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ON THE PROPAGATION OF THE PLf4STIC DEFOR!KATION

PRODUCED BY AN EXPANDING CYLINDER

Abstract

In the present paper it is assumed, in accord with Bethe's model
for armor penetration, that the plastic deformation produced during
armor penetration is similar to that produced by an expanding cylinder.
The paper deals with the deformation produced in a plate which is thick
enough so that the plate does not get appreciably thicker near the ex-
panding cylindrical hole. In the first portion of the paper the rela-
tions between the stresses and the strains are considered and the wave
equations which govern the motion of the material when it is rapidly
deformed are derived. It is found that in the case of the thick plate
an elastic wave diverges radially from the expanding cylinder, that
this is followed by a plastic wave and that the elastic and plastic
wave velocities do not differ very much. In the second portion of the
paper an approximate expression for the displacement is obtained for the
case where the deformation is elastic. In the last section of the paper
a method of numerically integrating the wave equations is given. The
method is applied to a particular numerical example, and the displace-
ment and the shearing strain produced by a uniformly expanding cylinder
are calculated and plotted at various times during the expansion. The
calculation shows that the shearing strain in both the elastic and the
plastic regions increases as we go towards smaller radii. A discon-
tinuity in the shearing strain is found at the boundary between the
elastic and plastic regions. The calculation ind icates that the com-
pressibility and the density play an important role in determining the
magnitude of the stresses developed in a thick late. A program for
future investigation is suggested.

1. Introduction

Bethel/ has calculated the stresses and strains produced in armor

plate by a projectile under the assumption that the actual three-dimen-

sional problem can be approximated by a treatment involving only two

dimensions. During penetration, a pointed shell will produce large dis-

placements of the surrounding material away from the axis of the shell.

1/ All numerical references are to the list of references given
at the end of this report.
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Bethe assumes that in a thick plate the displacements parallel to

the axis of the shell are negligible compared with displacements

perpendicular to the axis. The stresses and strains are calculated

by assuming that the projectile produces a cylindrical hole in the

plate. As the penetration of the shell proceeds, the hole widens.

The initial radius of the hole is zero and its final radius is the

radius of the shell.

The forces that displace material away from the axis of the

shell must accelerate the material, and they must overcome the

stresses produced by the deformation. Bethe recognizes that iper-

tial forces will play a role in the problem, but he neglects them

in his treatment. Calculations on the propagation of plastic de-

formation in steel wijes-/ yield kinetic energies that in all cases

exceed 40 percent of the total energy. It is to be expected that

the kinetic energy may represent a smaller fraction of the total

energy in the case of cylindrioal waves, but one would not expect

the kinetic energy to be entirely negligible.

In his calculation Bethe hag given a static treatment of the

problem. This means that he calculates the stresses and the strains

present in the plate at an infinite time after the penetration of

the projectile. Since the initially intense disturbance around

the hole even$ually spreads over a larger area, it is clear that

the maximum stresses and strains produced in the armor are under-

estimated in Bethe's calculation.

G. I. Taylor has also considered the problem of armor penetra-

tion. / His first paper gives a static discussion of the deformation
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produced in a thin plate by an expanding cylinder. Taylor's relations

connecting the stresses and the strains differ from those used by Bethe.

In his second paper Taylor gives a dynamic treatment of the enlarge-

ment of a hole in a thin plate at high speeds; that is, in this paper

he includes inertial forces. The assumption is made that the tensile

stress which acts in the plane of the plate and perpendicular to the

radial direction is zero.

In the present paper we shall discuss the elastic and plastic

waves set up in a thick plate by an expanding cylinder. We shall ob-

tain first the necessary vave equations. Pn approximate expression for

the radial displacement in the elastic case will then be found. Next,

a method for numerically integrating the wave equations will be de-

scribed and, finally, some results obtained by nimerical calculation

w1ll be given.

