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1.PROJECT OVERVIEW

The scope of this project is basic research and development of control science and
dynamical systems theory with applications toward aircraft flight control. This project
addresses the development of both control synthesis and analysis methods for
affordable, highly integrated nonlinear aircraft control systems.

1.2. Background

Dynamic inversion is a nonlinear control law synthesis technique that has found
widespread application in the flight control community [2],[3],[4]. A major reason for
the appeal of this full state feedback synthesis technique is the ease with which it can
be applied to an entire flight envelope without traditional gain scheduling, and the
direct accommodation of stability and performance requirements. Since dynamic
inversion may be cast in the general setting of control-affine nonlinear systems, the
design methodology has the advantage of inherently accounting for nonlinearities in
aerodynamics, propulsion, and kinematic couplings. Dynamic inversion will continue
to become prevalent due to the potential advantages it offers toward achieving more
stringent requirements of future aircraft such as uninhabited combat air vehicles
(UCAV). However, current theoretical tools are insufficient to fully analyze and certify
the complex systems that must be ultimately implemented to realize maximum
capability.

A critical challenge in applying dynamic inversion is the control allocation and
optimization (CAO). CAOQ is employed by the dynamic inversion methodology to
optimally combine redundant control effectors such that their effect is reduced to a
single effective control input producing a body moment in the pitch, roll, and yaw
axes [3], [8]. While CAO ensures that each effector does not violate its rate or
position limit, current allocation methods do not properly account for closed-loop
stability due to the static nature of the accepted problem formulation. Simulation
responses have shown that dissimilar actuator bandwidths in redundant systems
using current control allocation methods may cause degradation of stability margins
[3]. Although practical solutions have been implemented as protection, they tend to
be conservative and have no stability guarantees. A thorough analysis is needed for
a better understanding of the stability implications of advanced control allocation.
Once the stability has been analyzed, new dynamic control allocation methods may
be required to accommodate actuator dynamics that currently are unmodeled.

The on-board model (OBM) is another important element that provides a nominal
estimate of the vehicle dynamics in a dynamic inversion control system. The OBM
1
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provides information to model-based control laws such as dynamic inversion and to
parameter identification algorithms for adaptation. However because of on-board
computational memory and throughput limitations, an emphasis is placed on creating
a compact on-board model. Therefore, model accuracy may be sacrificed to meet
these requirements. Additionally, wind tunnel tests and CFD analyses may introduce
modeling errors that will not appear until an aircraft reaches the flight test phase.
While many methods exist to provide improved estimates of the vehicle dynamics
either on-line or off-line, these methods typically provide only linear stability and
control derivative information. These linear derivative estimates, while useful for
analysis purposes, cannot be used to directly to modify the nonlinear on-board
model. Methods are needed to directly accommodate model accuracy requirements
during the synthesis of compact on-board models. Methods that address OBM
reconfiguration/adaptation and are consistent with the nonlinear aerodynamic model
architecture are needed as well.

1.3. Goal and Objectives

The primary goal of this project is to develop, extend, and apply dynamical system
and control theoretic methods to enable cost-effective development of advanced
aircraft flight control systems. Specific objectives have been devised to increase
transition opportunity by highly leveraging and integrating with other research
projects and aircraft programs at Lockheed Martin Aeronautics Company (LM Aero).

The primary objective is to enhance the LM Aero modaular flight control system
architecture that includes an on-board model and a control allocator. Specific
objectives include development of: 1) stability analysis methods for control allocation,
2) dynamic control allocation methods to accommodate actuator dynamics, 3) on-
board model accuracy requirements using stability analysis, 4) compact on-board
model synthesis methods, and 5) nonlinear on-board model reconfiguration methods.

1.4. Benefits

Advanced control allocation and on-board modeling methods offer the ability to
improve aircraft safety, agility, and signature by optimally exploiting control
redundancy and providing on-line control parameter computation. These methods
also decrease operations and support (O&S) costs by replacing hardware
redundancy with analytical control reconfiguration. However, inefficient and
ineffective analysis and synthesis methods increase flight control system
development costs and prevent minimal development schedules. Development,
extension, and application of dynamical system and control theoretic methods will
enable compressed flight control system development schedules and decreased
costs.
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1.5. Approach

The program approach is to develop technology with high transition potential and
maximum leveraging ability with other research and development projects. LM Aero
product programs have been included in the task definition and project plan
development. This improves strategic value for LM Aero and potential for technology
transition to Air Force assets. The tasks have been tailored to heavily leverage other
research and development programs that are funded by AFOSR or being worked at
LM Aero under funding from sources other than AFOSR. Results from the LM Aero
RESTORE program, funded by AFRL/VAC, and the Integrated Adaptive Control
Systems project, from LM Aero IRAD funds, are being leveraged by this project.

The technical approach is to explore the following three primary research areas: 1)
stability analysis, 2) robust nonlinear control, and 3) robust reconfigurable control.
The stability analysis task assesses robustness of the baseline flight control system.
The analysis results are used to develop on-board model and control allocation
synthesis methods in the other two tasks. The robust nonlinear control task includes
development of compact on-board model and dynamic control allocation synthesis
methods. The reconfigurable control design task includes development of an on-
board model update synthesis method. These three tasks use neural networks, p-
analysis, dynamical systems, optimization, and parameter identification theory to
accomplish the project objectives.

1.6. Summary of Accomplishments

There have been significant accomplishments in the development of stability
analysis, robust nonlinear control design, and robust reconfigurable control design
methods for aircraft flight control systems. These accomplishments are summarized
below and have been used as a foundation for the recently submitted Autonomous
Flight Control proposal.

There have been primary accomplishments for each of the three project tasks. The
main accomplishment for the stability analysis task is using p-analysis to formalize
control allocation stability implications and to specify stability and control derivative
accuracy requirements for on-board model synthesis. The main accomplishments for
the robust nonlinear control design task are development of a dynamic control
allocation formulation and development of a compact on-board model synthesis
method. The main accomplishment for the robust reconfigurable control design task
is the development of an on-line learning method for on-board model updates to
enhance the robustness of indirect adaptive flight control systems. These
accomplishments provide capabilities that are applicable to current aircraft programs
and R&D projects thereby increasing transition opportunity.

LM Aero has used p-analysis to assess robust stability and performance in the
presence of on-board model uncertainties and dissimilar actuator bandwidths. This

3

RNAFC




FZM-8690
07/03/01

analysis has been used to develop on-board model accuracy requirements for on-
board model synthesis. We also analyzed stability of a static control allocator to
confirm stability margin degradation in the presence of dissimilar actuator bandwidths
observed in simulation. This has facilitated a better understanding of the stability
implications of advanced control allocation, which has allowed development of a
dynamic control allocator.

LM Aero has developed a preliminary dynamic control allocation synthesis method
that enables solutions to address closed loop stability and exploit control redundancy
to optimize stability margins. Dynamical systems and optimization theory has been
successfully used for dynamic control allocation synthesis that directly
accommodates actuator bandwidths. We have also developed an on-board
modeling method using neural networks. This method provides an efficient process
to develop compact and accurate on-board models that directly satisfy accuracy
requirements.

LM Aero has developed an approach that uses the fundamental aerodynamic build-
up equations and a parameter identification algorithm to directly produce on-board
model increments for reconfiguration. These increments are consistent with the
nonlinear aerodynamic mode!l architecture which facilitates easy integration with the
nominal on-board model to provide a more accurate dynamical representation of the
aircraft.

1.7. Personnel

The LM Aero principal investigator for this effort is Dr. Jim Buffington. The primary
technical contributors are Dr. Mike Niestroy and Dr. Chi Ha. Other contributors
include Dr. Paul Wei and Dr. Rowena Eberhardt.
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2. TECHNICAL

2.1. Task Description

A dynamic inversion flight control system is used as the baseline architecture in this
project. The three technical tasks for this project are stability analysis for flight control
systems, robust flight control design, and reconfigurable flight control design.

The stability analysis task includes robust stability and performance analysis of the
LM Aero modular flight control system. Frequency-domain structured singular value
analysis (p-analysis) is used to assess robust stability and performance of a dynamic
inversion controller for the ICE tailless fighter aircraft [9]. On-board models in the
presence of aerodynamic model parametric uncertainty and static control allocation
with unmodeled dissimilar actuator dynamics are the focus of the analysis. On-board
model accuracy requirements are developed from the stability analysis results. The
analysis results are also used to formalize control allocation stability implications.

