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ON THE PROPAGATION OF THE PLASTIC DEFORMATION

PRODUCED BY AN EXPANDING CYLINDER

Abstract

" In the present paper it is assumed, in accord with Bethe'!s model
for armor penetration, that the plastic deformation praduced during
armor penetration is similar to that produced by an expanding cylinder.
The paper deals with the deformation produced in a plate which is thick
enough so that the plate does not get appreciably thicker near the ex=—
panding cylindrical hole, 1In the first portion of the paper the rela-
tions between the stresses and the strains are considered and the wave
equations which govern the motion of the materisl when it is rapidly
deformed are derived. It is found that in the case of the thick plate
an elastic wave diverges radially from the expanding cylinder, that
this is followed by a plastic wave and that the elastic and plastic
wave velocities do not differ very much. In the second portion of the
paper an approximate expression for the displacement is obtained for the
case where the deformation is elastic. In the last section of the paper
a method of numerically integrating the wave equations is given. The
method is applied to a particular numerical example, and the displace-
ment and the shearing strain produced by a uniformly expanding cylinder
are calculated and plotted at various times during the expansion. The
calculation shows that the shearing strain in both the elastic and the
plastic regions increases as we go towards smaller radii. A discon-
tinuity in the shearing strain is found at the boundary between the
elastic and plastic regions. The calculation indicates that the com-—
pressibility and the density play an important role in determining the
magnitude of the stresses developed in a thick ,late. A program for
future investigation is suggested.

*

1. Introduction

Bethel/ has calculated the stresses and strains produced in armor
plate by a projectile under the assumption that the actual three-dimen-
sional problem can be approximated by a treatment involving only two
dimensions. During penetration, a pointed shell will produce large dis-

placements of the surrounding material away from the axis of the shell.

l/ All numerical references are to the list of refcrences given
at the end of this report.



" Bethe assumes that in a thick plate the diéplacéments‘parallel to
the axis of the shell are negligible compared wi?h displacements
perpendicular to the axis., The stresses and stréins are calculatedj
by assuming that the projeétile produces a cylindrical hole in the
‘platé." Aévthe penetration of the shell proceeds, the hole widens.
The initial radius of the hole is zero and its final radius is the
radius of the shell,

‘The forces that displace material away from the axis of‘the
shell must accelerate the material, and they must overcome the
stresses ﬁroduced by the defofmation; ‘Bethe rccognizes that inef-
tial forces will play a role in thé problem, but he neglects them
© in his treatment. - Calceculations on the propagation of plastic de~
formation in steel‘wiresg/ yicld kinetic energies that in all cases
exceed ﬁd‘peroent of the total energy. It is to be expected that
the kinetic energy may represent a smaller fraction of the total
energyAin the case of cylindrigal waves, bubt one would not ex@ect
the kinetic anérgy to be entirely negligible. |

In his calculation Bethe hag given a static treatment of the
* " problem, This_geans that he caleulates the stresses and the strains
present.inhthe éiate at an infinite time after the penetration of
the projectile.l Since the initiélly intense disturbance around
the hole evéﬁtually spreads‘over a larger area, it is clear that
“the maximum stresses and strains produced in the armor are under-
ostimated in Bethe's caleulation. ‘ .

G.II.'Téylor has also considered the problem of armor penetra-

tion.é/ His firs{ paper gives a static discussion of the deformation
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produced in a thin plate by an expanding cylinder. Taylor's relations
connecting the stresses and the strains différ from those usced by Bethe.
In his second paper Taylor gives a dynamic treatment of the enlarge-
ment of a hole in a thin plate at high speeds; that is,; in this paper
he includes inertial forces. The assumption is made thait the tensile
stress which acts in the plane of the plate and perpendicular to the
radial direction is zero.

In the present paper we shall discuss the elastic and plastic
waves set up in a thick plate by an expanding cylinder. We shall ob-
tain first the necessary wave equations., #n approximate expression for
the radial displacement in the elastic case will then be found. Next,
a method for mmerically integrating the wave equations will be de-
scribed and, finally, some results obtained by nuaerical calculation

will be given.

