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PENETRATION -THEORY: SEPARABLE FORCE LAWS AND THE

TI!.2 OF PEIETRATION

Abstract

The eouation of motion of a penetrating projectile can be integrated if

the force law depends only on the depth of penetration x and the velocity v,
and has either of the two general forms:

R = c. g(x). f(v)

or

R a(x)v4+ b(x)v 2 ,

both of which include as special cases the classical sectional-pressure the-

ories of penetration. The second of these has been discussed in a previous

report. The present report summarizes the separable force laws represented

by the first.

For a separable force law the relation between x and v during penetra-

tion can be expressed in terms of the striking velocity ve-and the maximum

penetration x, in such a way that the mass of the projectile and the target

strength parameter c are eliminated. This leads to simplified formulae for

computing times of penetration. The formulae for a number of special cases

of separable force law-s are tabulated.

The separable force law R = cxavb leads to a penetration formula of the--

form x= "constantxv, wherew (2-b)/(1+a). It is shon that K=vot 1 /XL,

where t, is the total time of penetration, depends only on the constants a

and b, and a graph is given for finding the constant X from assumed values

for a and b.

For the Poncelet force law, R =a + bv2 , K is a function of u =vVT-L only,

and a graph is given for finding K.

Examples are given to illustrate the use of the graphs.

It is shown for any sectional-pressure theory of penetration (that is,

g(x)-1) that (a) the remaining penetration x 1 - x beyond any point x is reo

lated to the remaining velocity v in the same may that x, is related to vo,

and (b) the rem.ining time of penetration t 1 - t is related to v in the same

way that t1 is related to-vo. It follows that vot ifr-K(vo) and I

thus both t1 and t can be deduced with the aid of a graph of K(v). for the

particular sectional-pressure theory.assumed. This is illustrated by ex-

amples.

A separable force law for perforation leads to a relation between limit,

striking, and residual velocities of the form F (ve)=F(vo)-F(vr), which -is

independent of the projectile mass and the target strength coefficient c.

In conclusion, it is suggested that sectional-pressure theories tend to

give too large estimates for t, and that the simple assumption v 0 tjx 1 = 2

will often give bettor results.
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1. Introduction

The need for a method of estimating forces, velocities, and times dur-

ing penetration in concrete and other materials has been discussed in pre-

vious reports.I-/ Direct measurements of these quantities are needed but

atavailae./ Further -:rork3/ has been done to explore the

possibility of Making reasonable estimates by indirect theoretical methods.

These depend on finding a suitable approxination to the force law govern-

ing the resistance offered by the target to the projectile during penetra-

tion. Yqhile this work is specifically directed tovrard the prdolem of con-

crete penetration, the possibility of applying similar methods to other

materials is to be kept in mind.

2.. Notation

The follaving notation ,'Aill be used.

iv = weight.

A = maximum cross-sectional area.

Projectile parameters 4 P =,/A = sectional pressure.
assumed constant I P= P/g = sectional density, -uhere g is
during penetration. t the acceleration due to

L gravity.

r x = depth of nose Penetration.
during pevetration t = time from beginning of penetration.

t v = dx/dt remaining velocity.

Y x 0.
Initial conditions t t =0.

at impact. ,
Lv = vo = striking velocity.

-x = x, = maximum penetration.
Final conditions at t = L = time of penetration.

maximum penetration.

[ v = O.

I/ Introduction in Ref. 2 anr Introduction in Ref. h. See List of
References at the back of this report.

2/ Reference 4 describes the. development of an experimental method
for m-king such measurements on materials like concrete.

3/ See previous work in Ref. 3.

C 0 N F I D E N T I A L
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3. Equation of motion and time of penetration

Using the notation given in Sec. 2, the equation of motion of a projec-

tile during penetration is

(1) pd = pvdv=R
dt dx

where R, the resisting pressure, is the instantaneous value of the resisting

force divided by A, the maximum cross-sectional area of the projectile.