The robust nonlinear control design task includes development of a compact on-
board mode! synthesis method and preliminary development of a dynamic control
allocation synthesis method. Neural networks are used for compact on-board model
synthesis. Dynamical systems and optimization theory is used for dynamic control
allocation synthesis that directly accommodates dissimilar actuator bandwidths to
improve robustness and lessen design conservatism.

The reconfigurable control design task includes development of an on-board model
update synthesis method. Neural network and parameter identification theory is used
to provide a model update that is consistent with the nonlinear aerodynamic model
architecture.

2.2. Baseline Flight Control System

The LM Aero baseline flight control system is model-based and adaptive. This
system, shown in Figure 1, has evolved from many years of advanced research,
development, and production of digital fly-by-wire aircraft. Key features are on-line
gain computation within the OCD module, optimal effector blending within the CAO
module, separation of aircraft dependent model parameters within the OBM, and on-
line adaptation within the PID module. Together these modules comprise a modular,
model-based, adaptive system that provides optimal control reconfiguration. The
focus of this project is enhancement of the OBM and CAO modules with a dynamic
inversion OCD module. The dynamic inversion OCD and nominal CAQ are derived
in the following two sections.
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Model-Based, Adaptive Flight Control

- ——————————— - Robust Nonlinear Aircraft Flight Control Systems

IC
CSL
OCD
CAO
EST
ocC
PID
OBM

Input Compensation
Command Shaping & Limiting
On-Line Control Design
Control Allocation/Optimization
Estimation

Output Compensation
Parameter Identification
On-Board Model

UNCLASSIFIED Lockheed Martin Aeronautics Company

Figure 1 — Modular Flight Control System Architecture

2.2.1. Rigid-Body Aircraft Model

A general form of aircraft nonlinear equations of motion is expressed as

(1) X(@)=f(X10.60))

where X(t) is the state vector, &t) is the control vector and fis a vector-valued
nonlinear function of the individual states and controls. The linearized aircraft rigid-
body model is a five-state approximation of eq. (1) given by

(2) x=Ax+B6
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' q, pitch rate,deg/ sec

| a,angle of attack,deg
x =\ p,body - axis roll rate,deg/sec | € R®
r,body - axis yaw rate,deg/ sec

| B, sideslip,deg

[ 8y, left elevon, deg

O, ,right elevon,deg

O pflap» Pitch flap,deg

Oobigt »left outboard leading — edge flap,deg
50b1f, ,right outboard leading — edge flap,deg
0 =| 8 pyy, pitch thrust vectoring,deg e R"
O yry» yaw thrust vectoring, deg

054l »left spoiler — slot deflector,deg
Ossdr » Fight spoiler — slot deflector,deg
O amu »left all moving wing tip,deg

O amtr s Vight all moving wing tip,deg

for the ICE aircraft model [9] used during this project.

2.2.2. Dynamic Inversion Controller

A summary derivation of the dynamic inversion controller is given below while a
complete derivation is given in [3]. The derivation begins with the definition of the
commanded variables which are given by

Mcv g+ Ky
(3) y=|LCV |=Clq.e.p.r,B)=| pcosa+rsine e R®
NCV - psina+reosa+Kgf

or the lineraized version given by

q

MCV o

4) {LCV (=T|p
NCV r

B
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1 K, 0 0 0
T=§—g— =0 (—psina+rcosa)*(-£—) cos sina 0
ox Cim 180
_0 (—pcosa —rsing) *({g%) —sin@ cosa K'B_at |
gsic, ), ;
Ky=———
mV,,
qs (CYﬂ )
Kg= __ I
mV,,
where

MCYV: pitch-axis controlled variable in deg/sec
LCV: roll-axis controlled variable in deg/sec
NCV: yaw-axis controlled variable in deg/sec
S: wing reference area = 808.6 /i’

C L, : lift-curve slope (0=0) = 0.0423 1/rad

. 32750
m: aircraft mass =
g

V.o : "crossover" airspeed = 400 fi/sec

Cyﬂ : desired side force slope = -1.0 I/rad

g: gravitational constant = 32.17 fi/sec’

g: dynamic pressure in b/’

V: velocity in fi/sec

6: Euler pitch angle in deg

¢: Euler roll angle in deg

‘Using eq.(2), the derivative of eq.(4) becomes
MCV

(5) |LCV |=TAx+TBé

NCV

Both the controlled variables and their commands form error signals that are filtered
to produce desired closed-loop response dynamics given by the following

slugs

8
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Mcv mcv,| [Mcy MCV, - MCV
©® |Lcv oy f,|Lcv, |-| 1oy |+ 2edilicv, —1ov
. h
NCV NCY, | |NCY NCV, - NCV
desired

where MCV; (deg/sec) is the pitch-axis controlled variable command, LCV, (deg/sec)
is the roll-axis controlled variable command, NCV, (deg/sec) is the yaw-axis
controlled variable command.

The parameters are chosen to be . = 5 rad/sec, f; = 0.5, fi = 0.25 for the ICE aircraft
application which result in closed-loop poles of w, /2 rad/sec. The desired signals in
eq. (6) are then used to define the following dynamic inversion algorithm
Mcv
(7) TB6=|LCV ~TAx=m

NCY desired

which is the OCD module in Figure 1.

A final calculation is required to obtain effector commands. [f all effector actuator
dynamics are fast relative to the desired closed-loop response then the actuator
deflections are approximately equal to the commands (6 = J,,), and the pseudo

inverse of TB matrix in eq. (7) completes the following dynamic inversion algorithm
1
8) 6,=(B)" (TB(TB)T)— m

-1
The pseudo inverse (TB)" (TB(TB)T) is referred to as “static control allocation” and
is the foundation for the CAO module in Figure 1.

The control law in eq.(8) will give the following desired response in the absence of
any uncertainty

MCV| [MCY
(9) |LCV |=|LCV
NCv NCy desired

However, uncertainty exists in many forms including parametric uncertainty in the A
and B matrices (OBM) and unmodeled actuator dynamics in the following form

(10) 6 =G, (5)6,
The following section describes stability analysis in the presence of OBM parametric
uncertainty and unmodeled actuator dynamics.

2.3. Stability Analysis of Flight Control Systems

The purpose of this task is to analyze the robust stability and performance of the
baseline flight control system. Robustness to OBM parametric uncertainty and CAO
9
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unmodeled actuator dynamics is assessed. OBM parametric uncertainty robustness
is analyzed to develop OBM accuracy requirements. Unmodeled actuator dynamics
robustness is analyzed to confirm and formalize stability margin degradation in the
presence of dissimilar actuator bandwidths. The task was performed using p-
analysis with the structure of the aerodynamic uncertainties modeled via Linear
Fractional Transformations (LFT) [1] within Xmath/SystemBuild [13]. The first step in
p-analysis is the development of an uncertain model in an LFT form. The next
section describes development of an aerodynamic uncertainty model for use as an

OBM.

2.3.1. Uncertainty Model

The linear dynamic inversion controller in eq.(8) uses the non-dimensional stability
and control derivative coefficients to compute the matrices A and B. Uncertainty in
each matrix element is modeled as the summation of a nominal value and a

perturbation as shown below

(11)

10
RNAFC




FZM-8690

07/03/01
Maill+8my,) Marli+8p,,) Ha,,ﬂapHAM@ﬂap)
Zaal+8z25,) Zarl+bz,) Zapapl+az,,,
B= E&,HAL&I) E&rHAL&r) 0
Nail+An,,) Narli+An,, 0
| Taill+dy,,)  Tarl+ay, 0

H&oblj’ll+AM&,bm H&blf"l+AMéoblfr) H&Jtv1+AM&),v)
Zéoblﬂ 1+Azaob1ﬂ Zﬂoblfr 1+AZ&3blfr Z&tv 1+AZ@,,V
Zﬁablﬂ 1+AL&;blﬂ Zﬁoblﬁ' ]+AL&>b1fr Z&m, 1+AL&W
Nb’oblﬂl"'AN&,b,ﬂ ]v&blﬁ'l+AN50b1ﬁ, N-thvl'*'AN&n,
Ysobin 1+Ay&)b1ﬂ) Vsonipr 1+ Ay g ) Ysor I+Ay,,