2. The wave equations

From the symmetry of the problem we see that the diéplacement pro=-

duced by an expanding cylinder in a thick plate is entirely radial. The

L/

equation of equilibrium can then be written,-—

2p G Up - S
S S

where u is the displacement, p is the density of the material, r and e

are plane polar coordinates, and 0y are tensile stresses in the

Op
directions r and 9, and t is the time. If we assume that the displace-

ment is small compared with r then, according to Timoshenko,é/ we have




€ = Yrg = Yrg = Py = 0.

Here Eps 69 and £, are the tensile strains in the directions, r, €
and z, respectively; Yre? Yrz and Ygp 2Te the shearing strainsg

and the z-axis is the axis pf the shell. Equations (2) hold only
for the case where the displacenent is completely radial. It might
be well to point out that actually u is not small compared with r
near the axis of the shell -- that is, near the 2z axis. No treat-
ment has as yet been given fhat deals ceorrectly wi?h this regioﬁ.

We shall use Egs. (2).

(i)‘Elastic deformetion. ~- A wave equation in the variable u

can be obtained if we assume relations between the stresses and
the strains. If the deformation is elastic, the relations are

given by Hooke's law. Thus,

Cg= p=2G(Eg- &), Ty = Sg=-20GEy, 3y
T - = = -
P =208, et ta, 31{(5r+£e),

where G is the modulusrof rigidity and K is the modulus of volume

expansion.. Note that £, does not appear in Egs. (3); in the parti-

cular prbblém'considered here, £y ié zero., If we use Egs., (2) and

substitute values obtained for the stresses from Egs. (3) into w

Eq. (1), we obtain the wave equation,

- 2Ru [3K+LLG i)zu+_1_ du_u A !
e\ 3p ><ﬁr2 r dr rz)' ()
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The velocity of propagation of these elastic waves is

¢y = VBK ¥ LG)/3p. (5)

If we calculate c, for steel for the case where G =5.40 %10 1b/ft sec?,
11 2 3 . «
K = 1,046 x 107~ 1b/ft sec® and p = L80.7 1b/ft”, we find that
cq, = 19,170 ft/sec.
. . 6/ . . :

According to Mohr's criterion— the material at a specified point
will experience plastic deformation if the largest component of the
shearing stress at the point exceeds the limit %ﬂ\, where _5 is the
yield stress obtained in tensile tests made on long thin wires. Huber,
Henckey and von MisesZ/ postulate that plastic deformation of a poly-
crystalline material begins when the principal stresses become large

enough to satisfy the relation,

(6)

(€, - )% + (7, - 0u)° + (¢, = 0)° = 2X

The conditions of Mohr and von Mises do not differ very much. The worst
agreement is obtained in the case of pure shear. In this case the
largest component of the shearing stress found by using Mochr's criterion
is 15.5 percent lower than the value obtained by using the von Mises
condition. We shall use lichr's condition to determine whether or not
the material at a given point is experiencing plastic deformation.

(E) Plastic deformation. -- We shall assume that the following

relations are valid for material that is being plastically deformed:

o= 5l 5 moter )]+ (F-)e,
com % o, )]+ (B-d)e, <)] )

P 11
Ez=5_“"z*°‘(r‘“”} {E' 5)
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\

In Egs. (7), . » ag and §, are the stresses required to initiate
To o 0

..plastic deformation. The constants E and v are Young's modulus and

the Poisson ratio. The constants D and « describe the plastic be-

havior of the maéerial; the way in which they are determined from

experimental data will become cleér as we proceed. We shall wailt

until later to discuss the validity and meaning of these equations.

Adding Hgs. (7) we obtain

e _ 1=2« 1-2v 1=2x)
Ept &gt &= =5 [e,.+ ¢e+rz]+< =~ ~F )[(Tro+¢eo+q'zo]. (8)

In the elastic cage,

, ] 1-2
Gt tet 5T gg [t T 0l T I el ()

where 1/K is the compressibility. We shall assume that Eq. (9) is

also valid for a material which is being plastically defor'med.é/
Since Eq. (8) must be the same as Eq. (9), we have
‘ o
3Ke 7% - (10)

This equation can be used to.determine o once D is known. D can be
obtained from the stress—strain curve of the material in tension.
Equations (7) assume that this stress strain curve is of the form
shown in Fig. 1. The'slope of the initial elastic portion of the
curve is E. The slope of the stress strain-~curve in theAplastic
region above the knee isvg; Equations (7) are, of course, valid

only if ¢, ¢g and ¥ are principal stresses.




Tensile stress

Tensils strain
Fig. 1. The form of the stress-strain curve
assumed in Bgs. (7).

