phosphopro-
tern, Pinl appears not to be required for either S remained caffeine sensitive in the reconstituted teins to regulate mitotic progression. Instead,
phase or the M to G, transition. extract (28). This indicated that PinI itself is an precocious activation of Cdc25 may be the

Mitotic arrest observed in essl mutant yeast essential component of the replication check- direct consequence of Pint removal.
could be the consequence of a premature mi- point in Xenopus. Recently, it was reported that Pint antag-
totic entry triggered in the absence of Pint. To Pinl's effects on cell cycle kinetics might onizes in vitro phosphorylation of the mitotic
examine the effects of Pint depletion on the be mediated through its established associa- regulators Cdc25, Mytl, and Weel by Cdc2/
isolated G2 to M transition, we used both inter- tion with mitotic phosphoproteins (3, 12). For cyclin B (29). Although the ability of Pin] to
phase extracts that were induced to enter M this reason, we examined the status of several bind mitotic phosphoproteins appears to be
phase by the addition of exogenous cyclin B Pinl-binding proteins in extracts depleted of important for this inhibition, association
protein, and cycling extracts, which intrinsically Pinl. In all of our assays, the premature alone is not sufficient for endogenous Pint
oscillate between S and M phases of the cell mitosis observed in Pint1-depleted extract was function. We introduced a point mutation
cycle (21). Microscopic examination of nuclei, indistinguishable from that occurring in the [Cys' 09 -- Ala109 (C109A)] into Xenopus
coupled with the measurement of Cdc2-cyclin
Bl-catalyzed histone HI phosphorylation, re-
vealed that both types of extract, when depleted pus laevis Pin honolog. f(A) Re- A X
of Pint, entered mitosis more rapidly than did combinant xPinl was puriie ' Recombinant xPinl (ng-
control extracts (Fig. 3, A through D). Although from bacteria as a glutathione 6•kD 100 50 25 12.5 6.3 3.1 X kD-4 -97.. ............................... 4"-'48
the absolute timing of mitotic entry varied from S-transferase (GST)-xPinl fu- 4-66,97-48
extract to extract, removal of Pint consistently sion protein and eluted by cleav- -4-35
accelerated the transition into M phase. age from the GST with throm- + 4- : --28

We explored the possibility that the prema- bin. Coomassie blue staining of 1 31 21tLg of each indicated protein 4 1 a*
ture mitosis in PinI-depleted extract was due to separated by SDS-polyacryla- r n 21
the failure of a negative regulatory influence at mide gel electrophoresis is d^ - 14
the G2 to M transition. The duration of inter- shown. (B) Using antiserum to
phase in Xenopus extracts can be prolonged by xPinl (diluted 5000-fold), we C Minute: 0 10 20 30 40 50 60 70 80 90 100 110 120

supplementing extracts with high concentra- recognized a single protein in anti-Pint
tions of sperm chromatin, which increases the Xenopus egg extract; 0.5 Ipl of -

extract was loaded in lane X. (C) Histone HI I
time required for DNA synthesis (22). The The Pini content in Xenopus ex- Kinase Activit
presence of unreplicated sperm DNA triggers tracts (1 i.l extract per lane) was
the G2 replication checkpoint that delays mitot- visualized by immunoblot over the course of two cell cycles, as assessed by histone H1 kinase
ic initiation by preventing activation of Cdc2 activity (35) and indicated schematically below the gel lanes.
(22-24). The effects of low and high concen-
trations of sperm in Pinl-depleted or mock- Fig. 2. Exit from mitosis in Xen- A Mock-depleted Pinl-depleted
depleted extracts were compared (Fig. 3D). The opus extracts lacking Pini. (A) 1° 2° 3o 1° 2° 30

higher DNA concentration caused a G2 delay in Immunoblot of Pin1 remaining
in CSF extracts (33, 36) after a

mock-depleted extracts. However, this delay each stage of immunodepletion. anti-xPin-
was greatly reduced in Pinl-depleted extracts. Three successive treatments (10,
Thus, the difference in timing of mitotic entry 20, and 30) removed >95% of B
observed between mock-depleted and Pinl-de- Pini (20). (B) 30 depleted ex- Time :00 :35 1:05
pleted extracts may reflect the inability ofPinl- tracts were supplemented with
depleted extracts to halt mitotic entry in the demembranated sperm chroma- Mock-

presence of unreplicated DNA. Notably, when triphosphate (ATP) regenerating Depleted
the concentration of DNA was low, the transi- mix (32) and released from CSF
tion out of mitosis into interphase occurred arrest with 400 I.LM CaCd2. At
normally, even without Pint. In contrast, the various times, measured with re- Pint-
Pinl-depleted extract that was supplemented spect to the time of CaCl2 addi- *pU.with DNA to achieve a high concentration of tion in hours and minutes, per- Depletedtions of the extract were with-
chromatin failed to exit mitosis. It is possible drawn, diluted 1:1 with Hoechst
that the M phase arrest in these extracts occurs 33258 [10 tg/ml in 26% form- C
because mitosis is initiated in the presence of aldehyde, 0.2 M sucrose, and 10 Time :00 :30 1:00 1:30 2:00 2:30
unreplicated DNA, and therefore, M phase fail- mM Hepes (pH 8.0)], and exam- Mock-
safe mechanisms are triggered to prevent seg- ined by fluorescence microsco- ,4*: %t
regation of damaged chromosomes, py. (C) DNA replication was de- Depleted

tected by pulse labeling of DNA
To test the hypothesis that the operation of in extracts with U

32 P-deoxycy- Pint-
the replication checkpoint requires Pint, we sus- tidine 5'-triphosphate, agarose Depleted Mae
pended replication with the DNA polymerase gel electrophoresis, and autora-
inhibitor aphidicolin. In mock-depleted extracts, diography, as described (22).
aphidicolin treatment postponed mitotic entry as "2P-dCTP-labeled DNA
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Pint that compromised the prolyl isomerase 4D). This mutant was incapable of restoring sufficient for complementation of the check-
activity of the enzyme by >90% (30) without the checkpoint response in Pinl-depleted ex- point defect by wild-type xPinl (Fig. 4B).
diminishing its protein binding avidity (Fig. tracts when added to achieve concentrations Furthermore, Xenopus Pint complements the

A B 0 minutes 110 D 100 9l- a -"

S.."• Pinl-depleted • :

4 14"3 Mock-depleted i . 0

C 60
" 7 Pin-depleted I

Mock-depleted
6- 40

""5 7

20
:E 4

3 ~01
0 40 80 120 160

i2 2 Time (minutes)

Fig. 3. Function of Pini in the regulation of the G2 to M phase transition. Interphase
o extracts (37) were depleted of Pini (A), and progression of 30 extracts through the

00 .cell cycle was monitored [after supplementation with 100 demembranated sperm
0 .nuclei per microliter, ATP regenerating mix, and His-tagged human cyclin B1 (34, 38)];

20 40 60 80 100 120 portions of the extract were frozen and subsequently assayed for histone H1 kinase
Time (minutes) activity (35). (B) The labeled substrate was detected by autoradiography and (C)

quantified with a Molecular Dynamics Phosphorlmager. (D) Cycling extracts (21) were
depleted of Pin1 (squares) or mock depleted (circles) and supplemented with ATP regenerating mix and 100 demembranated sperm nuclei per
microliter (open symbols) or 500 nuclei per microliter (solid symbols). The mitotic index was monitored by fluorescence microscopy. Each of these
experiments is representative of our observations in several extracts.