2. The wave equations

Fron the symmetry of the problem we see that the displacement pro-

duced by an expanding cylinder in a thick plate is entirely radial. The

equation of equilibrium can then be written,- /

2 3r r

where u is the displacement, l is the density of the material, r and G

are plane polar coordinates, 6- and O-G are tensile stresses in the

directions r and ;, and t is the time. If we assume that the displace-

ment is small compared with r then, according to Timoshenko,-/ we have
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Ez = Tre = )rz .z *

-Here Er, Ce and 6 z are the tensile strains in the directions, r, G

and z, respectively; rG' "rz and -yz are the shearing strains;

and the z-axis is the axis of the shell. Equations (2) hold only

for the case where the displacement is completely radial. It might

be well to point out that actually u is not small compared with r

near the axis of the shell -- that is, near the z axis. No treat-

ment has as yet been given that deals correctly with this region.

We shall use Eqs. (2).

(a) Elastic deforms.tion. -- A wave equation in the variable u

can be obtained if we assume relations between the stresses and

the strains. If the deformation is elastic, the relations are

given by Hooke's law. Thus,

1(4 - rr= 2 G ( '6 - Im )  ,  Tz - ( 6 - 2Q
(3)

_- =2G Fr - + +- =3K(E. +F)r Z r I z r

where G is the modulus of rigidity and K is the modulus of volume

expansion. Note that &z does not appear in Eqs. (3)5 in the parti-

cular problem considered here, &z is zero. If w, e use Eqs. (2) and

substitute values obtained for the stresses from Eqs. (3) into

Eq. (1), we obtain the wave equation,

u(3K + 4G \ 2 +r 1 u

It I rI r! r r2)



The velocity of propagation of these elastic waves is

cl = V(3K + LG)i3. (5)

If we calculate c1 for steel for the case where G =5.40 x' I10 lb/ft sec 2 ,

K = 1.046 x 1011 lb/ft sec 2 and 4p 80.7 lb/ft 3 , we find that

c i = 19,170 ft/sec.

According to MIohr's criterion- the material at a specified point

will experience plastic deformation if the largest component of the

shearing stress at the point exceeds the limit 2A, where A is the

yield stress obtained in tensile tests made on long thin wires. Huber,

Henckey and von 1,ises- postulate that plastic deformation of a poly-

crystalline material begins when the principal stresses become large

enough to satisfy the relation,

)2 ( %) ( % + T 2) (% x (6)
1- a2) + (672 3 % ) (6))

The conditions of 1,%ohr and von M-Iises do) not differ very much. The worst

agreement is obtained in the case of pure shear. In this case the

largest component of the shearing stress found by using Mohr's criterion

is 15.5 percent lower than the value obtained by using the von Mises

condition. Wle shall use iohr's condition to determine whether or not

the material at a given point is experiencing plastic deformation.

(b) Plastic deformation. -- We shall assume that the following

relations are valid for material that is being plastically deformed:

qcr -(± + jI) + 0 +-]

(c[~ -..c + GF-Q + TG ]~ 7
F~~~D/ o Uo
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In Eqs. (7), T0 ,' @ and r. are the stresses required to initiate

plastic deformation. The constants E and -v are Young's modulus and

the Poisson ratio. The constants D and m describe the plastic be-

havior of the material; the 7ay in which they are determined from

experimental data will become clear as we proceed. We shall wait

until later to discuss the validity and meaning of these equations.

Adding Eqs. (7) we obtain

1- 2 r+ -21 2v 1+ ( + ]. (8)

F£r + 'EG+cz= --D--'r + ' Z )+  E ro 0 Zo

In the elastic cape,

+ E + 6z 3K G-r + T@ + z] 1 [-2v CTr + + (-z] ,  (9)

where 1/K is the compressibility. We shall assume that Eq. (9) is

also valid for a material which is being plastically deformed.
°/

Since Eq. (8) must be the same as Eq. (9), we have

D

3K - D 2(10)

This equation can be used to determine cx once D is known. D can be

obtained from the stress-strain curve of the material in tension.

Equations (7) assume that this siress strain curve is of the form

shown in Fig. 1. The slope of the initial elastic portion of the

curve is E. The slope of the stress strain-curve in the plastic

region above the knee is, Equations (7) are, of course, valid

only if cr' -9 and z are principal stresses.
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Co

o-

Tensile strain
Fig. 1. The form of the stress-strain curve

assumed in Eqs. (7).