Ros and Eichinger, Nadai, and othersg/ have shown thet relations
of the type of Egs. (7) are in accord with experimental tests made on
polycrystalline materials. The relations are so constructed that the
directioﬁs of the principal strains coincide with‘the directions of
the principal stpesses, In addition, the equations are so arranged
that the figure consisting of iMohr's three principal strain circles
remains continuously similar geonetrically to the figure made up of
the three principal stress circles (_s_gg_Nadai).2 Our relations are
somewhat more general than theirs since they took ¥ to be infinite —-
® is then 0.5 by Bq, (10).  Thy fact that K is not infinite is of
importance in the problems‘treated in the present report.

Let us consider the plastic deformation which occurs in a thick

plate. For this case we have:
7, = "'
G’uo U(G\’ro‘ G'eo): (11)

BEquations (3) hold at the boundary between the elastic and plastic

regions and, since we still assume thaf the displacement is radial in
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the plastic region’Eq,(2) is still valid there. Using the last

of Egs. (2) we can write Egs. (7) as

(rg - G‘I‘ =2F[Sg - 81,] + 2(G - F)[&eo "“61.0],

T, - ¢e=—2F§9~2(G-F)EQO, L (12)

Cp = Oy = +2F, + 2(G - F)sro’

where €g and €, ere the strains present when the material begins
0 0

to deform plastically, and where

D

and

- B
2(1 +v)’ .

g being the clastic shear m»dulus., In addition we have from Eq. (9),

since &, = O,

»

.

.t Sg + 6, =3K[Eg + e.]. (13)

The wave equation for plastic waves is obtained by using Egs. (1),
(2), (12) and (13) in the same way that Egs. (1), (2) and (3) were
used to obtain the elastic wave equation. The wave equation which
results is

ot = ) = 2 (1)
3/ o rar pr g

The plastic wave velocity is

i

i

3%u 3K +1;F *u  19%u u 2 (G - F)y
e 1 e

&~ - £,
9, Ty

1

whare %

c; = VK #LF)/ 3. | (15)
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Using F/G = 1/6.94 for steel, we find that c, = 15,460 ft/sec.  The
ratio cy/cq is therefore 0.80. For steel of the quality used in

armor plate A = }.61 x 108 1b/ft sec?, Yo = L.27 x 10~ and

fl

2¥o(G - F)/p = 8.20 x 105 ftz/se§%

(g) Plastic deformation when the slope of the stress—strain

curve is some function of the largest shearing strain. —- We can

generalize our wave equation by assuming that the material follows
a stress-strain curve which can be introduced into the eguations as
an arbitrary function. If we suppose that the slope of our stress
strain curve is sane function of the largest shearing strain, then
the equations relating the stresses and the-strains may be written

in a form analogous t9 HEgs. (3) as

§g = 0, = 2(&9 - ar) f(ae - Er),

T, = 0g = =285 (&g - €.), |
(16)

6+ S+ &, = 3K[£r + 5@],

Ros and Eichinger have shown experimentally that the D and F of
our Egs. (7)and (12) actually are not constant but depend somewhat
on the veriable quantity, BGQ - Gr)2 + (8, - 6@)2 + (&r - EZ)Z],

We shall assume that only the largest shearing stress plays an im-
portant role. This assumption is related to the results of Ros and
Eichinger in the same manner as Wohr's condition for the onset of

plastic deformation is to the Huber, Henckey end von Mises condition.
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The function f(¢g = €,) may be determined from static experi-
ments in the following way;* In general, the equations relating

the principal strains and the principal stresses can be written,

Q
1
q
n

z‘ 2(51 = Cz)f(&l - 83):
2 3 2(52 - sa)f(&l - 63):

T3 = 03 = 2(85 = &)F(3; = &5)

A
1

A
]

and

+ 0y = 3K(E, + €, + &),

where &, - &, is the largest shearing strain. These relations will
then be valid in the case of a tensile test on a2 long thin wire ex-

tending in the xj;-direction. In this case,
6“ = G— :O - !

2 3

and, hence, by the second of our general equations,

The equations relating the principal strains and principal stresses

become
Gl = 2(81 - &)f(8) ~£€5), S, = 3K(&1 +28,).