Méytv 1+AM5y,v H&sdl (1+AM&Sd1) M&sdr (1+AM§M,)
Z@/tv ]'*'AZ&),,v Z&ssdl (H'AZ&M Z&sdr (1 +AZ&sd,.
Lon\+ALs, ) Lssa (i +Arsa)  Lasar ( +ALg )
Nowll+Ang,, | Nssa (1 +ANgy ) Néssar ( "'AN&W)
7 Mty 1+ AY@N Y, dssdl (l + AY&W 7 dsdr (] +4 Yesdr
0 0
(12) 0 0
Laami 1+AL&,,,,,,) Eé'amtr 1+AL&,,,,,,)

Nami1+8n5 ) Naamel+An, )
0 0

“Aki “oc = S;p Omax [Ak, ] w)]S 1

i=q,qp 1B, and
j=el, er, pflap, oblfl, oblfr, ptv, ytv, ssdl, ssdr, amtl, amtr
k=M,Z L N,andY

The dynamic inversion controller in eq.(8) with OBM parametric uncertainty in
egs.(11) and (12) is interconnected with other model elements to form an LFT [1].
The inputs to the perturbations (A, ,)are collected as a single vector z, and the

outputs collected as vector v. The total perturbation block A consists of uncertain
scalars arranged in the following block-diagonal form

(13) A=diag(A(,A,A3,..,4,,)
1
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The resulting closed-loop LFT is shown in Figure 2.
z A \
AZ
G(s) B
..... 1 reference
) commands
dynamic N \ I'MCVc
inversion < e [ch‘, }
8 controller Lev mx NCV,
actuator e =
] O v |7l
X |4 sensor [ R.ESTS RE - actuator vl
dynamics aircralt dynamics
dynamics
: O
e +
N Wp Wref

Figure 2 - Closed Loop Interconnection LFT

The dynamic inversion controller receives five sensor measurements (x), three
exogenous command signals (CV), and produces eleven control signals for the
control effector commands.

The aircraft dynamics are the linearized RESTORE aircraft dynamics [9] in the form
of unperturbed (A=0) egs.(11) and (12). The preliminary sensor dynamics are
chosen to be a unity gain, but higher fidelity sensor dynamics are planned for future
analysis. The actuator dynamics are modeled as first order low-pass filters described
in the next section.

The performance objective is to have the aircraft respond to commands (CV.) without
coupling between axes. The desired aircraft response is the following ideal first-order
model
25 25 25
14) W,or =di , , .
(14) Wrr = diag( s 3575425
A performance weight is placed on the error between the ideal response of the

transfer function and the actual aircraft response. The preliminary weight is chosen
as follows to place more emphasis on low frequency ideal response

12
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10 10 10

s+10’s+10’s+1o)'
More restrictive performance weights will be explored in future analysis.

(15) Wy = diag(

2.3.2. Analysis Results

In this section, flight control system robustness results are presented in the form of
the structured singular value (u). The structured singular value () is equivalent to
the inverse of the smallest destabilizing perturbation. Sixteen flight conditions (Table
1) were selected [9], and p-analysis was performed at each flight condition to
determine the robustness to equally weighted structured uncertainties in the on-
board model and sensitivities to dissimilar actuator dynamics.

Table 1 - Analysis Flight Conditions

Flight Mach Altitude (ft) | Angle-of- PLA (deg)
Condition attack (deg)

1 0.22 500 15.0 45.6
2 0.35 1000 7.27 31.9
3 0.356 5000 8.256 34.1
4 0.35 15000 11.2 46.5
5 0.45 1000 4.58 324
6 0.55 1000 3.32 347
7 0.59 15000 4.46 36.6
8 0.65 1000 261 39.0
9 0.756 1000 2.21 452
10 0.85 1000 2.01 51.1
11 0.95 1000 1.68 65.6
12 1.0 500 1.48 86.9
13 1.1 500 1.17 108
14 1.2 500 1.17 127

A nominal set of actuator dynamics is defined for analysis. This set contains similar
bandwidths for all actuators and is referred to as the similar actuator set. The
actuator dynamics in the similar actuator set are chosen to contain the following
dynamics

: 20 20 20 20
16 Gszm =di l( . . sossy )
(18) Gaer () = diagonal| — =50 o s o0

13
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Note that the actuator bandwidths are well beyond the controller crossover frequency
(o = & rad/sec).
By collecting all non-perturbation elements into a single block, the block diagram

interconnection structure in Figure 2 may be collapsed into the structure shown in
Figure 3.

|

z A v §

A, |

A, ‘

i

|

|

G, Gy §

G G Mev, ;
e +— Y2 2 le—0 |Lov,
NCV,

Figure 3 - Closed-Loop Model for Robustness Analysis

The non-perturbation block may be partitioned into four parts. The upper left partition
(G11) is related to robust stability, the lower right partition (Gz) is related to nominal
performance, and robust performance is related to all partitions. For example, the
peak of the upper bound for L of Gy4(s) implies that there is a perturbation equal to its
inverse (1/u) that causes instability.

Robust stability and performance are analyzed, and the results are presented as the
smallest destabilizing perturbation plotted versus dynamic pressure. The
aerodynamic parametric uncertainties are assumed to be complex scalars for the
preliminary analysis, while future analysis will utilize real-valued perturbations.

The following robust stability uncertainty structure contains 64 complex-valued
scalars(18 uncertainties in the stability derivative matrix A and 46 in the control
derivative matrix B)

(17) Agg ={diaglA1,As,...Ags]: A; € C}

To accommodate robust performance analysis, three additional perturbations that
connect the commands (CV,) to the errors (e) are required as follows

(18) CV, =Ape
The appropriate uncertainty block structure for the robust performance is given by
(19) ARP = %ﬁag[Al,Az,...,A@‘,Ap]: A,‘ € C,Ap € C3x3}
which is simply an augmentation of the robust stability uncertainty set, Ars, with a
complex 3 x 3 full block to include the performance objectives.
23.21. OBM Parametric Uncertainty

The purpose of the OBM parametric uncertainty analysis is to utilize robust stability
and performance analysis to develop accuracy requirements for synthesis of the
14
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OBM. The linear Xmath/SystemBuild model of the baseline flight control system in
Figure 1, in the presence of the OBM uncertainty in egs.(11) and (12) and
unmodeled actuator dynamics in eq.(16), is analyzed using p-analysis. The robust
stability and performance results are shown in Figure 4 for the LFT model in Figure 2.

OBM Parametric Uncertainty robust stably

09 T T T T m com o= et ptomance

08 -
07
08 [~

[E-2

Sestabiiving pesturbation

04

03

02 -

0.4 A L X " 1

dynamic pressure. pa!

Figure 4 - OBM Parametric Uncertainty Analysis Results

Note that robust performance is less than robust stability at low dynamic pressure
conditions, but robust stability and performance are equivalent at higher dynamic
pressure conditions. A more restrictive performance weight will most likely cause
further reduction in robust performance. Higher dynamic pressure conditions are
generally less robust than lower dynamic pressure conditions. These results have
been formulated into a preliminary OBM accuracy requirement of 14% for all
parameters at all flight conditions. This requirement is the worst case at an
approximate dynamic pressure of 1300 /b/#. This requirement will be used in future
development of a nominal OBM described in section 2.4,

23.22. CAO Unmodeled Dynamics

The purpose of the CAO unmodeled dynamics analysis is to utilize robust stability
and performance analysis to confirm and formalize stability margin degradation in the
presence of dissimilar actuator bandwidths. The sensitivity of realistic sets of
dissimilar unmodeled actuators has been observed with aerodynamic and propulsive
effectors for both fighter aircraft [3] and reusable launch vehicles [4].

15
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A second actuator set is developed as a notional set of dynamics to facilitate the
study of interactions between dissimilar unmodeled actuators, control allocation, and
closed-loop stability. This set contains dissimilar bandwidths and is referred to as the
dissimilar actuator set. The dissimilar actuator set has the following dynamics

. 1 2 3 11
20 Gdls = d' l N Py 9veey
(20) Gyt (s) = diagona (s+1 s+2 s+3 S+11)

Note that the dissimilar actuator bandwidths are near the controller crossover
frequency (ox = 5 rad/sec). We have confirmed sensitivities to unmodeled dissimilar
actuator dynamics by comparing the similar actuator model in eq.(16) and the
dissimilar actuator model in eg.(20) using an ICE aircraft simulation.

The sensitivities have been additionally confirmed through a formal p-analysis for the
two actuator configurations within the closed-loop LFT in Figure 2. The static control
allocator in eq.(8) and the parametric OBM uncertainty in egs.(11) and (12) were
used for the analysis in this section. The robust stability and robust performance
analysis results are shown in Figure 5 and Figure 6, respectively.

robust atabilty for 100% unceriainty b - smi

00 T T T T ™ T y v T T T mmeem oo e - dEmia

08
07 -
06
.