Ros and Eichinger, Nadai, and others- / have shorn that relations

of the type of Eqs. (7) are in accord with experimental tests made on

polycrystalline materials. The relations are so constructed that the

directions of the principal strains coincide with the directions of

the principal stpesses, In addition, the equations are so arrangea

that the figure consisting of 1Mohr's three principal strain circles

remains continuously similar georetrically to the figure made up of

the three principal stress circles (see Nadai). 9 ur relations are

somewhat more general than theirs since they took K to be infinite --

ot is then 0.5 by Eq9 (10). The fact that K is not infinite is of

importance in the problems treated in the present report.

Let us consider the plastic deformation which occurs in a thick

plate. For this case we have:

r o = -V(o- + ceo),(

Equations (3) hold at the boundary between the elastic and plastic

regions and, since we still assume that the displacement is radial in



the plastic region.Eq, (2) is still valid there. Using the last

of Eqs. (2) we can write Eqs. (7) as

- r 2F[s@ - Er] + 2(G - F)CEo -r

T -z -2F& F 2(G F)E; (12)

r "z +2Fr + 2(G F)ro,

where and are the strains present when the material begins
0 0

to deform plastically, and where

D
F 2 (1 +

and

E
2(1 +

G being the elastic shear modulus. In addition we have from Eq. (9),

since &z = 0,

r + Te + z =-3K([E + 6r]. (13)

The wave equation for plastic waves is obtained by using Eqs. (1),

(2), (12) and (13) in the same way that Eqs. (1), (2) and (3) were

used to obtain the elastic wave equation. The wave equation which

results is

32u (3K +4F(I32u 1 u 2 ),
ru p (14)

where o0- r The plastic iave velocity is

i2 Vo K....
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Using F/G = 1/6.94 for steel, we find that c2 = I,460 ft/sec. The

ratio ca/ci is therefore 0.80. For steel of the quality used in

armor plate 4 = .61 x 108 lb/ft sec 2, C 'o 4.27 x 10- 3 and

270(G - F)/ = 8.20 x 105 ft 2 /sec 2

(c) Plastic deformation when the slope of the stress-strain

curve is some function of the largest shearing strain. -- We can

generalize our vave equation by assuaming that the material follows

a stress-strain curve which can be introduced into the equations as

an arbitrary function. If we suppose that the slope of our stress

strain curve is sane function of the largest shearing strain, then

the equations relating the stresses and the strains may be written

in a form analogous to Eqs. (3) as

G - T 2(F- r9 f(6 - Cr)

z - 14- -2,Q f(8Q - 6r),
(16)

r - = 26r f(6G - "r),

Tr + T' + 1z = 3K[,r + F"

Ros and Eichinger have shown experimentally that the D and F of

our Eqs. (7)and (12) actually are not constant but depend somewhat

on the variable quantity, L G &r) + -8 + (Er -

1e shall assume that only the largest shearing stress plays an im-

portant role. This assumption is related to the results of Ros and

Eichinger in the same manner as ',Viohr's condition for the onset of

plastic deformation is to the Huber, Honckey and von Mlises condition.
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The function f( - Cr) may be determined from static experi-

ments in the following way.* In general, the equations relating

the principal strains and the principal stresses can be written,

T, T' 2( ' 2 ) f("1  3),1

- 3 = (6- 2 3)f(61 - 3))

and

T 1 + (Y2 +3 = K(-I+ E2 +E)

where £i - £3 is the largest shearing strain. These relations ill

then be valid in the case of a tensile test on a long thin wire ex-

tending in the xj-direction. In this case,

Q7= ("3

and, hence, by the second of our general equations,

2 3'

The equations relating the principal strains and principal stresses

become

2( P- 1 2 )f(El -2), ( = 3K(61 + 2 E'2 ).