Eliminating €, from these equations, we get

3 3 i g
f<__ £, - _.l> R S
C {3 g
5 €K 2(3 ¢, - K)

3

This method was suggested by M. P. White and H, F. Bohnenblust.
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Thus by measuring ¢; and €; in a tensile test and by plotting the
function on the right as a function of (%.El-g%), the function £
can be found, If K can be taken as infinite —- that is, if the sub-

' stance is incompressable -- then the foregoing equation becomes,

(Zes) <5

Equations (16) are so constructed that the directions of the principal
strains coincide with the directions of the principal stresses. In
addition, the equations are so arranged that the figure consisting of
Mohr's three principal strain circles remains continuously similar
geometrically to the figure made up of the three principal stress
circles (see Nadai).™

Proceeding as before, using Egs. (1), (2) and (16), we find that
the wave equation for a material in which the slope of the stress—

strain curve depends on the largest shearing strain is

3~ 3 3
e —-——--—2]. (7

2, [Kﬂi ~2(2e, - £g)Et P rK+£f+%(2£r‘ Sg)ft |[1 % u
= s a2 P r dr 7

In this equation f' represents the derivative of the function f with
respect to its argument (Eg - ép). Equation (17) is complicated be-
cause the coefficients of the partial derivatives depend on u. Von
Kérménlg/ has discussed the propagation of plastic deformation in
wires when the stress-strain curve is given as a function to be deter-
mined by experiment. e have not been able to apply von Kirmin's

method of integration to EFq, (17).
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(g) Plastic deformation in a region where the shearing strain

decreases with the'passage of time. —— After the conical head of the

projectile has passed complétely through the armor plate, the stresses
in the vicinity of the cylindrical hole will begin to‘decrease, We
shall next obtain a wave equation appropriate for this region, If a
metal is plastically deformed, moving from A to B to C on the stress-

strain curve shown in Fig, 2, and if the largest shearing stress is

‘%(G_@ - 0})

&

//A /D
& “Er

Fig. 2. The stress-strain curve for plastically de-
formed material including a region CD when the shearing
stress is decreasing. WNote that CD is parallel to the
elastic portion of the curve 4B.

then decreased, the shearing strain also decreases; the stress and
strain move down along the straight line CD. The line CD is paral-
lel to the elastic portion of the stress-strain curve; that is, ch
1s parallel to AB. If srl and &91 are the qtrains at point C of
the curve and if 7, is the shearing strain at that point, then the

equations relating stress and strain along the linc CD are

Co~T,=2G (Eg~ £)-2(C-F) (11=%) 5 §p=0g= =26Eg+2{G-F) (8 8, o) s
(18)

Tp=y= +2GE,-2(G-F) (erl—_fro), o+ 0+, = 3K (ep* &g).
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The wave equation obtained by using these equations is

3%u (3K + hcj(bzu 120w} 2(G-F)0i-7Yo)
z " - —;} * . (19)
dt 37 Pr

The wave velocity is just the velocity of the elastic waves.

z v -
r ror

3. The elastic case

In order to obtain some idea of the nature of the functions. that
appear in the solutions of the wave equetions, we have attempted to
solve a problem involving only elastic waves. OConsider a thick plate
of infinite extent, through the center of which passes a cylindrical
hole of radius b. We shall assume that external forces act against
the surface of the hole so that its radius increases with the passage
of time. The radial displacement at b is supposed to vary with time

in the following fashion:

u(b) = 0, for t < 0;
u(b) = v t, for 0 <t <T; (20)
u(b) = v T, for T <t.

where v, and T are constants, Since the deformations are taken to be

elastic, the wave equation is

9%u 2 [3%u 1 2 \1]
Pu_ 2, 1 ()
It * [Qr“ r dr p°l '

1
Bethe—l/ has given a theoretical discussion @f a very similar problem.
We have extended his treatment to higher ordeps of approximation, and
we have used the method to obtain an expression for u that is valid

in the portion of the wave sent out while the cylinder is expanding.



We find that

vobt
u=

r
Wb

- —

€1

(21)

-1 -

In this equation 24!

tion evaluated for argument a.

cy(t = T) <r < c;t.