K

g [ L2

|

04 -

N
03

P S S T S Y
0

dynarmic presaure. pef
Figure 5 - Robust Stability with Static Control Allocation

Note that robustness is significantly reduced for the dissimilar actuator set at low
dynamic pressure conditions. This is primarily due to the fact that the bandwidths of
the similar actuator set are equivalent and fast relative to the aircraft closed-loop
dynamics. At high dynamic pressure flight conditions, the robustness degradation is
less. Direct accommodation of the actuator dynamics in the CAO design may lessen
the sensitivity of the dissimilar actuator set.
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Figure 6 - Robust Performance with Static Control Allocation

2.4. Robust Flight Control Design

The robust nonlinear control design task includes development of a compact OBM
synthesis method and preliminary development of a dynamic control allocation
synthesis method. Neural networks are used as basis functions for the development
of compact on-board models. Dynamical systems and optimization theory is used
for dynamic control allocation synthesis that directly accommodates dissimilar
actuator bandwidths to improve robustness and lessen design conservatism.

24.1. Compact OBM Synthesis

On-board models provide estimates of vehicle dynamics and are central elements
within indirect adaptive control systems, such as those that use dynamic inversion [3]
or receding horizon optimal control [9], for example. The indirect adaptive control
architecture, shown in Figure 1, utilizes the on-board model to predict the aircraft
dynamics and determine the control output necessary to both stabilize the vehicle
and accomplish the pilot or autopilot commands. The on-board model also provides
information to the route planning algorithms and the prognostic and health
management system. The route planner uses the aircraft model to determine the
optimal feasible route or maneuver necessary to accomplish the respective long-term

17
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or short-term goals. The prognostic and health management system uses the on-
board model to predict the nominal behavior of the air vehicle system and compares
the expected behavior to the actual system behavior. Differences that develop either
slowly over time or suddenly time may indicate an impending or immediate failure,
respectively.

Accuracy requirements have been established for the OBM in section 2.3. However,
there is a need to directly incorporate these accuracy requirements for development
of an OBM while keeping it compact enough to satisfy on-line computational
constraints. Utilizing the results of the robustness analysis during synthesis of the
nominal OBM, however, is challenging. On-board models typically fit total or
incremental aerodynamic coefficients, whereas the robustness analysis results are in
the form of linear derivatives. Further, truth derivative information is not well-defined
since model data is typically in total form. Once truth derivative information is
defined, direct incorporation of derivative accuracy requirements is relatively
straightforward. The derivatives of the appropriate coefficients are included in a
performance index, as the coefficients are fit, to ensure they meet the requirements.

A compact OBM synthesis is described below using a pitch rate model. However,
this method has been applied to the complete ICE aerodynamic database and
verified in a high-fidelity nonlinear simulation. Consider the following simplified
nonlinear pitch rate equation for the description of the OBM synthesis method

(21) 0=AM,(a. M)Q+ M, (o, M)+ AM (1,5, M).

This relationship assumes no lateral/directional affects and only a single control
effector for brevity. Numerical values for each of the terms are typically determined
through wind tunnel tests. For example, AM is found from forced oscillation tests

with the control effectors set to a specific position and M, is determined by setting

all aerodynamic control effectors to their zero or neutral position. These wind tunnel
tests are typically set up to obtain non-dimensional coefficients. For example,
consider the base pitching moment increment

(o, M)gse

I)’)’

where Cyy,  is the non-dimensional base pitching moment coefficient. For

simulation purposes, the coefficient data is interpolated between data points.
However for on-board modeling, compact data fits are necessary to accommodate
on-line computational requirements. The base pitching moment coefficient (C Y. )

data is fit using the following feedforward neural network

C
(22) M base (a’ M ) = Ve

18
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o
CM (@ M) = Woutf[win |:M} + bin] +bout

1
@3) -1 y20
2
ray={ U+
——————(l_y)z—l y<0

An automated tool has been developed for rapid construction of these neural
networks. The input and output weights and biases are chosen to minimize a cost
function that consists of total fit accuracy. Future work will incorporate linear
derivative accuracy.

The resulting neural network approximation for the base pitching moment coefficient
is shown in Figure 7. The accuracy of the neural network approximation of the base
pitching moment coefficient is shown in Figure 8 at Mach 0.3. All of the coefficients
(76 total) for the ICE aerodynamic database have been similarly fit using the neural
network architecture in eq. (23) with similar results.

Eiswr Prtchng Moenmet Cimlicart
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i
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Math Mo

Figure 7 — Base Pitching Moment Coefficient Neural Network
Approximation
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Figure 8 - Base Pitching Moment Coefficient Accuracy

24.2. Dynamic Inversion Controller with Dynamic Control Allocation

Current CAO methods are static in nature, which does not allow them to properly
address stability. The derivation of these static CAO methods neglects actuator
dynamics by assuming that they are fast relative to the aircraft closed-loop dynamics.
This assumption allows treatment of the actuator dynamics as unmodeled dynamics.

However if all effector dynamics have different bandwidths from slow to fast relative
to the desired closed-loop response, then a dynamical systems approach is required
to properly address stability. As shown by the robustness results in section 2.3, there
is a need to directly accommodate actuator dynamics within the CAQ flight control
system element. A preliminary technique for directly incorporating individual effector
bandwidths into the CAO design procedure is proposed. Although this technigue still
requires matrix inversion and satisfies rate and magnitude limits, it requires less
computation than other proposed methods [11] where a high-gain compensator is
designed for each effector that may adversely affect unmodelled dynamics. The
frequency- and time-domain results show promise of this dynamic CAO technique,
however additional research is still required to incorporate position and rate limits.
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Derivation of the proposed dynamic CAO begins by combining the dynamic inversion
control derivation eq.(7) and the actuator dynamics model eq.(10) to get the following
relationship

(24) TBG 4 (5)0, =m

where Gau(s) is a (11 x 11) diagonal matrix of simple first-order actuator dynamics of
the following form

a a a a
(25) Gy (s) = diagonal 1 =2 33 |
st+ay stay s+aj s+ap

The dynamic control allocation eq.(24) may be inverted if Gax(s) is proper[5] which in
its present form is not. An augmentation matrix may be included as follows

(26) 6, =G&
where

(27) 5(S)=diagonaz(“‘°° s+100 s+100 s+100)

100 * 100 ° 100 "7 100

G is chosen fast relative to the desired closed-loop response as well as the highest
important effector bandwidth chosen so as not to excite unmodeled high-frequency
dynamics. Now the dynamic control allocation relationship becomes

(28) TBG y (5)G(5)8 = TBG 4g ()8 = m
Assume that TBG 4yq (s)& =m has the following minimal state-space model

L) - A 3
(29) # =M +TO
m=Hy+J6
Let J* be the pseudo-inverse of J which exists since Gaug (5) is proper. The inverse
of eq.(29) becomes [5]
7=A-Tr*El -Tm
&=JHy+J%m
-1
g4 = a7
5,=6
Note that there is no direct accommaodation of position and rate limits. Inclusion of

limits will be the subject of future research. Equation (30) becomes the dynamic
CAO that is implemented for the following analysis.

Robust stability and performance analysis was performed with the dynamic CAO and
parametric OBM uncertainty. The similar and dissimilar actuator sets were both
used. The results are presented with the corresponding static CAO cases for
comparison.

(30)
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The robust stability and performance p-analysis results for the dynamic control
allocation with similar actuators are shown in Figure 9 and Figure 10 respectively.
Note that the dynamic CAOQ is only slightly more robust than static CAO at low
dynamic pressure with the similar actuator set.