Fig. 4. Requirement Of A 100  A B
Pin1 for the checkpoint o100
arrest in response to un-
replicated DNA. (A) De- 80
pleted interphase cy-
tosol (37) was supple- ..

mented with mem- " 60
branes isolated from . I
cells in interphase • 60
(1:10), demembranated 40
sperm nuclei (200 nuclei R/
per microliter), and ATP :3 40 I
regenerating mix Dot- 4
ted fine with triangles, 2 Z

mock depletion; drdes, 20
mock depletion and 0aphidicolin (50 tg/iJp); 0 20 40 60 80 100 120
squares, Pin1 depletion *
and aphidicolin; dashed Time (minutes) 0
line with triangles, mock 0 20 40 60 80 100 120
depletion, aphidicolin, and caffeine (5 mM). Nucear morphology was monitored over time Time (minutes)
after the addition of nondegradable His-tagged human AcydinB1 (34, 38). (B) Restoration
of checkpoint function after the addition of recombinant xPinl. Interphase cytosol was depleted of Pini and C D
treated as in (A). Pinl-depleted extract was supplemented with xPinl (100 ng/tpl) (prepared as in Fiar 1A, this Caffeine: - . +
concentration did not affect cell cycle kinetics in depleted extracts not treated with aphidicolin. At this Depletion
concentration, the PPlase-inactive mutant (C109A) did not complement the checkpoint defect (asterisks). antibody: IgG Pinl IgG
Diamonds, mock depletion, aphidicolon, and caffeine- drdes, mock depletion and aphidicolln; triangles, Pin1
depletion and aphidicolin; squares, Pin1 depletion, aphidicolin, and xPinl (100 ng/il); asterisks, Pin1 depletion, anti-xPinl *& 0 anti-edc25
aphidicolin, and C109A (100 ng/pl). (C) Immunoblots showing xPinl, Cdc25, and MPM-2 reactivity (39) at the
120-min time point in extracts of the assay depicted in (B). The appearance of nudear mitosis occurred anti-cdc25 i 99
simultaneously with phosphorylation of Cdc25, activation of H1 kinase activity, and generation of MPM-2
epitopes throughout the time course. (D) Wild-type and C109A xPinl each bind hyperphosphorylated Cdc25
in M phase Xenopus extracts. GST-fusion proteins bound to glutathione-Sepharose were incubated with M anti-MPM-2
phase cytosol at 40C for 1 hour. Beads were washed five times, and bound Cdc25 was detected by
immunoblotting. •W-
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lethality of essl mutants in budding yeast, but 21. A. W. Murray and M. W. Kirschner, Nature 339, 275 ml). Lysis, centrifugal clarification, and collection of the

the C109A mutant is inactive in the comple 2 D1989). cytoplasmic fraction were carried out as described by
t)22. M. Dasso and J. W. Newport, Cell 61,811 (1990). Blow (33).mentation assay (31). Together, these obser- 23. L H. Hartwell and T. A. Weinert, Science 246, 629 37. C. Smythe and J. W. Newport, Methods Cell Biol. 35,

vations indicate that Pinl is functionally con- (1989). 449 (1991).

served and that its catalytic activity is re- 24. s. J. Eltedge, Science 274, 1664 (1996). 38. Recombinant baculoviruses encoding His-tagged hu-
quired for its checkpoint role in Xenopus and 25. R. Schlegel and A. B. Pardee, Proc. Natl. Acad. Sci. man cyclin Bls were gifts from D. 0. Morgan. Purl-

U.S.A. 84, 9025 (1987). fication was carried out as described by Kumagai and
its essential function in S. cerevisiae. 26. - , Science 232, 1264 (1986). Dunphy (34). Each extract required titration with

Pin1 participates in the replication check- 27. A. Kumagai, Z. Guo, K. H. Emami, S. X. Wang, W.G. cyclin B to determine the appropriate concentration

poinDin a manner requiring its catalytic activity. 28. Dp E . Cell Brol. 142, 1559 (1998). for observing effects on cell cycle timing.
point Kaev . . Winkler, K. I. Swenson, . Korbluth, A. R. Means, 39. The Cdc25 antibody was a gift from E. Shibuya. TheTarget-specific inhibition of mitosis-pmmoting unpublished data. MPM-2 antibody was purchased from Upstate Bio-
kinase activity provides a biochemical mecha- 29. D. Patra, S. X. Wang, A. Kumagai, W. G. Dunphy, technology (Lake Placid, NY).

n. Biol. Chem. 274, 36839 (1999). 40. We thank J. Yang for generous advice regarding these
nism for Pinl's role in enabling the replication 30. K. E. Winkler, S. N. Daigle, D. G. Crenshaw, A. R. e th vna J. Yang for he witheth
checkpoint. Pinl could mediate inhibition of Means, unpublished data. experiments; E. Evans and J. Yang for help with meth-

Cdc25 hyperphosphorylation and act in concert 31. C. B. Wilcox, K. E. Winkler, A. R. Means, S. D. Hanes, o likar, R. Abraham, J. S orcan s upperoa
unpublished data S. Shenolikar, R. Abraham, E. Corcoran, S. Lemrow, and

with 14-3-3-mediated cytoplasmic sequestra- 32. A. W. Murray, Methods Cell Biol. 36, 581 (1991). R.Winkler for their thoughtful comments on the manu-

tion of the phosphatase to prolong the G2 phase 3 A. W. Mura, eh Cell Biol. 36, 581 (1991). script; and J. Joseph and C. Kahl for provocative discus-tisnctional interaction of Cdc25 34. J. J. Blow,J. Cell giol. 122, 993 (1993). sions during the course of the studies. Supported by
by preventing fA. Kumagai and W. G. Dunphy, Mol. Biol. Cell 6,199 NIH grant CA 82845 to A.R.M., by grants from Glaxo-
with Cdc2 under checkpoint conditions. This (1995). Wellcome (A.R.M. and S.K.), and by a grant from the
function is consistent with previous observa- Not. Cell b, 273 (1994). American Cancer Society to S.K. S.K. is a Scholar of theBiol Cel 5 273(194).Leukemia Society of America and K.E.W. is a recipient of

tions that the G2 phase is prolonged when Pin1 36. To prepare CSF extracts, eggs were collected, dejellied, predoctoral fellowships from the NSE and the U.S.