(a) = ALosl (@)1
da

/b [r e plb 5p0 > b/ G B 5p0 >:]\
-1+ ~+ + +--,——(1+ —F + doaee
2cltl_b( hc;thz Eic:lft}'L 6140?1:6 r\ hcita BCgth '6b,c§t6
b°r log I l' 3z +b2)  15(c + 3092 + bl i
- 2+ + . Foere
20:3Lt3 cit2 b,cllltb' N
mlr [ 3(r% = b2) | 5(rt - ) I
. >3 + )4 h oo
c%t3 . Lelt 2cTt J
i b° r? | ©2eqt ]
2 +2< - > Z21(3) =1log ‘
+ b rcyt  begt/ N\ b
2,2
¢, t
3b /2b° (r®+1b3) (,' 2¢qt
- ‘ 7 ~log —&=
" cyt (rcitg boit? J\ (5)-108 = )
. 15< 58 (oro+ 3b3r3+b5r)\<21(7) . 201“
— ~ ~log
L rcgtE bcgtS . b /7
-f- . .
- _J
+ LI B )
~ —

where | (a) is the gamma func-
The equation is valid if

The complexity of Eq. (27)indicates that it

would be difficult to find e’m.analytical expression for the dis=-

placement in the case where both elastic and plastic Waves are

present. The situatlion would then be more complicated than it is
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here since the solutions obtained in the elastic and plastic regions

must be fitted together at the boundary between the two regions.

L. Numerical calcuylations

In our opinion a qualitative understanding of the waves produced
by an expanding cylinder is most easily obtained by a numericel inte-
gration of the wave equations. In this section a method for numeri-
cally integrating the wave squations is described, and some results
obtained by numerical calcylation are presented.

Let us assume that the cylindrical hole 1s expanded rapidly enough
to cause plastic deformatign, In this case both an elastic and a
plastic wave are producéd. The elastic wave runs out ahead af the
plastic wave Jjust as it does when a large force tending to lengthen
a long wire is suddenly applied to one end of the wire. The wave

equations which must be considered are:

32y 2 [ 3®u 1 3u u ]
A O (- AL . (Flastic (L)
I3 * [arz rar 1 J’ o

5 — ~ wp———— , (Plastic) (1L)
dr r dr 7] pr

2%u z[ézu 1 du u} 2yo(C = F)

These two differential equations can be written approximately as finite
difference equations. To do this we shall consider only the displace-
ments at regularly spaced instants of time and at regularly spaced
radii. The time interval will be called A; the space interval in the
elastic case we shall take to be c,;A; and the space interval in the

plastic case will be c,A. We shall denote by uij the displacement

at the i;&x instant of time and at the radius Ty In this notation
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the diffefential equation for the elastib case becomes

U(1+1) 572U 50 (1-1)J_ » [mm ~2u; 5403 (§-1) (:L(jm*ui(j-w) U4 ]

2 BAZ ) 2 A 2
A rJ o rJ

1
I

Solving this equation for U(s s 1)3° we find for the elastic caoe,

U(i41) 37 "0 (4-1) 5" (G (-1t or. {ul(J+1) Ui (g 19'_~ r% + (22)
J J

Similarly in the plastic region we find

‘ c;h (%Afwj PAR
Ha1) 5T 3 ) M (-1 rs 6’1(344) %(3-1)> 3 ry
(23)

where P % 2¥0(G = F)/P.  The method of calculation can be under-—
stood with the aid of Fig., 3. In this figure the region that lies
above the solid line repressnts the elastic region; the region below
this line represents the plastic region.

Since the maximum velocity of any wave in ihe material is c,
and since the material is undisturbed ﬁntil the time t = 0, it is
evideﬁt that the displacements in the region above the line

r -b = c;t are zero. We shall assume that

0, for t < 03

L]

u{b)
(2L)

1

u(b) = vgt, for t > 0.

Thus, the displaccments u o are also known. According to Egs. (22)
and (23) a particular displacement can be calculated if four neigh-
boring displacements are known. The position of these displacements

on the dizgram is simply related to the position of the displacement




= /7 -

l/-— b, e/a\f rie (c,A) '

r=b 1 1 L
=0 K555 | T I | l T | T
N\ r=b, plasiic ez a)

%0) (46/ )

Fo) (57) (%52) SR)
®) (o} \
. NN
£ @) @2 N&.5) 5\@:@\
. N
) \. O\
~ .
(70) v(*(/,)/) 702 (763? (%4) ('85) (ée VW.’\ Z \(2\7)\
@O [T G B3 (&) (%5 &2 o \(%2 '(%a)
| N AN

G0) (3) @ G G o)

rb=.cz (-*-24) ,
20) (1) (12) ('g3) (94 (185) (96) (187

Time L(a)

F79. 3. (A r) coordinales of points af which Fthe disploce—
men’t is calcuvloled vsing Finife IiFFferernces.ln theregrn
where no poirnlts are grven rhe disolacemensis 3ero.lnthe
regror, above tHhe solid drogornal line the deformalion is
elostic. Ir the regror below Fhe solid diagonralline Ihe
deformatirorn /s plostic.