Times may be computed from either of the two expressions
tx

(2) t =I

Jo

(3) t, - t = f' dv

provided either that v can be expressed as a function of x in Eq. (2) or

that R can be expressed as a function of v in Eq. (3).

h. Classification of penetration theories

The resisting pressure R can depend on certain target and projectile
parameters that remain constant during the motion and it can depend on cer-ý

tain quantities', like x and v, that vary during the motion. It is assumed

that R does not depend on the mass of the projectile.

For the theoretical treatment of penetration it is commonly assumed

that .R depends only on the variables x and v although it may actually depend

on more complicated variables during the motion.-/

The force laws corresponding to certain of the classical theories of

penetration are:

(h) Robins-Euler: R = c,

(5) Poncelet: R = a + by2 ,

(6) P6try: R= a 1 + 215000) with v expressed in feet per second,

h_ See page 9 in Ref. 2.

CO NF IDEN T IA L
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to which may be added

(7Y= cvb.

With b =0.68 the latter reproduces de Giorgi's values-/ for masonry and

concrete very well. Some attention has been devoted to Eq. (7) during the

present war both here and in England.-,

in these cases the equation of motion, Eq. (1), can be integrated ex-

plicitly. In fact, they are all special cases of either of the following

two much more general force laws for w•hich Eq. (1) can be integrated:

(8) Separable: R = c.g(x) f(v),

(9) Generalized Poncelet: R = a(x)v×" + b(x)v2.

Figure 1 gives a schematic classification of some of the theories of

penetration obtained by progressive specialization (indicated by the arrows)

of these two general force laws. Further specializations of Eq. (9) could

easily be added to the diagram.

A treatment of the generalized Poncelet theory based on the force law

given by Eq. (9) has been given in a previous report.!/ The consequences

of assuming a separable force law, Eq. (8), have also been treated-! but"

will be discussed further in this report.

5. The general se-parable force law R c- g(x) f(v)

With the separable force law, Eq. (8), g(x).f(v) may be practically the

same for different targets of a given kind of material (for example, con-

crete) and R for targets of different strengths may differ only in the fac-

tor c. For this reason the constant c has been Yxitten explicitly instead

of absorbing it in the unkno.n function g(x)-f(v). This makes possible a

future "normalization" of the functions g(x) and f (v) whenever this seems

appropriate and desirable.

5/ See page 17 and Table V-B, page 64 in Ref. 1.

6/ See, for example, Ref. 5.

7/ See Ref. 3, especially Appendix B.

8/ See pages 3, h, 5 in Ref. 1.

CONFIDENT I AL



CONFIDENTIAL,

R- R(XV)

-Variables Separable Linear Differential Equation
R - cg(x) f(v) R a(x)vA4 + b(x)v"

R" g(x)[ +'÷ cv3J

R cg(x) b R cxa f(v)

Sectional Sectional
Energy Pressure

Theories Theories
R -cg(x) R - cf(v)

RR- a(x) ,, b•

R -cxa R - cvb P - a + by

Robins-Euler PeItry (v In ft/soe)

FIGURE I: CLASSIFICATION OF PENETRATION THEORIES.
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Assuming the force law Eq. (8), Eq. (1) may be integrated by separation

of the variables x and v. The constant of integration may be determined from

either the initial or the final conditions which yield, respectively, the two

equivalent solutions-:

(10) cG(x) PI[F(vo) - F(v)],

('11) c[G(x 1 ) - G(x)] P'F(v),

where
px

(12) G(x) g(x) dx,
Jo

(13) F(v) / v•dv
Q/ i

The "penetration formula,"' giving the relation between the striking velocity

v and the maximum penetration x1 , is obtained by inserting the final condi-

tions in Eq,. (10) or by inserting the initial conditions in Ec. (11)"

(1h) cG(xi) = PIF(v)I.

Dividing Eq. (10) or Eq. (11) by Eq. (1l) gives the symmetrical form

V(1) G(x) + F(v)

which is independent of P' and c, for the relation between x and v during

penetration. Penetration times are given by a general formula, Eq. (2) or

Eq. (3).

Equations (1h) and (15) immediately suggest the graphical representa-

tion shown in Fig. 2 for the relations betw•een x. and vo, and between x and

v, for any separable force lawT.