Eliminating £2 from these equations, we get

f(3 i I

2 6K/213 FS

" This method ws suggested by M. P. Whito and H, F. Bohnenblust.
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Thus by measuring T, and E1 in a tensile test and by plotting the

function on the right as a function of 3 6-K the function f

can be found, If K can be taken as infinite - that is, if the sub-

stance is iricompressable -- then the foregoing equation becomes,

32

Equations (16) are so constructed that the directions of the principal

strains coincide with the directions of the principal stresses. In

addition, the equations are so arranged that the figure consisting of

Mohr's three principal strain circles remains continuously similar

geometrically to the figure made up of the three principal stress

circles (see Nadai)J 9/

Proceeding as before, using Eqs. (1), (2) and (16), we find that

the wave equation for a material in which the slope of the stress-

strain curve depends on the largest shearing strain is

3j2U FK+ 4f-(2r _ -E)ft 2u  IK+ kf+ (2.r- )ft ] uu

t-2 r-  + a r U] (1 7)

In this equation f' represents the derivative of the function f with

respect to its argument (6G F- r). Equation (17) is complicated be-

cause the coefficients of the partial derivatives depend on u. Von

Krmn I O- has discussed the propagation Of plastic deformation in

wires when the stress-strain curve is given as a function to be deter-

mined by experiment. je have not been able to apply von Karma n's

method of integration to Eq, (17).
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(d) Plastic deformation in a region where the shearing strain

decreases with the passage of time. -- After the conical head of the

projectile has passed completely through the armor plate, the stresses

in the vicinity of the cylindrical hole will begin to decrease. We

shall next obtain a wave equation appropriate for this region. If a

metal is plastically deformed, moving from A to B to C on the stress-

strain curve shown in Fig. 2, and if the largest shearing stress is

I --

C

A D

Fig. 2. The stress-strain curve for plastically de-
formed material including a region CD when the shearing
stress is decreasing. Note that CD is parallel to the
elastic portion of the curve AB.

then decreased, the shearing strain also decreases; the stress and

strain move down along the straight line CD. The line CD is paral-

lel to the elastic portion of the stress-strain curve; that is, CD

is parallel to AB. If 'r, and 6si are the strains at point C of

the curve and if' 7 is the shearing strain at that point, then the

equations relating stress and strain along the line CD are

6-G- Tr=2 (G- 6r)-2 (O-F) (-), Gz- 6-= - 2GEG+2(G-F) (6,9- Ego).,

Tr-qz = +2G~r-2GF (rl r)r+TG+"z = 3K (-r + a)

-2 , G F r i. Er i I II)
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The wave equation obtained by using these equations is

2u (3K + 4GY 2u 1 u u> 2(G - F)y -? o)
3t 2  2 2 (19)

8tP- 5 r o(Arr r r) pr

The wave velocity is just the velocity of the elastic waves.

3. The elastic case

In order to obtain some idea of the nature of the functions that

appear in the solutions of the wave equations, we have attempted to

solve a problem involving only elastic vaves. Consider a thick plate

of infinite extent, through the center of which passes a cylindrical

hole of radius b. We shall assume that external forces act against

the surface of the hole so that its radius increases with the passage

of time. The radial displacement at b is supposed to vary vith time

in the folloving fashion:

u(b) = 0, for t < 0;

u(b) = vot, for 0 < t < T; (20)

u(b) = VoT, for T < t.

where vo and T are constants, Since the deformations are taken to be

elastic, the wave equation is

2u= 2 [ 2u + lu u
__ 1 - a (4)

Ot2  3Lr' r r~

Betheli/ has given a theoretical discussion qf a very similar problem.

We have extended his treatment to higher orders of approximation, and

we have used the method to obtain an expression for u that is valid

in the portion of the wave sent out while the cylinder is expanding.
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We find that

vobt
r /b r r r4 r6  b/ b2  b4  5b6

- -I+ -+- -+ 1 +---l + I- +  66Trvb 1 22 4 4 66 r 2 2  4 t4 6 644t+ i --- utb 4 cit 8cit 64cit r \ cit 8cit6ht
Ci

2 r2 2 14 2 214
b r log _ 3(r+ b ) 15(r + 3r b + b )

2ct 3  2  2t2 + t

fTb2r 3(r 2 -b 2 ) + 5(r4 -b 4 ) ..