The robust stability and performance p-analysis results for the dynamic control
allocation with dissimilar actuators are shown in Figure 11 and Figure 12,
respectively. Note that the benefits of the dynamic control allocation become more
apparent with the dissimilar actuator set. The robustness is significantly improved by
using the dynamic control allocation. Again, the most dramatic improvement is
observed at the low dynamic pressure conditions.
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Figure 9 - Robust Stability of Dynamic Control Allocation, Similar Actuators

Tobust performance for 100% uncertainty
= T

os

02r
. L = # ‘*‘\u&,‘.‘_‘_‘**

P X S S SRS S S S YOS R S I Y S E S S S
4

Figure 10 - Robust Performance of Dynamic Control Allocation, Similar
Actuators
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Figure 12 - Robust Performance of Dynamic Control Allocation, Dissimilar
Actuators
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2.5. Reconfigurable Flight Control Design

The reconfigurable control design task includes development of an OBM update
synthesis method. This update method provides the flight control system with the
ability to reconfigure and adapt to changing conditions. Neural network and
parameter identification theory is used to construct a model update that is consistent
with the nonlinear aerodynamic model architecture. Upcoming sections will present
1) background information concerning the problems with using linear parameter
information to update nonlinear aerodynamic databases, 2) a method for parameter
identification (PID), and 3) the application of PID to the nonlinear aerodynamic build-
up equations. Further, a process is presented to reduce PID and aircraft state
information for the development of an OBM update increment.

2.5.1. Background

Aerodynamic models generated from wind tunnel tests and CFD analyses have
inherent errors associated with them. Additionally, OBM errors are introduced by
approximations, such as those in section 2.4.1, to satisfy on-line computational
requirements. Regardless of the quality of the OBM, errors are not typically manifest
until flight test. While many methods exist to provide improved estimates of the
vehicle dynamics either on-line [6],[9] or off-line [7],[10], these methods provide only
stability derivative information. These derivatives, while useful for analysis purposes,
cannot be used to directly modify the nominal OBM. An approach that uses the
fundamental nonlinear aerodynamic build-up equations offers the opportunity to
identify errors in the aerodynamic database and develop OBM update increments
based upon this information.

2.5.2. Problem Definition

The fundamental problem addressed by this task is demonstrated by considering the
following simplified nonlinear pitch rate dynamics

(31) 0= AMp(@)Q + M pge (@) + AM g (00, B) + AM | (21,61 ) + AM 5 (20,5

This relationship assumes a constant Mach number and contains only the
aerodynamic contributions to the pitch. A linearized representation of these pitch
rate dynamics to facilitate the use of some control design and analysis methods is
expressed as

(32) Q=MpQ+Muo+ MpB+Mg 6 + Mg, 8 + Mpjg

The Modified Sequential Least Squares (MSLS) PID method has been used in
adaptive control systems[®] to estimate the stability derivatives My, M, and M 8

the control derivatives M 5 and Mg, and the bias, M, given measurements of 0,
Q,a, B, 6 and 5. MSLS requires a prion values of Mg My Mg Mg Mg, ,
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and M,,,, to improve the estimates during times of insufficient excitation, for

example. A priori values of the estimated parameters can be stored directly within
the OBM in derivative form or computed as the appropriate derivatives of the
nonlinear aerodynamic forces and moments. When utilizing the nonlinear
representation expressed in eq.(31), the stability derivatives are computed as

_ M gy (@, B)

M
(33) Mg =AMy(a) , M, =—-—”“&(“—)| . Mg
a

a Y Y] |, 5
and the control derivatives are found from
0AM (as 51 ) 0AM 55 (e, 6
(34) M61 =—§Ié——-— , 52 =__.g—2§(-—_z_)
1 a,51 2 a752

The bias term is then computed by subtracting from the total pitching moment the
stability derivatives times the state values and the control derivatives times the
control deflection, i.e.

(38) Mpigs =Myor —~MgQ - Moot —Mpf—Ms b~ Mg,
where M,,, is computed from the total nonlinear aerodynamic pitching moment

(36) Mo =AMQ(“)Q"'Mbase(a)"'AMlatdir(aaﬂ)+AMl(a>51)+AM2(a’52)

Ideally, it is desired to use information from the PID process to update the OBM.
However, recall that our compact OBM synthesis method in section 2.4 stores
estimates of the nonlinear elements. These nonlinear element estimates
accommodate nonlinear control design approaches, like dynamic inversion, as well
as linear design approaches through the relationships in egs. (33)-(36). If information
from the PID process is to be used to update the terms in the nonlinear aerodynamic
buildup equations, however, relationships from the linear parameters to the nonlinear
aerodynamic terms need to be established. Unfortunately, finding such a relationship
is not straightforward without significant modification of the problem. Note that the
relationships in egs. (33)-(36) only provide relationships from the nonlinear terms to
the linear parameters.

To illustrate the challenge, consider the example in Figure 13. The solid line
represents a nonlinear function such as base pitching moment as a function of angle
of attack. The nonlinear function is determined by fitting the underlying aerodynamic
data, represented by the solid markers. If MSLS identifies a change in the slope,

M 4, at some angle of attack as represented by the dashed line, it is not clear how to
modify the underlying base pitching moment function to reflect the new derivative. In
this example, a quandary exists since, to achieve the slope change, either p3 could
be reduced or p4 could be increased or both a reduction in p3 and simultaneous
increase in p4 could achieve the desired effect.

The following section proposes an improved approach. This approach leverages our
experience with MSLS PID and is consistent with the nonlinear aerodynamic
formulation to accommodate OBM updates and nonlinear control methods.
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Figure 13 - Difficulty in Utilizing Linear Derivative Information

2.5.3. Proposed Solution

Consider the identification of multiplicative factors, X;, in the example nonlinear
aerodynamic buildup equation

(37) Q = KIAM—Q (a)Q + KZHbase (a) + K3AH1atdir (as ﬂ)+ K4AA71 (a’ 51 )+ Kbpias
where the term K,;,, is added to account for situations where one or more of the

nonlinear terms is zero. The bar over a term indicates a nominal on-board model
representation. In this equation, the first term represents pitching moment due to
pitch rate, the second is the controls-neutral or base pitching moment and the third
represents changes in the base pitching moment due to sideslip. The fourth term is
the incremental pitching moment due to a control effector deflection. Other control
effectors could be added as the configuration warrants. For this relationship, the

nominal value of K; through K, is one and the nominal value of Kj;,, is zero. Note

that since these are dimensionless multipliers, they can be applied directly to the
underlying aerodynamic coefficients without modification.

For demonstration purposes, consider the simple system where
Q = K \Mpge. (@) + Kpiqs in Which the true value of My, is defined as

Mo (@)= =(0.2+0.10), &€ [0,10]. The initial on-board model of M, is
M. ()=0.9 Ve [0,10].
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The MSLS algorithms were implemented for this simple example in Xmath to
facilitate multiple simulation passes rapidly. A pass consists of sweeping alpha from
0 to 10 degrees and using the parameter estimates to generate an increment. On
the second and subsequent passes, this increment is added to the previous model.
In the event the model is approximately zero and the associated X; is not zero,

Kpiqs is added to the model. With each pass, the value of X; should approach 1
and the value of K,;,, should approach 0 and the estimate of the on-board model
should approach the true value. Figure 14 presents the evolution K; and the on-
board model A, ()as fifteen passes are made. Examination of this evolution
shows that the model M, (@) approaches the true value, even though the original
model had the wrong sign and that the value of K is indeed approaching unity.

Pass Number 1 Pass Number5

s Factor
2 = Mode!
2 = Model N
e e Tt /‘

......................

---------------------

_____________

L. —— Tl el A
—— - P -,
EETa - P
e il TR

---- T b
i, 2

-~ b -
LR o
B L TP ittt T

""""""""

Figure 14 - Simple Example of On-Board Model Information Determination

Next, consider a more complicated dynamical system. A Systembuild simulation of
the Innovative Control Effectors (ICE) vehicle is presented in Figure 15. The
simulation consists of aerodynamic lookup tables for the aircraft aerodynamics and
propuision. Dynamic inversion provides the on-line control design and the control
allocation subsystem is an implementation of the constrained pseudo inverse. The
actuator models consist of first and second order linear transfer functions with
considerations for hinge moment-limited rate limits. The OBM consists of a series of
neural network fits of the aerodynamic and propulsive databases. The MSLS PID
algorithms are implemented in their own separate subsystem. The OBM subsystem
was modified to provide spatial constraints that contain the most recent multiplicative
factor information.
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Figure 15 - ICE Vehicle Systembuild Representation

In this example, the equation that represents the true pitching moment equation is
represented as

(38) O=AMp ()0 +Mpgg (@) +
AM lel (a’ alel )+ AMrel (a’ rel )+ AM pflap (a’ apﬂap )

The term that accounts for the change in pitching moment due to sideslip has been
dropped since the simulations will focus on pure pitching maneuvers, hence little or
no sideslip. The model equation that is used in the OBM model module and by the
MSLS PID algorithms contains the multiplicative factors