is overexpressed. In the absence of DNA per- and washed as described by Murray (32), followed by a pre ntof fe nse.

final wash and lysis in 50 mM KC(, 50 mM Hepes-KOH Department of Defense.
turbation, consequences of Pinl removal may (pH 7.6), 5 mM MgCl2, 5 mM EGTA, 2 mM 3-mercap-
not be manifested; this would explain the lack toethanol, 50 mM sucrose, and cycloheximide (50 mg/ 31 August 1999; accepted 20 January 2000

of apparent phenotype in Pin t-null metazoans.
Our demonstration of the essential role of Pinl
in the replication checkpoint establishes a posi- Requirem ent of
tion for endogenous Pint in the eukaryotic cell the inositoi
cycle regulatory network. Trisphosphate Receptor for
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Maintenance of G2 arrest in the Xenopus oocyte: a
role for 14-3-3-mediated inhibition of Cdc25 nuclear
import

Jing Yang, Katharine Winkler, In the oocyte, Cdc2-cyclin B complexes are stockpiled
Minoru Yoshida' and Sally Kornbluth 2  in an inactive form, poised for progesterone-induced

activation. Phosphorylation of the Cdc2 subunit at two
Department of Pharmacology and Cancer Biology, Duke University negative regulatory sites, Thrl4 and Tyrl 5, is primarily
Medical Center, C366 LSRC, Research Drive, Box 3686, Durham, responsible for the inactivity of the stored complexes
NC 27710, USA and 'The Department of Biotechnology, University of
Tokyo, Japan (Cyert and Kirschner, 1988; Gautier and Maller, 1991;

Kobayashi et al., 1991). In somatic cells, phosphorylation2 Corresponding author of Tyr15 is catalyzed by two related kinases: a nuclear
e-mail: kornb00l@mc.duke.edu kinase called Weel, and a cytoplasmic, membrane-associ-

Cdc2-cyclin BI in the G2-arrested Xenopus oocyte is ated kinase called Mytl [Mytl also phosphorylates Thrl4;

held inactive by phosphorylation of Cdc2 at two nega- reviewed in Coleman and Dunphy (1994) and Lew and

tive regulatory sites, Thrl4 and Tyrl5. Upon treatment Kornbluth (1996)]. However, Weel appears to be entirely

with progesterone, these sites are dephosphorylated by absent from Xenopus oocytes, so MytI is thought to be

the dual specificity phosphatase, Cdc25, leading to primarily responsible for phosphorylating Cdc2 in these

Cdc2-cyclin BI activation. Whereas maintenance of cells (Murakami and Vande Woude, 1998). It has recently

the G2 arrest depends upon preventing Cdc25-induced been reported that progesterone treatment leads to inactiva-

Cdc2 dephosphorylation, the mechanisms responsible tion of Myt I, through a MAPK-induced activation of the

for keeping Cdc25 in check in these cells have not yet kinase p90rsk (Palmer et al., 1998). Mytl physically
boeepn g described.25 He wec re that dcs inthave not ye associates with the active hyperphosphorylated form ofbeen described. Here we report that Cdc25 in the G2- rsk and phosphorylation of Mytl by rsk inhibits Mytl
arrested oocyte is bound to 14-3-3 proteins and that and Phosphoryation of Mytl brkn is thprogsteonetreatment abrogates this binding. We activity. Presumably, inactivation of Myti allows the
progesterone tedephosphorylation of Cdc2 Thrl4 and Tyrl5, leading to
demonstrate that Cdc25, apparently statically localized MPF activation (Atherton-Fessler et al., 1994; Kornbluth
in the cytoplasm, is actually capable of shuttling in et al., 1994; Mueller et al., 1995). Dephosphorylation of
and out of the oocyte nucleus. Binding of 14-3-3 protein Thrl4 and Tyrl5 on Cdc2 is catalyzed by the dual
markedly reduces the nuclear import rate of Cdc25, (Thr/Tyr) specificity phosphatase, Cdc25 (Dunphy and
allowing nuclear export mediated by a nuclear export Kumagai, 1991; Gautier et al., 1991; Strausfeld et al.,
sequence present in the N-terminus of Cdc25 to pre- 1991; Millar and Russell, 1992). In somatic cells, Cdc25
dominate. If 14-3-3 binding to Cdc25 is prevented alternates between an interphase form with low activity
while nuclear export is inhibited, the coordinate nuclear and a hyperphosphorylated mitotic form with high activity.
accumulation of Cdc25 and Cdc2-cyclin B1 facilitates Oocyte maturation is also accompanied by Cdc25 hyper-
their mutual activation, thereby promoting oocyte phosphorylation (as evidenced by a shift in the electrophor-
maturation. etic mobility of Cdc25) and activation (Izumi et al., 1992;
Keywords: 14-3-3 protein/Cdc2-cyclin B1/Cdc25/oocyte Kumagai and Dunphy, 1992; Hoffmann et al., 1993).
maturationlXenopus Although physiologically distinct from the G2 arrest of

the oocyte, the checkpoint-induced G2 arrest of somatic
cells in response to DNA damage or stalled DNA replica-

Introduction tion also involves the suppression of pre-formed Cdc2-
cyclin B complexes through phosphorylation of Cdc2 at

Xenopus oocytes are physiologically arrested in G2 of Thrl4 and Tyrl5 (Enoch and Nurse, 1990; Enoch et al.,
meiosis I. Upon treatment with progesterone, these oocytes 1992; Smythe and Newport, 1992). Several groups have
undergo meiotic maturation, leading to breakdown of the recently demonstrated that checkpoint-activated kinases
nuclear envelope (germinal vesicle breakdown; GVBD), phosphorylate Cdc25 at a critical regulatory site (Ser216
chromosome condensation and spindle formation. Whereas of human Cdc25C or Ser287 of Xenopus Cdc25; Peng
many of the molecular details of this process have yet to be et al., 1997; Kumagai et al., 1998a; Zeng et al., 1998).
elucidated, it is clear that obligatory steps in progesterone- This phosphorylation creates a binding site for members
induced oocyte maturation include translation of mRNA of a family of small acidic proteins collectively called
encoding the mos protein kinase, consequent activation of 14-3-3 proteins (Peng et al., 1997; Kumagai et al., 1998b;
a mitogen-activated protein kinase (MAPK) cascade and Zeng et al., 1998). Binding by 14-3-3 seems to functionally
activation of maturation promoting factor (MPF), 'inactivate' Cdc25, and is critical for maintaining the
consisting of a Cdc2 kinase catalytic subunit complexed checkpoint-induced G2 arrest. Interestingly, 14-3-3 binding
to a B-type cyclin (Masui and Markert, 1971; Sagata does not alter Cdc25 activity assayed in vitro, suggesting
et al., 1989; Kanki and Donoghue, 1991; Nebreda and that 14-3-3 somehow sequesters Cdc25, perhaps altering
Hunt, 1993; Shibuya and Ruderman, 1993; Kosako its subcellular localization to prevent access of Cdc25 to
et al., 1994). the Cdc2-cyclin B substrates (Peng et al., 1997).