-3 -r b2 ) rb ______ 2zc3 3 4c2 2 2ct 4 j

2.2 2c~

+2 _ _ Z' (3) -log
(21) +-rczt bt\ b

Ic2 2clt ~

3b (2b' (r' +)b 2ct\

cit \rc t bjt/ b
1 33

15 5b6  (br + 3b3r3+ b r)) Z  2ct)

4 rcit-1 bc~t b

In this equation Z'(a) = d[log F (a)] ,aere F(a)is the gamma func-~da

tion evaluated for argument a. The equation is valid if

ci(t - T) < r < cit. The complexity of Eq. (21)indicates that it

would be difficult to find an analytical expression for the dis-

placement in the case where both elastic and plastic waves are

present. The situation would then be more complicated than it is



-15-

here since the solutions obtained in the elastic and plastic regions

must be fitted together at the boundary between the two regions.

4. Numerical calculations

In our opinion a qualitative understanding of the waves produced

by an expanding cylinder is most easily obtained by a numerical inte-

gration of the wave equations. In this section a method for numeri-

cally integrating the wave equations is described, and some results

obtained by numerical calcq$ation are presented.

Let us assume that the cylindrical hole is expanded rapidly enough

to cause plastic deformatiqn, In this case both an elastic and a

plastic wave are produced. The elastic wave runs out ahead of the

plastic wave just as it does wheA a large force tending to lengthen

a long wire is suddenly applied to one end of the v, Ire. The wave

equations which must be considered are:

_2u cm [ 2 +2 L _ r _ Ur r-] (Elastic) (4)

- .- + 2 ...... (Plastic) (l4)

Ut2  r or2  r r pr

These two differential equations can be written approximately as finite

difference equations. To do this we shall consider only the displace-

ments at regularly spaced instants of time and at regularly spaced

radii. The time interval will be called A; the space interval in the

elastic case we shall take to be c1 A; and the space interval in the

plastic case will be c2 A. VWe shall denote by uij the displacement

at the i th instant of time and at the radius rj. In this notation
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the differential equation for the elastic case becomes

u(i+1)fUij+U(i-1)j__2 Ui(j+1)-2uij+i(j-1)+1(ui(j+1)-ui(j-1)L Uij]

Al. cA 2  rj\ 2 cA-r ]

Solving this equation for u(i+ 1)j' we find for the elastic case,

C1A (cIA)2uij
U(i+1)j: -u(i 1)j+ui(j+1Ui(j1) + -(u2 (22)2r j r j

Similarly in the plastic region we find

cA/ ( (cA) 2uij PA 2

u(i+1)j -(i-1)J+ui(J+1)+ui(j-1)+rj (ulJ+1)-Ui(j-1 r r

(23)

where P 2 o(G - F)/O. The method of calculation can be under-

stood with the aid of Fig. 3. In this figure the region that lies

above the solid line represents the elastic region; the region below

this line represents the plastic region.

Since the maximum velocity of any wave in the material is c,

and since the material is undisturbed until the time t = 0, it is

evident that the displacements in the region above the line

r - b = clt are zero. We shall assume that

u(b) = 0, for t 0;
(24)

u(b) = vet, for t > 0.

Thus, the displacements Uio are also known. According to Eqs. (22)

and (23) a particular displacement can be calculated if four neigh-

boring displacements are known. The position of these displacements

on the diagram is simply related to the position of the displacement
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being calculated. For example) if one wishes to calculate u92

(see Fig. 3), the displacements required lie in an inverted T

just above u92. The shearing strain at any point ij is given

by

uij ui(j +1) - ui(j-l) . (25)
ij r j rj +1I- rj_ 1

There are several ways in which the calculation may be per-

formed; we have found,the displacements as follow's. The elastic

displacemept are calculated first. The value of ull is found by

requiring that the average shearing strain between the point.1,1

and the point A of our diagram must be equal to the shearing strain

o which is required to produce plastic deformation. Thus,

11  U11 - 0

-b + c2 A(cI - c2 )

The displacement U,2 oan then be calculated at once because, of

the four displacements necessary for its calculation, only ul

differs from zero. Knowing u2 2 We can calculate u3 3, and so on.