(39) Q = KIAM—Q(a)Q+K2M—base(a)+
K3AH1€1 (a, Olel )+ K4AM—rel (a, 5rel )+ Ksmpﬂap (0!, apﬂap )'*' Kpias
As mentioned before, the multiplicative factors have nominal values of one and the
bias factor has a nominal value of zero. Multiple iterations are performed to facilitate
identification of the factors. Figure 16 presents a description of the steps taken
during an iteration. After the first simulation run, the time history data is processed

and the data is used to train a neural network. After training, the neural network is
used in the first iteration in the following manner.
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(40) O =K K (0)AM o (@)Q + Ko K2 ()M g, (@) + K3 K3 (01, 81 JAM 1oy (@, By )+
K4K2 (a, 5rel )Wrel (as ‘srel )+ KSKg (0!, 5pﬂap )Aﬁpﬂap (a’ spﬂap )+ Kpias

The following steps are taken to determine the OBM update

— + The simulation is run for 16 seconds using two sets of pitch
doublets

» The 15 seconds of data is then post processed to represent

Definition of the multiplicative factor as a function of the respective

an fteration terms’ independent parameters, i.e. K3(t) — K3 (e, o/ )

* The data is used to train a neural network offline

. The neural network is autocoded into SystemBuild-

compatible C code

Figure 16 - Iteration Definition

The superscript 0 denotes the iteration origin of the data that is post processed and
used to train the neural network. Note the dependency of the multiplicative factor is
the same as the term that it multiplies. Again, after post processing the data and
training a neural network, the equation used for parameter identification on the
second iteration is as follows.

1) 0= K, (K @)K ()M o (@)0 + K (K (@)K ()T () +
K3 (K (@, 81 YK (0, 10 YA (1,810 )+ K (K (@1, 0 K (081 AT g (@8, ) +

Ks (Kg (a= S pflap )K; (0!, O pflap ))AA—’I Pﬂap( +0 pflap )+ Kpias

Here the superscript 1 denotes that the data used to train the neural networks came
from the first iteration. The process can be repeated until the multiplicative factors lie
sufficiently close to unity.

254. Results

The ICE simulation is modified such that the only pitch control effectors are the left
and right elevons and the pitch flap. The simulation also contains a modification to
the truth data such that left elevon effectiveness is decreased by 50%. The effects of
this modification are not modeled in either the roll or yaw axis, therefore only the pitch
axis is affected. Two aggressive longitudinal stick doublets, shown in Figure 17, are
used to excite the simulation with the total simulation time lasting fifteen seconds.
The goal is to verify that the proposed method identifies a multiplicative factor of 0.5
on the left elevon term while other multiplicative factors remain close to one.
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Figure 17 - Simulation Longitudinal Stick Inputs

After the appropriate modifications to the simulation are made and the simulation is
run with the longitudinal stick input, an example of the multiplicative factor X, as a
function of time is shown in Figure 18. However, the aerodynamic term associated
with factor K is the base pitching moment and it is represented as a function of
angle of attack.

Figure 19 presents factor X, as a function of angle of attack using the angle of attack
response. An Xmath script is used to sort X as a function of angle of attack and
averages those values over 0.5° increments of angle of attack. For example, the
values of K, are averaged between 5.5° and 6° angle of attack, resulting in an
average value of K, at 5.75° angle of attack. The result of this post-processing is
shown in Figure 20 for X;. These data points are then used as neural network

training data. A similar post processing is performed on data for the other
multiplicative factors, noting that the control effector factors are functions of angle of
attack and their respective control deflection. Therefore, a two-step process is used
for those terms, first sorting data as a function of angle of attack and second as a
function of control deflection. The data are then averaged over 0.5° increments in
angle of attack and over 0.5° increments in effector deflection.
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Figure 18 - Base Pitching Moment Multiplicative Factor from Iteration 0 as a
Function of Time
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Figure 19 - Base Pitching Moment Multiplicative Factor from Iteration 0 as a
Function of Angle of Attack
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Figure 20 - Base Pitching Moment Multiplicative Factor After Post
Processing

The multiplicative factor data associated with each of the terms is used to train a two-
hidden layer feed forward neural network. Each neural network is then autocoded
into C code that is compatible with the Systembuild user code block. The simulation
is then rerun using the same pilot input, but the on-board model used by the dynamic
inversion controller and by the MSLS PID code is modified by the multiplicative factor
learned from the 0" iteration. The same process is again carried out; post
processing the multiplicative factor data and generating the neural network
Systembuild code until the third iteration is performed. Upcoming graphics present
the multiplicative factors identified by MSLS after completion of a simulation run.

The multiplicative factor associated with the left elevon, K5, had its truth term

multiplied by a factor of 50% without modification to the OBM. Therefore, the
cumulative effect of the factors should approach 0.5 as the number of iterations
increases while the multiplicative factor identified by MSLS should approach one.
The next two sections present the simulation results to the same set of inputs and
flight condition. The first section has no noise imposed on the measurements and
the second uses noise characteristics similar to those experienced by the F-16
VISTA aircraft.

254.1. Simulations Without Measurement Noise

Figure 21 presents a sequence of four plots, each one generated by the simulation
after its respective iteration. Each plot presents the true value of the pitching moment
33
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increment as a dashed line and the on-board model representation as a solid line.
The red line presents the multiplicative factor identified by MSLS. By the third
iteration, the value of K3 approached unity, indicating that the cumulative effect of

KJK3K3 has approximately reached a steady state value.
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Figure 21 - Pitching Moment due to Left Elevon Deflection and Associated
Multiplicative Factor Estimate

The next three graphics, Figure 22, Figure 23, and Figure 24 present the cumulative
effects of the left elevon multiplicative factors as contour diagrams. Figure 22

presents the on-board multiplier Kg that is formed by post-processing the data from
Iteration 0. Similarly, Figure 23 and Figure 24 present the multipliers X g K% and

K g K_% K32, respectively, from Iterations 1 and 2. Each of these plots cover the same

ranges of input space, -5° to 5° left elevon deflection and 0° to 15° angle of attack.
Note that, since not all of the input space was covered by the respective simulation
run, holes or bumps occur within the center region. As the on-board model is
improved, the controller uses the effector in a slightly different manner resulting in
changes in the covered input space. For example, as shown in Figure 25, the left
elevon covers a range of —2.5° to 3° during the first simulation (lteration 0) and
covers a range of —3° to 3.5° during the fourth simulation (lteration 3). The
alternating bright and dark red regions around the edges of the diagrams are artifacts
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of the neural network fits and can be removed through modifications to the neural

network architecture.
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Figure 22 - Post-Processed Left Elevator Multiplicative Factor After
Iteration 0.
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Figure 23 - Post-Processed Left Elevator Multiplicative Factor After
Iteration 1.
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Figure 24 - Post-Processed Left Elevator Multiplicative Factor After

Iteration 2.
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Figure 25 - Comparison of the Left Elevon Time History Between Iterations
0 and 3.

The cumulative effects of the multiplicative factors determined from Iterations 0, 1,
and 2 should produce values close to 0.5, which is approximately the case as shown
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in Figure 24. For regions that have not been explored, the multiplicative factor has
remained unity, maintaining the nominal on-board model for those regions.

The simulation time histories and the associated multiplicative factor, K, for the right
elevon are shown in Figure 26. Note that the time history for Iteration 0 shows a very
close agreement between the on-board model and truth. Therefore, the nominal
value of one is appropriate for k4. The values of K, estimated by MSLS has a

value of approximately 0.9 for lteration 0 and approximately 0.95 for Iteration 1 before
reaching unity during Iterations 2 and 3. Figure 27 shows the contour diagram for the

cumulative effects of KgK},K f . Note that, although the truth model and the on-

board model are in close agreement and hence the values of the multiplicative
factors should have been one, MSLS spread some of the loss of effectiveness of the
left elevon on the right elevon. Much of the region of input space covered by this
maneuver concerning the right elevon has values in the 0.8 to 0.9 levels with a small
region reaching down in to 0.7.
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Figure 26 - Pitching Moment due to Right Elevon Deflection and Associated
Multiplicative Factor Estimate.
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Figure 27 - Post-Processed Right Elevator Multiplicative Factor After
Iteration 2.