-~ 18 -

‘being calcilated. For example, if one wishes to calculate Ugp

(§gg Fig. 3), the'displabements required lie in an inverted T

Just above Ugy « The shearing strain at any point i,j is gifen‘ -
by B
N e (¢ K D (¢ LAy (2)
i. = ) . _ )
ST Tye1TT-1 :

There are sevéral’ways in which the galqplation may be pér-
formed; we have found, the displacements as follows. The elastic
displacemeptg afé caiculated first. ‘'The valuekof uil ié found by .
requiring ﬁhat the average'shearing strain between the point. 11
and the pgint‘é bf our diagram;mﬁét be eqﬁal to the shéaring‘str%in

-

I which is required to produce plastic deformation. Thus;

SRR ‘ u;; =0

X = + °
° rp *tldcy A(ey = cz)

The displacement uaz_oan then be calculated ét once because, of

the four displacements necessary for its calculation, only, u;;

differs from zero. Knéwing up, We can célculate Uzz, and sO on.

Sinc; the elastic wave travgl§ faster than fhe plastic ﬁave, it | o
soon becomes ngcessgry‘to‘inbroduce another diagonal row of.dis—‘

placements in the elastic region.’ We have adopted the practice

of ihsertingvan Qdditional row whenever ﬁhe difference in radius

between the smallest elastic radius at a particplarl%ime_diffefs

frOm‘thé 1afgest plastic radius by more than A(gl + cz). Sup~ | 5

pose that the displacement at the top of a new diagonal row

k4




- 19 -

is Uy Then Usp is found by making the average shearing strain be=-
tween the points (a,b) and (a,b+ 1) equel toy,. For instance, uge

in the elastic region is given by

_Ues T Ues | Ues U6
Acy ry trg )

%

The other members of the new diagonal row Ungs Uy and so forth, are
then calculated successively using the finite difference equation,
Bq. (22).

After the displacements in the elastic region have been evalua-
ted for times between t = O and any given loter time, the displace-
ments in the plastic region can be ecalculated for the same range of
time. Consider first the displacements along the line r-b==cz(t-A).
In this diagonal row, u,; can be found immediately in terms of
ulo(plastic) and Y11 (elastic) The displaccment u,, cannet be evalu-
ated at once because the clastic displacement Ug is not known (EES
Fig. 3). Thc same situstion occurs all along tlis diagonal row.‘ For

gxample, suppose thet we hove found wu., . and now wish to evaluate Ug

75

76
the displaccement UB? can be found only if we know Uy Up and U

We have evalusted the displacements at points such as g, D, E and ¥
by fitting the nearest clrstic displacecments to a lincar reletion
between displacement and radius. The linear rcletion found in this
way is then uscd to calculote the desired displaccements. For cxample,
it is assumcd that the displeocemcnt increases linearly with distance

as wc go from point C to point 2,2, The displacements uo = O and uy,

arc uscd to determine the constants in the lincar rolotion and uB is
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then calculated using the linear relation. Similarly u77 and Ung
deteormine the linear equation that is used to find up and ug-

The displacements in additional diagonal rows lying successively
farther from the first diagonal plastic row are then caléulated
until o1l of the plastic displacements between t =0 and the pre-
viously specified time are known.

Since the energy density associcted with any particular place
in our weves decrecses as they spread outwards, it is not sur-
prisiﬁg to find that the shearing strain at the outer edge of the
plastic wave decreases with time. Thus, if we evaluate thc average
shearing strein over the interval betwecn the smollest elastic
radius and the largest plastic radius, this strain is for small
times larger than 7, but eventually decreases until it equals 2.
When this shearing strain bocomes smaller then ¥, the first
diagonal plastic row must bhe replaced by a diagonal elastic'row.