2174 © European Molecular Biology Organization



Maintenance of G2 arrest in the Xenopus oocyte

Factors which modulate the subcellular localization of X PW.GVBD 11=tiase IMIC
Cdc2-cyclin B complexes may also contribute to the Oracs Pxtr.act in•rV eradM

maintenance of DNA-responsive checkpoint-induced cell- 2 r -

cycle arrest (Jin et al., 1998; Toyoshima et a., 1998). We
and others have recently shown that Cdc2-cyclin B
complexes, which appear to be statically localized to the a a -* •. .... , 14-3-36

cytoplasm during interphase, actually shuttle continuously Fig. 1. Xenopus Cdc25 binds to 14-3-3 e in oocyte extracts andin and out of the nucleus, where they might in some way Fg .XnpsCc5bnst 433ei oyeetat n
I ainterphase egg extracts. Extracts were prepared from untreated

'read' the status of the DNA (Hagting et al., 1998; Xenopus oocytes, oocytes undergoing progesterone-induced GVBD,
Toyoshima et al., 1998; Yang et al., 1998). During Xenopus eggs arrested in mitosis or Xenopus eggs released into

interphase, nuclear export of cyclin BI, mediated by the interphase. Two microliters of each extract was subjected to

nuclear export receptor CRM1, predominates over nuclear SDS-PAGE and immunoblotted with anti-14-3-3 e antibody (first four
lanes). In addition, 60 V11 of each extract was immunoprecipitated with

import. However, at the G 2/M transition, phosphorylation either control IgG or anti-Cdc25 sera. Immunoprecipitated proteins

of cyclin BI in the region of its nuclear export sequence were analyzed by SDS-PAGE followed by Western blotting with anti-
(NES) prevents nuclear export, thereby fostering the 14-3-3 E antibody. 14-3-3 c coprecipitated with Cdc25 only in the

nuclear accumulation of Cdc2-cyclin B 1 required for the untreated oocyte and interphase egg extracts.

nuclear events of mitosis (Li et al., 1995, 1997; Yang
et al., 1998). Although it has not been demonstrated that the nucleus just prior to mitosis, at least in some somatic
the DNA damage or replication checkpoints directly cells (Seki et al., 1992). Also like cyclin B1, Cdc25 is
regulate cyclin B localization, there are data to suggest almost entirely cytoplasmic in the G2-arrested Xenopus
that this may be the case. Indeed, forcibly localizing oocyte (Izumi et al., 1992; Yang et al., 1998). We have
cyclin B1 to the nucleus by appending a strong nuclear recently shown that cyclin B1 in fact shuttles in and out
localization sequence, or by inactivating its nuclear export, of the germinal vesicle (GV), leading us to suspect that
compromises checkpoint function (Jin et al., 1998; the apparently static localization of Cdc25 belied its ability
Toyoshima et al., 1998). to shuttle in and out of nuclei. To test this possibility, we

In this report, we show that Cdc25 in the G2-arrested monitored Cdc25 localization after treating oocytes with
Xenopus oocyte is complexed to 14-3-3 proteins, and leptomycin B, an inhibitor of CRMl-mediated nuclear
that this binding is abrogated by progesterone treatment. export (Fornerod et al., 1997; Neville etal., 1997; Ossareh-
Further, we demonstrate that the apparently cytoplasmic Nazari et al., 1997; Stade et al., 1997; Wolff et al., 1997).
Xenopus Cdc25 contains an intrinsic CRM 1-binding nuc- Anti-Cdc25 immunoblotting of nuclear and cytoplasmic
lear export sequence and can, like cyclin B1, shuttle in fractions from manually dissected oocytes revealed that
and out of the nucleus. Mutation of Cdc25 to prevent inhibiting nuclear export promoted a striking nuclear
14-3-3 binding resulted in a dramatic increase in the accumulation of Cdc25, which occurred even faster than
nuclear import rate of Cdc25, without markedly perturbing cyclin BI nuclear accumulation in the same system
its nuclear export rate. These findings indicate that the (Figure 2A and B; Yang et al., 1998). Thus, as for
G2 arrest of the oocyte employs similar strategies to those cyclin B 1, cytoplasmic localization of Cdc25 results from
operating in response to checkpoint controls, and provides ongoing nuclear import and more rapid re-export.
a mechanistic basis for the functional inhibition of Cdc25
by 14-3-3 proteins. Xenopus Cdc25 is a nuclear export substrate in

both the presence and absence of 14-3-3 binding

Results To determine if 14-3-3 binding affected Cdc25 localization,
we wished to examine the consequences of this binding

To determine whether Xenopus Cdc25 bound 14-3-3 for Cdc25 nuclear import and export rates. To confirm
proteins in the G2-arrested oocyte, we prepared extracts that Cdc25 could, indeed, serve as a nuclear export
from either untreated oocytes or oocytes after progesterone substrate, we injected 35S-labeled in vitro-translated Cdc25
treatment. When anti-Cdc25 immunoprecipitates from into oocyte nuclei, and then manually dissected the oocytes
these extracts were immunoblotted with antisera directed into cytoplasmic and nuclear fractions at various times
against 14-3-3 c, the predominant Cdc25-binding variant after injection. Within 60 min, virtually all of the Cdc25
in interphase Xenopus egg extracts (Kumagai et al., 1998), had been exported from nuclei (Figure 2C). When we
we found that the G2-arrested oocytes contained Cdc25- injected nuclei from the same batch of oocytes with Cdc25
14-3-3 complexes, which were no longer detectable at the protein which had been mutated to abrogate 14-3-3 binding
time of progesterone-induced GVBD (Figure 1). These (Cdc25 S287A), we found that the mutant Cdc25 appeared
data suggested the possibility that Cdc25 binding by to exit nuclei at a rate only marginally slower than the
14-3-3 proteins might contribute to the maintenance of wild-type (a point we will return to below).
G2 arrest in the oocyte.