The application of the formulae depends on a know,,ledge of the functions

G(x) and F(v). The functional relation between x, and vo for a given target

and projectile can be obtained with reasonable accuracy from penetration ex-

periments. How-ever, this is not sufficient to determine both 0(x) and F(v)

uniquely. In fact it is evident that one of these can be assumed arbitraril-,

C 0 N F I D E N T I A I
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and the other then determined to fit the observed penetration curve. The

values of t and t] are, thereforej not uniquely determinable from a kaowl-

edge of the penetration curve for a given target and projectile alone.

If, however, the experimental penetration curves connecting x, and Vo

are known for a wide enough range of Pt values, then it is, in principle,

possible to test whether the form of Ea. (1h) can be fitted to the data with

sufficient accuracy, and, if so, to evaluate the functions G(x) and F(v).

Specifically, this requires that penetration curves be obtained for differ-

ent values of Pt vrith the same value of c. The different values of P' are

obtained by changing the mass of the projectile. The constancy of c may be

assumed if the target remains the sar.e and if the size and shape of the dif-

ferent projectiles remain constant.

Table I gives a summary of some of the relations that may be derived

for the separable for.ce laws shomn in Fig. 1. In each case the functions

G(x) and F(v) are given insofar as they ray be simplified from Eqs. (12) and

(13). The penetration formula,: Ea. (lh), and the 'relation given by Eq. (15)

between x and v during penetration are not a-.itten out in the table for each

case since these are completely specified by the functions G(x) and F(v) as

given.

The relations given for t, and t can be worked out from Eqs. (2) and
(3). The details of these calculations are not given in order to save space

It will be noted that the relations for tl and t can all be given in a form

independent of P' and c. Where K appears in the relation for t it is the

constant or function defined in the previous column giving the relation for

t 1 . The use of the dimensionless quantity votl/x, has been discussed in

previous reports.-/

6. The force law R= cxavb

The first four lines of Table I contain examples of separable force

laws in which one of the functions, G(x) and F(v), still remains arbitrary.

9/ See Fig. 1, page 6 in Ref. 2 and pages 32, 30 in Ref. 3.

C 0 N F I D E N T I A L
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In the next four lines the forms of both functions are sueecified as constant

powers of x and v, res-pectively. The penetration formula resulting from the

assumption

(16) R cxavb a > 0, b > 0

is

(17) x• =oc 0o

where

(08) 2 -b
1 +a

and the time of penetration tj satisfies the relation

vot
(19) K a,,' constant.xl1 +a 2 )

Figure 3 shows the values of K and a. obtained f rom Eos. (i8) and (1)A for

various values of a arnd b. Figljure 3 covers all four cases of Eo. (16) as

given in the fifth, sixth, seventh, and eighth lines of Table I.

For the Robins-Euler theory K =2 and 0= 2. It is, however, evident

from Fig. 3 that K = v0 t/xi = 2 does not necessarily imply a constant re-

sisting force; in fact, K can be made to have the value 2 for any value of

a, by proper choice of a and b.

If K and e are known, a and b are thereby determined, and conversely.

Thus, the force lawv could be evaluated from measurements of vo, x1 , and t,

provided that the measurements always gave the same constant values for K

and o.

One way of using Fig. 3 may be illustrated by a problem of the foi-

lowing kind.

Assume that the normal penetration x, of a nondeforming projectile in-

to concrete is proportional to the 3/2 power of the striking velocity.v0

(that is, a=-3/2) and that the resisting force is representable by Ea. (16).

C 0 N F I D E N T I A L



- 11 - C ON FIDE NT IA.L

00

0 x

I S

(U

0 0 a

CS C.-C

o to

O ~~1 00C .

4)w

L -n

C 0 N F I. D(0NTI



C ONF IDENT IA L -12-

P6try case, v in ft/sec (• 2.157 x I0'sec/ft)

0 1000 2000 3000_ LI I w _

.0

5.0

4.0~

3.0

2"0 0  1.0 2.0 3.0 ',.0 5.0 6.0 7.0
ItL . V b

FIGURE 4: K - vot- FOR THE PONCELET FORCE LAW.
XO
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What is the time of penetration, t1 , of a projectile that penetrates h.O ft

at a striking velocity of 2000 ft/sec?