We shall show how the rceplaccment is made using the diagram. Let

us suppose that we have calculated u87(p1astic) and u98(plastic)'

In our calculations in the clastic region we have started a now
diagonal elastic row at (10’8)(olastic)’ since there the diffcrence

* between thg smallest elastic radius r10,9(elastic) and the largest
plastic radius T10,9(plastic) has become greater than A(c, + cy).

We shall supposc thet further cclculation shows that the shearing
strain between <8’7)(elastic) and (8’7)(plastic) is greator than

Yo, while the shearing strain between (9’8)(olastic) and (9’8)(plastic)
is less than 7,. Wé therefore discard our value for Uog(plastic)

and move the edge of the plastic region back to the line
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r-b ='cz(t - 24). In the elastic region the third diagonal row
is started ét.(9,?) rather than at (10,83.‘ Since the changes which
' afe made along the edge of the plastic region will affept sisplace~-
‘ments at later times, it is impprtant that thie shearing étrain at |
the edge of the plastic region be ;valuated frequently as one moves

down the diagrap 1n order to avoid useless calculatlon.

In our numerical work we have used the follow1ng values for

the constants which appear:

= 1b,910 ft/sec, 7, = 8.54 x 1073,
= 11,200 ft/sec, o o/ = 6.9k,
cz/c.l, =0.75L, b =1ft,
G =ﬁ5.h0;(101° 1b/ft sec? - ,' v, = 518 ft/sec,

2y,(G - F)/f7? 1.6 x 108 £42/sec?

Tﬂa foregoing values of the conétants a;e not appropriate for argor
plate; however, the qualitative nature of the waves produced does
not depend on the numerical values of the constants. The wave
velocities are both about 25, percent too small. The stresses that
we calculate-will\ﬁherefore be somewhat too large. From t = 0 to
t = 1.1 x 10°4 sec the time interval 4 used is 10=5 sec.. From
t=1.1 x 10‘h tot = 3.3 x,10‘h sec the interval used is 2;x,10'5 sec.
The large time interval is chosen so thﬁt the.change in the diSf\
placement in-goiﬁg from one point in a diagonal rOw'to-the next is
never more than 16 percent of %he displacement. The‘averagé change
is much less, amounting to 5 percent‘ofvthe displacementf' In |

Figs. L, 5 and 6 we have plotted the displacements and the shearing
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N

stresses as a function of the radius at times t=1.1 x10‘h sec,
t=2.3 X1O"Ll sec and t=3.3x% 10-L sec. Figures lj, 5 and 6 show that
the shearing stfain decreases as the radius r increases., Initially
there is a sizeable discontinuity in the shearing strain at the edge

of the plastic region, but this becomes less marked as time passes.

5. Future program

From what has been said it is clear that the investigation of
the propagation of plastic deformation in cylinders is by no means
complete. In this section we shall mention a few points that should
be investigated.

The derivation »f the wave equations in this repprt indicates
that there should be a minimum wave velocity for cylindrical waves
of deformation. This minimum wave velocity depends chiefly on the
compressibility and the density of the material. In the case of
the propagation of plastic deformation in a wire no such minimum
velocity is found., It would be interesting to determine whether
such a minimun wave velocity can be found experimentally.

In the penetration of armor plate the strains near the axis
of the shell are not infinitesmal. Therefore, the effect of these
finite strains on the propsgation of plastic deformation near the
axis of the expanding cylinder should be considered thacretically.

A solution of the problem in the form of a series or smme
approximate function would be of much use since one could easily
determine the result of a change in the physical constants »f the
material under consideration. For this recson it would be well to

attempt an analytical solution of the case where the cylinder contains
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both elastic and plastic waves. The approximate solution in the
case wheré only elastic waves are present should furnish usefpl
information for this work.

. The experience gained in working with a two-dimensional model
of the penetration problem might conceivably point the way to a
numerical solution of the three-dimensional problem of thq pene-
tration of armor plate.

In the mumerical solution given in this report the displace~
ment at the surface of the expanding cylinder can be taken 10 be

any desired function of the time. Thus, one could investigate

the "secondary wave“lg/ which is sent out when the displacemént at
the surface of the eXpanding cylinder reaches its maximum value.
To do this one would simply carry through a numerical solution
using the wave equations, Eqs. (L), (8) and (13), together with

the boundary condition,

u(b) = C, for t < 03
u(b) = vob, for 0 <t <T;

u(b) = v,T, for T <t.