Identification of a CRM1-binding NES in Cdc25
Cytoplasmic accumulation of Cdc25 reflects The inhibition of Cdc25 nuclear export by leptomycin-B
continuous nuclear import and rapid re-export suggested that Cdc25 export was mediated by CRM1. We
Since binding of Cdc25 by 14-3-3 proteins does not appear produced recombinant derivatives of Cdc25 in Escherichia
to alter Cdc25 enzymatic activity, we wished to explore coli to examine whether they could bind to CRM1 in
the possibility that 14-3-3 binding might regulate the oocyte extracts. First, we fused only the N-terminal
subcellular localization of Cdc25 in the oocyte. Like cyclin 322 amino acids or the C-terminal 228 amino acids of
B1, Cdc25C is cytoplasmic during interphase and enters Cdc25 to glutathione S-transferase (GST), immobilized
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Fig. 2. Leptomycin B treatment induces endogenous Cdc25 nuclear accumulation in Xenopus oocytes and Xenopus Cdc25 can be exported from
nuclei both in the presence and absence of 14-3-3 binding. (A) Oocytes were treated with 200 nM leptomycin B in MB buffer. At the times
indicated after treatment, they were dissected into cytoplasmic and nuclear fractions. Proteins were extracted and analyzed by SDS-PAGE followed
by immunoblotting with anti-Xenopus Cdc25 antibody. The samples were also blotted with anti-Il-tubulin antibody as a control for dissection and
loading. T, total; C, cytoplasmic fraction; N, nuclear fraction. For every oocyte nuclear equivalent loaded onto the gel, only 1/8 the amount of
cytoplasm was loaded to facilitate observation of potential changes in cytoplasmic levels of the protein. For every oocyte nuclear equivalent loaded
on the gel, 1/8 of a total oocyte was loaded in the 'T' lane. (B) The graph represents a quantitation of the data in (A), showing the fold increase of
endogenous Cdc25 accumulated in nuclei at the times indicated after leptomycin B treatment. (C) Wild-type or S287A mutant Cdc25 protein was
translated in reticulocyte lysates in the presence of 35S-methionine and injected into .Yenopus oocytes. At 0, 1 and 2 h after injection, the oocytes
were dissected and successfully injected oocytes were identified by the presence of pink coloring from the reticulocyte lysate. These oocytes were
separated into cytoplasmic and nuclear fractions, extracted and analyzed by SDS PAGE followed by autoradiography.

the fusion proteins on glutathione-Sepharose and incub- L53 and V55, to Ala (Figure 4A). This mutant protein
ated these in oocyte extract as a source of CRM1. After was not detectably exported following microinjection into
extensive washing, proteins remaining bound to the beads oocyte nuclei (Figure 4B and C) and a recombinant
were resolved by SDS-PAGE and immunoblotted with truncated Cdc25 protein bearing the same mutations bound
CRM1 antisera. As shown in Figure 3A, a protein con- well to 14-3-3 protein, but could not bind to CRM1
taining the N-terminal 322 amino acids of Cdc25 was (Figure 4D). These data strongly suggest that the mutated
able to bind CRMI, whereas a protein containing the C- residues lie within a functional NES which is responsible
terminal 228 amino acids of Cdc25 was not. Furthermore, for Xenopus Cdc25 nuclear export.
a Cdc25 N-terminal fragment containing the S287A muta-
tion bound equally well to CRM1 despite its inability to Cdc25 S287A induces GVBD in leptomycin-B-
bind 14-3-3 (Figure 3B). This suggests that the Cdc25- treated oocytes
CRM1 interaction is unaffected by 14-3-3, consistent with Since 14-3-3 binding did not appear to modulate the
the observed similar export rates of the full-length wild- nuclear export rate of Cdc25, we wished to determine
type and S287A mutant Cdc25 proteins, whether the nuclear import rate of Cdc25 might be

To localize the Cdc25 NES more precisely, we fused affected. To this end, we injected radiolabeled wild-type
GST to successively smaller portions of the N-terminal or S287A Cdc25 proteins into the cytoplasm of oocytes
fragment, serially deleting regions of the protein, starting which had been pre-treated with leptomycin B to prevent
from its C-terminus (aa 322; Figure 3C). As above, these re-export. Intriguingly, under these conditions the S287A
fusion proteins were tested for their ability to retrieve protein induced MPF activation (assayed as histone Hl-
CRM1 from oocyte extracts. We found that all of the directed kinase activity) and GVBD -6 h after injection
fusion proteins examined, including one containing only (Figure 5A). This effect required leptomycin B treatment
the first 100 amino acids of Cdc25, were able to interact and did not occur with the wild-type Cdc25. Since we
with CRM1 (Figure 3D). A scan of the first 100 amino injected trace quantities of radiolabeled protein (<2% of
acids revealed a single sequence, 47LTPVTDLAV55, endogenous Cdc25), this result indicates that the S287A
matching the consensus sequence for a CRM1-binding, Cdc25 mutant has considerably increased biological
leucine-rich NES (Bogerd et al., 1996). To determine potency compared with the wild-type, in agreement with
whether this sequence affected nuclear export of Cdc25, the recently described relative potency of similar Cdc25
we mutated the last two required hydrophobic residues, mutants in overcoming a checkpoint arrest in somatic
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Fig. 3. The N-terminal region ofXenopus Cde25 contains a CRMI- D-GST VWT NES-nuII

binding NES, which can bind to CRMI in the presence and absence Extracts0.51d + + +

of 14-3-3 binding. (A) N-terminal (aa. 1-322) or C-terminal CRMI-$
(aa. 323-550) fragments of Cdc25 were fused to GST and coupled to
glutathione-Sepharose beads. Twenty microliters of these resins or
control GST resin were incubated in 100 pI of interphase extract for 14-3-3E- l0
1 h. The beads were then pelleted and washed five times with egg
lysis buffer. The bead-bound proteins were analyzed by SDS-PAGE
followed by Western blotting with anti-human CRMI antibody. Fig. 4. Identification of the CRMI-binding NES in Xenopus Cdc25.

(B) The N-terminal (aa 1-322) fragments of wild-type or S287A (A) Residues 47-55 of Xenopus Cdc25 comprise a putative NES.

mutant Cdc25 proteins were fused to GST and coupled to glutathione- Asterisks indicate consensus leucine-rich residues. L53 and V55 were

Sepharose beads. The pull-down assay was performed as in (A), and mutated to Ala to create the Cdc25:NES-null protein. (B) 
35

S-labeled

the bead-bound proteins were analyzed by SDS--PAGE followed by Cdc25:WT or Cdc25:NES-null proteins were coinjected into oocyte

.Western blotting with anti-CRMI and anti-14-3-3 E antibody. (C) The nuclei with GRP94 control protein. Oocytes were dissected 0 or I h

truncated proteins derived from the N-terminal fragment of Cdc25 later and proteins were extracted and analyzed by SDS-PAGE and

were fused to GST and coupled to glutathione--Sepharose beads. The autoradiography. By 2 h (not shown), the NES-null protein had still

bead-bound proteins were boiled in SDS sample buffer and eluted not exited from nuclei. (C) The bar graph represents a quantitation of

proteins were subjected to SDS-PAGE and Coomassie-blue staining, the data in (B), showing the percentage of Cdc25 remaining in nuclei

to show the molecular weights of the deleted fusion proteins, after 0 and I h. Values were normalized to coinjected GRP94 protein.