The simulation time histories for the pitch flap for lterations 0-3 are shown in Figure
28. The contribution of the pitch flap to the total pitching moment is relatively small
when compared to either of the elevons. The multiplicative factors identified during
the simulations typically lie close to unity, with the smallest values no lower than 0.95.
Since the pitch flap truth model and the on-board models are in good agreement, the
multiplicative factors should always lie close to one. Although the on-board model is
modified slightly through the learning process, qualitatively speaking, there is no
practical degradation in the on-board mode!l. The contour diagram representing the

cumulative effect of X9 kK2 is shown in Figure 29. Since the MSLS estimates are

always close to unity, the diagram shows that the values of K §’K § K 52 are close to
one within the region of input space covered by the maneuvers.
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Figure 28 - Pitching Moment due to Pitch Flap Deflection and Associated
Multiplicative Factor Estimate.
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Figure 29 - Post-Processed Pitch Flap Multiplicative Factor After Iteration 2.

The upcoming discussions focus on the two terms in the pitching moment equation
that are functions of only one variable, angle of attack. The simulation time histories
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showing the true and on-board model representations and the associated
multiplicative factor for the base pitching moment term are shown in Figure 30. The
MSLS estimates of the multiplicative factor for each simulation stay near one (0.9 to
1.05) and there is no qualitative change in the overall accuracy of the base pitching

moment. Figure 31, which presents the cumulative effects of K3 K3 K5, shows that
the factor is approximately 0.9 at 4° and between 6° and 8° angle of attack.
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Figure 30 - Base Pitching Moment and Associated Multiplicative Factor
Estimate.
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Figure 31 - Post-Processed Base Pitching Moment Multiplicative Factor
After Iteration 2.

The final factor multiplies the pitching moment due to pitch rate term in the
aerodynamic buildup equation. Figure 32 shows simulation time histories of the truth
and on-board model values of the pitching moment due to pitch rate (multiplied by
the pitch rate) as well as the associated multiplicative factor. This graphic shows that
the original on-board model has excellent agreement with the truth, but that MSLS
attributed some of the error in left elevon pitching moment to this term. By the third
iteration, there is a noticeable amount of difference between the modified on-board
model and truth and MSLS continues to produce estimates that indicate further
decreases in the multiplicative factor are appropriate. The cumulative effect of

K1° KI‘ Klz is presented in Figure 33 for the pitching moment due to pitch rate. The

identification algorithms have estimated that the values of this term need to be
approximately 85% of their nominal values.
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Figure 32 - Pitching Moment due to Pitch Rate and Associated
Multiplicative Factor Estimate
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Figure 33 - Post-Processed Pitching Moment due to Pitch Rate
Multiplicative Factor After Iteration 3.
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The total aerodynamic pitching moment predicted by the on-board model compared
to the true value is presented in Figure 34 for each of the four simulation runs.
Examination of each graph demonstrates that the overall effect of the on-board
model learning improves the total aerodynamic pitching moment predictions. The
steady state error between the on-board model and truth from 11 seconds until the
end of the simulation are not significantly affected through the learning process.
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Figure 34 - Simulations Time Historles Comparing True and On-Board
Models of Total Pitching Moment.

254.2. Simulations With Measurement Noise

As noted earlier, measurements of body axis pitch acceleration are used by MSLS to
identify the multiplicative factors and associated bias. The approach taken by the
Self-Designing Controller (SDC) [12] program VISTA/F-16 flight test used differences
between two appropriate linear accelerometer measurements to estimate angular
acceleratlons An example plot from [12] indicated a noise level of apprommately 2
deg/sec? on the estimate of body axis yaw acceleration. Assuming the pitch axis
accelerometer arrangement would be similar, modifications to the Systembuild
simulation were made that use a normal random number block with zero mean and 2
deg/sec? standard deviation. Figure 35 presents the body axis pitch acceleration as
a function of time using the stick inputs described earlier with the added noise that is
used by MSLS when performing the identification of the multiplicative parameters
and the associated bias.
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Figure 35 - Body Axis Pitch Acceleration With Gaussian Measurement
Noise.

In a similar fashion to the previous section, Figure 36 presents a sequence of four
plots, each one generated by the simulation after its respective iteration. Again, each
plot presents the true value of the pitching moment increment as a dashed line and
the on-board model representation as a solid line. The red line presents the
multiplicative factor identified by MSLS. By the third iteration, the value of X

approached unity, indicating that the cumulative effect of XJK}k3 has

approximately reached a steady state value. Qualitatively, the results not vary
significantly from those presented for the simulation without measurement noise.
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Figure 36 Pitching Moment due to Left Elevon and Associated
Multiplicative Factor Estimate With Measurement Noise.

The next three graphics, Figure 37, Figure 38, and Figure 39, present the values of
the multiplicative factors after iterations 0, 1 and 2, respectively. The multiplicative
factor after iteration 0 is somewhat smaller for the case with measurement noise.
After lteration1, a small area near —1° left elevon deflection and 8° angle of attack
has developed where the multiplicative factor is less than 0.5. The color scale for this
plot is kept the same as the noiseless case for comparison purposes and therefore,
regions less than 0.5 appear as white areas. By the end of Iteration 2, a second,
smaller region near the same elevon deflection and 5° angle of attack has developed

where the cumulative factor K3 K3K7 is less than 0.5. The minimum value of

Kg K§K32 is approximately 0.42 for the larger region.
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Figure 37 - Post-Processed Pitching Moment due to Left Elevon
Multiplicative Factor With Measurement Noise After Iteration 0.
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Figure 38 - Post-Processed Pitching Moment due to Left Elevon
Multiplicative Factor With Measurement Noise After Iteration 1.
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Figure 39 - Post-Processed Pitching Moment due to Left Elevon
Multiplicative Factor With Measurement Noise After lteration 2.

The right elevon muttiplicative factor for each of the four simulations is shown in
Figure 40. The results hear are similar to those in the noiseless measurement case.
The value of the estimated factor approaches unity by the end of Iteration 2 and
would be relatively unchanged if the results of Iteration 3 were considered. Figure 41

shows the contour plot of the cumulative multiplicative factor X§ K} K2 and it is also
comparable to the noiseless measurement case.
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Figure 40 - Pitching Moment due to Right Elevon and Associated
Multiplicative Factor Estimate With Measurement Noise.
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Figure 41 - Post-Processed Pitching Moment due to Right Elevon
Muitiplicative Factor With Measurement Noise After Iteration 2.
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The pitch flap multiplicative factors and associated moments for the four simulations
are shown in Figure 42. The cumulative effects of the three multiplicative factors

K 2 K §K 52 are presented in Figure 43 as a contour diagram. Qualitative comparisons
of these two graphs with the two without measurement noise show little difference

between the individual multiplicative factor estimates or the cumulative X 2 Kik 52
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Figure 42 - Pitching Moment due to Pitch Flap and Associated
Muitiplicative Factor Estimate With Measurement Noise.
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Figure 43 - Post-Processed Pitching Moment due to Pitch Flap
Multiplicative Factor With Measurement Noise After Iteration 2.
The base pitching moment and associated multiplicative factors for each of the four

simulations are shown in Figure 44 and the cumulative effect of Kg K ;KZZ is shown

in Figure 45. Once again, the measurement noise has little effect on the estimates,
when compared to the situation without measurement noise. The most notable

exception is the reduction of X g K 5K 22 at four degrees angle of attack. The result

with measurement noise shows a slight decrease in KK} K> across the range of
angle of attack, compared to an increase at that angle of attack in the noiseless case.
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Measurement Noise After Iteration 2.

51

RNAFC




FZM-8690
07/03/01

Figure 46 presents the four simulation time histories showing the pitching moment

due to pitch rate and the associated multiplicative factor. The plot showing the

cumulative K10 KllKl2 is presented in Figure 47. As in all the previous cases, there is

little difference between the cases with or without measurement noise. There are
differences from 0° to 3° and 12° to 15° angle of attack that are produced by the
neural network fitting process. At these ranges, the multiplicative factors should be
unity. However, the neural network size is chosen not to fit exactly the training points
but rather provide a smoother interpolation. As a consequence, values of one are

not achieved.
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Figure 46 - Pitching Moment due to Pitch Rate and Associated
Multiplicative Factor Estimate With Measurement Noise.
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Figure 47 Post-Processed Pitching Moment due to Pitch Rate Multiplicative

Factor With Measurement Noise After Iteration 2.

Finally, Figure 48 presents the total truth and on-board model pitching moment time
histories for each of the four simulations. It comes as no surprise that there is little
qualitative difference between these graphs and the ones presented earlier in Figure
34 since each of the components presented in this section displayed little difference

between the simulations with and without measurement noise.
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Figure 48 - Simulations Time Histories Comparing True and On-Board
Models of Total Pitching Moment With Measurement Noise.