It is obvious, of course, that more detailed numerical calculations
should be carried out‘using constants appropriate for armor plate.
However, it would seem that such numerical calculations should be

made after one knows how to treat the finite strains near the shell.

*



N

10.

11,

12.

REFERENCES

H. A, Bethe, "An attempt at a thsory of armor penetration,"
Ordnance Laboratory, Frankford arsenal (May 1941).

In this calculation we used a stress-strain curve made up of
two straight lines. The constants that fix the straight lines
are given immediately after Egs. (5) and (15) of this paper.
The calculation was made using the theory proposed by von
Kérman (see reference 10).

G. I. Taylor, "iNotes on Beocthe'!s theory of armor penctration, I,
Static penctration,” R. C. 279. (Sapt. 19L2).

G. I. Taylor, "Notes on Bethe's theory of armor penctration,
IT, Enlergement of a hole in a flat sheet at high specds,"
R. C. 280 (Sept. 1942).

Bethe, reforence 1, p. 73, or Love, The mathomatical theory of
elasticity (Cambridge Univ. Press, ed. L, 1927), p. 280,
Egs. (L2).

S. Timoshenko, Theory of elasticity (McGro: ~n111, ed. 1, 193L),
p. 62, Egs. (LS) and (h6).

Bethe, reference 1, p. 8, or Nadai, Plasticity (WcGraw-Hill,
1931), p. 61, T

Bethe, reference 1, Sec. 12, or Nadai, Plasticity, p. 73.

We have assumed that K is » constent. To check this we have
calculated the change in K which occurs during the compression
of cylindrical copper crushers in the apparatus of Seitz,
Lawson, and Miller [NDRC Report A-63 (OSRD No, 619)]. The
largest itress produced in their static experiment was
5.6 x 10% 1b/in? Using data on the change of K produced by a
change of volume [see F. Birch, J. App. Phys. 9, 279 (1938)]
we find that K increcses by 1. 1 percent during such a test.
Other metals yield very similar results.

Ros ond Fichinger, "Versuche zur Klirung der Frage der
sruchgefahr," EidgenSssische katerialprifungsanstalt an der

E. T. H. in Ziurich (Feb, 1929). Part III is on metcls., Also
see Nadai, E}gﬁ}}city, chop. XIV.

T. von Karmin, On the propagation of plastic deformation in
solids, NDRC Report 4-29 (USRD No. 365).

Bethe, reference 1, pp. 73-91.

iie Pe White and L. Griffis, The permanent s<ircin ir a uniform
bor due to longitudinal impact, NPRC Regor s A—71 (OSRD No. 7h2).

- 27 -




[t

|3

1+

>

[

It 3R
| ©

fe

%
8
}re,lrz,yez
/5

/s

Er,ée,éz

Ep 38g o8
r, ”go Z

UNCLASSIFIED

GLOSSARY
The initjal radius of the cylindrical hole in a thick
plate of infinite extent (Secs. 3 and L).
Wave velocity in the elastic region.
Wave velocity in the plastic regiom.
Slope »f the stress-strain curve in the plastic region.
Young's modulus.
Modulus in plastic region corresponding to shear modulus
in elastic region; F = d/2(1 + o).

CHeved BE cadmaL !l D A of F

Slope »f stress-~strain curve, some function of the largest

shearing strain.

Derivative of function f with respect to its argument.

1

Modulus of rigiditys; G = E/2(1 + 1 ); also referred to as

the shear modulus.

Kodulus of voluyne expansion.

Plane poler coordinates.

Time during which expansion of hole takes place (Sec. 3).
Tine.

Displacement.

Radial velocity of material at the surface of the expand-
ing cylindrical hole (Sec. 3).

Defined by 2«4 = 1 - D/3K

Time interval.

Shearing strains.

Shearing strain when material begins to deform plastically.
Shearing strain at point of decreasing strains.

Tensile strains in the directions r, 8 and z,

Strains present when the materizl begins to deform plasti-

O cally.
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Strains present at the time when the stresses in the

vicinity of the cylindrical hole begin to decrease.

The yield stress obtained in tensile tests made on '
long thin wires.

Poisson ratio.
Density of the material.
Tensile stresses in the directions r and g.

Stresses required to initiate plastic deformation.

Stresses present at the time when the stresses in
the vicinity of the cylindrical hole begin to de-
crease.,
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