(D) Twenty microliters of the resins shown in (C) were used for pull- (D) The N-terminal (aa. 1-322) fragment of wild-type or NES-null

down assays as described in (A). The bead-bound proteins were mutant Cdc25 proteins were fused to GST and coupled to glutathione-
analyzed by SDS-PAGE followed by Western blotting with anti- Sepharose beads. The pull-down assay was performed as in Figure 3A,

human CRMI antibody. and the bead-bound proteins were analyzed by SDS-PAGE followed
by Western blotting with anti-CRMI and anti-14-3-3 E antibody.

cells (Kumagai et al., 1998b; Peng et al., 1997; Zeng Mailer, 1995). In both cases, Cdc25 hyperphosphorylation
et al., 1998). correlates with an increase in its enzymatic activity. Since

leptomycin B treatment also induces nuclear accumulation
Intra-nuclear activation of Cdc25 S287A by of Cdc2-cyclin B11, we wished to determine whether
Cdc2-cyclin B Cdc2-cyclin B might be responsible for the hyperphos-
In the above experiments, GVBD was preceded by nuclear phorylation of S287A Cdc25 in leptomycin-B-treated
accumulation and hyperphosphorylation of the S287A oocytes. Therefore, we repeated the wild-type and mutant
Cdc25, detected by an electrophoretic mobility shift upon Cdc25 injection experiments using oocytes which had
SDS-PAGE (Figure 5B). A similar mobility shift of Cdc25 been pre-incubated with both leptomycin B and the Cdc2
has been reported in response to phosphorylation by active inhibitor, roscovitine (50 giM; Meijer et al., 1997).
Cdc2-cyclin B and by the kinase Plx1 (Kumagai and Roscovitine effectively eliminated the S287A Cdc25
Dunphy, 1992, 1996; Hoffmann et al., 1993; Izumi and mobility shift (and GVBD), consistent with a role for
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Fig. 5. Cdc25:S287A protein induces GVBD in leptomycin B-treated oocytes and is hyperphosphorylated in these oocyte nuclei. (A) Oocytes were
incubated with or without 200 nM leptomycin B in MB buffer for 2 h before injection. Forty nanoliters of 35

S-labeled Cdc25:WT or S287A protein
in reticulocyte lysate was coinjected into oocyte cytoplasm with 1

4
C-labeled BSA as control. Two oocytes were collected at each of the indicated

times after injection and immediately frozen in liquid nitrogen. The samples were assayed for Cdc2 kinase activity using histone HI as a substrate.
Progesterone-treated oocytes, which had already undergone GVBD, were used as a positive control. (B) Oocytes treated and injected as described in
(A), oocytes were dissected into cytoplasmic and nuclear fractions at the indicated times after injection and proteins were analyzed by SDS-PAGE
and autoradiography. For leptomycin-B-treated oocytes injected with S287A Cdc25, oocytes started GVBD at 6 h and had all undergone GVBD by
8 h. For oocytes injected with wild-type Cdc25 or not treated with leptomycin B, GVBD had not occurred even 28 h after injection.

Cdc2-cyclin B in the observed Cdc25 hyperphosphoryl- Cdc25 in the nucleus (away from the countervailing
ation (Figure 6A). At similar concentrations, roscovitine inhibitory action of Mytl on Cdc2-cyclin B) may allow
did not prevent Cdc25 hyperphosphorylation by kinases it to trigger the activating feedback loop leading to GVBD.
active in interphase egg extracts treated with the phosphat- To compare the nuclear import rates of wild-type and
ase inhibitor, microcystin (5 gM; Figure 6B). These egg S287A Cdc25 proteins, we repeated the cytoplasmic
extracts lack cyclins A and B (and hence lack active injection experiments, but used roscovitine to prevent
Cdc2), but are induced to enter a pseudomitotic state by GVBD and permit analysis of nuclear import (in leptomy-
incubation with microcystin and contain a variety of cin-B-treated oocytes, to prevent Cdc25 re-export). At
activated non-Cdc2 kinases including Plxl (Izumi and various times after injection, oocytes were separated into
Maller, 1995; Kumagai and Dunphy, 1996; Qian et al., cytoplasmic and nuclear fractions and resolved by SDS-
1998). Thus, the lack of inhibition of these non-Cdc2 PAGE. As shown in Figure 7, the S287A mutant protein
kinases by roscovitine supports its reported specificity as accumulated in nuclei at a markedly faster rate than the
an inhibitor and suggests that Cdc2-cyclin B was, indeed, wild-type protein. These data strongly suggest that S287

responsible for phosphorylating and activating S287A phosphorylation, and consequent 14-3-3 binding, reduces

Cdc25 in the oocyte. In aggregate, these data suggest that Cdc25 nuclear import in the oocyte.
How does 14-3-3 binding affect nuclear import of

abrogating the Cdc25-14-3-3 interaction with the $287A Cdc25? Scanning of the Xenopus Cdc25 sequence
mutation creates a more potent Cdc25 that triggers a revealed an evolutionarily conserved, consensus bipartite
feedback loop involving the mutual activation of Cdc25 basic NLS, KR X 13 KRRR at amino acids 298-316.
and Cdc2/cyclin-B in the nuclei of leptomycin-B-treated Consistent with its containing a classical NLS, the
oocytes. N-terminal 322 amino acids of Cdc25 bound to the

nuclear import receptor for such sequences, importin-t1/3
The S287A mutant of Cdc25 is imported into (Figure 8A; Gorlich et al., 1994, 1995). Mutation of
nuclei more efficiently than the wild-type protein residues 313-315 of the candidate NLS to Ala severely
What is the basis for the increased potency of S287A impaired nuclear import of the mutant Cdc25 (Figure 8B)
Cdc25? Since both Cdc2-cyclin B1 and Cdc25 gradually and greatly reduced binding to the importin-c/13 heterod-
accumulate in oocyte nuclei upon inhibition of nuclear imer (Figure 8A). Consistent with its enhanced rate of
export with leptomycin B, one possibility is that the nuclear import, the S287A Cdc25 mutant bound signific-
S287A mutation increases the nuclear import rate of antly better than the wild-type Cdc25 protein to the
Cdc25. Faster accumulation of the trace amount of injected importin-(t/p3 heterodimer (Figure 9A and B).
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Fig. 6. Cdc2-cyclin B is responsible for the hyperphosphorylation of Cdc25:S287A in leptomycin-B-treated oocyte nuclei. (A) Oocytes were
incubated with either 200 nM leptomycin B in MB buffer for 2 h before injection, or with both 200 nM leptomycin B and 50 giM roscovitine.
Forty nanoliters of 

35
S-labeled S287A protein translated in vitro was coinjected into oocyte cytoplasm with 1

4
C-labelcd BSA as control. Oocytes

were dissected into cytoplasmic and nuclear fractions at the indicated times after injection and proteins were analyzed by SDS-PAGE followed by
autoradiography. Oocytes not treated with roscovitine entered GVBD at 7 h, whereas those treated with roscovitine did not manifest GVBD even
after incubation overnight. (B) Two microliters of 35S-labeled wild-type or S287A mutant Cdc25 protein was added to 20 ,tl of interphase Xenopus
egg extract. These extracts were incubated with 5 giM microcystine, 50 [aM roscovitine or 5 liM microcystin and 50 [IM roscovitine at room
temperature for 30 min in the presence of 2 mM ATP. The samples were subjected to SDS-PAGE and autoradiography.