Since the elastic wave travels faster than the plastic wave, it

soon becomes necessary to introduce another diagonal row of dis-

placements in the elastic region. We have adopted the practice

of inserting an additional row whenever the difference in radius

between the smallest elastic radius at a particular time differs

from the largest plastic radius bymore than A(c, + c2 ). Sup-

pose that the displacement at the top of a new diagonal row
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is Uab. Then uab is found by making the average shearing strain be-

tween the points (a,b) and (a,b+ 1) equal to For instance, u 6 5

in the elastic region is given by

?o '6 - u 66 + u5 + u 66 •
Ac, r5 + r 6

The other members of the new diagonal row u 7 6 , u8 7 and so forth, are

then calculated successively using the finite difference equation,

Eq. (2).

After the displacements in the elastic region have been evalua-

ted for times between t = 0 and any given later time, the displace-

ments in the plastic region can be calculated for the same range of

time. Consider first the displacements along the line r- b =c 2 (t- ).

In this diagonal row, u2 1 can be found immediately in terms of

ulO(plastic) and u11(elastic). The displacement u3. cannot be evalu-

ated at once because the elastic displacement uB is not known (see

Fig. 3). The same situation occurs all along this diagonal row. For

example, suppose that we have found u7 6 and nowr -aish to evaluate u
70' 87'

the displacement u,, 7 can be found only if we know- uD, u E and uF .

1,7e have evaluated the displacements at points such as B, D, E and F

by fitting the nearest elrstic displacements to a linear relation

between displacement and radius. The linear relation found in this

way is then used to calculate the desired displacements. For example,

it is assumed that the displaoement increases linearly ,ith distance

as we go from point C to point 2,2. The displacements u, = 0 and u 2 2

are used to determine the constants in the linear rela.tion and uB is
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then calculated using the linear relation. Similarly u77 and u76

determine the linear equation that is used to find uF and uE.

The displacements in additional diagonal rows lying successively

farther from the first diagonal plastic row are then calculated

until all of the plastic displacements between t = 0 and the pre-

viously specified time are knovn.

Since the energy density associated with any particular place

in our vwaves decreases as they spread outwards, it is not sur-

prising to find that the shearing strain at the outer edge of the

plastic w7ave decreases with time. Thus, if we evaluate the average

shearing strain over the interval between the smallest elastic

radius end the largest plastic radius, this strain is for small

times larger than j", but eventually decreases until it equals ?-o"

When this shearing strain becomes smaller than 2o0 the first

diagonal plastic row must be replaced by a diagonal elastic row.

IWe shall show how the replacement is made using: the diagram. Let

us suppose that we have calculated u87(plastic and u98(plastic ) .

In our calculations in the elastic region we have started a new

diagonal elastic row at (10,8) (elastic)' since there the difference

between the smallest elastic radius r10,9(elastic) and the largest

plastic radius r10,9(plastic) has become greater than 6(c + c2 ).

We shall suppose that further calculation shows that the shearing

strain between (8,7)(elastic) and (8' )(plastic) is greater than

?o, while the shearing strain between (9,8)(elastic) and (9)8 )(plastic)

is less than Wo We therefore discard our value for u98(plastic)

and move the edge of the plastic region back to the line
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r - b =c 2(t -2.A). In the elastic region the third diagonal row

is started at (9,7) rather than at (1O,8). Since the changes which

are made along the edge of the plastic egion will affect eisplace-

ments at later times, it is impprtant that the shearing strain at

the edge of the plastic region be evaluated fiqAently as One moves

down the diagrao In order to avoid useless calculation.

In our numerical work we have used the following values for

the constants which appear:

c, = 14,910 ft/sec, "= 8.54 x 10-3,

cz = 11,240 ft/sec, G/F 6.9h,

c2 /c 1  0.754, b 1 ft,

G = 5.40x1010 lb/ft sec 2  vo  518 ft/sec,

2,-)(G -F)/1= 1.64 x 106 ft2 /sec 2

The foregoing values of the constants are not appropriate for armor

plate; however, the qualitative nature of the waves produced does

not depend on the numerical values of the constants. The wave

velocities are both about 25, percent too small.. The stresses that

we calculate will therefore be somewhat too large, From t -0 to

t = 1.1 x o-4 sec the'time interval A used is 10-5 sec.. From

t - 1.1 x 1Q-4 to t =,3.3 x IO-4 sec the interval used is ?-x o-5 sec.