We have tI 1 Kx,/vo = K x 4/2 x 1032x 10-3K sec. For w= 3/2, Fig. 3
gives 1.8 < K -- 3.0; hence t, lies between 3.6 and 6.0 msec.

SIf, in tldition, it is known that for projectiles of the same caliber'

and shape the peretration is proportional to the projectile mass for a con-

stant striking yelocity, then since Pt is the sectional density, from Eq. (17)

a =0 and K= 3.0, t, -6.0 msec. if, however, the penetration is only propor-
tional to the 5/6 power of the projectile mass for constant vo, then a= 0.2,

K 2.08, ti=h.16 msec.

7. The Poncelet force law R = a + bv2

The last two lines of Table I refer to the Poncelet force law

(20) R =a + bv2

and to the special case thereof which gives the Petry penetration formula.

Timds of penetj'ation can be obtained from the graph of
(21) K(v) 2u tan'u u

"ln"(1 + ux)

where

(22) u V, b

shown in Fig. 3. In the Petry case a/b 215000 ft /sec 2 l/-ahd

u -2'157 x 10- v,

where v is in feet per second as given on the scale at the top of Fig. h.

One way of using Fig. h may bq illustrated by a problem similar to the

one used in connection with Fig. 3.

Assume that the Petry force law holds. What is the time of penetra-

tion if x 1 = h.0 ft and v, = 2000 ft/sec?

From Fig. L we find K=3.89 and, hence, t3=Kxl/v= 7.78 msec.-

10/ See page 15 in Ref. 1.

C 0 N F I D E N T I A L
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8. Sectional-pressure theories and the time of penetration

If the resisting force R depends only on the instantaneous velocity v

during penetration and not on the depth x,

(23) R = cf(v);

then Eqs. (14) and (11) become, respectively,

(2 4 ) .x

(25)P' F(v),

while, from Ea. (3), we have
OVo

(26) t P1_ dv
TJ7o7)

and

(27)' t- t =P'i dv
Jo

The theories that fall in this class are called sectional-pressure

theories since, according to Eq. (24), the penetration x, is proportional 4
to the sectional pressure P. They are marked with the letter P at the-left

side of Table I, and include all of the classical theories -- Eqs. (4),

(5), (6), and (7).

According to any sectional-pressure theory vath c = c.f(v), the remain-

ing penetration x, - x beyond any point x of the path is related to the re-

maining velocity v at that point in the same -vay that the total penetration

x1 is related t1 the striking velocity vo. t[ompare Eqs. (24) and (25).]11-

Furthermore, the remaining time t1 -t is related to v. in the'same way that

the total time tj is related to vo. [Compare Eas. (26) anrd, (27).] Thus

we have from Eqs. (24) and (26),

,-Jo
(28) Vot__ I vo '•°dv =K(Vo) .

11/ The case F(v)=v , as discussed in Ref. 5, is a paTiti C^iur 'e.x-' .
ample of this general statement.

C 0 N F I D E N T I A L
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and, from Eas. (25) and (27),

(29) v(ti - t) v dv

as shown in Table I. The values of PT and c have been eliminated in obtain-

ing these expressions, and K is the same function of its argument in both

cases.

The time t at any point during penetration may be computed from these

equations for any assumed sectional-pressure theory from given values of xj,

Vo, and either x or v to specify the point at which t is to be found. The

remaining one of the pair xv is first obtained from Eq. (15), which on a

sectional-pressure theory becomes

(30) x + F(v)

Then tj and t can be evaluated from Eqs. (28) and (29). These steps can be

carried out with the aid of two graphs constructed for the particular f(v)

assumed in Eq. (23); namely, a graph of Eq. (30) as suggested in Fig. 2(b),

and a graph of K(v) as illustrated in Fig. 4. - .

This method .of comPutation may be illustrated by the following examples.