When we injected NLS-null Cdc25 or S287A, NLS- whether other pathways functioning in the oocyte, such
null doubly mutant Cdc25 into oocyte nuclei to compare as regulation of Myt1 activity by rsk, also contribute to
wild-type and S287A export rates under conditions where mitotic control in somatic cells.
re-import could not occur, we did not observe any signific-
ant differences in their rates of nuclear export (Figure 9C). 14-3-3 binding selectively inhibits nuclear import
This demonstrates that the slight difference in the export of Cdc25 in oocytes
rates of wild-type and S287A Cdc25 proteins shown in The mechanism whereby 14-3-3 binding functionally
Figure 2C was due to faster re-import of exported S287A suppresses Cdc25 activity has been mysterious. We have
Cdc25. These data strongly suggest that 14-3-3 binding found that Cdc25 accumulates almost exclusively in the
to Xenopus Cdc25 in oocytes exerts effects on nuclear cytoplasm of the oocyte as a result of a steady-state
shuttling by altering the rate of Cdc25 nuclear import, situation in which Cdc25 slowly enters the nucleus and is
rather than export. Moreover, they indicate that 14-3-3 rapidly re-exported back to the cytoplasm. Our data
binding controls Cdc25 biological activity, at least in part, demonstrate that the rate of Cdc25 nuclear import is
by inhibiting its entry into the nucleus, greatly accelerated by mutation of S287 to non-phos-

phorylatable Ala. This suggests that S287 phosphorylation,
Discussion and consequent 14-3-3 binding, significantly reduce Cdc25

nuclear import. We have identified a functional and
Binding of 14-3-3 to Cdc25 in G2-arrested oocytes evolutionarily conserved NLS in Cdc25 that lies adjacent
We have shown that Cdc25 in the G2-arrested oocyte can to the site of 14-3-3 binding. Hence, 14-3-3 binding may
be found in a complex with 14-3-3 proteins, and that this sterically block access of Cdc25 to the nuclear import
complex is dissociated following progesterone treatment, machinery.
In somatic cells, Cdc25 is phosphorylated in response to Export of Cdc25 from oocyte nuclei was inhibited by
DNA damage and DNA-replication-induced checkpoint leptomycin B, suggesting the involvement of the export
activation (Furnari et al., 1997; Peng et al., 1997; Sanchez factor CRM1. Indeed, we found that an N-terminal frag-
et al., 1997). Recent studies have demonstrated that this ment of Cdc25 containing a putative NES sequence could
phosphorylation (at residue S287 of Xenopus Cdc25) bind to CRM1. Mutagenesis experiments demonstrated
results in the formation of a 14-3-3-Cdc25 complex which that this sequence was critical for both CRM1 binding
is important for maintaining the checkpoint-induced G2  and for nuclear export of Cdc25, and therefore constituted
arrest (Peng et al., 1997; Kumagai et al., 1998b; Zeng a functional NES. Unlike its dramatic effect on the nuclear
et al., 1998). In Xenopus oocytes, S287 phosphorylation import of Cdc25, mutation of S287 to Ala had no
is also required for 14-3-3 binding. These parallels suggest significant effect on the rate of Cdc25 nuclear export.
that similar strategies are employed to maintain a G2 arrest This was confirmed in export assays in which re-import
in oocytes and somatic cells in response to different of Cdc25 was eliminated by mutation of the Cdc25 NLS.
physiological stimuli. It will be interesting to determine Thus, binding of 14-3-3 selectively reduces the rate of
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Fig. 7. The S287A mutant of Cdc25 is imported into nuclei more importin-ot provided by the extract. (B) Forty nanoliters of 35S-labeled
in vitro-translated Cdc25:WT or Cdc25:NLS-null proteins wereefficiently than the wild-type protein. (A) Oocytes were incubated with injected into the cytoplasm of oocytes. Injected oocytes were dissected

200 nM leptomycin B and 50 g.M roscovitine in MB buffer for 2 h into cytoplasmic and nuclear fractions at the times indicated after
before injection. Forty nanoliters of 35S-labeled in vitro translated injection and proteins were analyzed by SDS-PAGE followed by
Cdc25:WT or S287A protein was injected into the cytoplasm of autionraphyG
oocytes along with 14C-labeled BSA as control. Injected oocytes were autoradiography.

dissected into cytoplasmic and nuclear fractions at the indicated times
after injection and proteins were analyzed by SDS-PAGE and
autoradiography. (B) The graph represents a quantitation of the data in 14-3-3 binding to Cdc25 collaborates with CRM1-
(A), showing the percentage of Cdc25 in the nuclear fraction at the mediated nuclear export of unknown factors to
indicated times. maintain the G2 arrest in the oocyte

The importance of 14-3-3 binding for the suppression of
Cdc25 biological activity was evident in experiments in

Cdc25 nuclear import while leaving its rate of export which trace amounts of S287A Cdc25 injected into oocyte
unaffected, presumably resulting in more efficient exclu- cytoplasm were able to induce GVBD, whereas similar
sion of Cdc25 from the nucleus, amounts of wild-type Cdc25 were not. However, GVBD

Very recently, Lopez-Girona et al. (1999) reported was only induced in oocytes treated with leptomycin
studies in the fission yeast Schizosaccharomyces pombe B to inhibit CRM1-mediated nuclear export. A simple
which also indicate that 14-3-3 binding leads to exclusion hypothesis to explain this requirement would be that
of Cdc25 from the nucleus. However, this similar outcome oocyte maturation required retention of the imported
was proposed to arise from a distinct mechanism, in which Cdc25 in the nucleus. We tested this by injecting trace
14-3-3 binding provided a portable NES for Cdc25 nuclear amounts of a doubly mutant Cdc25 lacking both a func-
export. This is clearly not the case in Xenopus oocytes, tional NES and the ability to bind 14-3-3. Although this
because non-phosphorylatable Cdc25 incapable of binding protein was efficiently imported into and retained in oocyte
14-3-3 is fully competent for export mediated by the nuclei, it did not promote GVBD unless oocytes were
Cdc25-intrinsic NES. Furthermore, a mutant Cdc25 lack- also treated with leptomycin B (data not shown). This
ing a functional NES was unable to be exported despite suggests that factors other than Cdc25 must be retained
its continued ability to bind 14-3-3, suggesting that in this in the nucleus to collaborate with the S287A Cdc25.
system 14-3-3 binding is neither necessary nor sufficient It has been reported that 14-3-3 binding to phosphoryl-
for Cdc25 nuclear export. These apparent differences ated Cdc25 does not greatly affect its activity in vitro,
between fission yeast and Xenopus may reflect the fact producing a <2-fold reduction in activity (Peng et al.,
that the NES we have identified in Xenopus Cdc25 does 1997; Kumagai et al., 1998b). However, even a slight
not appear to be evolutionarily conserved. Thus, different increase in Cdc25 enzymatic activity resulting from the
cells may use different mechanisms for achieving nuclear G2/M loss of 14-3-3 binding might be sufficient, after
exclusion of Cdc25 in response to 14-3-3 binding, concentration in the nucleus, to activate a small amount
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ALoading GST-