The large time interval is chosen so that the change in the dis-

placement in going fren one point in a diagonal row to the next is

never more than 16 percent of the displacement. The average change

is much less, amounting to 5 percent of the displacement. In

Figs. 4, 5 and 6 we Iave plotted the displacements and the shearing
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stresses as a function of the radius at times t= 1.1 x1oh sec,

t =2.3 x10 -4 sec and t = 3.3x 10-4 sec. Figures h, 5 and 6 show that

the shearing strain decreases as the radius r increases. Initially

there is a sizeable discontinuity in the shearing strain at the edge

of the plastic region, but this becomes less marked as time passes.

5. Future program

From what has been said it is clear that the investigation of

the propagation of plastic deformation in cylinders is by no means

complete. in this section we shall mention a few points that should

be investigated.

The derivation of the wave equations in this report indicates

that there should be a minimum wave velocity for cylindrical waves

of deformation. This minimum wave velocity depends chiefly on the

compressibility and the density of the material. In the case of

the propagation of plastic deformation in a tire no such minimum

velocity is found. It would be interesting to determine whether

such a minimum wave velocity can be found experimentally.

In the penetration of armor plate the strains near the axis

of the shell are not infinitesmal. Therefore, the effect of these

finite strains on the propagation of plastic deformation near the

axis of the expanding cylinder should be considered theoretically.

A solution of the problem in the form of a series or some

approximate function would be of much use since one could easily

determine the result of a change in the physical constants of the

material under consideration. For this reason it would be well to

attempt an analytical solution of the case where the cylinder contains
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both elastic and plastic waves. The approximate solution in the

case where only elastic waves are present should furnish useful

information for this work.

The experience gained in working with a two-dimensional model

of the penetration problem might conceivably point the way to a

numerical solution of the three-dimensional problem of the pene-

tration of armor plate.

In the numerical solution given in this report the displace-

ment at the surface of the expanding cylinder can be taken to be

any desired function of the time. Thus, one could investigate

the "secondary ,ave'2-/ which is sent out when the displacement at

the surface of the expanding cylinder reaches its maximum value.

To do this one would simply carry through a numerical solution

using the .ave equations, Eqs. (4), (8) and (13), together with

the boundary condition,

u(b) = 0, for t < O;

.u(b) = vot, for O < t < T;

u(b) = voT, for T < t.

It is obvious, of course, that more detailed numerical calculations

should be carried out using constants appropriate for armor plate.

Hovever, it ,ould seem that such numerical calculations should be

made after one know.,s how to treat the finite strains near the shell.
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GLOSSARY

b The initial radius of the cylindrical hole in a thick

plate of infinite extent (Secs. 3 and 4).

c, IWave velocity in the elastic region.

c2  Wave velocity in the plastic region.

D Slope of the stress-strain curve in the plastic region.

E Young's modulus.

F Modulus in plastic region corresponding to shear modulus
in elastic region; F = d/2(I + o).

f Slope of stress-strain curve, some function of the largest
shearing strain.

f l Derivative of function f vwith respect to its argument.

G Modulus of rigidity; G = E/2(1 + , ); also referred to as
the shear modulus.

K M-.odulus of volne expansion.

r,G Plcne polar coordinates.

T Time during wrhich expansion of hole takes place (Sec. 3).

t Time.

u Displacement.

v o  Radial velocity of material at the surface of the expand-
ing cylindrical hole (Sec. 3).

Defined by 2o = 1 - D/3K

A Time interval.

r9,/rz,'9z Shearing strains.

Shearing strain when material begins to deform plastically.

j Shearing strain at point of decreasing strains.

r Tensile strains in the directions rG 9 and z.

Cr . .G zo Strains present when the material begins to deform plasti-
0 0 cally.
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r Strains present at the time when the stresses in the

vicinity of the cylindrical hole begin to decrease.

The yield stress obtained in tensile tests made on

long thin wires.

V Poisson ratio.

14 Density of the material.

13r) ' G, rz Tensile stresses in the directions r and Q.

Cr0 'T 0 )z Stresses required to initiate plastic deformation.

rm,3'Gl, 'Z, Stresses present at the time when the stresses in
the vicinity of the cylindrical hole begin to de-

crease.
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