Assume (as before) vo= 2000 ft/sec and xl= h.0 ft. Find the remaining

velocity v and the time t at the depth x= 3.0 ft for each of the assumptions:

A: .f(v)

v210 (P6try)

F or A we have

P(v) j , /• • 3/2,

x + 3/2
+-+ = v, or v = 79h ft/sec,

and

voti v(t, - t)K 3 ---- =.0 = ---- '
O& -IXz XI -- X

C 0 N F, I D -E N T I A L
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whence

t= 3.Ox//vo 6.0 msec,

- t - 3.0(xi - x)/v = 3.0/794 - 3.73 msec,

t = 2.22 msec.

For B we have the Petry case

In I + v 2

+ 215 + 72 ) or v h87 ft/sec.
in + TI)0--

From Fig. h,

K = 3.89 for v = 2000 ft/sec,

K = 2.28 for v = h87 ft/seo;

whence

ti = 3".39x,/vO = 7.78 resec,

t.. - t = 2.2 8 (xl - x)/v = = h.68 msec,

t 3.10 msec.

9. "A perforation hypothesis

-The analysis so far has dealt only with the penetration of a massive

target by a nondeforming projectile. if the target is thin enough the pro-
jectile will perforate the target; that is, the projectile -Fill pass through

the target and will emerge from the back face with a residual velocity vr.
For a target of thickness e, there YIll be a limit velocity vy for which

the projectile w.ill just perforate the target.

If w.e assume that the motion during perforation is governed by a sepa-

rable force law.,

(31) R= c ge (x) -f (v)1

then

(32) ge(x) 0 for x >x

e

CO0N FID E NT IA L
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since the force must fall to zero at the end of perforation. The distance

xe over which target resistance acts on the projectile will be roughly equal

to the target thickness e. However, in the case of a brittle, scab-forming

"material like concrete we may have xe < e, while for cohesive or ductile

materials like steel we may have xe > e.

-Integrating the equation of motion, Eq. (1), for the separable force

law, Ec. (31), in the case of cerforation (vo - vp, vr 2 0) we get

(33) PI[F(v 0 F(vr)] =cG

where

(34) G e fxe (x) dx= constant.

Since by definition of v vt =v. when vr =0 we obtain from Eq. (33)

(35) F(v F ) = F (vo) - F (vr).

It would be natural to assume that the function f(v) in Eq. (31) for perfor-

ation is the same as f(v) in Ed. (8) for penetration when the targets are of

the same material. Then the relation given by Eq. (30) gaong vy, Voand vr
involves the same F(v) as defined for penetration in Eq. (13). Thus perfor-

ation measurements of striking and residual velocities would offer a means

of evaluating the function F(v). Alternatively, if F(v) is knovn from pene-

tration data, Eo. (35) offers a method of estimating residual velocities vr.

10. Conclusions

Of the two general cases of force laws that can be explicitly integrat-

ed, the separable force laws, Eq. (8), load to simpler general expressions

than the generalized Poncelet force lawus, Eq. (9),12-/ especially when x, v,
t, and t, are to be calculated.

For separable force laws the relation between x and v during penetra-

tion can be written in the form given by Eq. (15) in vhich PI and c do not

appear, but in which both x, and vo are used explicitly. The examples giver

illustrate the fact that this leads to simple methods for computing x, v, t,

and t 1 .

12/ Compare Ref. 3.

511 L
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The re'sisting prbessure R has been defined as the resisting force divi-
ded by A, the maximum cross-sectional area of the projectile. It is, there-

fore, to be expected that R rill depend on x at least to the extent that the
"aamplitudo of impression,--/ increases with the depth x of nose penetration

wh•ile the pointed nose of a projoctile or' bomb is entering the target. On

this basis a ure sectional-pressure theory, involving no dependence of R on

x, w",rould not be correct. In a qualitativo 'vny Fig. 2 shows the large effect

that a small dogree of x-dependeri-ce may have on the computed times of pene-

tration, t3. It has been-pointed outl/ that sectional-pressure theories

with df/dv > 0 always lead to values of K = vot1 /xi larger than 2, while for

sectional-energy theories with dg/dx > 0, K is less than 2. It is, there-

fore, felt that pure sectional-pressure theories (in Particular, the classi-

cal theories) tend to give values of t, that are too large, and that better

values may often be gotten by the crude but simple assumption that K 2.`

For concrete, K may increase Somewrhat vv4th x I
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