ControA GST importina of the Cdc2-cyclin B-Cdc25 positive feedback loop with
.9 -fully purified components will be required to distinguishjiB - I between these possibilities. None the less, it is attractive

to speculate that Cdc2-cyclin B is the factor which must
______ be concentrated in the nucleus along with Cdc25 to

promote passage through the G2/M transition. Once separ-
ated from the cytoplasmic MytI (and given the absence

3 of nuclear Weel in oocytes), nuclear Cdc25 and Cdc2-
ISI cyclin B could very effectively activate each other through

positive feedback mechanisms.

- "Materials and methods
Oocyte preparation, microinjection and subcellular

fractionation

Cdc2S:wr Cdc25:S287A Stage VI oocytes of Xenopus laevis were prepared for microinjection,
SC dissection and subcellular fractionation as described previously (Yang

et al., 1998). Two injection controls for nuclear integrity were used:
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4C-labeled bovine serum albumin (BSA; Amersham) and in vitro-

T N C T C translated 
35

S-labeled GRP94 (a protein that does not have an NES
't C N T C N t C N or NLS). At each timepoint, five to 10 oocytes were collected for

__ ý 4 subfractionation and analyzed by SDS--PAGE (National Diagnostics
Cdc25:NLS-nuII ". protogel), followed by autoradiography or Western blotting.

S287A:NLS-nuII * 0 ,•. Preparation of Xenopus oocyte and egg extracts
Oocyte extracts were prepared as described previously (Shibuya et at.,
1992). To induce GVBD, oocytes were treated with 5 gtg/ml progesterone
in modified Barth's (MB) buffer (Swenson et al., 1989) overnight. Once

D 100 GVBD was observed in the majority of oocytes, they were collected to
make GVBD extracts; these extracts were prepared in mitotic egg extract
buffer (Smythe and Newport, 1991) to preserve meiotic phosphorylations.so0 aS287ANLS-lul Interphase egg extracts and mitotic extracts were prepared according toN -nthe protocols of Smythe and Newport (1991).

Coimmunoprecipitation experiments

S40. Various extracts were incubated with the relevant sera at 4'C for I h.
A€ Protein A-Sepharose beads (Sigma, St Louis, MO) were then washed
S 4with extract buffer and incubated with the above extracts at 4'C for 2 h.

20o Beads were pelleted and washed five times with the relevant extract

buffer. Bead-bound proteins were analyzed by SDS-PAGE followed by
0. Western blotting.
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Xenopus Cdc25 wild-type, $287A, NLS-null and NES-null mutants were
Fig. 9. The Cdc25:S287A mutant binds significantly better than the subcloned downstream of an SP6 promoter in the vector SP64T.
wild-type protein to importin-/p3, and import-defective variants of 35

S-labeled proteins were produced using the SP6-coupled TNT reticulo-
these proteins export from nuclei at a similar rate. (A) Xenopus cyte system (Promega) according to the manufacturer's instructions.
importin-x protein was fused to GST and coupled to glutathione-
Sepharose beads. Twenty microliters of this resin or control GST resin Construction of the GST-N-terminal and C-terminal Cdc25
was incubated in 100 .tl of interphase egg extract with 10 Pll fusion proteins and the S287A Cdc25 mutant35

S-labeled wild-type or S287A Cdc25 protein for I h. The beads were To construct the N-terminal fragment of Cdc25, a stop codon was
then pelleted and washed five times with egg lysis buffer. The bead- inserted after amino acid 322 by polymerase chain reaction (PCR) and
bound proteins were analyzed by SDS-PAGE followed by autoradio- the resulting clone was inserted into pGexKG through Ncol and Xhol
graphy. (B) The bar graph represents a quantitation of the data in (A), sites incorporated into the oligonucleotides used for PCR. For production
comparing the amounts of Cdc25:WT or Cdc25:S287A bound to of the C-terminal fragment of Cdc25, amino acids 323-550 of Cdc25
importin-orp (importin-re beads will associate with importin-P in the were isolated by PCR and cloned into pGexkG through the Ncol and
extract). (C) Cdc25:NLS-null or S287A:NLS-null protein was Xbal sites.
translated in reticulocyte lysates in the presence of [35S] methionine To produce the e287A mutant clone, a Xenop.s eDNA clone kindly

and injected into Xenopus oocyte nuclei. At 0, 30 and 60 min after provided by Dr J.Maller (cdc25C 1) was used as the template. The mutant
injection, the oocytes were dissected and successfully injected oocytes was generated using the method described by Kunkel and colleagues
were identified by the presence of pink coloring from the reticulocyte (Kunkel, 1985; Kunkel et al., 1987). Briefly, the mutant primer,
lysate. These oocytes were separated into cytoplasmic and nuclear 5'CCTTTACCGCTCACCTGCTATGCCAGAGAAAC3' was annealed
fractions, extracted and analyzed by SDS PAGE followed by auto- to a single-stranded pBluescriptSK+-cdc25C1 DNA and the comple-
radiography. (D) The graph represents a quantitation of the data in (C), mentary strand was synthesized in vitro.
showing the percentage of Cdc25 remaining in nuclei after 0, 30 and
60 min. Construction of the Cdc25 N-terminal truncation series

The Erase-a-Base system (Promega) was used to generate a deletion
of nuclear Cdc2-cyclin B; this would effectively set in series from amino acid 322 towards the N-terminus ofCdc25 in pGexKG.
motion a positive feedback loop. In the absence of bound The DNA encoding the N-terminal fragment of Cdc25 in pGexKG was

14-3-3 protein, Cdc25 may also be more susceptible to cut at its 3' end with Xhol to generate a 5' overhang for Exonuclease III
digestion. It was also digested with Sac! to generate an adjacent 3'activation, either by Cdc2-cyclin B (in a feedback loop) or overhang to protect the plasmid vector from Exonuclease III digestion.

by other nuclear Cdc25-activating kinases. Reconstitution Exonuclease III deletion, ligation and transformation protocols were as
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