2.5.5. Discussion

The results presented above lend credence to the approach of using a multiplicative
factor in the nonlinear aerodynamic buildup equation as a means of determining an
on-board model increment. Several problems have also been brought to light as a
result of this example, however. Their significance and possible remedies are
discussed in this section.

Although the method did successfully identify the fifty percent loss of pitching
moment effectiveness of the left elevon, MSLS erroneously spread the on-board
model inaccuracy across the other terms in the build-up equation. Most notable, the
term associated with the pitching moment due to pitch rate is identified as a major
source of error by the parameter identification algorithms. Unfortunately, this term
has an excellent nominal on-board model representation. Closer examination of this
problem is certainly required and some remedies are under consideration.

Other techniques may be used to improve overall performance of the method. A
threshold may be applied to each multiplier before neural network fitting. The
threshold would restrict or filter the training data to consider only those points that
varied from unity by more than a pre-specified amount. This step might lessen the
tendency of the parameter identifications to spread or attribute effects across multiple
terms in the buildup equations. Limits may also be placed on the maximum value a
multiplicative factor could change. On a higher level, prognostics and health
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management (PHM) methods could be used to identify effectors that are not
operating within nominal ranges of movement, load, etc., and provide that information
to the post-processing algorithms. Then only those terms in the aerodynamic buildup
equation that are functions of the specified effector would be modified.

The consideration of measurement noise on the parameter identification shows little
detrimental or beneficial effect. All of the factors in the build-up equation showed little
difference between the simulations with or without measurement noise. The ability of
MSLS to effectively filter out noise comes from the fact that the effective data window
used for this work is set to approximately ten seconds. Also, the mathematical
averaging that occurs when post processing the simulation data helped alleviate the
effects of noise.

The use of the identified bias term may also be key to effective use of the parameter
identification data. Situations where the control effectors are near or at their neutral
positions may present problems for the PID algorithms since the associated effector
increments are, by their definition, typically zero for those effector positions. A portion
of the non-zero bias may be added to the base aerodynamic term or to the effector
increment in an attempt to account for the non-zero bias. Fortunately, no numerical
problems have been found thus far concerning the identification of multiplicative
factors for terms that are zero for short periods of time.

2.5.6, Conclusion

The method presented herein demonstrates the ability to generate on-board model
increments that improve the overall accuracy of the on-board model. The method is
demonstrated during simulation of an aircraft with significant nonlinear aerodynamics
and for cases with and without measurement noise.

Additional features such as applying thresholds and limits to the MSLS estimates
before learning may lead to improved model increments. Similar improvements may
be expected through the use of the identified bias. Future work will focus on the
inclusion of the normal force, side force, rolling moment, and yawing moment
equations. A re-examination of uses for the identified bias term will be examined as
well.
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3.TRANSITIONS

3.1. LM Aero Programs

This project resulted in four primary transitions to LM Aero Programs. The on-board
modeling technology was successfully transitioned to the Joint Strike Fighter
Program and the AIMSAFE contracted research and development project. The
intelligent on-board modeling technology was also transitioned to the Joint Strike
Fighter Program. The dynamic control allocation technology was transitioned to the
Joint Strike Fighter Program as well. More detailed descriptions of the transistions
follow.

Transition 1
Technology: Neural Network Compact On-board Models
Customer: JSF Program, Lockheed Martin Aeronautics Company

Result. Compact neural network modeling. Fundamental neural network theory was
developed for compact analytical modeling of dynamical systems.

Application: The basic neural network modeling theory was applied to aircraft
dynamical models and integrated into a tool with a graphical user interface under
additional LM Aero IR&D funding. This tool was used to generate compact models of
the JSF aerodynamics. These compact models are being evaluated for use as
control law on-board models for JSF.

Transition 2
Technology: Neural Network Compact On-board Models

Customer. NASA AIMSAFE 6.2 R&D Program, Lockheed Martin Aeronautics
Company

Result. Compact neural network modeling. Fundamental neural network theory was
developed for compact analytical modeling of dynamical systems.

Application: The basic neural network modeling theory was applied to aircraft
dynamics models and integrated into a tool with a graphical user interface under
additional LM Aero IR&D funding. This tool was used to generate compact models of
the aerodynamics and propulsion systems for a business jet. These compact models
are being used as on-board models for the business jet control laws in the NASA
AIMSAFE 6.2 R&D program.
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Transition 3
Technology: Intelligent On-board Models
Customer. JSF Program, Lockheed Martin Aeronautics Company

Result. Fundamental neural network theory and parameter identification theory were
integrated to provide an intelligent on-board model update capability for flight test
and/or reconfiguration. The structure of the on-board model updates is consistent
with nonlinear aerodynamic model architectures.

Application: The intelligent on-board models are being investigated for JSF on-board
model design.

Transition 4

Technology. Dynamic Control Allocation

Customer: JSF Program, Lockheed Martin Aeronautics Company

Result. Preliminary development and analysis of dynamic control allocation.

Application: The dynamic control allocation technology is being investigated for
integration into the JSF effector blender during the the EMD phase of the program.

3.2. Publications

The following publications are directly related to results from this effort.

¢ M. A. Niestroy and J. M. Buffington, "Intelligent On-board Models", planned submittal
to the 2002 AIAA Guidance, Navigation, and Control Conference.

¢ C. M. Ha and J. M. Buffington, "Dynamic Control Allocation", planned submittal to the
2002 AIAA Guidance, Navigation, and Control Conference.

The following publications report on results of related projects, during the period of
performance of this effort, that have indirectly contributed to the results and are
authored by contributors of this program.

o V. Kapila, A. G. Sparks, J. M. Buffington, and Q. Yan, "Spacecraft Formation
Flying: Dynamics and Control", Joumal of Guidance, Control, and Dynamics, Vol.
23, No. 3, 2000, pp.561-563.

¢ Y. Shtessel, J. Buffington, and S. Banda, "Multiple Timescale Flight Control Using
Reconfigurable Sliding Modes", Journal of Guidance, Control, and Dynamics, Vol.
22, No. 5, 1999.

¢ J. Buffington, P. Chandler, and M. Pachter, "Interaction of System Identification and
Control Allocation in Reconfigurable Control Systems", International Journal of
Robust & Nonlinear Control, Vol. 9, No. 14, 1999,

e R. L. Eberhardt, D. G. Ward, “Indirect Adaptive Flight Control System Interactions”,
to appear in the International Journal of Robust and Nonlinear Control.
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e R. L. Eberhardt, D. G. Ward, “Indirect Adaptive Flight Control System Interactions”,
AIAA Guidance, Navigation, and Control Conference, August 1999.

« R. Lind , J. M. Buffington, and A. G. Sparks “Multi-loop Aeroservoelastic Control of
a Hypersonic Vehicle,” 1999 AIAA GN&C Conference, Portland OR, Aug. 1999,
AIAA 99-4123.

¢ D. S. Naidu, , J. M. Buffington, and S. S. Banda “Optimal Control of Singularly
Perturbed Systems with Inequality Constraints,” 7999 AIAA GN&C Conference,
Portland OR, Aug. 1999, AIAA 99-4125.

¢ D. S. Naidu, , J. M. Buffington, and S. S. Banda “Further results on nondimensional
forms for singularly perturbed structures,” 1999 AIAA GN&C Conference, Portland
OR, Aug. 1999, AIAA 99-3981.

¢ D. S. Naidu, , J. M. Buffington, and S. S. Banda “Resurrection in Hypersonics: Why,
What and When,” 1999 AIAA GN&C Conference, Portland OR, Aug. 1999, AIAA
99-4053.

¢ Y. Shtessel, J. Buffington, and S. Banda, “Tailless Aircraft Flight Control Using
Multiple Time Scale Reconfigurable Sliding Modes,” 1999 AIAA GN&C Conference,
Portland OR, Aug. 1999, AIAA 99-4136.

¢ D. S. Naidu, S. S. Banda, and J. M. Buffington, “Unified Approach to H; and H.,
Optimal Control of Hypersonic Vehicles," Proceedings of the 1999 American
Control Conference, San Diego CA, Jun. 1999.

o V. Kapila, A. Sparks, J. Buffington and Q. Yan, “Spacecraft Formation Flying:
Dynamics and Control," Proceedings of the 1999 American Control Conference,
San Diego CA, Jun. 1999,
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